
1

A Versatile Multi-Input Multiplier
over Finite Fields

Haibo Yi, Student Member, IEEE, and Shaohua Tang*, Member, IEEE

Abstract—Multiplication of three elements over finite fields is used extensively in multivariate public key cryptography and solving
system of linear equations over finite fields. This contribution shows the enhancements of multiplication of three elements over
finite fields by using specific architecture. We firstly propose a versatile multi-input multiplier over finite fields. The parameters
of this multiplier can be changed according to the requirement of the users which makes it reusable in different applications.
Our evaluation of this multiplier gives optimum choices for multiplication of three elements over finite fields. Implemented results
show that we takes 22.062 ns and 16.354 ns to execute each multiplication of three elements over GF ((24)2) based on table
look-up and polynomial basis on a FPGA respectively. Experimental results and mathematical proofs clearly demonstrate the
improvement of the proposed versatile multiplier over finite fields.

Index Terms—versatile multiplier, multi-input multiplier, composite field, finite field, table look-up, polynomial basis, Field-
Programmable Gate Array (FPGA).

F

1 INTRODUCTION
Multiplication over finite fields is one of the fun-
damental and important arithmetical operations in
many engineering fields, especially in the area of
cryptography.

Most of multipliers over finite fields can be grouped
into three families: polynomial basis [1], [2], normal
basis [3], [4] and dual basis [5], [6].

Besides, there has been a growing interest to imple-
ment the finite field arithmetic using composite field
representations [7], [8], [9], which has been employed
in cryptographic applications [10], [11] and coding
technique [12]. Composite field is one of the specific
form of finite fields. To some extent, composite field
is a better choice for efficient implementation of many
applications.

To our knowledge, all these multipliers are de-
signed for multiplication of two elements. However,
multiplication of three elements is playing a key role
in cryptographic implementations and other mathe-
matical problems.

Applications. One of the applications is to evaluate
multivariate polynomials over finite fields. Generally,
multivariate polynomial consists of multiplication of
two elements, multiplication of three elements and
addition over finite fields. For example, during the im-
plementation of multivariate public key cryptography
[13], evaluating multivariate polynomials over finite
fields is one of the most time-consuming operations.

• Corresponding Author. Shaohua Tang is with the School of Computer
Science and Engineering, South China University of Technology,
Guangzhou, China, 510641.
E-mail: shtang@IEEE.org

• Haibo Yi is with the South China University of Technology and
University of Cincinnati.

The multivariate polynomial in Rainbow signature
scheme [14], which is one of multivariate signature
schemes, can be represented by the form∑
i∈Ol,j∈Sl

αijxixj +
∑

i,j∈Sl

βijxixj +
∑

i∈Sl+1

γixi + η. (1)

Here are some definitions of the coefficients in (1).
Oi is a set of Oil variables in the the i− th layer; Si is a
set of Vinegar variables in the the i− th layer. α, β and
γ are coefficients; η is a constant. It can be observed
from (1), computing multiplication of three elements
is one of the important parts in the multivariate poly-
nomials. Besides, evaluating multivariate polynomial
is playing a key role in graphic computation [15], [16]
and decoding of cyclic codes, Reed-Solomon codes
[17].

Another application is to solve system of linear
equations over finite fields. Gaussian elimination
method [18] or Gauss-Jordan elimination method [19]
can be employed to solve system of linear equations.
These methods consist of pivoting, normalization and
elimination. Let aij be the i−th row and j−th column
in a matrix. aii is the pivot element. akt is eliminated
via akt = akt + aii

−1aitaki. It can be observed that
since elimination includes a multiplication of three
elements and an addition, three-input multipliers can
be employed. Besides, since solving system of linear
equations has a variety of applications, e.g. [20], [21],
[22] and [23], three-input multipliers can be adopted
in these applications.

However, to the best of our knowledge, since multi-
pliers with three inputs have not been designed, mul-
tiplication of three elements is computed by invoking
multipliers with two inputs.

Our contributions. Therefore, we firstly propose a
multi-input versatile multiplier in this paper. We en-

2

Controller

a
b

c

k

p q d

Multiplier

2((2))nGF

Multiplier

(2)nGF

Multiplier

(2)nGF

Polynomial Basis Table Look-Up

Fig. 1. The architecture of proposed versatile multipli-
er.

hance the multiplication of multiple elements in three
directions. First, the proposed multiplier can execute
multiplications over finite fields GF (2n) and com-
posite fields GF ((2n)2). Second, the proposed mul-
tiplier can compute multiplications of two elements
and three elements. Third, the proposed multiplier
can perform multiplications based on table look-up
and polynomial basis. By integrating these designs,
the proposed versatile multiplier is very efficient for
FPGA and VLSI implementation.

We test and verify our design on a FPGA and
the experimental results show that the proposed ver-
satile multiplier has a remarkable performance on
computing multiplication of multiple elements. We
also demonstrate the improvement of the multiplier
mathematically.

The rest of this paper is organized as follows: In
Section 2, a versatile multi-input multiplier is pro-
posed. In Section 3, we evaluate the performance of
the proposed multiplier by mathematical analysis. In
Section 4, the proposed multiplier is implemented on
a FPGA and the experimental results are analyzed. In
Section 5, conclusions are summarized.

2 VERSATILE MULTI-INPUT MULTIPLIER

2.1 Overview of the Proposed Multiplier
The hardware architecture of proposed versatile
multi-input multiplier is depicted in Fig. 1, which
consists of four parts, i.e. controller, multiplier over
GF ((2n)2), multiplier with polynomial basis over
GF (2n) and multiplier with table look-up over
GF (2n).

In the proposed versatile multiplier, multiplication
of two elements a× b = d and multiplication of three
elements a × b × c = d over GF (2n) and GF ((2n)2)
are performed respectively. p(x) = xn + pn−1x

n−1 +
... + p1x + 1 and q(x) = x2 + x + e are irreducible
polynomials over GF (2n) and GF ((2n)2) respectively,
where pn−1, pn−2, ..., p1 are the elements over GF (2)
and e is an element over GF (2n).

TABLE 1
The Versatile Multiplier for Different Parameters

k Field Operand Method
(000)2 GF (2n) Two Polynomial basis
(001)2 GF (2n) Two Table look-up
(010)2 GF (2n) Three Polynomial basis
(011)2 GF (2n) Three Table look-up
(100)2 GF ((2n)2) Two Polynomial basis
(101)2 GF ((2n)2) Two Table look-up
(110)2 GF ((2n)2) Three Polynomial basis
(111)2 GF ((2n)2) Three Table look-up

a(x)

c(x)

q(x)

S1

S2

S3

D1

D8

ENB

Controller

k
1

b(x)

d(x)

p(x)

Fig. 2. Controller of the proposed versatile multi-input
multiplier.

According to different value of the signal k, the
versatile multiplier can be reused for different appli-
cations, which is illustrated in Table 1. For example,
when k = (111)2, the proposed multiplier executes
multiplication of three elements with table look-up
over GF ((2n)2).

2.2 Controller

Controller of the proposed versatile multiplier is de-
picted in Fig. 2. According to different value of k, con-
troller invokes different computational components
for different applications.

Signal k is decoded by a 38-line decoder. Three bits
of k are connected with S1, S2 and S3 of the decoder
respectively. D1, D2, ... D8 are connected with the
other computational components.
a(x), b(x), c(x), p(x) and q(x) are directly sent to the

computational components. If there exists inputs from
the computational components, the controller sends
these inputs to its output port d(x).

2.3 Multiplier over GF (2n) with Polynomial Bases

In the multiplier over GF (2n) with polynomial basis,
the design is based on [1]. Field element is expressed
in the polynomial form and field multiplication can be
performed in two steps. The first step is to perform
the polynomial multiplication. The second step is to
reduce modulo the irreducible polynomial p(x).

Let a(x) =
n−1∑
i=0

aix
i and b(x) =

n−1∑
i=0

bix
i be elements

3

TABLE 2
Table Look-Up over GF (24)

Power Representation Binary Representation

α0 0001
α1 0010
α2 0100
α3 1000
α4 0011
α5 0110
α6 1100
α7 1011
α8 0101
α9 1010
α10 0111
α11 1110
α12 1111
α13 1101
α14 1001

in GF (2n) , and

c(x) = a(x)× b(x)(mod(p(x))) =

n−1∑
i=0

cix
i (2)

is the expected multiplication result, where p(x) is
the irreducible polynomial over GF (2n).

First, we compute vij for i = 0, 1, ..., 2(n− 1) and
j = 0, 1, ..., n− 1 according to

xi mod p(x) =

n−1∑
j=0

vijx
j . (3)

This step can be pre-computed and vij is pre-stored
in a look-up table.

Next, we compute Si by AND logic gates for i =
0, 1, ..., 2(n− 1) via

Si =
∑

j+k=i

ajbk. (4)

After that, we compute ci by XOR logic gates for
i = 0, 1, ..., n− 1 via

ci =

2(n−1)∑
j=0

vjiSj . (5)

Finally, the multiplication result is c(x) =
n−1∑
i=0

cix
i.

2.4 Multiplier over GF (2n) with Table Look-up
Multiplier over GF (2n) with table look-up is depicted
in Fig. 3.

Table look-up is always adopted to accelerate com-
puting multiplication. The number of elements in
GF (2n) is 2n. If α is chosen as the primitive element,
all non-zero elements can be represented as a power
of α. Hence these elements are stored sequentially in
the look-up table. We store (i, ki(x)) in the look-up
table when αi mod p(x) = ki(x), where p(x) is the
irreducible polynomial over GF (2n).

p(x)

(2)nGF Table Look-Up

i Element

0i

1i

2 2ni

0 ()k x
1()k x

2 2
()nk x

.

.

.

.

.

.

a(x)

b(x)

c(x)

Multiplier

Fig. 3. Multiplier over GF (2n) with table look-up.

We define a look-up table by Table 2, where n = 4
and the irreducible polynomial p(x) is x4+x+1. Here
are three examples for multiplications of two elements
and three elements using table look-up respectively.
Suppose the element in GF (24) is represented as
(xxxx)2, where x ∈ GF (2), i.e. x = 0 or x = 1.

Example 1. We are going to compute (1000)2 × (1100)2.
Since (1000)2 = α3 and (1100)2 = α6, (1000)2 ×
(1100)2 = α3 × α6 = α9. By looking up Table 2, we have
α9 = (1010)2. Then, (1000)2 × (1100)2 = (1010)2.

Example 2. The second example is to compute (1011)2×
(1101)2. Since (1011)2 = α7 and (1101)2 = α13,
(1011)2 × (1101)2 = α7 × α13 = α20 = α20 mod 15 = α5.
Looking up Table 2, we have α5 = (0110)2. Therefore,
(1011)2 × (1101)2 = (0110)2.

Example 3. The third example is to compute (1000)2 ×
(1011)2 × (1101)2. Since (1000)2 = α3, (1011)2 = α7

and (1101)2 = α13, (1000)2 × (1011)2 × (1101)2 = α3 ×
α7 × α13 = α23 = α23 mod 15 = α8. Looking up Table
2, we have α8 = (0101)2. Therefore, (1000)2 × (1011)2 ×
(1101)2 = (0101)2.

It can be observed from these examples that using
table look-up in multiplication over GF (2n) is very
efficient when executing multiplication of multiple
elements simultaneously.

2.5 Multiplier over GF ((2n)2)
In the multiplier over GF ((2n)2), there exists multi-
plication over subfields GF (2n), where multiplication
with polynomial basis is computed by invoking the
multiplier with polynomial basis over GF (2n) and
multiplication with table look-up is computed by in-
voking the multiplier with table look-up over GF (2n).

Multiplication of Two Elements. Let a(x) = ahx+
al and b(x) = bhx + bl be the elements in GF ((2n)2),
where ah, al, bh and bl are elements in GF (2n).

Then the multiplication of two elements a(x) and
b(x) over GF ((2n)2) can be expressed as

a(x)× b(x) = (ahx+ al)(bhx+ bl)

= (ahbhx
2 + (ahbl + albh)x+ albl) mod q(x).

(6)

4

We perform the polynomial multiplication and re-
duction module q(x), where q(x) = x2 + x + e is
an irreducible polynomial over GF ((2n)2) and e is a
constant in GF (2n). Then we have

ch = ahbl + albh + ahbh,

cl = albl + ahbhe.
(7)

Or
ch = (ah + al)(bh + bl) + albl,

cl = albl + ahbhe.
(8)

According to (7), the computational operations in-
clude five multiplications and three additions over
GF (2n). (8) is an equivalent form of (7) and only
four multiplications and four additions over GF (2n)
are computed in (8). Usually one multiplication is
more complex than one addition. Thus the latter is
more efficient than the former. Hence, we adopt (8)
to implement the multiplication of two elements over
GF ((2n)2).

By observing (6) and (8), the critical path of mul-
tiplication of two elements over GF ((2n)2) includes
one multiplication, one constant multiplication and
one addition over GF (2n).

Multiplication of Three Elements. Suppose a(x) =
ahx+al, b(x) = bhx+bl and c(x) = chx+cl are elements
in GF ((2n)2).
d(x) = a(x)× b(x)× c(x) mod q(x) is computed via

d(x) = (dhx+ dl)

= (ahbhchx
3 + (ahblch + albhch + ahbhcl)x

2

+ (alblch + ahblcl + albhcl)x+ alblcl) mod q(x),
(9)

dl = e(ahbhch + ahblch + albhch + ahbhcl) + alblcl,

dh = eahbhch + ahbhch + ahblch

+ albhch + ahbhcl + alblch + ahblcl + albhcl.
(10)

q(x) = x2+x+ e is the irreducible polynomial over
GF ((2n)2), where e is a constant in GF (2n). Therefore,
it can be observed that the critical path of multiplica-
tion of three elements over GF ((2n)2) includes one
constant multiplication, one multiplication, and three
additions over GF (2n).

3 EVALUATION OF PERFORMANCE

In the proposed versatile multiplier, multiplications
of two elements and three elements with polynomial
basis over GF ((2n)2) are computed by invoking the
two-input multiplier (PB2) and three-input multiplier
(PB3) respectively. We can also compute multiplica-
tion of three elements over GF ((2n)2) by invoking
these two multipliers respectively.

For presenting a mathematical analysis of the per-
formance of the proposed multiplier, we give some
definitions at first. M2 stands for one multiplication
of two elements over GF (2n), MC stands for one

constant multiplication over GF (2n), A stands for
one addition over GF (2n) and M3 stands for one
multiplication of three elements over GF (2n).

In order to prove invoking three-input multiplier
PB3 over GF ((2n)2) is faster than invoking two-input
multiplier PB2 over GF ((2n)2) twice when comput-
ing multiplication of three elements over GF ((2n)2),
we give Lemma 1 from the view of critical path.

Lemma 1. When computing multiplication of three ele-
ments by invoking PB2, the critical path includes 2(M2+
MC + A). In the same condition, if we adopt PB3, the
critical path includes M3 +MC +3A. The critical path by
invoking PB3 is shorter than the critical path by invoking
PB2 when computing multiplication of three elements.

Proof: First, the critical path of computing mul-
tiplication of two elements by invoking PB2 can be
evaluated as follows,

T2 =M2 +MC +A. (11)

Second, the critical path of computing multiplica-
tion of three elements by invoking PB2 is double,

2T2 = 2(M2 +MC +A). (12)

Third, the critical path of computing multiplication
of three elements by invoking PB3 can be evaluated
as follows,

T3 =M3 +MC + 3A. (13)

The difference between 2T2 and T3 is,

D = 2T2 − T3 = 2M2 −M3 +MC −A. (14)

Since the critical path of two multiplications of
two elements is longer than the critical path of one
multiplication of three elements, we have 2M2 > M3.
Moreover, since the critical path of one constant mul-
tiplication is much longer than the critical path of one
addition, we have MC >> A.

Therefore, D >> 0 has been proved. In other words,
when computing multiplication of three elements, the
critical path of using PB3 once is shorter than the one
of using PB2 twice.

4 IMPLEMENTATION AND EXPERIMENTAL
ANALYSIS

4.1 Overview of Implementation

The proposed versatile multiplier can compute mul-
tiplication over GF (2n) and GF ((2n)2) respective-
ly. We implement the proposed multiplier for d-
ifferent parameters, where the parameter n =
2, 3, 4, 5, 6, 7, 9, 11, 13 and 15, respectively. Our design
is programmed in VHDL by using Quartus II, and im-
plemented on a EP2S130F1020I4 FPGA device, which
is a member of ALTERA Stratix II family. Further-
more, this design can be generalized to cover other
devices of FPGA.

5

TABLE 3
Executing Time of the Proposed Multiplications over GF (2n)

n p(x) GLUT2(ns) GPB2(ns) GLUT3(ns) GPB3(ns)
2 x2 + x+ 1 8.505 8.620 8.591 17.238
3 x3 + x+ 1 8.631 8.791 10.616 17.580
4 x4 + x+ 1 10.440 9.569 11.106 19.133
5 x5 + x2 + 1 11.128 9.634 11.139 19.263
6 x6 + x+ 1 10.575 18.102 11.229 36.198
7 x7 + x+ 1 11.187 10.276 15.359 20.547
9 x9 + x4 + 1 17.854 13.298 24.749 26.595

11 x11 + x2 + 1 14.879 11.681 28.117 23.360
13 x13 + x4 + x3 + x+ 1 23.145 12.643 37.737 25.282
15 x15 + x4 + x2 + x+ 1 27.275 15.322 68.881 30.640

4.2 Implementation of Versatile Multiplier for
Computing Multiplication over GF (2n)
Table 3 depicts the performance of the proposed
versatile multiplier when computing multiplica-
tion of two elements with table look-up over
GF (2n)(GLUT2), multiplication of two elements with
polynomial basis over GF (2n)(GPB2), multiplica-
tion of three elements with table look-up over
GF (2n)(GLUT3) and multiplication of three elements
with polynomial basis over GF (2n)(GPB3) respec-
tively. An optimized irreducible polynomial p(x) over
GF (2n) is given for each field.

The comparison on the proposed multiplications
over GF (2n) is given in Fig. 4, where (a) is the com-
parison of multiplication of two elements by invoking
GLUT2 and GPB2 and (b) is the comparison of
multiplication of three elements by invoking GLUT3
and GPB3.

In Fig. 4, the horizontal axis is the value of n and
the vertical axis is the value of the executing time
(ns) of multiplication. The curves of the figure of
the multiplication over GF (2n) show that multipli-
cation with table look-up is faster than multiplication
with polynomial basis when field size is small and
multiplication with polynomial basis is faster than
multiplication with table look-up when field size is
large.

4.3 Implementation of Versatile Multiplier for
Computing Multiplication over GF ((2n)2)
Table 4 depicts the performance of the proposed
versatile multiplier when computing multiplica-
tion of two elements with table look-up over
GF ((2n)2)(LUT2), multiplication of two elements
with polynomial basis over GF ((2n)2)(PB2), multi-
plication of three elements with table look-up over
GF ((2n)2)(LUT3) and multiplication of three ele-
ments with polynomial basis over GF ((2n)2)(PB3) re-
spectively. An optimized irreducible polynomial q(x)
over GF ((2n)2) and an optimized irreducible polyno-
mial p(x) over GF (2n) are given for each field.

Example 4. By observing Table 4, if we choose LUT2 over
GF ((22)2) to compute multiplication of three elements,

2×9.456 ns is required. However, if we choose LUT3 over
GF ((22)2) to compute multiplication of three elements,
10.229 ns is required. Since 2 × 9.456 > 10.229, LUT3
is faster than LUT2 when computing multiplication over
GF ((22)2) of three elements.

Example 5. When computing multiple multiplications of
three elements and multiple multiplications of two ele-
ments, e.g.

m−1∑
i=0

(

m−1∑
j=0

αijxixj) +

m−1∑
i=0

βixi,

we can use LUT3 and LUT2 respectively to perform the
computation.

If we only use LUT2, 2m2 +m multiplications of two
elements are required. If we only adopt LUT3, m2 + m
multiplications are required. According to experimental
results, if the computation is performed over GF ((22)2),
the executing time by only using LUT2 is 9(2m2 + m)
and the executing time by adopting LUT3 is 10(m2+m).

Since m ≥ 1, 18m2 + 9m > 10m2 + 10m. It can be
observed that when performing the computation, adopting
LUT3 is faster.

Therefore, LUT3 and PB3 are faster than LUT2
and PB2 when computing multiplication over
GF ((2n)2) of three elements.

The comparison on the proposed multiplications
over GF ((2n)2) is given in Fig. 5, where (c) is the
comparison of multiplication of two elements by in-
voking LUT2 and PB2 and (d) is the comparison of
multiplication of three elements by invoking LUT3
and PB3.

In Fig. 5, the horizontal axis is the value of n and
the vertical axis is the value of the executing time
(ns) of multiplication. The curves of the figure of the
multiplication over GF ((2n)2) show that multiplica-
tion with table look-up is faster than multiplication
with polynomial basis when field size is small and
multiplication with polynomial basis is faster than
multiplication with table look-up when field size is
large.

6

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

GLUT3
GPB3

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

GLUT2
GPB2

(a) (b)

Fig. 4. Comparison on the proposed multiplications over GF (2n).

TABLE 4
Executing Time of the Proposed Multiplications over GF ((2n)2)

n p(x) q(x) LUT2(ns) PB2(ns) LUT3(ns) PB3(ns)
2 x2 + x+ 1 x2 + x+ 3 9.456 12.608 10.229 13.530
3 x3 + x+ 1 x2 + x+ 5 10.304 12.226 13.215 14.873
4 x4 + x+ 1 x2 + x+ 9 11.422 12.842 22.062 16.354
5 x5 + x2 + 1 x2 + x+ 8 15.072 13.792 16.653 17.706
6 x6 + x+ 1 x2 + x+ 33 14.535 14.698 21.234 20.425
7 x7 + x+ 1 x2 + x+ 113 15.563 14.689 21.698 20.989
9 x9 + x4 + 1 x2 + x+ 32 19.621 16.143 27.215 23.268
11 x11 + x2 + 1 x2 + x+ 1367 27.541 17.558 34.348 24.441
13 x13 + x4 + x3 + x+ 1 x2 + x+ 3085 30.133 19.125 36.794 27.642
15 x15 + x4 + x2 + x+ 1 x2 + x+ 16395 48.575 19.947 57.344 26.917

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

LUT2
PB2

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

LUT3
PB3

(d)(c)

Fig. 5. Comparison on the proposed multiplications over GF ((2n)2).

4.4 Comparison of Versatile Multiplier for Com-
puting Multiplication over GF (2n) and Multiplica-
tion over GF ((2n)2)

We compare the versatile multiplier for computing
multiplication over GF (2n) and multiplication over
GF ((2n)2).

Suppose GLUT2, GPB2, GLUT3 and GPB3 are
performed over GF (2m) and LUT2, PB2, LUT3 and
PB3 are performed over GF ((2(m/2))2). Therefore, the
size of GF ((2(m/2))2) with composite field expression
equals the size of GF (2m) with finite field expression.

The comparison on multiplications over GF (2m)
and GF ((2(m/2))2) is given in Fig. 6, where (e) is the
comparison of the multiplications of two elements by
invoking GLUT2, GPB2, LUT2 and PB2 respectively
and (f) is the comparison of the multiplications of

three elements by invoking GLUT3, GPB3, LUT3
and PB3 respectively.

In Fig. 6, the horizontal axis is the value of m and
the vertical axis is the value of the executing time (ns)
of multiplication. The curves of the figure show that
LUT2 and LUT3 are faster than GLUT2 and GLUT3
and GPB2 and GPB3 are faster than PB2 and PB3.
In other words, multiplication with table look-up is
more efficient for composite fields and multiplication
with polynomial basis is more efficient for finite fields.

5 CONCLUSION

We propose a versatile multi-input multiplier, which
can compute multiplications of two elements and
three elements over finite fields GF (2n) and compos-
ite fields GF ((2n)2) based on polynomial basis and

7

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

GLUT2
GPB2
LUT2
PB2

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

GLUT3

GPB3
LUT3
PB3

(f)(e)

Fig. 6. Comparison on the proposed multiplications of two elements and three elements.

table look-up respectively. The parameters of the mul-
tiplier can be changed according to the requirement of
the users which makes the multiplier reusable in dif-
ferent applications. The proposed versatile multiplier
is very efficient for FPGA and VLSI implementation.

To the best of our knowledge, this is the first
multiplier with multiple inputs. No related work has
proposed, thus we can not make a comparison with
the other multipliers. We demonstrate the improve-
ment of our new designs mathematically. Then we
implement the proposed multiplier on a FPGA and
experimental results confirm our estimate.

The main characteristics of the proposed multiplier
are presented as follows. First, when the field size
is small, adopting multiplication with table look-
up rather than polynomial basis is a better choice.
Second, when the field size is large, adopting mul-
tiplication with polynomial basis rather than table
look-up is more efficient. Third, multiplication with
polynomial basis is more efficient for finite fields and
multiplication with table look-up is more efficient for
composite fields. Fourth, when computing multiplica-
tion of three elements, adopting three-input multiplier
is more efficient than invoking two-input multiplier
twice.

In addition, the proposed multiplier has a variety
of applications, especially in cryptographic implemen-
tations and solving mathematical problems. More-
over, the proposed designs can be easily extended to
GF ((2n)m).

Today’s modern processors, such as Intel’s and
AMD’s, and graphic processors, such as NVIDIA’s
and AMD/ATI’s, provide tremendous abilities for
parallel computing. We believe our design can easily
carry over to modern processors as well as graphic
processors for software implementation and achieve
a good performance for software implementation.

6 ACKNOWLEDGEMENT

This paper is supported by the National Natu-
ral Science Foundation of China under Grant No.
U1135004 and 61170080, and Guangdong Province

Universities and Colleges Pearl River Scholar Fund-
ed Scheme (2011), and Guangzhou Metropolitan Sci-
ence and Technology Planning Project under grant
No. 2011J4300028, and High-level Talents Project
of Guangdong Institutions of Higher Education
(2012), and the Fundamental Research Funds for
the Central Universities under Grant No. 2009Z-
Z0035 and 2011ZG0015, and Guangdong Provin-
cial Natural Science Foundation of under grant No.
9351064101000003.

REFERENCES

[1] E. D. Mastrovito, “VLSI designs for multiplication over fi-
nite fields GF (2m),” in Proceedings of the 6th International
Conference, on Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, 1989, pp. 297–309.

[2] G. Orlando and C. Paar, “A super-serial Galois fields multi-
plier for FPGAs and its application to public-key algorithms,”
in Proceedings of the Seventh Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, ser. FCCM ’99, 1999,
pp. 232–.

[3] H. Fan and M. A. Hasan, “Subquadratic computational com-
plexity schemes for extended binary field multiplication using
optimal normal bases,” IEEE Trans. Comput., vol. 56, pp. 1435–
1437, October 2007.

[4] c. K. Koç and B. Sunar, “Low-complexity bit-parallel canonical
and normal basis multipliers for a class of finite fields,” IEEE
Trans. Comput., vol. 47, pp. 353–356, March 1998.

[5] H. Wu, M. A. Hasan, and I. F. Blake, “New low-complexity
bit-parallel finite field multipliers using weakly dual bases,”
IEEE Trans. Comput., vol. 47, pp. 1223–1234, November 1998.

[6] S. T. J. Fenn, M. Benaissa, and D. Taylor, “GF (2m) multipli-
cation and division over the dual basis,” IEEE Trans. Comput.,
vol. 45, pp. 319–327, March 1996.

[7] C. Paar, “A new architecture for a parallel finite field multiplier
with low complexity based on composite fields,” IEEE Trans.
Comput., vol. 45, pp. 856–861, July 1996.

[8] S. Oh, C. H. Kim, J. Lim, and D. H. Cheon, “Efficient normal
basis multipliers in composite fields,” IEEE Trans. Comput.,
vol. 49, pp. 1133–1138, October 2000.

[9] C. Paar, P. Fleischmann, and P. Roelse, “Efficient multiplier ar-
chitectures for Galois fields GF ((24)n),” IEEE Trans. Comput.,
vol. 47, pp. 162–170, February 1998.

[10] R. Schroeppel, H. Orman, S. W. O’Malley, and O. Spatscheck,
“Fast key exchange with elliptic curve systems,” in Proceed-
ings of the 15th Annual International Cryptology Conference on
Advances in Cryptology, ser. CRYPTO ’95, 1995, pp. 43–56.

[11] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “A
lightweight high-performance fault detection scheme for
the advanced encryption standard using composite fields,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 19, pp. 85–91,
January 2011.

8

[12] C. Paar and M. Rosner, “Comparison of arithmetic architec-
tures for Reed-Solomon decoders in reconfigurable hardware,”
in Proceedings of the 5th IEEE Symposium on FPGA-Based Custom
Computing Machines, 1997, pp. 219–.

[13] J. Ding and D. Schmidt, “Multivariate public key cryptosys-
tems,” Advances in Information Security, 2006.

[14] ——, “Rainbow, a new multivariable polynomial signature
scheme,” pp. 317–366, 2005.

[15] M. Allard, P. Grogan, and J. David, “A scalable architecture for
multivariate polynomial evaluation on FPGA,” in Proc. 2009
International Conference on Reconfigurable Computing and FPGAs.
IEEE, 2009, pp. 107–112.

[16] J. Rotgé and J. Farret, “Universal solid 3D format for high
performance urban simulation,” in Proc. 2007 Urban Remote
Sensing Joint Event. IEEE, 2007, pp. 1–10.

[17] D. Schipani, M. Elia, and J. Rosenthal, “Efficient evaluations
of polynomials over finite fields,” in Proc. 2011 Australian
Communications Theory Workshop (AusCTW), Feb. 2011, pp. 154
–157.

[18] V. Strassen, “Gaussian elimination is not optimal,” Numerische
Mathematik, vol. 13, no. 4, pp. 354–356, 1969.

[19] H. Hsieh, “Fill-in comparisons between Gauss-Jordan and
Gaussian eliminations,” IEEE Trans. Circuits and Systems,
vol. 21, no. 2, pp. 230 – 233, Mar. 1974.

[20] S. Kim, K. Ko, and S.-Y. Chung, “Incremental Gaussian elim-
ination decoding of raptor codes over BEC,” IEEE Communi-
cations Letters, vol. 12, no. 4, pp. 307 –309, Apr. 2008.

[21] M. Atif and A. Rauf, “Efficient implementation of Gaussian
elimination method to recover generator polynomials of con-
volutional codes,” in Proc. International Conference on Emerging
Technologies (ICET), Oct. 2009, pp. 153 –156.

[22] C. Hou, X. Guo, and G. Wang, “Cluster based routing scheme
for distributed regression in wireless sensor networks: Gaus-
sian eliminations,” in Proc. 10th IEEE International Conference on
High Performance Computing and Communications (HPCC), Sep.
2008, pp. 813 –818.

[23] V. Bioglio, M. Grangetto, R. Gaeta, and M. Sereno, “On the
fly Gaussian elimination for LT codes,” IEEE Communications
Letters, vol. 13, no. 12, pp. 953 –955, Dec. 2009.

