
New Non-Interactive Zero-Knowledge Subset Sum, Decision
Knapsack And Range Arguments

First eprint version, September 19, 2012

Helger Lipmaa1 and Bingsheng Zhang2

1 University of Tartu, Estonia
2 State University of New York at Buffalo, USA

Abstract. We propose two basic NIZK arguments, one for Hadamard product of two vectors,
and another one for a shift of a vector. The first argument is based on the corresponding argu-
ment of Lipmaa (TCC 2012), but makes use of Fast Fourier Transform and Pippenger’s multi-
exponentiation algorithm to achieve quasilinear (as opposed quadratic) computational complexity.
The shift argument seems to be novel.
Based on the new basic arguments, we propose a NIZK argument for subset sum. This seems to
be the only known (direct) sublinear NIZK argument for some other NP-complete language than
Circuit-SAT. Moreover, it is significantly more efficient than the known sublinear Circuit-SAT
arguments by Groth (Asiacrypt 2010) and Lipmaa. In addition, we show that the new arguments
can be used to speed up the recent range argument by Chaabouni, Lipmaa and Zhang (FC 2012).
Finally, we combine the subset sum argument and the range argument to propose a direct sublinear
NIZK argument for another NP-complete language, decision knapsack.
Keywords. Decision knapsack argument, FFT, Hadamard product argument, non-interactive zero
knowledge, progression-free sets, range argument, shift argument, subset sum argument.

1 Introduction

By using a zero-knowledge proof [GMR85], a prover can convince a verifier in the truth of a claim, without
revealing any additional details about the proof. Standard zero-knowledge proofs are interactive, requiring
the prover to participate in every verification. In most applications, it is desirable to have non-interactive
zero-knowledge (NIZK) proofs [BFM88], where the prover has to be present only once while creating
the proof. For example, in a typical e-voting protocol [CGS97,DJ01], every voter has to prove that her
ballot contains the name of a legit candidate (this can be implemented as a range proof [Bou00,Lip03]);
it is unreasonable to expect every voter to be available during the subsequent tallying process. NIZK
proofs are divided into computational zero-knowledge proofs (where the zero-knowledge property holds
against polynomial-time adversaries and the soundness property is unconditional) and computationally-
sound proofs (also known as arguments, where the soundness property holds against polynomial-time
adversaries and the zero-knowledge property is unconditional).

Efficient NIZK proofs play an important role in the design of cryptographic protocols. Hence, a large
number of recent papers aim to design more efficient NIZK proofs (and arguments). In practice, the most
interesting case is when the NIZK arguments (sublinear statistically sound NIZK proofs clearly do not
exist) are succinct, that is, sublinear — or even logarithmic — in the input size. As shown in [GW11],
sublinear NIZK proofs are only possible under non-standard (for example, knowledge) assumptions.
Following [Gro10,Lip12], we base our arguments on knowledge assumptions.1

Many general techniques for constructing efficient NIZK proofs have been discovered while de-
signing NIZK proofs for concrete languages like Circuit-SAT (an NP-complete language), shuffle, and
range. In [Gro10], Groth constructed a NIZK Circuit-SAT argument based on two basic arguments,
for Hadamard product and for permutation. Let n = |C| be the circuit size. Both of Groth’s basic ar-
guments have quadratic CRS size (in group elements) and prover’s computation (in exponentiations;
more precisely, a small constant number of Θ(n2)-wide bilinear-group multi-exponentiations), while the
communication (in group elements) and verifier’s computation (in bilinear pairings) are constant; see

1 We only mention NIZK proofs that work in the common reference string (CRS) model (where all parties have
access to a honestly generated CRS) and not in the random oracle model, since random oracles cannot always
be instantiated [CGH98,GK03].

Table 1. Comparison of knowledge-assumption based adaptive NIZK arguments for NP-complete lan-
guages with (worst-case) sublinear argument size. Note that the summary length of the CRS and the

argument corresponds to the zap length. n is the size of circuit, N = r−1
3 (n) = o(n22

√
2 log2 n) and

N∗ = r−1
3 (
√
n) = o(

√
n · 22

√
log2 n) (if using Elkin’s progression-free set), m is the balancing param-

eter, G corresponds to 1 group element and a/m/mb/e/p corresponds to 1 addition/multiplication in
Zp/multiplication in bilinear group/exponentiation/pairing

m CRS length Argument length Prover comp. Verifier comp.

Adaptive Circuit-SAT arguments from [Gro10]

1 Θ(n2)G 42G Θ(n2)e Θ(n)m +Θ(1)p

n1/3 Θ(n
2
3)G Θ(n

2
3)G Θ(n4/3)e Θ(n)m +Θ(n

2
3)p

Adaptive Circuit-SAT arguments from [Lip12]

1 Θ(N)G 39G Θ(n2)a +Θ(N)e Θ(n)e + 62p√
n Θ(N∗)G Θ(

√
n)G Θ(n3/2)a +Θ(

√
n ·N∗)e Θ(n)e +Θ(

√
n)p

Adaptive subset sum and decision knapsack arguments from the current paper

1 Θ(N)G Θ(1)G Θ(N logn)m +Θ(N)mb Θ(n)m +Θ(1)p√
n Θ(N∗)G Θ(

√
n)G Θ(

√
n ·N∗ logn)m +Θ(

√
n ·N∗)mb Θ(n)m +Θ(

√
n)p

Tbl. 1. Thus, Groth’s arguments offer essentially optimal communication and verifier’s computational
complexity, but they are quite inefficient in other parameters. In particular, they will probably not be
able to handle circuits of size 210 or more.

Subsequently, Lipmaa [Lip12] improved Groth’s basic arguments — and therefore also Groth’s Circuit-
SAT argument — by using the theory of progression-free sets. Namely, let r3(N) be the size of the largest
known progression-free subset of [N] = {1, . . . , N}. Currently [Elk11] (see also Sect. 2),

r3(N) = O((N · log1/4N)/22
√

2 log 2N) .

Thus, r−1
3 (n) = o(n22

√
2 log2 n). Lipmaa showed how to decrease the CRS size to Θ(r−1

3 (n)) group
elements and the prover’s computational complexity so that it is dominated by Θ(n2) scalar additions
and two Θ(r−1

3 (n))-wide bilinear-group multi-exponentiations. Here, n = |C| is again the circuit size. An
improved construction of progression-free sets will therefore automatically result in more efficient NIZK
arguments. As shown in [Lip12], Lipmaa’s product and permutation arguments can be used to construct
a Circuit-SAT argument with similar asymptotic complexity, see Tbl. 1. (The verifier’s computation in
Lipmaa’s argument in Tbl. 1 differs from what was claimed in [Lip12], that forgot to include part of
the computational cost in their complexity estimate. That slightly incorrect claim from [Lip12] was also
replicated in [CLZ12]. See Remark 1 on page 19 for a clarification.)

In a range argument, the prover aims to convince the prover that the committed value belongs to an in-
teger range [L,H]. While the problem setting is simple, construction of range arguments has proven to be
an excellent test case of zero-knowledge techniques, see, for example, [Bou00,LAN02,Lip03,CCs08,CLs10].
Construction of NIZK range arguments has only taken off during the last few years [RKP09,CLZ12].
In [CLZ12], Chaabouni, Lipmaa and Zhang used the product and permutation arguments of [Lip12] to
construct the first known constant-communication (interactive or non-interactive) range argument that
works in prime-order groups. While they used the same basic arguments as [Gro10,Lip12], they com-
bined these basic arguments with several different (and unrelated) techniques that have been developed
specifically for range proofs [LAN02,CLs10].

Finally, Lipmaa and Zhang [LZ12] constructed a so called 1-sparsity argument and used this to
construct an efficient shuffle argument. Their 1-sparsity argument, while constructed by following a
similar framework, has linear CRS size and communication and computational complexities. The Lipmaa-
Zhang shuffle is only the second known efficient NIZK shuffle argument after [GL07].

The product and permutation arguments of Groth and Lipmaa can obviously be used to construct
other complex arguments, though the full power of the “NIZK programming language” that consists of
these two arguments is yet unknown. Moreover, as demonstrated in [LZ12], following the same framework,
one can construct other basic arguments — for 1-sparsity — and use them to construct efficient (complex)

2

arguments. It is an important open problem to increase the library of efficient basic arguments even
further, and to investigate which (more complex) arguments can be solved by using the new basic
arguments. In addition, the basic arguments of Groth and Lipmaa are still computationally intensive for
the prover, and construction of more efficient basic arguments (that at the same time have meaningful
applications) is therefore an important open problem.

Our Contributions. We make the product argument of Lipmaa [Lip12] more efficient, and we also
propose a new efficient shift argument. We then show how to use the more efficient product argument
and the new shift argument to construct an efficient argument for subset sum (another NP-complete
language), and how to make the range argument of [CLZ12] more efficient. Note that Groth and Lip-
maa constructed effectively a “NIZK programming language” consisting of permutation and product
arguments, and then used these two arguments to design a Circuit-SAT argument. What we do here is
somewhat similar, but instead of the fully fledged permutation argument we only have a significantly
more efficient argument for shift. That is, we show how to construct subset sum, range and decision
knapsack arguments in the somewhat simpler NIZK programming language that consists of only the
product and shift arguments.

We first modify the knowledge commitment scheme of [Lip12]. The commitment scheme from [Lip12]
has as a parameter a progression-free set Λ = {λ1, . . . , λn} of positive odd integers with λ1 ≤ λi <
λi+1 ≤ λn. The new commitment scheme introduces an additional integer parameter υ = Θ(λn − λ1).
If the commitment scheme of the current paper is used, in the product argument of [Lip12], Λ does not
have to consist of positive odd integers. This is important conceptually, making it clear that one really
requires progression-freeness of Λ (and nothing else) in similar arguments. For the commitment scheme
to be binding and the (product or shift) argument to be secure, υ has to be chosen sufficiently large. On
the other hand, for efficiency reasons, one wants to have as small |υ| as possible.

Second, we show how to use Fast Fourier Transform (FFT, [CT65]) based polynomial multiplica-
tion [GS66] techniques to reduce the prover’s computational complexity in the product argument from
Θ(n2) to Θ(r−1

3 (n) · log r−1
3 (n)) multiplications in Zp. In addition, one has to evaluate two Θ(n)-wide

and two Θ(r−1
3 (n))-wide bilinear-group multi-exponentiations. Due to this, the new product argument

has complexity parameters that are at most quasilinear. We note that FFT-based techniques are not
applicable to optimize the arguments of Groth [Gro10], since there the largest element of Λ is Θ(n2). We
were also unable to apply FFT-based techniques to the permutation argument from [Lip12]; this is since
Lipmaa’s product argument has a special FFT-friendly construction while the permutation argument
has a more complex structure.

Third, we use Pippenger’s [Pip80] multi-exponentiation algorithm to eliminate the need for both the
prover and the verifier to compute any exponentiations in bilinear groups. To evaluate two Θ(r−1

3 (n))-
wide bilinear-group multi-exponentiations that the prover has to execute in Lipmaa’s product argument,
by using Pippenger’s algorithm, the prover has to perform Θ(r−1

3 (n)) bilinear-group multiplications. This
number is smaller than the number of multiplications in Zp, but since bilinear-group multiplications are
more expensive, we will count them separately. (While [Lip12] mentioned that one can use efficient
multi-exponentiation algorithms, it provided no analysis.)

Fourth, we propose a new shift argument. The shift argument has constant communication and
verifier’s computational complexity, and linear prover’s computational complexity and CRS length, and
can work with a large choice of sets Λ. As a drawback, we prove its security only by reduction to Φ-PSDL
assumption [CLZ12] (see also Sect. 3), which is a non-trivial generalization of the Λ-PSDL assumption
from [Lip12]. To show that the Φ-PSDL assumption is reasonable, we prove that the Φ-PSDL assumption
is secure in the generic group model [Sho97].

Efficient Subset Sum Argument. We show how to construct an efficient NIZK subset sum argument
(the prover knows a non-zero subset of the given integer set that sums to 0), where the communication and
computational complexity are dominated by two product arguments and one shift argument. Therefore,
the new subset sum argument has quasilinear CRS length and prover’s computational complexity and
constant communication and verifier’s computational complexity. We note that in this case n denotes
the size of the input domain, that is, the public set S is known to belong to [n].

When using the balancing techniques of [Gro10,Lip12] (where, instead of applying the arguments
to length n-vectors, one applies them in parallel to m length-(n/m) vectors), if m =

√
n, we obtain a

3

balanced subset sum NIZK argument with the parameters, given in the last row of Tbl. 1. (This also
means that by using the techniques of [Gro10], one can construct a perfect zap [DN00] for subset sum with
the same complexity parameters.) See Tbl. 1 for more comparison with previous work, and [Gro10,Lip12]
for more background about the balancing techniques.

Efficient Range Argument. The new basic arguments can be used to optimize the NIZK range
argument from [CLZ12], reducing the prover’s computation from Θ(n2) to Θ(r−1

3 (n) · log r−1
3 (n)) multi-

plications in Zp and from Θ(r−1
3 (n)) bilinear-group exponentiations to Θ(r−1

3 (n)) bilinear-group multi-
plications. See Sect. 6 for more information and comparison to the previous work. In addition, we note in
Sect. 6 that [CLZ12] replicated the small mistake of [Lip12] (see Remark 1) and therefore the computa-
tional complexity of the unmodified argument of [CLZ12] is larger than claimed in [CLZ12]. We propose
a simple additional modification of their range argument to make it even more efficient. We also discuss
balanced versions of the new range argument that obtain better prover’s computational complexity but
have larger communication.

Efficient Decision Knapsack Argument. As the final contribution, we show that one can combine
subset sum and range arguments to construct a decision knapsack argument. We recall that decision
knapsack is another NP-complete language, and that the knapsack problem has direct cryptographic
applications.

Concurrent Work. In an unpublished eprint [GGPR12], Gennaro, Gentry, Parno, and Raykova showed
how to construct a more efficient (linear CRS, quasilinear prover’s computational complexity, and con-
stant communication and verifier’s computational complexity) but non-adaptive (that is, the CRS de-
pends on the circuit — in their construction, the CRS contains elements of form gf(σ), where σ is the
secret key and f are polynomials depending on the concrete circuit) NIZK argument for Circuit-SAT.
Thus, their construction is not directly comparable to adaptive constructions of [Gro10,Lip12] and the
current paper.

2 Preliminaries

Let [L,H] = {L,L+ 1, . . . ,H − 1, H} and [H] = [1, H]. By a, we denote the vector a = (a1, . . . , an). If
A is a value, then x ← A means that x is set to A. If A is a set, then x ← A means that x is picked
uniformly and randomly from A. If y = hx, then let logh y := x. Let κ be the security parameter. We
abbreviate probabilistic polynomial-time as PPT, and let negl(κ) be a negligible function.

Additive Combinatorics. If Λ1 and Λ2 are subsets of some additive group (Z or Zp in this paper), then
Λ1 + Λ2 = {λ1 + λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is their sum set and Λ1 − Λ2 = {λ1 − λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2}
is their difference set. If Λ is a set, then kΛ = {λ1 + · · ·+ λk : λi ∈ Λ} is an iterated sumset, k · Λ =
{kλ : λ ∈ Λ} is a dilation of Λ, and 2̂Λ = {λ1 + λ2 : λ1 ∈ λ ∧ λ2 ∈ Λ ∧ λ1 6= λ2} ⊆ Λ+Λ is a restricted
sumset. (See [TV06] for more notation and background.)

Progression-Free Sets. A set Λ = {λ1, . . . , λn} is progression-free [ET36,TV06], if no three elements
of Λ are in arithmetic progression, that is, λi + λj = 2λk only if i = j = k. That is, 2̂Λ ∩ 2 ·Λ = ∅. Let
r3(N) be the cardinality of the largest progression-free set Λ ⊆ [N]. Recently, Elkin [Elk11] improved an
old result of Behrend [Beh46], by proving the following result.

Fact 1 ([Elk11]) r3(N) = Ω((N · log1/4N)/22
√

2 log2N).

(See [GW10] or [Lip11] for a relatively short proof of this result.) Thus, for any fixed n > 0, there

exists N = o(n22
√

2 log2 n), such that [N] contains an n-element progression-free subset. In [ET36],
Erdős and Turán proposed a progression-free subset of [N] that has cardinality N log3 2, and is denser
than Elkin’s set for say N ≤ 216. The Erdős-Turán progression-free set consists of all integers in
[N] that have no 2-s in their ternary representation. On the other hand, it is known that r3(N) =
O(N(log logN)5/ logN) [San11].

4

Polynomial factorization. It is well-known that polynomial factorization algorithm in Zp[X] can be
done in polynomial time [vHN10]. Let PolyFact be an efficient polynomial factorization algorithm that
on input a degree-d polynomial f outputs all d+ 1 roots of f .

Multi-Exponentiation Algorithms. Let y1, . . . , yM be monomials over the indeterminates x1, . . . , xN .
For every y = (y1, . . . , yM), let L(y) be the minimum number of multiplications sufficient to compute
y1, . . . , yM from x1, . . . , xN and the identity 1. Let L(M,N,B) denote the maximum of L(y) over all y
for which the exponent of any indeterminate in any monomial is at most B. In [Pip80], Pippenger proved
that

Fact 2 ([Pip80]) L(M,N,B) = min {M,N} logB + h
log h · U((log log h/ log h)1/2) + O(max {M,N}),

where h = MN · log(B + 1), and U(. . .) denotes a factor of the form exp(O(. . .)), and if the quantity
represented by the ellipsis tends to 0, then U(. . .) is equivalent to 1 +O(. . .).

Bilinear Groups. Let Gbp be a bilinear group generator [BF01] that outputs a description of a bilinear
group parm := (p,G1,G2,GT , ê)← Gbp(1κ) such that p is a κ-bit prime, G1, G2 and GT are multiplicative
cyclic groups of order p (and both have an identity element denoted by 1), ê : G1 × G2 → GT is a
bilinear pairing such that ∀a, b ∈ Z, g1 ∈ G1 and g2 ∈ G2, ê(ga1 , g

b
2) = ê(g1, g2)ab. If gt generates Gt

for t ∈ {1, 2}, then ê(g1, g2) generates GT . We also make the common assumption that it is efficient to
decide membership in G1, G2 and GT , group operations and the pairing ê are efficiently computable,
generators are efficiently sampleable, and the descriptions of the groups and group elements each are
O(κ) bit long. One can implement an optimal Ate pairing [HSV06] over a subclass of Barreto-Naehrig
curves [BN05,PSNB11] very efficiently. In that case, at security level of 128-bits, an element of G1/G2/GT
can be represented in respectively 256/512/3072 bits.

Commitment Schemes. A trapdoor commitment scheme Γ = (Gcom, Com,Gcomtd, Comtd,Opentd)
consists of five PPT algorithms: a randomized common reference string (CRS) generation algorithm
Gcom, a randomized commitment algorithm Com, a randomized trapdoor CRS generation algorithm
Gcomtd, a randomized trapdoor commitment algorithm Comtd, and a trapdoor opening algorithmOpentd.
More precisely,

1. the CRS generation algorithm Gcom(1κ) produces a CRS ck,
2. the commitment algorithm Com(ck;a; r), with a new randomizer r, outputs a commitment value A.

A commitment Com(ck;a; r) is opened by revealing (a, r),
3. the trapdoor CRS generation algorithm Gcomtd(1

κ) outputs a CRS cktd, that has the same distri-
bution as Gcom(1κ), and a trapdoor td,

4. the randomized trapdoor commitment algorithm Comtd(cktd; r) takes cktd and a randomizer r as
inputs, and outputs Com(cktd; 0; r), and

5. the trapdoor opening algorithm Opentd(cktd; td,a; r) outputs an rtd such that Com(cktd; 0; r) =
Com(cktd;a; rtd).

A commitment scheme Γ = (Gcom, Com,Gcomtd, Comtd,Opentd) is computationally binding, if for
every non-uniform PPT adversary A,

Pr

[
ck← Gcom(1κ), (a1, r1,a2, r2)← A(ck) :

(a1, r1) 6= (a2, r2) ∧ Com(ck;a1; r1) = Com(ck;a2; r2)

]
= negl(κ) .

A commitment scheme Γ = (Gcom, Com,Gcomtd, Comtd,Opentd) is perfectly hiding, if for any ck ∈
Gcom(1κ) and any two messages a1,a2, the distributions Com(ck;a1; ·) and Com(ck;a2; ·) are equal.

Non-Interactive Zero-Knowledge. Let R = {(C,w)} be an efficiently computable binary relation
such that |w| = poly(|C|). Here, C is a statement, and w is a witness. Let L = {C : ∃w, (C,w) ∈ R}
be an NP-language. Let n be some fixed input length n = |C|. For fixed n, we have a relation Rn and
a language Ln. A non-interactive argument [BFM88] for R consists of the following PPT algorithms:

5

a common reference string (CRS) generator Gcrs, a prover P, and a verifier V. For crs ← Gcrs(1κ, n),
P(crs;C,w) produces an argument π. The verifier V(crs;C, π) outputs either 1 (accept) or 0 (reject).

A non-interactive argument (Gcrs,P,V) is perfectly complete, if ∀n = poly(κ),

Pr[crs← Gcrs(1κ, n), (C,w)← Rn : V(crs;C,P(crs;C,w)) = 1] = 1 .

A non-interactive argument (Gcrs,P,V) is (adaptively) computationally sound, if for all non-uniform
PPT adversaries A and all n = poly(κ), the probability

Pr[crs← Gcrs(1κ, n), (C, π)← A(crs) : C 6∈ L ∧ V(crs;C, π) = 1] = negl(κ) .

The soundness is adaptive, that is, the adversary sees the CRS before producing the statement C.
A non-interactive argument (Gcrs,P,V) is perfectly witness-indistinguishable, if for all n = poly(κ), if

crs ∈ Gcrs(1κ, n) and ((C,w0), (C,w1)) ∈ R2
n, then the distributions P(crs;C,w0) and P(crs;C,w1) are

equal. A zap [DN00] is a two-message witness-indistinguishable proof, where the first message is sent by
the verifier, such that the verifier does not use any private coins, and the verifier’s message can be fixed
once and then used in arbitrary many proofs.

A non-interactive argument (Gcrs,P,V) is perfectly zero-knowledge, if there exists a PPT simulator
S = (S1,S2), such that for all stateful non-uniform PPT adversaries A and n = poly(κ) (with tdπ being
the simulation trapdoor),

Pr

 crs← Gcrs(1κ, n), (C,w)← A(crs),

π ← P(crs;C,w) :

(C,w) ∈ Rn ∧ A(π) = 1

 = Pr

 (crs; tdπ)← S1(1κ, n), (C,w)← A(crs),

π ← S2(crs;C, tdπ) :

(C,w) ∈ Rn ∧ A(π) = 1

 .

3 New Commitment Scheme

In this section, we will modify the commitment scheme of [Gro10,Lip12] by defining (see Prot. 1) the
(Λ, υ) trapdoor (knowledge) commitment scheme in group Gt for t ∈ {1, 2}. Groth [Gro10] proposed a
variant of this commitment scheme with Λ = [n] and υ = 0, while Lipmaa [Lip12] generalized Λ to any
set Λ = {λ1, . . . , λn} with 0 < λi < λi+1 and λn = poly(κ) (while still letting υ = 0).

We use the following security assumptions from [CLZ12]. Let p be as output by Gbp. Let Φ ⊂ Zp[X],
with d := maxϕ∈Φ degϕ, be a set of linearly independent polynomials, such that |Φ|, all coefficients of
all ϕ ∈ Φ, and d are polynomial in κ. Let 1 be the polynomial with 1(x) = 1 for all x ∈ Zp.

Definition 1 (Φ-PDL and Φ-PSDL assumptions [CLZ12]). Let Φ and d be as in above. A bilinear
group generator Gbp is Φ-PDL secure in Gt, if for any non-uniform PPT adversary A,

Pr

[
parm := (p,G1,G2,GT , ê)← Gbp(1κ), g1 ← G1 \ {1} ,

g2 ← G2 \ {1} , σ ← Zp : A(parm; (g
ϕ(σ)
t)ϕ∈{1}∪Φ) = σ

]
= negl(κ) .

A bilinear group generator Gbp is Φ-PSDL secure, if for any non-uniform PPT adversary A,

Pr

[
parm := (p,G1,G2,GT , ê)← Gbp(1κ), g1 ← G1 \ {1} ,

g2 ← G2 \ {1} , σ ← Zp : A(parm; (g
ϕ(σ)
1 , g

ϕ(σ)
2)ϕ∈{1}∪Φ) = σ

]
= negl(κ) .

Assumptions of similar complexity are relatively common in contemporary bilinear-group based cryp-
tography, see for example [Wat12].

Theorem 1. Let Φ and d be as in above. The Φ-PSDL assumption holds in the generic group model.
Any successful generic adversary for Φ-PSDL requires time Ω(

√
p/d).

Proof. In the generic group model, an adversary only performs generic group operations (multiplications
in G1, G2 and GT , bilinear pairings, and equality tests). A generic adversary produces an element of Zp,
which depends only on parm and (g

φ(σ)
1 , g

φ(σ)
2)φ∈{1}∪Φ. The only time the adversary gets any information

is when an equality (collision) between two previously computed elements of either G1, G2 or GT occurs.

6

We prove that finding even a single collision is difficult even if the adversary can compute an arbitrary
group element in unit time.

Assume that the adversary can find a collision y = y∗ in group G1. Then it must be the case that

y =
∏
φ`∈{1}∪Φ g

a`φ`(σ)
1 and y′ =

∏
`∈{0}∪Λ g

a∗`φ`(σ)
1 for some known values of a` and a∗` . But then also∑

`∈{0}∪Λ

(a` − a∗`)φ`(σ) ≡ 0 (mod p) .

Since the adversary does not know the actual representations of the group elements, it will perform the
same group operations independently of σ. Thus a` and a∗` are independent of σ. By the Schwartz-Zippel
lemma [Sch80] modulo p, the probability that

∑
`∈{0}∪Λ(a` − a∗`)φ`(σ) ≡ 0 (mod p) is equal to d/p for

randomly chosen a` and a∗` . If the adversary works in polynomial time τ = poly(κ), it can generate at
most τ such group elements. The total probability that there exists a collision between any two generated
group elements is thus upper bounded by

(
τ
2

)
·d/p, and thus a successful adversary requires time Ω(

√
p/d)

to produce one collision.
A similar bound

(
τ
2

)
·d/p holds for collisions in G2. In the case of GT , the pairing enables the adversary

to compute up to τ different values

y = ê(g1, g2)
∑
φ1i∈{1}∪Φ

∑
φ2j∈{1}∪Φ

aijφ1i(σ1)φ2j(σ)
,

and thus we get an upper bound
(
τ
2

)
· 2d/p, and thus a successful adversary requires time Ω(

√
p/d) to

produce one collision. ut

Abe and Fehr showed in [AF07] that no statistically zero-knowledge non-interactive argument for an
NP-complete language can have a “direct black-box” security reduction to a standard cryptographic
assumption unless NP ⊆ P/poly. (See also [GW11].) In fact, the soundness of NIZK arguments (for
example, of an argument that a perfectly hiding commitment scheme commits to 0) is often unfalsifiable
by itself. Similarly to [Gro10,Lip12,CLZ12,LZ12], we will base our NIZK argument for circuit satisfiability
on an explicit knowledge assumption. This assumption, originally proposed in [CLZ12], is a generalization
of the KEA assumption of Damg̊ard [Dam91], the KEA3 assumption of Bellare and Palacio [BP04], the
n-PKE assumption of Groth [Gro10], and the Λ-PKE assumption of Lipmaa [Lip12].

Let t ∈ {1, 2}. For algorithms A and XA, we write (y; z) ← (A||XA)(σ) if A on input σ outputs y,
and XA on the same input (including the random tape of A) outputs z.

Definition 2 (Φ-PKE security, [CLZ12]). The bilinear group generator Gbp is Φ-PKE secure in group
Gt if for any non-uniform PPT adversary A there exists a non-uniform PPT extractor XA, such that

Pr


parm := (p,G1,G2,GT , ê)← Gbp(1κ), gt ← Gt \ {1} , (α, σ)← Z2

p,

crs← (parm; (g
φ(σ)
t , g

αφ(σ)
t)φ∈Φ), (c, ĉ; r, (aφ)φ∈Φ)← (A||XA)(crs) :

ĉ = cα ∧ c 6= grt ·
∏
φ∈Φ

g
a`φ(σ)
t

 = negl(κ) .

One can generalize the proof of Groth [Gro10] to show that the Φ-PKE assumption holds in the generic
group model.

Let t = 1. Consider a CRS ck that in particular specifies g2, ĝ2 ∈ G2. A commitment (A, Â) ∈ G2
1 is

valid, if ê(A, ĝ2) = ê(Â, g2). The case t = 2 is dual.
The following theorem generalizes the corresponding theorem from [Gro10,Lip12].

Theorem 2 (Security of commitment scheme). Let t = 1. (The case t = 2 is dual.) Let
Λ = {λ1, . . . , λn} with λi < λi+1 and λi = poly(κ). Let υ > λn be linear in λn − λ1. Let
Γ = (Gcom, Com,Gcomtd, Comtd,Opentd) be the (Λ, υ) knowledge commitment scheme, see Prot. 1, in
G1.
(1) Γ is perfectly hiding in G1, and computationally binding in G1 under the ({Xυ} ∪

{
X`
}
`∈Λ)-PDL

assumption in G1. The reduction time is dominated by the time to factor a degree-(υ − λ1) polynomial
in Zp[X].
(2) If the ({Xυ}∪

{
X`
}
`∈Λ)-PKE assumption holds in G1, then for any non-uniform PPT A that outputs

a valid commitment, there exists a non-uniform PPT extractor XA that, given the input of A together
with A’s random coins, extracts the contents of these commitments.

7

System parameters: n = poly(κ), Λ = {λ1, . . . , λn} with λi 6= λj for i 6= j, λi = poly(κ), and υ > maxi λi is
an integer. A bilinear group generator Gbp

CRS generation Gcom(1κ): Set parm := (p,G1,G2,GT , ê)← Gbp(1κ), gt ← Gt \ {1}, and (σ, α̂)← Z2
p;

for each i ∈ {0} ∪ [n] do: gt,λi ← gσ
λi

t , ĝt,λi ← gα̂σ
λi

t , ht ← gσ
υ

t , ĥt ← gα̂σ
υ

t ;
return ck← (parm; (gt,λi , ĝt,λi)i∈{0}∪[n], ht, ĥt);

Commitment Com(ck;a; ·): r ← Zp; return Com(ck;a; r) := (hrt ·
∏n
i=1 g

ai
t,λi

, ĥrt ·
∏n
i=1 ĝ

ai
t,λi

);
Trapdoor CRS generation Gcomtd(1

κ): Execute Gcrs(1κ); return (cktd ← ck; td← σ);
Trapdoor commitment Comtd(cktd; ·): r ← Zp; return Comtd(cktd; r)← Com(cktd; 0; r) = (hrt , ĥ

r
t);

Trapdoor opening Opentd(cktd; td,a, r): return rtd ← rσυ −
∑n
i=1 aiσ

λi ;

Protocol 1: The (Λ, υ) trapdoor commitment scheme. Here, a = (a1, . . . , an) ∈ Znp

Proof. Perfect hiding: follows from the fact that the output of Com is a random element of G1.
Computational binding: Assume that ACom is an adversary that can break the binding property with
some non-negligible probability. We construct the following adversaryApdl against the ({Xυ}∪

{
X`
}
`∈Λ)-

PDL assumption in G1 that works with the same probability. Here, C is the challenger of the PDL game.

C sets parm← Gbp(1κ), g1 ← G1 \ {1}, and σ ← Zp;
C sends (parm; (gσ

`

1)`∈{υ}∪Λ) to Apdl;
Apdl sets α̂∗ ← Zp;
Apdl sets ck← (parm; (gσ

`

1 , gα̂
∗σ`

1)`∈{υ}∪Λ);
1 Apdl obtains (a, ra, b, rb)← ACom(ck);

if a 6∈ Znp ∨ b 6∈ Znp ∨ ra 6∈ Zp ∨ rb 6∈ Zp ∨ (a, ra) = (b, rb) ∨ Com(ck;a, ra) 6= Com(ck; b, rb) then

Apdl aborts;
else

2 Apdl sets δ(X)← (ra − rb)Xυ−λ1 +
∑n
i=1(ai − bi)Xλi−λ1 .

Apdl sets (t1, . . . , tυ−λ1+1)← PolyFact(δ);

3 Apdl finds by an exhaustive search a root σ0 ∈ {t1, . . . , tυ−λ1+1}, such that gσ
λ1

1 = g
σ
λ1
0

1 ;
Apdl returns σ ← σ0 to the challenger;

end

Let us assume that on step 1, ACom is successful with probability SuccbindingACom(Γ). Thus, with proba-

bility SuccbindingACom(Γ), (a, ra) 6= (b, rb) and

graσ
υ

1 ·
∏
i∈[n]

gaiσ
λi

1 = grbσ
υ

1 ·
∏
i∈[n]

gbiσ
λi

1 .

But then

g
(ra−rb)συ+

∑n
i=1(ai−bi)σλi

1 = 1 ,

and thus

(ra − rb)συ +

n∑
i=1

(ai − bi)σλi ≡ 0 (mod p) ,

or equivalently,

(ra − rb)συ−λ1 +

n∑
i=1

(ai − bi)σλi−λ1 ≡ 0 (mod p) .

Since υ > λn, δ(X), as defined on step 2 is a degree-(υ − λ1) non-zero polynomial.
Thus, the adversary has generated a non-trivial degree-(υ−λ1) polynomial f(X) such that f(σ) ≡ 0

(mod p). Therefore, Apdl can use polynomial factorization to find all roots of δ, and one of those roots
must be equal to σ. On step 3, Apdl finds which root is equal to σ by an exhaustive search among all
roots returned in the previous step. Thus, clearly Apdl returns the correct value of sk (and thus violates

the ({Xυ} ∪
{
X`
}
`∈Λ)-PDL assumption) with probability SuccbindingACom(Γ). Finally, the execution time of

Apdl is clearly dominated by the execution time of ACom and the time to factor δ.

8

Extractability: By the ({Xυ} ∪
{
X`
}
`∈Λ)-PKE assumption in group G1, for every committer A

there exists an extractor XA that can open the commitment in group G1, given access to A’s inputs and
random tape. Since the commitment scheme is computationally binding, then the extracted opening has
to be the same that A used. ut

We will sometimes use the same commitment scheme in both G1 and G2. In such cases, we will
emphasize the underlying group by having a different CRS, but we will not change the name of the
commitment scheme.

Computational Complexity of Commitment. Assume that α = ||a||∞ = maxi ai, and n ≥ 2. By
using Pippenger’s multi-exponentiation algorithm [Pip80], the computational complexity of the commit-
ment function Com(ck;a; r) is dominated by

2 log2 α+ (1 + o(1)) · 2n log2 α

log2(n log2 α)
+O(n)

multiplications in Gt. In our applications, n � log2 α (for example, α = 2, α = n, or even α = p given
that n is reasonably large), and thus we get a simpler bound of

(2 + o(1)) · n

log2 n
· log2 α+O(n) .

multiplications. This can be compared to 3n log2 α multiplications on average that one would have to
execute by using the straightforward square-and-multiply exponentiation algorithm.

4 Improved Hadamard Product Argument

In this section, we propose a version of the product argument of [Lip12] that works together with the
(Λ, υ) commitment scheme of Sect. 3. As we will see below (both in this section and in Sect. 5), the value
of υ depends on the precise construction of the argument. For example, while the commitment scheme
is binding for υ > λn, for the product argument to be (weakly) sound we require that υ > 2λn − λ1. If
one uses several such arguments together (for example, to construct a subset sum argument or a range
argument), one has to choose a value of υ that is secure for all basic arguments. We also show that
one can use FFT and Pippenger’s multi-exponentiation algorithm to make the product argument more
efficient.

Definition 3 (Hadamard product argument). Assume that Γ =
(Gcom, Com,Gcomtd, Comtd,Opentd) is a trapdoor knowledge commitment scheme that commits to
elements a = (a1, . . . , an) ∈ Znp for a prime p and integer n ≥ 1. In an Hadamard product argument,
the prover aims to convince the verifier that given commitments A, B and C, he can open them as
A = Com(ck;a; ra), B = Com(ck; b; rb), and C = Com(ck; c; rc), such that ci = aibi for i ∈ [n].

In other words, a product argument has n constraints ci = aibi for i ∈ [n].
In [Lip12], Lipmaa constructed an Hadamard product argument for the (Λ, υ = 0) commitment

scheme with communication of 5 group elements, verifier’s computation Θ(n), prover’s computation of
Θ(n2) multiplications in Zp, and the CRS of Θ(r−1

3 (n)) group elements. We present a more efficient
(implementation of this) argument in Prot. 2.

We first recall the basic idea of Lipmaa’s Hadamard product argument. Let ◦ be the Hadamard
product of two vectors, let 1 = (1, . . . , 1), and let A ∗ B := ê(A,B). The Hadamard product argument
of both [Gro10,Lip12] is a vector version of the Groth-Sahai proofs [GS08]. The verification equation

Com(ck;a; ra) ∗ Com(ck; b; rb) = (Com(ck; c; rc) ∗ Com(ck; 1; 0)) · (g1 ∗ π)

“maps” the to-be-verified algebraic property (a ◦ b = c ◦1) to a different algebraic domain. Here, both ◦
and ∗ are bilinear operators. We can exemplify this by the following commutative diagram, though here
ComT is not a real function since ê(A,B) depends not only on a ◦ b but also on the concrete values a
and b:

9

a ∈ Gn b ∈ Gn a ◦ b ∈ Gn

A = Com(ck;a; ·) ∈ G B = Com(ck;a; ·) ∈ G ê(A,B) ∈ GT

◦×

× ê

Com Com ComT

Here, π compensates for the inclusion of the randomizers ra, rb and rc in the “commitment domain”.
We now rewrite Lipmaa’s argument for the generic (Λ, υ) commitment scheme Γ . Similarly to [Lip12],

we will use Γ in both G1 (to commit to a, b, and c) and G2 (to commit to b and 1). Let ĉk be the CRS

in group G1 (see Prot. 2), and ĉk
∗

be the dual CRS in group G2 (that is, ĉk
∗

is defined as ĉk, but with g1

replaced by g2). Thus, for example, (B, B̂) = Com(ĉk; b; rb). Then, we have logg1 A = raσ
υ +
∑n
i=1 aiσ

λi ,

logg1 B = rbσ
υ +

∑n
i=1 biσ

λi , and logg1 C = ciσ
υ +

∑n
i=1 rcσ

λi . We also have an element B2, such that

ê(g1, B2) = ê(B, g2). Thus, for (D, D̂) = Com(ĉk
∗
; 1; 0) (in group G2),

logê(g1,g2)(ê(A,B2)/ê(C,D)) =(raσ
υ +

n∑
i=1

aiσ
λi)(rbσ

υ +

n∑
i=1

biσ
λi)− (rcσ

υ +

n∑
i=1

ciσ
λi)(

n∑
i=1

σλi)

can be written — after substituting σ with a formal variable X — as a sum of two formal polynomials
Fcon(X) and Fπ(X), such that Fcon(X) (the constraint polynomial) as a formal polynomial has one
monomial per constraint (aibi = ci) and is zero if the prover is honest, while Fπ(X) (the argument
polynomial) has potentially many more monomials. (More precisely, Fπ has Θ(r−1

3 (n)) monomials, and

the CRS has length Θ(r−1
3 (n)).) The honest prover has to compute (π, π̂)← (g

Fπ(σ)
2 , ĝ

Fπ(σ)
2). The PSDL

and the PKE assumption guarantee that he cannot do it if at least one of the n constraints is not satisfied.
In [Lip12], for soundness, one had to assume that the used set Λ is a progression-free set of odd positive

integers. By using such Λ, [Lip12] proved that the polynomials Fcon(X) and Fπ(X) were spanned by two
non-intersecting sets of powers of X. From this, [Lip12] then deduced (weak) soundness.

In what follows, we show that by using the (Λ, υ) commitment scheme (for a well-chosen value of υ),
one can — without any loss in efficiency — assume that Λ is just a progression-free set. This makes the
product argument slightly more efficient. More importantly, it makes it clear that the property that Λ
has to satisfy is really progression-freeness, and not say having only odd integers as its members.

For a set Λ and an integer υ, define

Λ̂ := {2υ} ∪ (υ + Λ) ∪ 2̂Λ . (1)

(In [Lip12], this definition was only given for υ = 0. Then, Λ̂ = {0} ∪ Λ ∪ 2̂Λ.)

Lemma 1. Assume that Λ = {λ1, . . . , λn} with λi < λi+1, and υ > 2λn−λ1. Λ is a progression-free set
if and only if 2 · Λ ∩ Λ̂ = ∅.

Proof. Assume Λ is progression-free. Then, clearly 2̂Λ ∩ 2 · Λ = ∅. Since υ > 2λn − λ1, we also have
({2υ} ∪ (υ + Λ)) ∩ 2 · Λ = ∅. (In [Lip12], υ = 0, and ({0} ∪ Λ) ∩ 2 · Λ = ∅ was guaranteed by assuming
that every integer in Λ is odd and non-zero.) Assume now that 2 · Λ ∩ Λ̂ = ∅. In particular, this means
that 2 · Λ ∩ 2̂Λ = ∅, and thus Λ is a progression-free set. ut

Lemma 2. For any n > 0, there exists a progression-free set Λ = {λ1, . . . , λn}, with λi < λi+1 and λn =

poly(κ), and an integer υ > 2λn − λ1, υ linear in λn − λ1, such that |Λ̂| = Θ(r−1
3 (n)) = o(n22

√
2 log2 n).

Proof. Let Λ be the progression-free set from [Elk11], seen as a subset of [λ1, λn] (with λ1 possibly

being negative), with λn − λ1 ≈ r−1
3 (n) = o(n22

√
2 log2 n). Since υ > 2λn − λ1 is linear in λn − λ1,

Λ̂ ⊂ {2λ1, . . . , 2υ} and |Λ̂| = Θ(r−1
3 (n)). ut

We can clearly add some constant k to all members of Λ and υ, so that the previous results still
hold. In particular, according to the previous two lemmas, the best value (in the sense of efficiency) of
λn might be 0.

We state and prove the security of the new Hadamard product argument when using the (Λ, υ)
knowledge commitment scheme by following the claim and the proof from [Lip12] very closely, mostly

10

System parameters: Let n = poly(κ). Let Λ = {λ1, . . . , λn} be a progression-free set, such that λi < λi+1 and
λn − λ1 = poly(κ). Let υ > 2λn − λ1 be linear in λn − λ1. Let Λ̂ be as in Eq. (1).
Define I1(`) := {(i, j) : i, j ∈ [n] ∧ i 6= j ∧ λi + λj = `}.

CRS generation Gcrs(1κ): Set parm := (p,G1,G2,GT , ê)← Gbp(1κ), (g1, g2)← (G1 \ {1} ,G2 \ {1}), σ, α̂← Zp;
for each ` ∈ {υ} ∪ Λ do: g1,` ← gσ

`

1 , ĝ1,` ← gα̂σ
`

1 ;

for each ` ∈ {υ} ∪ Λ̂ do: g2,` ← gσ
`

2 , ĝ2,` ← gα̂σ
`

2 ;

Set D ←
∏n
i=1 g2,λi , ĉk← (parm; (g1,`, ĝ1,`)`∈{υ}∪Λ);

Return crs← (ĉk, g2,υ, (g2,`, ĝ2,`)`∈Λ̂, D);

Argument generation P×(crs; (A, Â,B, B̂, B2, C, Ĉ), (a, ra, b, rb, c, rc)):

for each ` ∈ 2̂Λ do: µ` ←
∑

(i,j)∈I1(`)
(aibj − ci);

(π, π̂)← (g
rarb
2,2υ ·

∏n
i=1 g

rabi+rbai−rc
2,υ+λi

·
∏
`∈2̂Λ gµ`2,`, ĝrarb2,2υ ·

∏n
i=1 ĝ

rabi+rbai−rc
2,υ+λi

·
∏
`∈2̂Λ ĝµ`2,`);

return π× ← (π, π̂) ∈ G2
2;

Verification V×(crs; (A, Â,B, B̂, B2, C, Ĉ), π×): If ê(A,B2)/ê(C,D) = ê(g1, π) and ê(g1, π̂) = ê(ĝ1, π) then ac-
cept. Otherwise, reject.

Protocol 2: New Hadamard product argument [[(A, Â)]] ◦ [[(B, B̂,B2)]] = [[(C, Ĉ)]]

just to be able to use the result later, in Sect. 6, to construct efficient subset sum, range, and decision
knapsack arguments. The (knowledge) commitments are (A, Â), (B, B̂) and (C, Ĉ). For efficiency (and
backwards compatability) reasons, following [Lip12], we include another element B2 to the statement of
the Hadamard product language.

Since for given a and b, (C, Ĉ) is a commitment of (a1b1, . . . , anbn) for some value of rc, we cannot
claim that Prot. 2 is computationally sound (even under a knowledge assumption). Instead, analogously
to [Gro10,Lip12], we prove a somewhat weaker version of soundness that is however sufficient to achieve
soundness of the subset sum and range arguments. The last statement of Thm. 3 basically says that no
efficient adversary can output an input to the Hadamard product argument together with an accepting
argument and openings to all commitments and all other pairs of type (y, ŷ) that are present in the
argument, such that aibi 6= ci for some i ∈ [n]. Intuitively, the theorem statement below, see Thm. 3,
includes certain elements f∗` only for ` ∈ Λ̂ (resp., a` for ` ∈ Λ together with r) since ĝ2,` (resp., ĝ1,`)

belongs to the CRS only for ` ∈ Λ̂ (resp., ` ∈ {υ} ∪ Λ). This “weak” soundness is similar to the co-
soundness as defined in [GL07]. However, in the case of co-soundness, the adversary is not be required
to open the argument (by presenting values f∗` , as in the theorem statement). One could define the
corresponding formal security notion, but in our opinion, it would not increase readability.

Theorem 3 (Security of product argument). Let Γ = (Gcom, Com,Gcomtd, Comtd,Opentd) be the
(Λ, υ) commitment scheme in group G1. Then
(1) Prot. 2 is perfectly complete and perfectly witness-indistinguishable.
(2) If Gbp is ({Xυ}∪

{
X`
}
`∈Λ̂)-PSDL secure, then a non-uniform PPT adversary against Prot. 2 has neg-

ligible chance, given correctly generated CRS crs as an input, of outputting inp× ← (A, Â,B, B̂, B2, C, Ĉ)
and an accepting argument π× ← (π, π̂) together with a witness w× ← (a, ra, b, rb, c, rc, (f

∗
`)`∈Λ̂), such

that

(i) a, b, c ∈ Znp , ra, rb, rc ∈ Zp, and f∗` ∈ Zp for ` ∈ Λ̂,

(ii) (A, Â) = Com(ĉk;a; ra), (B, B̂) = Com(ĉk; b; rb), B2 = grb2,υ ·
∏n
i=1 g

bi
2,λi

, and (C, Ĉ) = Com(ĉk; c; rc),

(iii) logg2 π = logĝ2 π̂ =
∑
`∈Λ̂ f

∗
` σ

`, and

(iv) for some i ∈ [n], aibi 6= ci.

The reduction time is dominated by the time it takes to factor a degree-(2υ−2λ1) = Θ(r−1
3 (n)) polynomial

in Zp[X].

Proof. Let h ← ê(g1, g2) and F (σ) ← logh(ê(A,B2)/ê(C,D)). Witness-Indistinguishability: since
the argument π× = (π, π̂) that satisfies the verification equations is unique, all witnesses result in the
same argument, and therefore the Hadamard product argument is witness-indistinguishable.

11

C forms crs as in Prot. 2;

C sends crs to Â;

Â obtains (inp×, w×, π×)← A×(crs);

if the conditions (i–iv) in the statement of Thm. 3 do not hold then Â aborts;
else

1 Â expresses F (X) as a polynomial f(X)←
∑
`∈Λ̂∪2·Λ f`X

`;

2 Â computes a polynomial f∗(X)←
∑
`∈Λ̂ f

∗
`X

`;

Â lets δ(X)← (f(X)− f∗(X)) ·X−2λ1 ;

Â sets (t1, . . . , t2(υ−λ1))← PolyFact(δ);

3 Â finds by an exhaustive search a root σ0 ∈ (t1, . . . , t2(υ−λ1)), such that gσ
`

1 = g
σ`0
1 ;

Â returns σ ← σ0 to the challenger;

end

Algorithm 1: Construction of Â in the security reduction of Thm. 3

Perfect completeness. Assume that the prover is honest. The second verification is straightfor-
ward. For the first one, note that

F (σ) =(raσ
υ +

n∑
i=1

aiσ
λi)(rbσ

υ +

n∑
i=1

biσ
λi)− (rcσ

υ +

n∑
i=1

ciσ
λi)(

n∑
i=1

σλi)

=rarbσ
2υ +

n∑
i=1

(rabi + rbai − rc)συ+λi +

n∑
i=1

n∑
j=1

(aibj − ci)σλi+λj

=rarbσ
2υ +

n∑
i=1

(rabi + rbai − rc)συ+λi +

n∑
i=1

(aibi − ci)σ2λi +

n∑
i=1

n∑
j=1
j 6=i

(aibj − ci)σλi+λj .

That is, F (σ) = Fcon(σ) + Fπ(σ), where Fcon and Fπ are formal polynomials with

Fcon(X) =

n∑
i=1

(aibi − ci)X2λi ,

Fπ(X) =rarbX
2υ +

n∑
i=1

(rabi + rbai − rc)Xυ+λi +

n∑
i=1

n∑
j=1
j 6=i

(aibj − ci)Xλi+λj .

Here, F (X), Fcon(X) and Fπ(X) are formal polynomials of X, and F (X) is spanned by
{
X`
}
`∈2·Λ∪Λ̂.

More precisely, Fcon(X) is the constraint polynomial, that has one monomial per constraint ci = aibi,
and Fπ(X) is the argument polynomial.

If the prover is honest, then ci = aibi for i ∈ [n], and thus F (X) = Fπ(X) is spanned by
{
X`
}
`∈Λ̂.

Denoting

π ← grarb2,υ ·
n∏
i=1

grabi+rbai−rc2,υ+λi
·
n∏
i=1

n∏
j=1
j 6=i

g
aibj−ci
2,λi+λj

= grarb2 ·
n∏
i=1

grabi+rbai−rc2,υ+λi
·
∏

`∈2̂Λ g
µ`
2,` ,

where µ` is defined as in Prot. 2, we see that clearly ê(g1, π) = h. Thus, the first verification succeeds.
Weaker version of soundness. Assume that A× is an adversary that can break the last statement

of the theorem. We construct an adversary Â against the ({Xυ} ∪
{
X`
}
`∈Λ̂)-PSDL assumption, see

Prot. 1. Here, C is the challenger of the PSDL game.
Let us analyse the advantage of Â. First, clearly crstd has the same distribution as Gcrs(1κ). Thus,

A× gets a correct input. She aborts with probability 1 − SuccsoundA× (Π×). Otherwise, with probability

SuccsoundA× (Π×), inp× = (A, Â,B, B̂, B2, C, Ĉ) and w× = (a, ra, b, rb, c, rc, (f
∗
`)`∈Λ̂), such that the condi-

tions (i–iv) hold.

12

The steps from step 1 onwards are executed with probability SuccsoundA× (Π×). Since A× succeeds and

2 ·Λ∩Λ̂ = ∅, at least for one ` ∈ 2 ·Λ, f(X) has a non-zero coefficient aibi−ci. Â succeeds on step 2, since
logg2 π =

∑
`∈Λ̂ f

∗
` σ

`. Moreover, all non-zero coefficients of X` in f∗(X) correspond to ` ∈ Λ̂. Since Λ is a
progression-free set, υ > 2λn−λ1, and all elements of 2 ·Λ are distinct, then by Lem. 1, ` 6∈ 2 ·Λ. Thus, all
coefficients of f∗(X) corresponding to any X`, ` ∈ 2 · Λ, are equal to 0. Thus, f(X) =

∑
`∈Λ̂∪(2·Λ) f`X

`

and f∗(X) =
∑
`∈Λ̂ f

∗
`X

` are different polynomials with f(σ) = f∗(σ) = F (σ). Note that all coefficients

of X`, for ` < 2λ1, of both f(X) and f∗(X) are equal to 0.
Thus, δ(X) is a non-zero degree-(2υ − 2λ1) polynomial, such that

δ(σ) =
∑

`∈(Λ̂∪(2·Λ))−2λ1

δ`σ
` = 0 .

Therefore, Â can use polynomial factorization to find all ≤ 2(υ − λ1) roots of δ, where one of the found
roots must be equal to σ. On step 3, Â finds which root is equal to σ by an exhaustive search among all
roots returned in the previous step. Thus, clearly Â returns the correct value of σ (and thus violates the
({Xυ} ∪

{
X`
}
`∈Λ̂)-PSDL assumption) with probability SuccsoundA× (Π×). Finally, the execution time of Â

is clearly dominated by the execution time of A× and the time to factor δ. ut

Efficiency. We will show that the product argument of this section (and therefore also the product
argument of [Lip12]) is computationally much more efficient than it was claimed in [Lip12]. Namely,
in [Lip12], the product argument was said to require the prover to compute Θ(n2) multiplications in Zp
and Θ(r−1

3 (n)) = o(n22
√

2 log2 n) exponentiations in G2. We will optimize the prover’s computation so
that it will require a significantly smaller number of multiplications and no exponentiations at all.

Theorem 4 (Efficiency of product argument). Let Λ be the progression-free set from [Elk11]. The
communication (argument size) of Prot. 2 is 2 elements from G2. The prover’s computational complexity

is dominated by Θ(r−1
3 (n) · log r−1

3 (n)) = o(n22
√

2 log2 n · log n) multiplications in Zp and two Θ(r−1
3 (n)) =

o(n22
√

2 log2 n)-wide multi-exponentiations in G2. The verifier’s computational complexity is dominated by

5 bilinear pairings and 1 bilinear-group multiplication. The CRS consists of Θ(r−1
3 (n)) = o(n22

√
2 log2 n)

group elements.

Proof. By Lem. 2, the size of the CRS is Θ(|Λ̂|) = Θ(r−1
3 (n)). From the CRS, the verifier clearly only

needs to access g1, ĝ1, and D. Since 2̂Λ ⊆ Λ̂, the statement about the prover’s computational complexity
follows from Fast Fourier Transform [CT65] based polynomial multiplication [GS66] techniques. More
precisely, to compute all the coefficients of the formal polynomial

µ(X) :=

n∑
i=1

n∑
j=1
j 6=i

(aibj − ci)Xλi+λj ,

the prover executes Prot. 3. Here, FFTMult denotes a FFT-based polynomial multiplication algorithm.
After using FFTMult to compute the initial version of µ(X) and ν(X),

µ` =
∑

(i,j)∈[n]2

λi+λj=`

aibj and ν` =
∑

(i,j)∈[n]2

λi+λj=`

ci .

Thus, after the penultimate step of Prot. 3, µ` =
∑

(i,j)∈I1(`) aibj , and after the last step, µ` =∑
(i,j)∈I1(`) aibj − ci, as required by Prot. 2. Since FFT takes time Θ(N logN), where N = r−1

3 (n)
is the input size, then we have shown the part about the prover’s computational complexity. The veri-
fier’s computational complexity follows from the description of the argument. ut

We remark that FFT is not useful to speed up Groth’s product argument from [Gro10], since there
λn = Θ(n2). Moreover, FFT does not seem to be useful in the case of the permutation argument
from [Lip12]. Finally, it may be possible to speed up the described procedure, by taking into account the
fact that all a†, b†, c† and d† have only n non-zero monomials.

13

for i← 0 to λn do: a†i ← 0, b†i ← 0, c†i ← 0, d†i ← 0;
for i← 1 to n do: a†λi ← ai, b

†
λi
← bi, c

†
λi
← ci, d

†
λi
← 0;

Denote a†(X) :=
∑λn
i=0 a

†
iX

i, b†(X) :=
∑λn
i=0 b

†
iX

i, c†(X) :=
∑λn
i=0 c

†
iX

i and d†(X) :=
∑λn
i=0 d

†
iX

i;
Let µ(X)← FFTMult(a†(X), b†(X));
Let ν(X)← FFTMult(c†(X), d†(X));
for i← 1 to n do: µ2λi ← µ2λi − aibi;
Let µ(X)← µ(X)− ν(X);

Protocol 3: FFT-based prover’s computation of {µ`} in the product argument

Using Efficient Multi-Exponentiation. Let α := max(||a||∞, ||b||∞, ||c||∞), where a and b are the
vectors committed by the prover. (See Sect. 6 for the concrete values of α needed in applications.) The
number of bilinear-group operations the prover has to perform (on top of computing the exponents
by using the described FFT-based polynomial multiplication technique) to compute π in the product
argument is dominated by L(2, n, p)+L(2, r−1

3 (n), Θ((αn)2)). Here, the very conservative value Θ((αn)2)
follows from

|µ`| = |
∑

(i,j)∈I1(`)

(aibj − ci)| ≤
∑

(i,j)∈I1(`)

|aibj − ci| ≤
∑

(i,j)∈I1(`)

(α2 + α) < (n2 − n)(α2 + α) = Θ((αn)2) .

Due to Fact 2, we get that, for n = Ω(log p),

L(2, n, p) =2 log2 p+
2n log2(p+ 1)

log2(2n log2(p+ 1))
· (1 + o(1)) +O(n) = (2 + o(1)) · n

log2 n
· log2 p ,

and, since in our applications, n� log2Θ((αn)2),

L(2, r−1
3 (n), Θ((αn)2)) =2 log2(αn2) +

2r−1
3 (n) log2Θ((αn)2)

log2(2r−1
3 (n) log2Θ((αn)2))

· (1 + o(1)) +O(r−1
3 (n))

=(2 + o(1)) · r−1
3 (n)

log2 r
−1
3 (n)

· 2 log2(αn) .

Thus, the prover has to compute

(2 + o(1)) ·
(

n

log2 n
· log2 p+

r−1
3 (n)

log2 r
−1
3 (n)

· 2 log2(αn)

)
(2)

bilinear-group multiplications. We will instantiate α and other values to this in Sect. 6.

5 Shift And Rotation Arguments

Definition 4 (Shift and rotation argument). In a shift argument, the prover aims to convince the
verifier that for two commitments A and B, he knows how to open them as A = Com(ck;a; ra) and
B = Com(ck; b; rb), such that

ai =

{
bi+1 , i ∈ [n− 1] ,

0 , i = n .

Analogously, in a rotation argument, the prover aims to convince the verifier that for two commitments
A and B, he knows how to open them as A = Com(ck;a; ra) and B = Com(ck; b; rb), such that

ai =

{
bi+1 , i ∈ [n− 1] ,

b1 , i = n .

Groth [Gro10] and Lipmaa [Lip12] defined NIZK arguments for arbitrary permutation % (that is, that
a%(i) = bi for % that is a part of the argument). However, their permutation arguments are quite complex
and computationally intensive. Moreover, many applications do not require arbitrary permutations. We
give concrete examples of the latter claim in Sect. 6.

14

CRS generation Gcrs(1κ): Set parm := (p,G1,G2,GT , ê)← Gbp(1κ), g1 ← G1 \ {1}, g2 ← G2 \ {1}, σ, α̃← Zp;
for each t ∈ {1, 2} do: g̃t ← gα̃t ;

for each ` ∈ {υ} ∪ Λ do: (g1,`, g̃1,`)← (gσ
`

1 , g̃σ
`

1);

Set g2,1 ← gσ2 , g2,λ1 ← gσ
λ1

2 ;

for each ` ∈ {υ, υ + 1} do: (g2,`, g̃2,`)← (gσ
`

2 , g̃σ
`

2);

Set (h2,1, h̃2,1)← (gσ
λn+1−σλi

2 , g̃σ
λn+1−σλi

2);

for each ` ∈ [2, n] do: (h2,`, h̃2,`)← (gσ
λi−1+1−σλi

2 , g̃σ
λi−1+1−σλi

2);

Set c̃k← (parm; (g1,`, g̃1,`)`∈{υ}∪Λ);

return crs← (c̃k, g2, g2,1, (g2,`, g̃2,`)`∈{λ1,υ,υ+1}, (h2,i, h̃2,i)i∈[2,n]);

Argument generation Psft(crs; (A, Ã,B, B̂, B̃), (a, ra, b, rb)):

set (π, π̃)← (gra2,υ+1 · g
−rb
2,υ · g

−b1
2,λ1
·
∏n
i=2 h

bi
2,i, g̃

ra
2,υ+1 · g̃

−rb
2,υ · g̃

−b1
2,λ1
·
∏n
i=2 h̃

bi
2,i);

return πsft ← (π, π̃) ∈ G2
2;

Verification Vsft(crs; (A, Ã,B, B̂, B̃), πsft): if ê(A, g2,1)/ê(B, g2) = ê(g1, π) ∧ ê(g1, π̃) = ê(g̃1, π) then Vsft accepts
else Vsft rejects;

Protocol 4: New shift argument shift([[(A, Ã)]]) = [[(B, B̃)]]

We now describe the new shift argument shift([[(A, Ã)]]) = [[(B, B̃)]], that is much simpler and signif-
icantly more computation-efficient than the generic permutation arguments of Groth and Lipmaa. One
can design a very similar rotation argument; since it will use basically the same underlying ideas, we
will only comment on the differences between the new shift argument and the corresponding rotation
argument.

Let logg1 A = raσ
υ+
∑n
i=1 aiσ

λi and logg1 B = rbσ
υ+
∑n
i=1 biσ

λi . Replacing σ with a formal variable
X, we get that if the prover is honest (full derivation of this is given in the proof of Thm. 5), then

F (X) := X · logg1 A− logg1 B =

n∑
i=2

bi(X
λi−1+1 −Xλi)− b1Xλ1 + raX

υ+1 − rbXυ .

Thus, one can verify that A is a shift of B by just checking that ê(A, gσ2)/ê(B, g2) = ê(g1, π), where

π = g
F (σ)
2 is defined as in Prot. 4.

As seen from the following theorem and its proof, the actual security proof, especially for the (weaker
version of) soundness, is somewhat more complicated. Complications arise from the use of polynomials
of type Xi − Xj in the verification equation; because of this we have to rely on a less straightforward
version of the Φ-PSDL assumption than before. One has also to be careful in the choice of the set Λ:
namely, if say λn + 1 = λ1 then some of the monomials of F (X) will collapse, and the security proof will
not go through.

Theorem 5 (Security of the shift argument). Let Γ = (Gcom, Com,Gcomtd, Comtd,Opentd) be the
(Λ, υ) commitment scheme in group G1.
(1) Prot. 4 is perfectly complete and perfectly witness-indistinguishable.
(2) Let Λ = (λ1, . . . , λn) be a tuple of integers, such that λi + 1 < λi+1 and λi = poly(κ). Let Φ :={
Xυ, Xυ+1, Xλ1

}
∪
{
Xλi−1+1 −Xλi

}n
i=2

. Let υ > λn + 1. If Gbp is Φ-PSDL secure, then a non-uniform
PPT adversary against Prot. 4 has negligible chance, given a correctly formed CRS crs as an input,
of outputting inpsft ← (A, Ã,B, B̃) and an accepting argument πsft ← (π, π̃) together with a witness
wsft ← (a, ra, b, rb, (f

∗
φ)φ∈Φ), such that

(i) a, b ∈ Znp , ra, rb ∈ Zp, and f∗φ ∈ Zp for φ ∈ Φ,

(ii) (A, Ã) = Com(c̃k;a; ra), (B, B̃) = Com(c̃k; b; rb),
(iii) logg2 π = logg̃2 π̃ =

∑
φ∈Φ f

∗
φ · φ(σ), and

(iv) (an, an−1, . . . , a1) 6= (0, bn, . . . , b2).

The reduction time is dominated by the time it takes to factor a degree-(υ + 1) polynomial in Zp[X].

Proof. Denote h ← ê(g1, g2) and F (σ) := logh(ê(A, g2,1)/ê(B, g2)). Witness-Indistinguishability:
since argument πsft that satisfies the verification equations is unique, all witnesses result in the same
argument, and therefore the permutation argument is witness-indistinguishable.

15

C forms crs as in Prot. 4;

C sends crs to Ã;

Ã obtains (inpsft, wsft, πsft)← Asft(crs);

if the conditions (i–iv) in the statement of Thm. 5 do not hold then Ã aborts;
else

1 Ã expresses F (X) as a polynomial f(X) =
∑
φ∈Φπ fφ · φ(X);

2 Ã computes a polynomial f∗(X) :=
∑
φ∈Φ f

∗
φ · φ(X);

Ã lets δ(X)← f(X)− f∗(X);

Ã uses a polynomial factorization algorithm in Zp[X] to compute all ≤ (υ + 2) roots of δ(X);

3 Ã finds by an exhaustive search a root σ0, such that gσ
`

1 = g
σ`0
1 ;

Ã returns σ ← σ0;

end

Algorithm 2: Construction of Ã in the security reduction of Thm. 5

Perfect completeness. The second verification is straightforward. For the first verification
ê(A, g2,1)/ê(B, g2) = ê(g1, π), consider F (X) := X · logg1 A− logg1 B, where we have replaced σ with a
formal variable X. Clearly,

F (X) =

n∑
i=1

aiX
λi+1 −

n∑
i=1

biX
λi + raX

υ+1 − rbXυ

=

n−1∑
i=1

aiX
λi+1 + anX

λn+1 − b1Xλ1 −
n∑
i=2

biX
λi + raX

υ+1 − rbXυ

=anX
λn+1 − b1Xλ1 +

n∑
i=2

(ai−1X
λi−1+1 − biXλi) + raX

υ+1 − rbXυ

=

n∑
i=2

(ai−1 − bi)Xλi−1+1 + anX
λn+1 − b1Xλ1 +

n∑
i=2

bi(X
λi−1+1 −Xλi) + raX

υ+1 − rbXυ .

(3)

If the prover is honest, then ai = bi+1 for i ∈ [n− 1] and an = 0, and thus

F (X) = −b1Xλ1 +

n∑
i=2

bi(X
λi−1+1 −Xλi) + raX

υ+1 − rbXυ

is spanned by {φ(X)}φ∈Φ. Defining π as in Prot. 4, we see that the second verification holds.
Weaker version of soundness. Assume thatAsft is an adversary that can break the last statement

of the theorem. We construct an adversary Ã against the Φ-PSDL assumption, see Prot. 2. Here, C is
the challenger of the PSDL game, and Φπ :=

{
Xυ, Xυ+1

}
∪
{
Xλi , Xλi+1

}n
i=1

is defined by following the
first line of Eq. (3).

Let us analyse the advantage of Ã. First, clearly crstd has the same distribution as Gcrs(1κ). Thus, Asft

gets a correct input, and succeeds with probability SuccsoundAsft
(Πsft). Clearly, Ã aborts with probability

1− SuccsoundAsft
(Πsft).

Otherwise, with probability SuccsoundAsft
(Πsft), inp

sft = (A, Ã,B, B̃) and wsft = (a, ra, b, rb, (f
∗
φ)φ∈Φ),

such that the conditions (i–iv) hold. In particular, f(X) = F (X) in Eq. (3), and

f∗(X) = f∗Xλ1 ·X
λ1 +

n∑
i=2

fXλi−1+1−Xλi (X
λi−1+1 −Xλi) + f∗Xυ+1Xυ+1 + f∗XυX

υ .

Since (an, an−1, . . . , a1) 6= (0, bn, . . . , b2), f(X) has at least one more non-zero monomial, either of type
Xλn+1 or of type (ai−bj)Xλi+1, than f∗(X). Since Xλi+1 cannot be represented as a linear combination
of polynomials from Φ, f(X) and f∗(X) are different polynomials with f(σ) = f∗(σ) = F (σ).

Thus, δ(X) is a non-zero degree-(υ + 1) polynomial, such that δ(σ) = 0. Therefore, Ã can use an
efficient polynomial factorization algorithm [vHN10] to find all roots of δ, and one of those roots must be

16

equal to σ. On step 3, Ã finds which root is equal to σ by an exhaustive search among all roots returned
in the previous step. Thus, clearly Ã returns the correct value of σ (and thus violates the Φ-PSDL
assumption) with probability SuccsoundAsft

(Πsft). Finally, the execution time of Ã is clearly dominated by
the execution time of Asft and the time to factor δ. ut

Note that in an upper level argument, the verifier must check that ê(A, g̃2) = ê(Ã, g2), and ê(B, g̃2) =
ê(B̃, g2).

Theorem 6 (Efficiency of shift argument). Let Λ and υ be as defined in Thm. 5. Let β ← ||b||∞,
β < p. Assume n > log2 β. The communication (argument size) of Prot. 4 is 2 elements from G2. The
prover’s computational complexity is dominated by Θ(n) multiplications in Zp and

(2 + o(1)) · n log2 β

log2 n
+O(n)

bilinear-group multiplications. The verifier’s computational complexity is dominated by 5 bilinear pairings.
The CRS consists of Θ(n) group elements.

Proof. By using Pippenger’s algorithm, the prover computes two multi-exponentiations in

L(2, n, β) =2 log2 β + (1 + o(1)) · 2n log2(β + 1)

log2(2n log2(β + 1))
+O(n) = (2 + o(1)) · n log2 β

log2 n
+O(n)

bilinear-group multiplications. Other claims are straightforward. ut

Rotation Argument. In the rotation argument,

F (X) =(an − b1)Xλn+1 +

n∑
i=2

(ai−1 − bi)Xλi−1+1 + b1(Xλn+1 −Xλ1)+

n∑
i=2

bi(X
λi−1+1 −Xλi) + raX

υ+1 − rbXυ .

Thus, in the case Φ is different, Φ =
{
Xυ, Xυ+1, Xλn+1 −Xλ1

}
∪
{
Xλi−1+1 −Xλi

}n
i=2

. Given this
modification, one can construct a rotation argument that is very similar to Prot. 4.

6 Applications

We will now describe how to use the new product and shift arguments to construct a new subset sum
argument, and to improve on the range argument of [CLZ12]. Finally, we show how to combine subset sum
and range arguments to construct a decision knapsack argument. In all three cases, the shift argument is
mainly used to construct an intermediate scan argument. Recall that vector b is a scan [Ble90] of vector
a, if bi =

∑
j>i aj . As demonstrated over and over in [Ble90], vector scan (also known as all-prefix-sums)

is a powerful operator that can be used to solve many important computational problems. However, in
the context of zero knowledge, we only need to be able to verify that one vector is a scan of the second
vector.

Definition 5 (Scan argument). In a scan argument, the prover aims to convince the verifier that given
two commitments A and B, he knows how to open them as A = Com(ck;a; ra) and B = Com(ck; b; rb),
such that bi =

∑
j>i aj.

A scan argument πscan is just equal to a shift argument shift([[B]]) = [[A · B]], which proves that
bi = ai+1 + ai+1, for i < n, and bn = 0. Thus, bn = 0, bn−1 = an, bn−2 = an−1 + bn−1 = an−1 + an, and
in general, bi =

∑
j>i aj .

17

6.1 Subset Sum Argument

Assume we want to construct an efficient argument for some NP-complete problem. Circuit-SAT seems
to require the use of product and permutation arguments [Gro10,Lip12], so we will try to find another
problem. A simple example is subset sum, where the prover aims to prove that he knows a non-zero
subset of the input set S that sums to 0. We assume that S = (s1, . . . , sn) ⊂ Zp, n� p.

Definition 6 (Subset sum argument). In a subset sum argument, the prover aims to convince the
verifier that given S = (s1, . . . , sn) ⊆ Zp and a commitment B, he knows how to open it as B =

Com(ck; b; rb), such that b is Boolean and non-zero, and
∑n−1
i=0 aisi = 0.

That is, bi = 1 iff si belongs to the subset of S that sums to 0.
During the new subset sum argument, both parties can compute a commitment S to s. The prover

commits to a Boolean vector b. He computes a commitment C to a vector c, such that ci = bisi. He
computes a commitment D to the scan [Ble90] d of vector c. That is, di =

∑
j<i cj , and in particular,

dn =
∑
j<n ci and cn + dn =

∑
j≤n cj .

The prover computes the subset sum argument as follows:

Compute a product argument π1 showing that b is Boolean;
Compute an argument π2 showing that b 6= 0;
Compute a product argument π3 showing that ci = bi · si for i ∈ [n];
Compute a scan argument π4 showing that d is the scan of c;
Compute a restriction argument π5 showing that the last coordinate of c + d is 0;
The subset sum argument is equal to (B,C,D, π1, . . . , π5);

The subargument π2 is computed as follows:

Assume B = grb1,υ

∏
gbi1,λi ; /* we want to show that b 6= 0 */

Assume that g̊1,i = gα1i and g̊2 = gα̊2 for a secret α̊;

Create B̊ ← g̊rb1,υ ·
∏n
i=1 g̊

bi
1,λi

and a hybrid B∗ ← grb1,υ ·
∏
g̊bi1,λi ;

/* Verifier can check that B̊ is correct by checking that ê(B̊, g2) = ê(B, g̊2) */

Show that B̊/B∗ = (̊g1,υ/g1,υ)rb commits to zero by using the zero argument from [LZ12];
Verifier checks that ê(B, g̊2) 6= ê(B∗, g2);

The correctness of this subargument is self-evident: it shows that B̊ commits to the same value (and
uses the same randomizer) as B. It also shows B∗ commits to the same value as both B and B̊. More
precisely, the zero argument convinces the verifier that B∗ is correctly computed from B̊. Therefore the
last check shows that B does not commit to 0, since otherwise ê(B, g̊2) = ê(B∗, g2).

The subargument π4 is computed by the prover by creating a shift argument shift([[D]]) = [[CD]] that
proves that di = ci+1 + di+1 and dn = 0. Thus, dn = 0, dn−1 = cn, dn−2 = cn−1 + dn−1 = cn−1 + cn,
and in general, di =

∑
j>i cj . Thus, d1 =

∑
j>1 cj . Thus the last element of c + d is

∑
aibi.

Finally, π5 is computed by using the restriction argument from [Gro10], that adds linear number of
elements to CRS, but has a constant complexity otherwise.

The resulting subset sum argument is arguably simpler than the circuit SAT argument
of [Gro10,Lip12]. Moreover, instead of the product and permutation arguments it only uses product
and a more efficient shift argument (zero argument is trivial).

6.2 Improved Range Argument

Since the used commitment scheme is homomorphic, the generic range argument (prove that the commit-
ted value belongs to range [L,H] for L < H) is equivalent to proving that the committed value belongs
to [0, H] for H > 0. In what follows, we will therefore concentrate on this simpler case. In [CLZ12],
the authors proposed a new range argument that is based on the product and permutation arguments
from [Lip12]. Interestingly enough, [CLZ12] makes use of the permutation argument only to show that
a vector is a scan of another vector. More precisely, they first apply a permutation argument, followed
by a product argument (meant to modify a rotation to a shift by clearing out one of the elements).

Therefore, we can replace the product and permutation arguments from [Lip12] with the product
and shift arguments (or with the product and scan arguments) from the current paper. Thus, we can

18

Table 2. Comparison of NIZK arguments for range proof. Here, m/mb/e/p means the number of mul-
tiplications in Zp, bilinear-group multiplications, exponentiations and pairings. Communication is given

in group elements. Here, n ≈ loguH, nv = blog2(u− 1)c, h = log2H, N = r−1
3 (h) = o(h22

√
2 log2 h), and

N∗ = r−1
3 (
√
h) = o(

√
h · 22

√
log2 h).

CRS length Arg. length Prover comp. Verifier comp.

[RKP09] Θ(1) Θ(h) Θ(h) Θ(h)
[RKP09] Θ(h

log h
) Θ(h

log h
) Θ(h

log h
) Θ(h

log h
)

Chaabouni, Lipmaa, and Zhang [CLZ12]

General Θ(r−1
3 (n)) 5nv + 40 Θ(n2nv)m +Θ(r−1

3 (n)nv)e Θ(n)e + (9nv + 81)p

u = 2 Θ(N) 40 Θ(h2)m +Θ(N)e Θ(h)e + 81p

u = 2
√
h Θ(N∗) ≈ 5

√
h+ 40 Θ(h3/2)m +Θ(

√
h ·N∗)e ≈ Θ(

√
h)e + (9

√
h+ 81)p

u = H Θ(1) ≈ 5h+ 40 Θ(h)m +Θ(h)e ≈ Θ(1)e + (9h+ 81)p

The current paper

General Θ(r−1
3 (n)) 5nv + 31 Θ(r−1

3 (n) log r−1
3 (n) · nv)m +Θ(r−1

3 (n)nv)mb (9nv + 65)p

u = 2 Θ(N) 31 Θ(N · logN)m +Θ(N)mb 65p

u = 2
√
h Θ(N∗) ≈ 5

√
h+ 31 Θ(

√
h ·N∗ · logN∗)m +Θ(

√
h ·N∗)mb ≈ (9

√
h+ 65)p

u = H Θ(1) ≈ 5h+ 31 Θ(h)m +Θ(h)mb ≈ (9h+ 65)p

base the range argument on a progression-free set Λ, without additionally requiring Λ to consist of odd
integers. The resulting range argument will also be shorter by one product argument.

Moreover, the use of new basic arguments will decrease the number of Zp-multiplications — except
the cost of computing the multi-exponentiations — in the main range argument from Θ(n2nv), where

nv ≈ log2 u, to Θ(r−1
3 (n) · log r−1

3 (n) · nv) = o(logH · 22
√

2 log2 loguH · log loguH). By using Pippenger’s
multi-exponentiation algorithm [Pip80], we get the cost of multi-exponentiation down to

(2 + o(1)) · 2r−1
3 (n) log2(un)

log2 r
−1
3 (n)

multiplications in bilinear groups. The communication will decrease by 4 + 2 + 3 = 9 group elements,
due to the replacement of the permutation argument with the shift argument (minus 4), having one less
product argument (minus 2), and also because one needs to commit to one less element ((Crot, Ĉrot, C̃rot)
in [CLZ12], minus 3). The verifier also has to perform 7+5+4 = 16 less pairings, due to the replacement
of the permutation argument with the shift argument (minus 7) and one less product argument (minus
5). Also, it is not necessary anymore to verify the correctness of (Crot, Ĉrot, C̃rot) (minus 4). One can
analogously compute the verifier’s computational complexity, see Tbl. 2.

Remark 1. In the permutation argument of [Lip12], the verifier also has to compute certain triple
(T ∗, T̂ ∗, T ∗2) by using 3 multi-exponentiations. This is not included in the comparison table (or the
claims) in [Lip12], and the same mistake was replicated in [CLZ12]. Tbl. 1 and Tbl. 2 correct this
mistake, by giving the correct complexity estimation of the arguments from [Lip12,CLZ12].2

Since the non-balanced range argument only uses one permutation argument, the corrected permuta-
tion argument of the current paper makes the argument shorter only by 4 group elements, and decreases
the verifier’s workload by 7 pairings.

One can consider now several settings. The setting u = 2 minimizes the communication and the

verifier’s computational complexity. The setting u = 2
√

log2H minimizes the summatory length of the
CRS and the argument. The setting u = H minimizes the prover’s computational complexity. See Tbl. 2.

2 We note that the range argument from [CLZ12] only uses the permutation argument with one fixed permutation
(rotation), and thus the value (T ∗, T̂ ∗, T ∗2), that corresponds to this concrete permutation, can be put to the
CRS. Therefore, if one applies this small modification, the verifier’s computational complexity in the range
argument actually does not increase compared to what was claimed in [CLZ12]. Since [CLZ12] itself did not
mention this, we consider it to be an additional small contribution of the current paper.

19

6.3 Decision Knapsack Argument

Finally, we will construct also an argument for the following problem.

Definition 7 (Decision knapsack problem). In a decision knapsack problem one has to decide, given
a set S, integers W and B, and a benefit value bi and weight wi of every item of S, whether there exists
a subset T ⊆ V, such that

∑
i∈T wi ≤W and

∑
i∈T bi ≥ B.

It is known that the decision knapsack problem is NP-complete, see [BCJ11,DDKS12] for the best known
(exponential-time) algorithms. One can obviously combine a version of the subset sum argument of the
current section with the range argument of Sect. 6.2 to construct a decision knapsack argument, where
the prover convinces the verifier that he knows such a subset T . In a nutshell, the argument is as follows.

Let ti = 1 iff i ∈ T ;
Prover generates a commitment T of t;
Prover proves that T is Boolean by using a product argument π1;
Prover generates a commitment WT of (w1t1, . . . , wntn);
Prover proves that WT has been computed correctly by using a product argument π2;
Prover generates a scan A of WT , ai =

∑
j>i wjtj ;

Prover proves that A has been computed correctly by using a scan argument π3;
Prover generates a commitment C of (0, . . . , 0,

∑n
i=1 witi);

Prover proves that C has been created correctly by using a product argument π4;
Analogously, prover generates commitments BT , D, and E, and arguments π5, π6 and π6 to show
that E commits to (0, . . . , 0,

∑n
i=1 biti);

Prover proves that the last element of C is ≤W by using a range argument π7;
Prover proves that the last element of E is ≥ B by using a range argument π8;
The whole argument is (T,WT , A,C,BT , D,E, π1, . . . , π8);

It is clear from the description of this argument that it works correctly.

Acknowledgments. This work was partially done while the second author was working at the University
of Tartu, Estonia. The first author was supported by Estonian Science Foundation, grant #9303, and
European Union through the European Regional Development Fund.

References

AF07. Masayuki Abe and Serge Fehr. Perfect NIZK with Adaptive Soundness. In Salil P. Vadhan, editor,
TCC 2007, volume 4392 of LNCS, pages 118–136, Amsterdam, The Netherlands, February 21–24,
2007. Springer, Heidelberg.

BCJ11. Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved Generic Algorithms for Hard Knap-
sacks. In Kenny Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 364–385, Tallinn,
Estonia, May15–19, 2011. Springer, Heidelberg.

Beh46. Felix A. Behrend. On the Sets of Integers Which Contain No Three in Arithmetic Progression.
Proceedings of the National Academy of Sciences, 32(12):331–332, December 1946.

BF01. Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from The Weil Pairing. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229, Santa Barbara, USA, August 19–23,
2001. Springer, Heidelberg.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-Interactive Zero-Knowledge and Its Applications.
In STOC 1988, pages 103–112, Chicago, Illinois, USA, May 2–4, 1988. ACM Press.

Bla02. Matt Blaze, editor. FC 2002, volume 2357 of LNCS, Southhampton Beach, Bermuda, March 11–14,
2002. Springer, Heidelberg.

Ble90. Guy Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.
BN05. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. In Bart

Preneel and Stafford E. Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 319–331, Kingston,
ON, Canada, August 11–12, 2005. Springer, Heidelberg.

Bou00. Fabrice Boudot. Efficient Proofs That a Committed Number Lies in an Interval. In Bart Preneel,
editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 431–444, Bruges, Belgium, May 14–18, 2000.
Springer, Heidelberg.

20

BP04. Mihir Bellare and Adriana Palacio. The Knowledge-of-Exponent Assumptions and 3-Round Zero-
Knowledge Protocols. In Matthew K. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
273–289, Santa Barbara, USA, August 15–19, 2004. Springer, Heidelberg.

CCs08. Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient Protocols for Set Membership and Range
Proofs. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 234–252, Mel-
bourne, Australia, December 7–11, 2008. Springer, Heidelberg.

CGH98. Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Methodology, Revisited. In
Jeffrey Scott Vitter, editor, STOC 1998, pages 209–218, Dallas, Texas, USA, May 23–26, 1998.

CGS97. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and Optimally Efficient Multi-
Authority Election Scheme. In Fumy [Fum97], pages 103–118.

CLs10. Rafik Chaabouni, Helger Lipmaa, and abhi shelat. Additive Combinatorics and Discrete Logarithm
Based Range Protocols. In Ron Steinfeld and Philip Hawkes, editors, ACISP 2010, volume 6168 of
LNCS, pages 336–351, Sydney, Australia, July 5–7, 2010. Springer, Heidelberg.

CLZ12. Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang. A Non-Interactive Range Proof with Constant
Communication. In Angelos Keromytis, editor, FC 2012, volume 7397 of LNCS, pages 179–199,
Bonaire, The Netherlands, February 27–March 2, 2012. Springer, Heidelberg.

CT65. James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation of Complex Fourier
Series. Mathematics of Computation, 19:297–301, 1965.

Dam91. Ivan Damg̊ard. Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks.
In Joan Feigenbaum, editor, CRYPTO 1991, volume 576 of LNCS, pages 445–456, Santa Barbara,
California, USA, August 11–15, 1991. Springer, Heidelberg, 1992.

DDKS12. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient Dissection of Composite Prob-
lems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial Search Problems. In Safavi-
Naini and Canetti [SNC12], pages 719–740.

DJ01. Ivan Damg̊ard and Mads Jurik. A Generalisation, a Simplification and Some Applications of Paillier’s
Probabilistic Public-Key System. In Kwangjo Kim, editor, PKC 2001, volume 1992 of LNCS, pages
119–136, Cheju Island, Korea, February 13–15, 2001. Springer, Heidelberg.

DN00. Cynthia Dwork and Moni Naor. Zaps and Their Applications. In FOCS 2000, pages 283–293, Redondo
Beach, California, USA, November 12–14, 2000. IEEE Computer Society Press.

Elk11. Michael Elkin. An Improved Construction of Progression-Free Sets. Israeli Journal of Mathematics,
184:93–128, 2011.

ET36. Paul Erdős and Paul Turán. On Some Sequences of Integers. Journal of the London Mathematical
Society, 11(4):261–263, 1936.

Fum97. Walter Fumy, editor. EUROCRYPT 1997, volume 1233 of LNCS, Konstanz, Germany, 11–15 May
1997. Springer, Heidelberg.

GGPR12. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic Span Programs and
Succinct NIZKs without PCPs. Technical Report 2012/215, International Association for Cryptologic
Research, April 19, 2012. Available at http://eprint.iacr.org/2012/215, last retrieved version from
June 18, 2012.

GK03. Shafi Goldwasser and Yael Tauman Kalai. On the (In)security of the Fiat-Shamir Paradigm. In FOCS
2003, pages 102–113, Cambridge, MA, USA, October, 11–14 2003. IEEE, IEEE Computer Society
Press.

GL07. Jens Groth and Steve Lu. A Non-interactive Shuffle with Pairing Based Verifiability. In Kaoru
Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 51–67, Kuching, Malaysia, De-
cember 2–6, 2007. Springer, Heidelberg.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive Proof-
Systems. In Robert Sedgewick, editor, STOC 1985, pages 291–304, Providence, Rhode Island, USA,
May 6–8, 1985. ACM Press.

Gro10. Jens Groth. Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340, Singapore, December 5–9, 2010.
Springer, Heidelberg.

GS66. W. Morven Gentleman and Gordon Sande. Fast Fourier Transforms — For Fun And Profit. In Fall
Joint Computer Conf. AFIPS Proc., volume 29, pages 563–578, Washington, DC, USA, 1966. ACM.

GS08. Jens Groth and Amit Sahai. Efficient Non-interactive Proof Systems for Bilinear Groups. In Nigel
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432, Istanbul, Turkey, April 13–
17, 2008. Springer, Heidelberg.

GW10. Ben Green and Julia Wolf. A Note on Elkin’s Improvement of Behrend’s Construction. In David
Chudnovsky and Gregory Chudnovsky, editors, Additive Number Theory, pages 141–144. Springer
New York, 2010.

GW11. Craig Gentry and Daniel Wichs. Separating Succinct Non-Interactive Arguments from All Falsifiable
Assumptions. In Salil Vadhan, editor, STOC 2011, pages 99–108, San Jose, California, USA, June 6–8,
2011. ACM Press.

21

HSV06. Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The Eta Pairing Revisited. IEEE Transactions
on Information Theory, 52(10):4595–4602, 2006.

LAN02. Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey Auctions without Threshold Trust. In
Blaze [Bla02], pages 87–101.

Lip03. Helger Lipmaa. On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In Chi Sung
Laih, editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 398–415, Taipei, Taiwan, November
30–December 4, 2003. Springer, Heidelberg.

Lip11. Helger Lipmaa. Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge
Arguments. Technical Report 2011/009, International Association for Cryptologic Research, Jan-
uary 5, 2011. Available at http://eprint.iacr.org/2011/009.

Lip12. Helger Lipmaa. Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge
Arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 169–189, Taormina,
Italy, March 18–21, 2012. Springer, Heidelberg.

LZ12. Helger Lipmaa and Bingsheng Zhang. A More Efficient Computationally Sound Non-Interactive Zero-
Knowledge Shuffle Argument. In Ivan Visconti and Roberto De Prisco, editors, SCN 2012, volume
7485 of LNCS, pages 477–502, Amalfi, Italy, September 5–7, 2012. Springer, Heidelberg.

Pip80. Nicholas Pippenger. On the Evaluation of Powers and Monomials. SIAM Journal of Computing,
9(2):230–250, 1980.

PSNB11. C. C. F. Pereira Geovandro, Marcos A. Simpĺıcio Jr., Michael Naehrig, and Paulo S. L. M. Barreto. A
Family of Implementation-Friendly BN Elliptic Curves. Journal of Systems and Software, 84(8):1319–
1326, 2011.

RKP09. Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally Composable Adaptive Priced Oblivious
Transfer. In Hovav Shacham and Brent Waters, editors, Pairing 2009, volume 5671 of LNCS, pages
231–247, Palo Alto, CA, USA, August 12–14, 2009. Springer, Heidelberg.

San11. Tom Sanders. On Roth’s Theorem on Progressions. Annals of Mathematics, 174(1):619–636, July
2011.

Sch80. Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. Journal of
the ACM, 27(4):701–717, 1980.

Sho97. Victor Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In Fumy [Fum97], pages
256–266.

SNC12. Rei Safavi-Naini and Ran Canetti, editors. CRYPTO 2012, volume 7417 of LNCS, Santa Barbara,
California, USA, August 19–23, 2012. Springer, Heidelberg.

TV06. Terrence Tao and Van Vu. Additive Combinatorics. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 2006.

vHN10. Mark van Hoeij and Andrew Novocin. Gradual Sub-lattice Reduction and a New Complexity for
Factoring Polynomials. In Alejandro López-Ortiz, editor, LATIN 2010, volume 6034 of LNCS, pages
539–553, Oaxaca, Mexico, April 19–23, 2010. Springer, Heidelberg.

Wat12. Brent Waters. Functional Encryption for Regular Languages. In Safavi-Naini and Canetti [SNC12],
pages 218–235.

22

	New Non-Interactive Zero-Knowledge Subset Sum, Decision Knapsack And Range Arguments

