Efficient Modular NIZK Arguments from Shift and Product Draft, June 27, 2013

Prastudy Fauzi ${ }^{1}$, Helger Lipmaa ${ }^{1}$, and Bingsheng Zhang ${ }^{2}$
${ }^{1}$ University of Tartu, Estonia
${ }^{2}$ State University of New York at Buffalo, USA

Abstract

Very few general techniques are known for constructing succinct and computationally efficient NIZK arguments for non-trivial languages. Groth proposed product and permutation arguments, and then used them in a modular way to construct a succinct Circuit-SAT argument. Lipmaa improved the complexity of Groth's basic arguments, while Chaabouni, Lipmaa, and Zhang (FC 2012) used them to construct the first constant-length NIZK range argument. Since Groth's and Lipmaa's basic arguments have quadratic prover's computation, so do all the resulting modular arguments. We continue the study of modular NIZK arguments, by proposing a significantly more efficient version of the product argument and a novel shift argument. Based on these two arguments, we significantly speed up the range argument from FC 2012, obtaining the first range proof with constant length and subquadratic (in the logarithm of the range length) prover's computation. We also propose efficient arguments for three NP-complete languages, set partition, subset sum and decision knapsack, with constant communication, $n^{1+o(1)}$ prover's computation and linear verifier's computation.

Keywords: Decision knapsack, FFT, non-interactive zero knowledge, product argument, range argument, set partition, shift argument, subset sum.

1 Introduction

By using a zero knowledge proof [GMR85], a prover can prove the correctness of a statement without leaking any side information. Efficient non-interactive zero knowledge (NIZK, [BFM88]) proofs are crucial in the design of cryptographic protocols. A typical application is e-voting, where the voters must prove the correctness of encrypted ballots and the servers must prove the correctness of the tallying process. Since the voters may not be available every time when one verifies the cast ballots, one cannot really rely on interactive zero knowledge. Moreover, it is important to have succinct (e.g., logarithmic in input size) NIZK proofs with efficient verification. For example, in e-voting, correctness proofs are collected and stored, and then verified by many independent observers.

It is well-known that NIZK proofs are impossible in the standard model without any trust assumptions. One usually constructs NIZK proofs in the common reference string (CRS, BFM88]) model, where all parties have access to a CRS generated by a trusted third party. (We do not consider the random oracle model, since random oracles cannot always be instantiated [CGH98[GK03].) Moreover, one can only construct succinct computationally sound proofs, also known as arguments [BCC 88].

Only a few generic techniques of constructing succinct NIZK arguments for non-trivial languages are known, unless $\mathbf{P}=\mathbf{N P}$. In [Gro10], Groth constructed product and permutation arguments. He then used these, together with some other arguments, to construct the first succinct NIZK argument for an NP-complete language, CircuitSAT. The latter argument is modular, i.e., it is in an almost black-box way based on a small number of basic arguments. Let $n=|C|$ be the circuit size. Groth's product and permutation arguments have CRS length and prover's computation $\Theta\left(n^{2}\right)$, while the communication and verifier's computation are constant. His Circuit-SAT argument has the same complexity parameters, except that the verifier's computation is $\Theta(n)$, see Tbl. 1 .

Lipmaa [Lip12] improved Groth's basic arguments. Let $r_{3}(N)=N^{1-o(1)}$ be the size of the largest known progression-free subset [Elk11] of $[N]=\{1, \ldots, N\}$. Lipmaa's basic arguments have CRS length $\Theta\left(r_{3}^{-1}(n)\right)=n^{1+o(1)}$, and slightly better prover's computation. This results straightforwardly in a more efficient modular Circuit-SAT argument. Another important property of Lipmaa's arguments is the flexibility in choosing the progression-free set. For small values of N the value $r_{3}(N)$ is much smaller than predicted by Elkin, [Dyb12[ET36]. (The verifier's computation in Lipmaa's argument in Tbl. 1 differs from what was claimed in [Lip12]. The slightly incorrect claim from [Lip12] was also replicated in [CLZ12]. See Remark 1 on page 12 for a clarification.) Thus, Groth's and Lipmaa's basic arguments offer essentially optimal communication and verifier's computation, but they are quite inefficient in other parameters. In particular, we estimate that due to quadratic prover's computation, they will not be able to handle circuits of size 2^{10} or more.

The basic arguments of [Gro10 Lip12] can be used to construct other modular arguments (e.g., range arguments [CLZ12]). In addition, as shown in [LZ12], following the same framework, one can construct other basic arguments - for example, 1-sparsity in [LZ12] - and use them to construct efficient modular arguments (shuffle in [LZ12]). It is an important open problem to increase the library of basic arguments even further, and to investigate which (more complex) arguments can be solved efficiently by using the basic arguments in a modular manner. Moreover, the basic arguments of Groth and Lipmaa are computationally intensive for the prover. It is strongly desirable that the new basic arguments (that at the same time have meaningful applications) were more efficient.

Our Contributions. We make Lipmaa's product argument more efficient, and we propose a new efficient shift-by- ξ argument. We then show how to use the product argument and the shift argument - together with some other, even simpler, arguments - to make the modular range argument of [CLZ12] more efficient, and then to construct efficient modular arguments for set partition, subset sum and decision knapsack (all NP-complete languages). Hopefully this shows the power of the modular approach. By using the same basic arguments, it may be possible to construct modular NIZK arguments for other (possibly more interesting in practice) languages.

While [GGPR13] recently proposed a more efficient Circuit-SAT argument, since this argument relies on the efficient arithmetic-circuit representation of the underlying language, it is unclear if it can be used to construct arguments with subquadratic prover's computation for other NP-complete languages. (Using polynomial-time reductions between NP-complete languages is usually not an option since we really require subquadratic complexity.) Moreover, the Circuit-SAT argument of [GGPR13] requires prover's computation $\Theta\left(n \log ^{3} n\right)$, which is larger than $\Theta\left(n^{\log _{2} 3} \cdot \log n\right)$ (the prover's computation in the new arguments for NP-complete languages, given that one uses the Erdős-Turán progression-free set [ET36]) for all practically relevant values of n. See Fig. 1 for asymptotic comparison of prover's computation. The argument from [GGPR13] starts to be more efficient when $n>2^{12}$, but then the prover's computation of both arguments is more than 2^{23} group operations, which makes both impractical. Since we are considering different NP-complete languages, direct comparison is not really possible. However, any progress in the theory of progression-free sets can make our arguments more efficient.

Technical Details. We first modify the commitment scheme from [Lip12]. In that commitment scheme (and thus also in all related NIZK arguments), one uses a progression-free set Λ of odd positive integers. When the new commitment scheme is used, Λ does not have to consist of positive odd integers. This is important conceptually, making it clear that one requires progression-freeness of Λ (and nothing else) in similar arguments.

We then construct a more efficient product argument by applying two unrelated algorithmic techniques. While by themselves not new, these techniques help us to significantly speed up the product argument, and thus also other arguments that we build on top of it. First, we use Fast Fourier Transform (FFT, [CT65]) based polynomial multiplication [GS66] to reduce the prover's computation from $\Theta\left(n^{2}\right)$ to $n^{1+o(1)} \mathbb{Z}_{p}$-multiplications. In addition, one has to evaluate two $\Theta(n)$-wide and two $\Theta\left(r_{3}^{-1}(n)\right)$-wide bilinear-group multi-exponentiations. Due to this, the new product argument has prover's computation and CRS length $n^{1+o(1)}$. We note that FFT-based techniques are not applicable to optimize the arguments of Groth [Gro10], since there the largest element of Λ is $\Theta\left(n^{2}\right)$.

Second, we use Pippenger's [Pip80] algorithm to speed up multi-exponentiations. More precisely, the prover must perform $\Theta\left(r_{3}^{-1}(n)\right)$ bilinear-group multiplications to evaluate two $\Theta\left(r_{3}^{-1}(n)\right)$-wide bilinear-group multi-exponentiations needed in Lipmaa's product argument. This number is smaller than the number of $\mathbb{Z}_{p^{-}}$ multiplications but since bilinear-group multiplications are more expensive, we will count them separately. (While [Lip12] mentioned that one can use efficient multi-exponentiation algorithms, it provided no analysis.)

We were unable to apply FFT to the permutation argument from [Lip12]; this is since Lipmaa's product argument has an FFT-friendly construction while the permutation argument has a more complex structure. Instead, we propose new shift-by- ξ and rotation-by- ξ arguments that have constant communication and verifier's computation, and linear prover's computation and CRS length. None of these complexities depends on the shift amount ξ. Thus, the new shift and rotation arguments are (in some parameters) $\Theta(n)$ times more efficient than Groth's permutation argument. As a drawback, we prove their security only by reduction to the Φ-PSDL assumption [CLZ12] (see also Sect. 3], which is a generalization of the Λ-PSDL assumption from [Lip12]. To show that the Φ-PSDL assumption is reasonable, we prove that the Φ-PSDL assumption is secure in the generic group model.

We then show that based on the product and shift arguments, one can build efficient modular arguments for several important languages. All our applications use some intermediate argument like the scan argument, that verifies that one vector is the scan [Ble90] (or sum-of-all-prefixes) of another vector. While the scan argument can be straightforwardly constructed from the shift argument, it serves as a very useful intermediate building block.

Table 1. Comparison of modular NIZK arguments for NP-complete languages with (worst-case) sublinear argument size. Here, n is the size of circuit, $N=r_{3}^{-1}(n)=o\left(n 2^{2 \sqrt{2 \log _{2} n}}\right)$ and $N^{*}=r_{3}^{-1}(\sqrt{n})=o\left(\sqrt{n} \cdot 2^{2 \sqrt{\log _{2} n}}\right)$, m is the balancing parameter, \mathfrak{g} corresponds to 1 group element and $\mathfrak{a} / \mathfrak{m} / \mathfrak{m}_{b} / \mathfrak{e} / \mathfrak{p}$ correspond to 1 addition $/ \mathbb{Z}_{p}$-multiplication/bilineargroup multiplication/exponentiation/pairing

| m | \|CRS|| | \|Argument| | Prover comp. | Verifier comp. |
| :---: | :---: | :---: | :---: | :---: |
| Circuit-SAT arguments from [Gro10] | | | | |
| $\begin{aligned} & 1 \\ & n^{1 / 3} \end{aligned}$ | $\left.\begin{array}{\|c\|} \hline \Theta\left(n^{2}\right) \mathfrak{g} \\ \Theta\left(n^{\frac{2}{3}}\right) \mathfrak{g} \end{array} \right\rvert\,$ | $\begin{array}{r} \Theta(1) \mathfrak{g} \\ \Theta\left(n^{\frac{2}{3}}\right) \mathfrak{g} \end{array}$ | $\begin{array}{r} \Theta\left(n^{2}\right) \mathfrak{e} \\ \Theta\left(n^{4 / 3}\right) \mathfrak{e} \end{array}$ | $\begin{array}{r} \Theta(n) \mathfrak{m}_{b}+\Theta(1) \mathfrak{p} \\ \Theta(n) \mathfrak{m}_{b}+\Theta\left(n^{\frac{2}{3}}\right) \mathfrak{p} \end{array}$ |
| Circuit-SAT arguments from [Lip12] | | | | |
| 1 \sqrt{n} | $\left.\begin{array}{r} \Theta(N) \mathfrak{g} \\ \Theta\left(N^{*}\right) \mathfrak{g} \end{array} \right\rvert\,$ | $\begin{array}{r} \Theta(1) \mathfrak{g} \\ \Theta(\sqrt{n}) \mathfrak{g} \end{array}$ | $\begin{array}{r} \Theta\left(n^{2}\right) \mathfrak{a}+\Theta(N) \mathfrak{e} \\ \Theta\left(n^{3 / 2}\right) \mathfrak{a}+\Theta\left(\sqrt{n} \cdot N^{*}\right) \mathfrak{e} \end{array}$ | $\begin{array}{r} \Theta(n) \mathfrak{e}+62 \mathfrak{p} \\ \Theta(n) \mathfrak{e}+\Theta(\sqrt{n}) \mathfrak{p} \end{array}$ |
| Set partition, subset sum and decision knapsack arguments from the current paper | | | | |
| $\begin{aligned} & 1 \\ & \sqrt{n} \end{aligned}$ | $\left\|\begin{array}{r} \Theta(N) \mathfrak{g} \\ \Theta\left(N^{*}\right) \mathfrak{g} \end{array}\right\|$ | $\begin{array}{r} \Theta(1) \mathfrak{g} \\ \Theta(\sqrt{n}) \mathfrak{g} \end{array}$ | $\begin{array}{r} \Theta(N \log n) \mathfrak{m}+\Theta(N) \mathfrak{m}_{b} \\ \Theta\left(\sqrt{n} \cdot N^{*} \log n\right) \mathfrak{m}+\Theta\left(\sqrt{n} \cdot N^{*}\right) \mathfrak{m}_{b} \end{array}$ | $\begin{array}{r} \Theta(n) \mathfrak{m}_{b}+\Theta(1) \mathfrak{p} \\ \Theta(n) \mathfrak{m}_{b}+\Theta(\sqrt{n}) \mathfrak{p} \end{array}$ |

Efficient Range Argument. In a range argument (or a range proof, see [Bou00 LAN02 Lip03 CCs08|CLs10]), the prover aims to convince the verifier that the committed value belongs to an integer range $[L, H]$. Range arguments are needed in many cryptographic applications, typically in cases where for the security of the master protocol (e.g., e-voting or e-auctions) it is necessary to show that the encrypted or committed values come from a correct range. Construction of non-interactive range arguments has only taken off during the last few years [RKP09]CLZ12]. In [CLZ12], Chaabouni, Lipmaa and Zhang used the product and permutation arguments of [Lip12] to construct the first known constant-communication (interactive or non-interactive) range argument over prime-order groups. They achieved this by combining the basic arguments of [Gro10 Lip12] with several different (and unrelated) techniques that were developed specifically for range arguments in [LAN02]CLs10].

We use the new basic arguments to optimize the range argument from [CLZ12], reducing the prover's computation from $\Theta\left(h^{2}\right)$ to $\Theta\left(r_{3}^{-1}(h) \cdot \log r_{3}^{-1}(h)\right)$ multiplications in \mathbb{Z}_{p}, and from $\Theta\left(r_{3}^{-1}(h)\right)$ bilinear-group exponentiations to $\Theta\left(r_{3}^{-1}(h)\right)$ bilinear-group multiplications. Here, $h=\log _{2}(H-L)$. The new argument is the first range argument at all (i.e., not only in prime-order groups) that has constant-length arguments and subquadratic-in- h prover's computation. See Sect. 6] We also note that [CLZ12] replicated the small mistake of [Lip12] (see Remark 1] and therefore the computational complexity of the argument of [CLZ12] is larger than claimed in [CLZ12]. We propose another modification of their range argument to make it even more efficient. We also discuss balanced versions of the new range argument that obtain better prover's computation but have larger communication.

Efficient Set Partition Argument. We construct an efficient NIZK argument for the NP-complete language Set Partition (the prover knows a partition of the given set of integers to two sets that have the same sum), where the communication and computational complexity are dominated by two product arguments and one shift argument. The new argument has parameters outlined in Tbl. 1 . In this case, n denotes the cardinality of the public set.

Efficient Subset Sum Argument. We also construct an NIZK argument for the NP-complete language Subset Sum (the prover knows a non-zero subset of the given set of integers that sums to 0), with parameters outlined in Tbl. 1 In this case, n denotes the size of the input domain, that is, the public set S is known to belong to $[n]$.

Efficient Decision Knapsack Argument. As the final example, we show that one can combine subset sum and range arguments to construct an argument for decision knapsack argument, another NP-complete language. The knapsack problem has direct cryptographic applications.

Balancing. When using the balancing techniques of Gro10 Lip12] (briefly, instead of applying the basic arguments to length n-vectors, apply them in parallel to m length- (n / m) vectors), if $m=\sqrt{n}$, we obtain balanced NIZK arguments with the parameters, given in the last row of Tbl. 1 .

2 Preliminaries

Let $[L, H]=\{L, L+1, \ldots, H\}$ and $[H]=[1, H]$. By \boldsymbol{a}, we denote the vector $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$. Since for groups G and H, their direct product $G \times H$ is also a group, we use freely notation like $(g, h)^{a}=\left(g^{a}, h^{a}\right)$. If $y=h^{x}$, then $\log _{h} y:=x$. If A is a value, then $x \leftarrow A$ means that x is set to A. If A is a set (resp., an algorithm), then $x \leftarrow A$ means that x is picked uniformly and randomly from (resp., by) A. Let κ be the security parameter. We abbreviate probabilistic polynomial-time as PPT, non-uniform PPT by NUPPT. Let poly $(\kappa) / \operatorname{negl}(\kappa)$ be an arbitrary polynomial/negligible function.

If Λ_{1} and Λ_{2} are subsets of some additive group (\mathbb{Z} or \mathbb{Z}_{p} in this paper), then $\Lambda_{1}+\Lambda_{2}=\left\{\lambda_{1}+\lambda_{2}: \lambda_{1} \in\right.$ $\left.\Lambda_{1} \wedge \lambda_{2} \in \Lambda_{2}\right\}$ is their sum set and $\Lambda_{1}-\Lambda_{2}=\left\{\lambda_{1}-\lambda_{2}: \lambda_{1} \in \Lambda_{1} \wedge \lambda_{2} \in \Lambda_{2}\right\}$ is their difference set. If Λ is a set, then $k \Lambda=\left\{\lambda_{1}+\cdots+\lambda_{k}: \lambda_{i} \in \Lambda\right\}$ is an iterated sumset, $k \cdot \Lambda=\{k \lambda: \lambda \in \Lambda\}$ is a dilation of Λ, and $2 \wedge ~ \Lambda=\left\{\lambda_{1}+\lambda_{2}: \lambda_{1} \in \Lambda \wedge \lambda_{2} \in \Lambda \wedge \lambda_{1} \neq \lambda_{2}\right\} \subseteq \Lambda+\Lambda$ is a restricted sumset. See [TV06].

A set $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is progression-free (or non-averaging, [ET36TV06]), if no three elements of Λ are in arithmetic progression, that is, $\lambda_{i}+\lambda_{j}=2 \lambda_{k}$ only if $i=j=k$. That is, $2 \sim \Lambda \cap 2 \cdot \Lambda=\emptyset$. Let $r_{3}(N)$ be the cardinality of the largest progression-free set $\Lambda \subseteq[N]$. Recently, Elkin [Elk11] proved that $r_{3}(N)=$ $\Omega\left(\left(N \cdot \log ^{1 / 4} N\right) / 2^{2 \sqrt{2 \log _{2} N}}\right)$. Thus, for any $n>0$, there exists $N=o\left(n 2^{2 \sqrt{2 \log _{2} n}}\right)$, such that $[N]$ contains an n-element progression-free subset. However, for say $N \leq 2^{25}$, the Erdős-Turán progression-free subset [ET36], of size $\approx N^{\log _{3} 2}$, is larger. For $N \leq 123$, the optimal values of $r_{3}(N)$ were recently computed in [Dyb12]. For any N, the currently best upper bound was proven by Sanders [San11].

Polynomial factorization in $\mathbb{Z}_{p}[X]$ can be done in polynomial time [LLL82|vHN10]. Let PolyFact be an efficient polynomial factorization algorithm that on input a degree- d polynomial f outputs all $d+1$ roots of f.

Let y_{1}, \ldots, y_{M} be monomials over the indeterminates x_{1}, \ldots, x_{N}. For every $y=\left(y_{1}, \ldots, y_{M}\right)$, let $L(y)$ be the minimum number of multiplications sufficient to compute y_{1}, \ldots, y_{M} from x_{1}, \ldots, x_{N} and the identity 1 . Let $L(M, N, B)$ denote the maximum of $L(y)$ over all y for which the exponent of any indeterminate in any monomial is at most B. In [Pip80], Pippenger proved that

Fact 1 Assume that $h=M N \cdot \log (B+1) \rightarrow \infty$. Then $L(M, N, B)=\min \{M, N\} \log B+h / \log h \cdot(1+$ $\left.O\left((\log \log h / \log h)^{1 / 2}\right)\right)+O(\max \{M, N\})$.

Bilinear Groups. A bilinear group generator $\mathcal{G}_{\mathrm{bp}}$ outputs a description of a bilinear group [SOK00] Jou00|BF01] $\mathrm{gk}:=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, \hat{e}\right) \leftarrow \mathcal{G}_{\mathrm{bp}}\left(1^{\kappa}\right)$, s.t. p is a κ-bit prime, $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} are multiplicative cyclic groups of order p (with identity elements denoted by 1), $\hat{e}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$ is a bilinear pairing such that $\forall a, b \in \mathbb{Z}, g_{1} \in \mathbb{G}_{1}$ and $g_{2} \in \mathbb{G}_{2}, \hat{e}\left(g_{1}^{a}, g_{2}^{b}\right)=\hat{e}\left(g_{1}, g_{2}\right)^{a b}$. If g_{z} generates \mathbb{G}_{z} for $z \in\{1,2\}$, then $\hat{e}\left(g_{1}, g_{2}\right)$ generates \mathbb{G}_{T}. Also, it is efficient to decide membership in $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T}, group operations and the pairing are efficiently computable, generators are efficiently sampleable, and the descriptions of the groups and group elements each are $O(\kappa)$ bits long. An optimal Ate pairing [HSV06] over a subclass of Barreto-Naehrig curves can be implemented efficiently. Then, at security level of 128 bits, an element of $\mathbb{G}_{1} / \mathbb{G}_{2} / \mathbb{G}_{T}$ can be represented in respectively $256 / 512 / 3072$ bits.

Commitment Schemes. A trapdoor commitment scheme Γ consists of five PPT algorithms: a randomized common reference string (CRS) generation algorithm \mathcal{G} com, a randomized commitment algorithm \mathcal{C} om, a randomized trapdoor CRS generation algorithm $\mathcal{G} \operatorname{com}_{t d}$, a randomized trapdoor commitment algorithm \mathcal{C} om ${ }_{t d}$, and a trapdoor opening algorithm $\mathcal{O} \operatorname{pen}_{t d}$. Here, (1) the CRS generation algorithm $\mathcal{G} \operatorname{com}\left(1^{\kappa}\right)$ produces a CRS ck, (2) the commitment algorithm $\mathcal{C o m}(\mathrm{ck} ; \boldsymbol{a} ; r$), with a new randomizer r, outputs a commitment value A. A commitment $\mathcal{C o m}(\mathrm{ck} ; \boldsymbol{a} ; r)$ is opened by revealing (\boldsymbol{a}, r), (3) the trapdoor CRS generation algorithm $\mathcal{G} \operatorname{com}_{t d}\left(1^{\kappa}\right)$ outputs a CRS $\mathrm{ck}_{t d}$, which has the same distribution as $\mathcal{G} \operatorname{com}\left(1^{\kappa}\right)$, and a trapdoor td, (4) the randomized trapdoor commitment algorithm $\mathcal{C o m}_{t d}\left(\mathrm{ck}_{t d} ; r\right)$ takes $\mathrm{ck}_{t d}$ and a randomizer r as inputs, and outputs $\mathcal{C o m}\left(\mathrm{ck}_{t d} ; \mathbf{0} ; r\right)$, and (5) the trapdoor opening algorithm \mathcal{O} pen $_{t d}\left(\mathrm{ck}_{t d} ; \mathrm{td}, \boldsymbol{a} ; r\right)$ outputs an $r_{t d}$, such that $\mathcal{C o m}\left(\mathrm{ck}_{t d} ; \mathbf{0} ; r\right)=\mathcal{C} \operatorname{om}\left(\mathrm{ck}_{t d} ; \boldsymbol{a} ; r_{t d}\right)$. A commitment scheme Γ is computationally binding, if for every NUPPT adversary \mathcal{A},

$$
\operatorname{Pr}\left[\mathrm{ck} \leftarrow \mathcal{G} \operatorname{com}\left(1^{\kappa}\right),\left(\boldsymbol{a}_{\mathbf{1}}, r_{1}, \boldsymbol{a}_{\mathbf{2}}, r_{2}\right) \leftarrow \mathcal{A}(\mathrm{ck}):\left(\boldsymbol{a}_{\mathbf{1}}, r_{1}\right) \neq\left(\boldsymbol{a}_{\mathbf{2}}, r_{2}\right) \wedge \mathcal{C o m}\left(\mathrm{ck} ; \boldsymbol{a}_{\mathbf{1}} ; r_{1}\right)=\mathcal{C} \operatorname{om}\left(\mathrm{ck} ; \boldsymbol{a}_{\mathbf{2}} ; r_{2}\right)\right]
$$

is negligible in κ. A commitment scheme Γ is perfectly hiding, if for any $\mathrm{ck} \in \mathcal{G} \operatorname{com}\left(1^{\kappa}\right)$ and any two messages $\boldsymbol{a}_{\mathbf{1}}, \boldsymbol{a}_{\mathbf{2}}$, the distributions $\mathcal{C o m}\left(\mathrm{ck} ; \boldsymbol{a}_{\mathbf{1}} ; \cdot\right)$ and $\mathcal{C o m}\left(\mathrm{ck} ; \boldsymbol{a}_{\mathbf{2}} ; \cdot\right)$ are equal.

The new commitment scheme allows committing to vectors of predetermined length n. Thus, one must input n (or a reasonable upper bound on n) as an additional parameter for the CRS and trapdoor CRS generation algorithms. We assume that the value of n is implicitly obvious while committing and trapdoor opening.

Non-Interactive Zero-Knowledge. Let $\mathcal{R}=\{(C, w)\}$ be an efficiently computable binary relation with $|w|=$ poly $(|C|)$. Here, C is a statement, and w is a witness. Let $\mathcal{L}=\{C: \exists w,(C, w) \in \mathcal{R}\}$ be an NP-language. Let $n=|C|$ be the input length. For fixed n, we have a relation \mathcal{R}_{n} and a language \mathcal{L}_{n}. A non-interactive argument for \mathcal{R} consists of three PPT algorithms: a common reference string (CRS) generator $\mathcal{G}_{\text {crs }}$, a prover \mathcal{P}, and a verifier \mathcal{V}. For crs $\leftarrow \mathcal{G}_{\text {crs }}\left(1^{\kappa}, n\right), \mathcal{P}$ (crs; $\left.C, w\right)$ produces an argument π, and \mathcal{V} (crs; C, π) outputs either 1 (accept) or 0 (reject). $\Pi=\left(\mathcal{G}_{\text {crs }}, \mathcal{P}, \mathcal{V}\right)$ is perfectly complete, if for all $n=\operatorname{poly}(\kappa)$,

$$
\operatorname{Pr}\left[\text { crs } \leftarrow \mathcal{G}_{\text {crs }}\left(1^{\kappa}, n\right),(C, w) \leftarrow \mathcal{R}_{n}: \mathcal{V}(\text { crs } ; C, \mathcal{P}(\text { crs } ; C, w))=1\right]=1
$$

Π is computationally sound, if for all $n=\operatorname{poly}(\kappa)$ and NUPPT adversaries \mathcal{A},

$$
\operatorname{Pr}\left[\text { crs } \leftarrow \mathcal{G}_{\text {crs }}\left(1^{\kappa}, n\right),(C, \pi) \leftarrow \mathcal{A}(\text { crs }): C \notin \mathcal{L} \wedge \mathcal{V}(\text { crs } ; C, \pi)=1\right]=\operatorname{negl}(\kappa)
$$

Π is perfectly witness-indistinguishable, if for all $n=\operatorname{poly}(\kappa)$, if $\mathrm{crs} \in \mathcal{G}_{\text {crs }}\left(1^{\kappa}, n\right)$ and $\left(\left(C, w_{0}\right),\left(C, w_{1}\right)\right) \in \mathcal{R}_{n}^{2}$, then the distributions $\mathcal{P}\left(\mathrm{crs} ; C, w_{0}\right)$ and $\mathcal{P}\left(\mathrm{crs} ; C, w_{1}\right)$ are equal.

An argument Π is perfectly zero-knowledge, if there exists a PPT simulator $\mathcal{S}=\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, such that for all stateful NUPPT adversaries \mathcal{A} and $n=\operatorname{poly}(\kappa)\left(\boldsymbol{w i t h} \operatorname{td}_{\pi}\right.$ being the simulation trapdoor),
$\operatorname{Pr}\left[\begin{array}{l}\operatorname{crs} \leftarrow \mathcal{G}_{\mathrm{crs}}\left(1^{\kappa}, n\right),(C, w) \leftarrow \mathcal{A}(\mathrm{crs}), \\ \pi \leftarrow \mathcal{P}(\mathrm{crs} ; C, w):(C, w) \in \mathcal{R}_{n} \wedge \mathcal{A}(\pi)=1\end{array}\right]=\operatorname{Pr}\left[\begin{array}{l}\left(\operatorname{crs} ; \operatorname{td}_{\pi}\right) \leftarrow \mathcal{S}_{1}\left(1^{\kappa}, n\right),(C, w) \leftarrow \mathcal{A}(\mathrm{crs}), \\ \pi \leftarrow \mathcal{S}_{2}\left(\operatorname{crs} ; C, \mathrm{td}_{\pi}\right):(C, w) \in \mathcal{R}_{n} \wedge \mathcal{A}(\pi)=1\end{array}\right]$.

3 New Commitment Scheme

In this section, we will modify the commitment scheme of [Gro10 Lip12] by defining (see Prot. 1] the (Λ, v) trapdoor commitment scheme in group \mathbb{G}_{z}, where $z \in\{1,2\}$. Intuitively, a vector $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$ is committed to as $g_{z}^{r \sigma^{v}+\sum a_{i} \sigma^{\lambda_{i}}}$, where r is the randomness, g_{z} is a generator of \mathbb{G}_{z}, and σ is the secret key. Groth [Gro10] proposed a variant of this commitment scheme with $\Lambda=[n]$ and $v=0$, while Lipmaa Lip12] generalized Λ to any set $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ with $0<\lambda_{i}<\lambda_{i+1}$ and $\lambda_{n}=\operatorname{poly}(\kappa)$ (while still letting $v=0$).

We use the following security assumptions from [CLZ12]. Let p be as output by $\mathcal{G}_{\text {bp }}$. Let $\Phi \subset \mathbb{Z}_{p}[X]$, with $d:=\max _{\varphi \in \Phi} \operatorname{deg} \varphi$, be a set of linearly independent polynomials, such that $|\Phi|$, all coefficients of all $\varphi \in \Phi$, and d are polynomial in κ. Let 1 be the polynomial with $1(x)=1$ for all $x \in \mathbb{Z}_{p}$.
Definition 1 (Φ-PDL and Φ-PSDL). $\mathcal{G}_{\mathrm{bp}}$ is Φ-PDL secure in \mathbb{G}_{z}, if for any NUPPT adversary \mathcal{A},

$$
\operatorname{Pr}\left[\mathrm{gk}:=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, \hat{e}\right) \leftarrow \mathcal{G}_{\mathrm{bp}}\left(1^{\kappa}\right), g_{z} \leftarrow \mathbb{G}_{z} \backslash\{1\}, \sigma \leftarrow \mathbb{Z}_{p}: \mathcal{A}\left(\mathrm{gk} ;\left(g_{z}^{\varphi(\sigma)}\right)_{\varphi \in\{1\} \cup \Phi}\right)=\sigma\right]=\operatorname{negl}(\kappa) .
$$

$\mathcal{G}_{\text {bp }}$ is Φ-PSDL secure, if for any NUPPT adversary \mathcal{A},

$$
\operatorname{Pr}\left[\begin{array}{l}
\mathrm{gk}:=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, \hat{e}\right) \leftarrow \mathcal{G}_{\mathrm{bp}}\left(1^{\kappa}\right), g_{1} \leftarrow \mathbb{G}_{1} \backslash\{1\}, g_{2} \leftarrow \mathbb{G}_{2} \backslash\{1\}, \sigma \leftarrow \mathbb{Z}_{p}: \\
\mathcal{A}\left(\operatorname{gk} ;\left(g_{1}^{\varphi(\sigma)}, g_{2}^{\varphi(\sigma)}\right)_{\varphi \in\{1\} \cup \Phi}\right)=\sigma
\end{array}\right]=\operatorname{negl}(\kappa) .
$$

Assumptions of similar complexity are relatively common in contemporary bilinear-group based cryptography. For example, a considerably stronger version of the $\mathrm{P}(\mathrm{S})$ DL assumption was recently used in [BCI ${ }^{+} 13$].

Theorem 1. Let Φ and d be as in above. Φ-PSDL holds in the generic group model. Any successful generic adversary for Φ-PSDL requires time $\Omega(\sqrt{p / d})$.
(See App. Afor a proof.) As shown in GW11], sublinear NIZK proofs are only possible under non-standard (for example, knowledge) assumptions. Similarly to [Gro10 Lip12[CLZ12[LZ12], we will base our NIZK arguments on an explicit knowledge assumption. For algorithms \mathcal{A} and $X_{\mathcal{A}}$, we write $\left(y ; y_{X}\right) \leftarrow\left(\mathcal{A} \| X_{\mathcal{A}}\right)(\sigma)$ if \mathcal{A} on input σ outputs y, and $X_{\mathcal{A}}$ on the same input (including the random tape of \mathcal{A}) outputs y_{X}.
Definition 2 (Φ-PKE security, [CLZ12]). Let $z \in\{1,2\} . \mathcal{G}_{\mathrm{bp}}$ is Φ-PKE secure in \mathbb{G}_{z} iffor any NUPPT adversary \mathcal{A} there exists an NUPPT extractor $X_{\mathcal{A}}$, s.t. the following probability is negligible in κ :

$$
\operatorname{Pr}\left[\begin{array}{l}
\mathrm{gk}:=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, \hat{e}\right) \leftarrow \mathcal{G}_{\mathrm{bp}}\left(1^{\kappa}\right), g_{z} \leftarrow \mathbb{G}_{z} \backslash\{1\},(\alpha, \sigma) \leftarrow \mathbb{Z}_{p}^{2} \\
\operatorname{crs} \leftarrow\left(\mathrm{gk} ;\left(\left(g_{z}, g_{z}^{\alpha}\right)^{\phi(\sigma)}\right)_{\phi \in \Phi}\right),\left(c, \hat{c} ; r,\left(a_{\phi}\right)_{\phi \in \Phi}\right) \leftarrow\left(\mathcal{A} \| X_{\mathcal{A}}\right)(\mathrm{crs}): \hat{c}=c^{\alpha} \wedge c \neq g_{z}^{r} \cdot \prod_{\phi \in \Phi} g_{z}^{a_{\ell} \phi(\sigma)}
\end{array}\right]
$$

One can generalize the proof from [Gro10] to show that Φ-PKE holds in the generic group model. Let $z=1$. Consider a CRS ck that in particular specifies $g_{2}, \hat{g}_{2} \in \mathbb{G}_{2}$. A commitment $(A, \hat{A}) \in \mathbb{G}_{1}^{2}$ is valid, if $\hat{e}\left(A, \hat{g}_{2}\right)=$ $\hat{e}\left(\hat{A}, g_{2}\right)$. The case $z=2$ is dual.

The following theorem generalizes the corresponding results from Gro10 Lip12]. See App. Bfor a proof.
Theorem 2. Let $z \in\{1,2\}$. Let $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i}<\lambda_{i+1}$ and $\lambda_{i}=\operatorname{poly}(\kappa)$. Let $v>\lambda_{n}$ be linear in $\lambda_{n}-\lambda_{1}$. Let Γ be the (Λ, v) knowledge commitment scheme in \mathbb{G}_{z} of Prot. 1 . Let $\Phi_{\Gamma}:=\left\{X^{v}\right\} \cup\left\{X^{\ell}\right\}_{\ell \in \Lambda}$. Then
(a) Γ is perfectly hiding, and computationally binding under the $\Phi_{\Gamma}-P D L$ assumption in \mathbb{G}_{z}. The reduction overhead is dominated by the time to factor a degree- $\left(v-\lambda_{1}\right)$ polynomial in $\mathbb{Z}_{p}[X]$.
(b) If $\Phi_{\Gamma}-P K E$ holds in \mathbb{G}_{z}, then for any NUPPT \mathcal{A} that outputs a valid commitment C, there exists an NUPPT extractor $X_{\mathcal{A}}$ that, given the input of \mathcal{A} together with \mathcal{A} 's random coins, extracts the contents of C.

```
\(\operatorname{System}\) parameters: \(\mathcal{G}_{\mathrm{bp}}, n=\operatorname{poly}(\kappa), \Lambda=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}\) with \(\lambda_{i}<\lambda_{i+1}, \lambda_{i}=\operatorname{poly}(\kappa)\), and \(v>\max _{i} \lambda_{i}\);
\(\mathcal{G}_{\operatorname{com}_{t d}\left(1^{\kappa}, n\right): ~ S e t ~ g k ~}^{\mathrm{g}}:=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, \hat{e}\right) \leftarrow \mathcal{G}_{\mathrm{bp}}\left(1^{\kappa}\right), g_{z} \leftarrow \mathbb{G}_{z} \backslash\{1\},(\sigma, \hat{\alpha}) \leftarrow \mathbb{Z}_{p}^{2} ;\) For \(i \in[n]\) do: \(\left(g_{z, \lambda_{i}}, \hat{g}_{z, \lambda_{i}}\right) \leftarrow\)
    \(\left(g_{z}, g_{z}^{\hat{\alpha}}\right)^{\sigma^{\lambda_{i}}} ; \operatorname{Set}\left(h_{z}, \hat{h}_{z}\right) \leftarrow\left(g_{z}, g_{z}^{\hat{\alpha}}\right)^{\sigma^{v}} ;\) Let ck \(\leftarrow\left(\mathrm{gk} ;\left(g_{z, \lambda_{i}} \hat{g}_{z, \lambda_{i}}\right)_{i \in[n]}, h_{z}, \hat{h}_{z}\right)\); Return (ck; td \(\left.\leftarrow \sigma\right)\);
\(\mathcal{G} \operatorname{com}\left(1^{\kappa}, n\right):(\mathrm{ck} ; \mathrm{td}) \leftarrow \mathcal{G} \operatorname{com}\left(1^{\kappa}\right)\); return ck;
\(\mathcal{C o m}(\mathrm{ck} ; \boldsymbol{a} ; \cdot): r \leftarrow \mathbb{Z}_{p} ;\) return \(\left(h_{z}, \hat{h}_{z}\right)^{r} \cdot \prod_{i=1}^{n}\left(g_{z, \lambda_{i}}, \hat{g}_{z, \lambda_{i}}\right)^{a_{i}} ;\)
\(\mathcal{C o m}_{t d}\left(\mathrm{ck}_{t d} ; \cdot\right): r \leftarrow \mathbb{Z}_{p}\); return \(\left(h_{z}, \hat{h}_{z}\right)^{r}\);
\(\mathcal{O}\) pen \(_{t d}\left(\mathrm{ck}_{t d} ;\right.\) td, \(\left.\boldsymbol{a}, r\right):\) return \(r_{t d} \leftarrow r \sigma^{v}-\sum_{i=1}^{n} a_{i} \sigma^{\lambda_{i}}\);
```

Protocol 1: The (Λ, v) trapdoor commitment scheme in \mathbb{G}_{z} for $z \in\{1,2\}$. Here, $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{p}^{n}$

Sometimes, we use the same commitment scheme in both \mathbb{G}_{1} and \mathbb{G}_{2}. In such cases, we will emphasize the underlying group by having a different CRS, but we will not change the name of the commitment scheme.

Computational Complexity. Let $\alpha=\|\boldsymbol{a}\|_{\infty}=\max _{i} a_{i}$, and $n \geq 2$. When using Pippenger's algorithm, the computation of $\mathcal{C o m}(\mathrm{ck} ; \boldsymbol{a} ; r)$ is dominated by $L(2, n, \alpha)=2 \log _{2} \alpha+(2+o(1)) \cdot n \log _{2} \alpha / \log _{2}\left(n \log _{2} \alpha\right)+O(n)$ \mathbb{G}_{z}-multiplications. In our applications, $n \gg \log _{2} \alpha$ (e.g., $\alpha=2, \alpha=n$, or even $\alpha=p$ given that n is reasonably large), and thus we get a simpler bound of $(2+o(1)) \log _{2} \alpha \cdot n / \log _{2} n+O(n)$ multiplications. This can be compared to $3 n \log _{2} \alpha$ multiplications on average when using the square-and-multiply exponentiation algorithm.

4 Improved Hadamard Product Argument

Next, we propose a version of the product argument of [Lip12] with respect to the (Λ, v) commitment scheme of Sect. 3. As we will see (both in this section and in Sect. [5], the value of v depends on the construction of the argument. E.g., while the commitment scheme is binding for $v>\lambda_{n}$, for the product argument to be (weakly ${ }^{3}$) sound we need $v>2 \lambda_{n}-\lambda_{1}$. If one uses several such arguments together (e.g., to construct a range argument or a subset sum argument), one has to choose a value of v that is secure for all basic arguments. We also show that one can use FFT and Pippenger's multi-exponentiation algorithm to make the product argument more efficient.

Assume that Γ is a trapdoor commitment scheme that commits to $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{p}^{n}$ for a prime p and $n \geq 1$. In an Hadamard product argument, the prover aims to convince the verifier that given commitments A, B and C, he can open them as $A=\mathcal{C o m}\left(c k ; \boldsymbol{a} ; r_{a}\right), B=\mathcal{C o m}\left(\mathrm{ck} ; \boldsymbol{b} ; r_{b}\right)$, and $C=\mathcal{C} \operatorname{om}\left(\mathrm{ck} ; \boldsymbol{c} ; r_{c}\right)$, such that $c_{i}=a_{i} b_{i}$ for $i \in[n]$. In other words, a product argument has n constraints $c_{i}=a_{i} b_{i}$ for $i \in[n]$.

Lipmaa [Lip12] constructed a product argument for the $(\Lambda, 0)$ commitment scheme with communication of 5 group elements, verifier's computation $\Theta(n)$, prover's computation of $\Theta\left(n^{2}\right)$ multiplications in \mathbb{Z}_{p}, and the CRS of $\Theta\left(r_{3}^{-1}(n)\right)$ group elements. Prot. 2 presents a more efficient variant of this argument for the (Λ, v) commitment scheme Γ. Similarly to [Lip12], we use Γ in both \mathbb{G}_{1} (to commit to $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c}) and \mathbb{G}_{2} (to commit to \boldsymbol{b} and $\mathbf{1}$). Let $\widehat{c k}$ be the CRS in group \mathbb{G}_{1} (see Prot. 22), and $\widehat{c k}^{*}$ be the dual CRS in group \mathbb{G}_{2} (that is, $\widehat{c k}^{*}$ is defined as $\widehat{c k}$, but with g_{1} replaced by g_{2}). Thus, e.g., $(B, \hat{B})=\mathcal{C o m}\left(\widehat{c k} ; \boldsymbol{b} ; r_{b}\right)$. Then, $\log _{g_{1}} A=r_{a} \sigma^{v}+\sum_{i=1}^{n} a_{i} \sigma^{\lambda_{i}}$,

[^0]$\log _{g_{1}} B=r_{b} \sigma^{v}+\sum_{i=1}^{n} b_{i} \sigma^{\lambda_{i}}$, and $\log _{g_{1}} C=c_{i} \sigma^{v}+\sum_{i=1}^{n} r_{c} \sigma^{\lambda_{i}}$. The prover also computes an element B_{2}, s.t. $\hat{e}\left(g_{1}, B_{2}\right)=\hat{e}\left(B, g_{2}\right)$. Thus, for $(D, \hat{D})=\mathcal{C o m}\left(\widehat{c k}^{*} ; \mathbf{1} ; 0\right)\left(\right.$ in $\left.\mathbb{G}_{2}\right)$,
$$
\log _{\hat{e}\left(g_{1}, g_{2}\right)}\left(\hat{e}\left(A, B_{2}\right) / \hat{e}(C, D)\right)=\left(r_{a} \sigma^{v}+\sum_{i=1}^{n} a_{i} \sigma^{\lambda_{i}}\right)\left(r_{b} \sigma^{v}+\sum_{i=1}^{n} b_{i} \sigma^{\lambda_{i}}\right)-\left(r_{c} \sigma^{v}+\sum_{i=1}^{n} c_{i} \sigma^{\lambda_{i}}\right)\left(\sum_{i=1}^{n} \sigma^{\lambda_{i}}\right)
$$
can be written - after substituting σ with a formal variable X - as a sum of two formal polynomials $F_{\text {con }}(X)$ and $F_{\pi}(X)$, s.t. $F_{\text {con }}(X)$ (the constraint polynomial) has one monomial per constraint $\left(a_{i} b_{i}=c_{i}\right)$ and is 0 if the prover is honest, while $F_{\pi}(X)$ has many more monomials. More precisely, F_{π} has $\Theta\left(r_{3}^{-1}(n)\right)$ monomials, and the CRS has length $\Theta\left(r_{3}^{-1}(n)\right)$. The honest prover has to compute $(\pi, \widehat{\pi}) \leftarrow\left(g_{2}^{F_{\pi}(\sigma)}, \hat{g}_{2}^{F_{\pi}(\sigma)}\right)$. The PSDL and the PKE assumptions guarantee that he cannot do it if at least one of the n constraints is not satisfied.

In [Lip12], for soundness, one had to assume that the used set Λ is a progression-free set of odd positive integers. By using such Λ, [Lip12] proved that the polynomials $F_{c o n}(X)$ and $F_{\pi}(X)$ were spanned by two nonintersecting sets of powers of X. From this, [Lip12] then deduced (weak) soundness.

We will show that by using the (Λ, v) commitment scheme (for a well-chosen value of v), one can without any loss in efficiency assume that Λ is just a progression-free set. This makes the product argument slightly more efficient. More importantly, it makes it clear that the property that Λ has to satisfy is really progression-freeness, and not say having only odd integers as its members.

For a set Λ and an integer v, define

$$
\begin{equation*}
\hat{\Lambda}:=\{2 v\} \cup(v+\Lambda) \cup 2 \wedge \Lambda . \tag{1}
\end{equation*}
$$

(In [Lip12], this definition was only given for $v=0$. Then, $\hat{\Lambda}=\{0\} \cup \Lambda \cup 2 \uparrow \Lambda$.)
Lemma 1. Assume that $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i+1}>\lambda_{i}$, and $v>2 \lambda_{n}-\lambda_{1} . \Lambda$ is a progression-free set if and only if $2 \cdot \Lambda \cap \hat{\Lambda}=\emptyset$.

Proof. Assume Λ is progression-free. Then $2 \widetilde{ } \Omega \cap 2 \cdot \Lambda=\emptyset$. Since $v>2 \lambda_{n}-\lambda_{1},(\{2 v\} \cup(v+\Lambda)) \cap 2 \cdot \Lambda=\emptyset$. (In [Lip12], $v=0$, and $(\{0\} \cup \Lambda) \cap 2 \cdot \Lambda=\emptyset$ was guaranteed by assuming that every integer in Λ is odd and non-zero.) Assume now that $2 \cdot \Lambda \cap \hat{\Lambda}=\emptyset$. In particular, $2 \cdot \Lambda \cap 2^{\wedge} \Lambda=\emptyset$, and thus Λ is a progression-free set.

Lemma 2. For any $n>0$, there exists a progression-free set $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, with $\lambda_{i}<\lambda_{i+1}$ and $\lambda_{n}=$ $\operatorname{poly}(\kappa)$, and an integer $v>2 \lambda_{n}-\lambda_{1}$, v linear in $\lambda_{n}-\lambda_{1}$, such that $|\hat{\Lambda}|=\Theta\left(r_{3}^{-1}(n)\right)$.

Proof. Let Λ be the progression-free set from [Elk11], seen as a subset of [λ_{1}, λ_{n}] (with λ_{1} possibly being negative), with $\lambda_{n}-\lambda_{1} \approx r_{3}^{-1}(n)$. Since $v>2 \lambda_{n}-\lambda_{1}$ is linear in $\lambda_{n}-\lambda_{1}, \hat{\Lambda} \subset\left[2 \lambda_{1}, 2 v\right]$ and $|\hat{\Lambda}|=\Theta\left(r_{3}^{-1}(n)\right)$.

One can add any constant to all members of Λ and v, so that the previous results still hold. In particular, according to the previous two lemmas, the best value (in the sense of efficiency) of λ_{n} might be 0 .

We state and prove the security of the new Hadamard product argument when using the (Λ, v) knowledge commitment scheme by closely following the claim and the proof from [Lip12]. The (knowledge) commitments are $(A, \hat{A}),(B, \hat{B})$ and (C, \hat{C}). For efficiency (and backwards compatibility) reasons, following [Lip12], we include another element B_{2} to the statement of the Hadamard product language.

Since for any \boldsymbol{a} and $\boldsymbol{b},(C, \hat{C})$ is a commitment of $\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)$ for some value of r_{c}, Prot. 2 cannot be computationally sound (even under a knowledge assumption). Instead, analogously to [Gro10[Lip12], we prove a weaker version of soundness that is however sufficient to achieve soundness of the more complex arguments. The last statement of Thm. 3 basically says that no efficient adversary can output an input to the product argument together with an accepting argument and openings to all commitments and all other pairs of type (y, \hat{y}) that are present in the argument, such that $a_{i} b_{i} \neq c_{i}$ for some $i \in[n]$.

Theorem 3. Let $n=\operatorname{poly}(\kappa)$. Let $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a progression-free set with $\lambda_{i+1}>\lambda_{i}, \lambda_{i}=\operatorname{poly}(\kappa)$, $v>2 \lambda_{n}-\lambda_{1}$, and $v=\operatorname{poly}(\kappa)$. Let Γ be the (Λ, v) commitment scheme in \mathbb{G}_{1}. Let $\Phi_{\times}:=\left\{X^{v}\right\} \cup\left\{X^{\ell}\right\}_{\ell \in \hat{\Lambda}}$.

1. Prot. 2 is perfectly complete and perfectly witness-indistinguishable.
2. If $\mathcal{G}_{\mathrm{bp}}$ is $\Phi_{\times}-P S D L$ secure, then an NUPPT adversary against Prot. 2 has negligible chance, given crs \leftarrow $\mathcal{G}_{\text {crs }}\left(1^{\kappa}, n\right)$ as an input, of outputting inp ${ }^{\times} \leftarrow\left(A, \hat{A}, B, \hat{B}, B_{2}, C, \widehat{C}\right)$ and an accepting argument $\pi^{\times} \leftarrow$ $(\pi, \hat{\pi})$ together with a witness $w^{\times} \leftarrow\left(\boldsymbol{a}, r_{a}, \boldsymbol{b}, r_{b}, \boldsymbol{c}, r_{c},\left(f_{\ell}^{*}\right)_{\ell \in \hat{\Lambda}}\right)$, such that
(a) a, b, $\boldsymbol{c} \in \mathbb{Z}_{p}^{n}, r_{a}, r_{b}, r_{c} \in \mathbb{Z}_{p}$, and $f_{\ell}^{*} \in \mathbb{Z}_{p}$ for $\ell \in \hat{\Lambda}$,

CRS generation $\mathcal{G}_{\text {crs }}\left(1^{\kappa}, n\right)$:
Set gk $:=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, \hat{e}\right) \leftarrow \mathcal{G}_{\text {bp }}\left(1^{\kappa}\right),\left(g_{1}, g_{2}\right) \leftarrow\left(\mathbb{G}_{1} \backslash\{1\}, \mathbb{G}_{2} \backslash\{1\}\right) ;$
Set $\sigma, \hat{\alpha} \leftarrow \mathbb{Z}_{p}, \hat{g}_{1} \leftarrow g_{1}^{\hat{\alpha}}$;
For each $\ell \in\{v\} \cup \Lambda$ do: $\left(g_{1, \ell}, \hat{g}_{1, \ell}\right) \leftarrow\left(g_{1}, \hat{g}_{1}\right)^{\sigma^{\ell}}$; For each $\ell \in\{v\} \cup \hat{\Lambda}$ do: $\left(g_{2, \ell}, \hat{g}_{2, \ell}\right) \leftarrow\left(g_{2}, g_{2}^{\hat{\alpha}}\right)^{\sigma^{\ell}}$;
Set $D \leftarrow \prod_{i=1}^{n} g_{2, \lambda_{i}}, \hat{\operatorname{ck}} \leftarrow\left(\mathrm{gk} ;\left(g_{1, \ell}, \hat{g}_{1, \ell}\right)_{\ell \in\{v\} \cup \Lambda}\right)$;
Return crs $\leftarrow\left(\widehat{c k}, g_{1}, \hat{g}_{1},\left(g_{2, \ell}, \hat{g}_{2, \ell}\right)_{\ell \in \hat{\Lambda}}, D\right)$;
Argument generation $\mathcal{P}_{\times}\left(\operatorname{crs} ;\left(A, \hat{A}, B, \hat{B}, B_{2}, C, \hat{C}\right),\left(\boldsymbol{a}, r_{a}, \boldsymbol{b}, r_{b}, \boldsymbol{c}, r_{c}\right)\right)$:
Define $\mathfrak{I}_{1}(\ell):=\left\{(i, j): i, j \in[n] \wedge i \neq j \wedge \lambda_{i}+\lambda_{j}=\ell\right\} ;$
For each $\ell \in 2 \wedge \Lambda$ do: $\mu_{\ell} \leftarrow \sum_{(i, j) \in \mathfrak{I}_{1}(\ell)}\left(a_{i} b_{j}-c_{i}\right)$;
$(\pi, \hat{\pi}) \leftarrow\left(g_{2,2 v}, \hat{g}_{2,2 v}\right)^{r_{a} r_{b}} \cdot \prod_{i=1}^{n}\left(g_{2, v+\lambda_{i}}, \hat{g}_{2, v+\lambda_{i}}\right)^{r_{a} b_{i}+r_{b} a_{i}-r_{c}} \cdot \prod_{\ell \in 2^{\wedge}}\left(g_{2, \ell}, \hat{g}_{2, \ell}\right)^{\mu_{\ell}} ;$
Return $\pi^{\times} \leftarrow(\pi, \hat{\pi}) \in \mathbb{G}_{2}^{2} ;$
Verification $\mathcal{V}_{\times}\left(\operatorname{crs} ;\left(A, \hat{A}, B, \hat{B}, B_{2}, C, \hat{C}\right), \pi^{\times}\right)$:
If $\hat{e}\left(A, B_{2}\right) / \hat{e}(C, D)=\hat{e}\left(g_{1}, \pi\right)$ and $\hat{e}\left(g_{1}, \hat{\pi}\right)=\hat{e}\left(\hat{g}_{1}, \pi\right)$ then accept. Otherwise, reject.
Protocol 2: New Hadamard product argument $\llbracket(A, \hat{A}) \rrbracket \circ \llbracket\left(B, \hat{B}, B_{2}\right) \rrbracket=\llbracket(C, \hat{C}) \rrbracket$
(b) $(A, \hat{A})=\operatorname{Com}\left(\widehat{\mathrm{ck}} ; \boldsymbol{a} ; r_{a}\right),(B, \hat{B})=\operatorname{Com}\left(\widehat{\mathrm{ck}} ; \boldsymbol{b} ; r_{b}\right), B_{2}=g_{2, v}^{r_{b}} \cdot \prod_{i=1}^{n} g_{2, \lambda_{i}}^{b_{i}}$, and $(C, \hat{C})=$ $\operatorname{Com}\left(\widehat{c k} ; \boldsymbol{c} ; r_{c}\right)$,
(c) $\log _{g_{2}} \pi=\log _{\hat{g}_{2}} \hat{\pi}=\sum_{\ell \in \hat{\Lambda}} f_{\ell}^{*} \sigma^{\ell}$, where $\hat{g}_{2}=g_{2}^{\hat{\alpha}}$, and
(d) for some $i \in[n], a_{i} b_{i} \neq c_{i}$.

The reduction overhead is dominated by the time to factor a degree- $\left(2 v-2 \lambda_{1}\right)$ polynomial in $\mathbb{Z}_{p}[X]$.
Proof. Let $h \leftarrow \hat{e}\left(g_{1}, g_{2}\right)$ and $F(\sigma) \leftarrow \log _{h}\left(\hat{e}\left(A, B_{2}\right) / \hat{e}(C, D)\right)$. Witness-Indistinguishability: since the argument $\pi^{\times}=(\pi, \hat{\pi})$ that satisfies the verification equations is unique, all witnesses result in the same argument, and therefore the Hadamard product argument is witness-indistinguishable.

Perfect completeness. Assume that the prover is honest. The second verification is straightforward. For the first one, note that (after replacing σ with a formal variable X)

$$
\begin{aligned}
F(X) & =\left(r_{a} X^{v}+\sum_{i=1}^{n} a_{i} X^{\lambda_{i}}\right)\left(r_{b} X^{v}+\sum_{i=1}^{n} b_{i} X^{\lambda_{i}}\right)-\left(r_{c} X^{v}+\sum_{i=1}^{n} c_{i} X^{\lambda_{i}}\right)\left(\sum_{i=1}^{n} X^{\lambda_{i}}\right) \\
& =r_{a} r_{b} X^{2 v}+\sum_{i=1}^{n}\left(r_{a} b_{i}+r_{b} a_{i}-r_{c}\right) X^{v+\lambda_{i}}+\sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{i} b_{j}-c_{i}\right) X^{\lambda_{i}+\lambda_{j}}=F_{c o n}(X)+F_{\pi}(X),
\end{aligned}
$$

where $F_{\text {con }}(X)=\sum_{i=1}^{n}\left(a_{i} b_{i}-c_{i}\right) X^{2 \lambda_{i}}$ and

$$
F_{\pi}(X)=r_{a} r_{b} X^{2 v}+\sum_{i=1}^{n}\left(r_{a} b_{i}+r_{b} a_{i}-r_{c}\right) X^{v+\lambda_{i}}+\sum_{i=1}^{n} \sum_{j=1: j \neq i}^{n}\left(a_{i} b_{j}-c_{i}\right) X^{\lambda_{i}+\lambda_{j}} .
$$

Here, $F(X), F_{\text {con }}(X)$ and $F_{\pi}(X)$ are formal polynomials of X, and $F(X)$ is spanned by $\left\{X^{\ell}\right\}_{\ell \in 2 \cdot \Lambda \cup \hat{\Lambda}}$. More precisely, $F_{\text {con }}(X)$ is the constraint polynomial that has one monomial per constraint $c_{i}=a_{i} b_{i}$.

If the prover is honest, then $c_{i}=a_{i} b_{i}$ for $i \in[n]$, and $F(X)=F_{\pi}(X)$ is spanned by $\left\{X^{\ell}\right\}_{\ell \in \hat{\Lambda}}$. Denoting

$$
\pi \leftarrow g_{2, v}^{r_{a} r_{b}} \cdot \prod_{i=1}^{n} g_{2, v+\lambda_{i}}^{r_{a} b_{i}+r_{b} a_{i}-r_{c}} \cdot \prod_{i=1}^{n} \prod_{j=1: j \neq i}^{n} g_{2, \lambda_{i}+\lambda_{j}}^{a_{i} b_{j}-c_{i}}=g_{2, v}^{r_{a} r_{b}} \cdot \prod_{i=1}^{n} g_{2, v+\lambda_{i}}^{r_{a} b_{i}+r_{b} a_{i}-r_{c}} \cdot \prod_{\ell \in 2^{\wedge} \Lambda} g_{2, \ell}^{\mu_{\ell}}
$$

where μ_{ℓ} is as in Prot.2. $2 . \hat{e}\left(g_{1}, \pi\right)=\hat{e}\left(g_{1}, g_{2}^{F(\sigma)}\right)=h^{F(\sigma)}=\hat{e}\left(A, B_{2}\right) / \hat{e}(C, D)$. Thus, the verification succeeds.
Weaker version of soundness. Assume that \mathcal{A}_{\times}is an adversary that can break the last statement of the theorem. We construct an adversary $\hat{\mathcal{A}}$ against the Φ_{\times}-PSDL assumption, see Prot. 1 Here, \mathcal{C} is the challenger of the PSDL game. Let us analyse the advantage of $\hat{\mathcal{A}}$. First, clearly $\mathrm{crs}_{t d}$ has the same distribution as $\mathcal{G}_{\text {crs }}\left(1^{\kappa}\right)$. Thus, \mathcal{A}_{\times}gets a correct input. She aborts with some probability $1-\varepsilon$. Otherwise, with probability ε, inp ${ }^{\times}=$ $\left(A, \hat{A}, B, \hat{B}, B_{2}, C, \hat{C}\right)$ and $w^{\times}=\left(\boldsymbol{a}, r_{a}, \boldsymbol{b}, r_{b}, \boldsymbol{c}, r_{c},\left(f_{\ell}^{*}\right)_{\ell \in \hat{\Lambda}}\right)$, such that the conditions 2a 2d hold.

The steps from step 1 onwards are executed with probability ε. Since \mathcal{A}_{\times}succeeds and $2 \cdot \Lambda \cap \hat{\Lambda}=\emptyset$, at least for one $\ell \in 2 \cdot \Lambda, f(X)$ has a non-zero coefficient $a_{\ell} b_{\ell}-c_{\ell}$. $\hat{\mathcal{A}}$ succeeds on step 2 , since $\log _{g_{2}} \pi=\sum_{\ell \in \hat{\Lambda}} f_{\ell}^{*} \sigma^{\ell}$. All non-zero coefficients of X^{ℓ} in $f^{*}(X)$ correspond to $\ell \in \hat{\Lambda}$. Since Λ is progression-free, $v>2 \lambda_{n}-\lambda_{1}$, and

```
\(\mathcal{C}\) forms crs as in Prot. \(2 . \mathcal{C}\) sends crs to \(\hat{\mathcal{A}} ; \hat{\mathcal{A}}\) obtains \(\left(i n p^{\times}, w^{\times}, \pi^{\times}\right) \leftarrow \mathcal{A} \times(\) crs \() ;\)
if the conditions \(22 a d\) in the statement of Thm. 3 do not hold then \(\hat{\mathcal{A}}\) aborts ;
else
    \(\hat{\mathcal{A}}\) expresses \(F(X)\) as a polynomial \(f(X) \leftarrow \sum_{\ell \in \hat{\Lambda} \cup 2 \cdot \Lambda} f_{\ell} X^{\ell} ;\)
    \(\hat{\mathcal{A}}\) computes a polynomial \(f^{*}(X) \leftarrow \sum_{\ell \in \hat{\Lambda}} f_{\ell}^{*} X^{\ell}\);
    \(\hat{\mathcal{A}}\) lets \(\delta(X) \leftarrow\left(f(X)-f^{*}(X)\right) \cdot X^{-2 \lambda_{1}}\);
    \(\hat{\mathcal{A}}\) sets \(\left(t_{1}, \ldots, t_{2\left(v-\lambda_{1}\right)}\right) \leftarrow \operatorname{PolyFact}(\delta)\);
    \(\hat{\mathcal{A}}\) finds by an exhaustive search a root \(\sigma_{0} \in\left(t_{1}, \ldots, t_{2\left(v-\lambda_{1}\right)}\right)\), s.t. \(g_{2}^{\sigma^{v}}=g_{2}^{\sigma_{0}^{v}}\);
    \(\hat{\mathcal{A}}\) returns \(\sigma \leftarrow \sigma_{0}\) to the challenger;
end
```

Algorithm 1: Construction of $\hat{\mathcal{A}}$ in the security reduction of Thm. 3
all elements of $2 \cdot \Lambda$ are distinct, then by Lem. 1 . $\ell \notin 2 \cdot \Lambda$. Thus, all coefficients of $f^{*}(X)$ corresponding to any $X^{\ell}, \ell \in 2 \cdot \Lambda$, are 0 . Thus, $f(X)=\sum_{\ell \in \hat{\Lambda} \cup(2 \cdot \Lambda)} f_{\ell} X^{\ell}$ and $f^{*}(X)=\sum_{\ell \in \hat{\Lambda}} f_{\ell}^{*} X^{\ell}$ are different polynomials with $f(\sigma)=f^{*}(\sigma)=F(\sigma)$. All coefficients of X^{ℓ}, for $\ell<2 \lambda_{1}$, of both $f(X)$ and $f^{*}(X)$ are equal to 0 .

Therefore, $\delta(X)$ is a non-zero degree- $\left(2 v-2 \lambda_{1}\right)$ polynomial, such that

$$
\delta(\sigma)=\sum_{\ell \in(\hat{\Lambda} \cup(2 \cdot \Lambda))-2 \lambda_{1}} \delta_{\ell} \sigma^{\ell}=0
$$

$\hat{\mathcal{A}}$ can use polynomial factorization to find all $\leq 2\left(v-\lambda_{1}\right)$ roots of δ, where one of the found roots must be equal to σ. On step 3, $\hat{\mathcal{A}}$ finds which root is equal to σ by an exhaustive search among all roots returned in the previous step. Clearly \mathcal{A} returns the correct value of σ (and thus violates the $\Phi_{\times}-$PSDL assumption) with probability ε. The execution time of $\hat{\mathcal{A}}$ is clearly dominated by the execution time of \mathcal{A}_{\times}and the time to factor δ.

Efficiency. We will show that the product argument of this section (and thus also the product argument of [Lip12]) is computationally much more efficient than it was claimed in [Lip12]. Namely, in [Lip12], the prover was said to require computing $\Theta\left(n^{2}\right)$ multiplications in \mathbb{Z}_{p} and $\Theta\left(r_{3}^{-1}(n)\right)$ exponentiations in \mathbb{G}_{2}. We optimize the prover's computation so that it will require a significantly smaller number of multiplications and no exponentiations at all.

```
for \(i \leftarrow 0\) to \(\lambda_{n}\) do: \(a_{i}^{\dagger} \leftarrow 0, b_{i}^{\dagger} \leftarrow 0, c_{i}^{\dagger} \leftarrow 0, d_{i}^{\dagger} \leftarrow 0 ;\)
for \(i \leftarrow 1\) to \(n\) do: \(a_{\lambda_{i}}^{\dagger} \leftarrow a_{i}, b_{\lambda_{i}}^{\dagger} \leftarrow b_{i}, c_{\lambda_{i}}^{\dagger} \leftarrow c_{i}, d_{\lambda_{i}}^{\dagger} \leftarrow 0\);
Denote \(a^{\dagger}(X):=\sum_{i=0}^{\lambda_{n}} a_{i}^{\dagger} X^{i}, b^{\dagger}(X):=\sum_{i=0}^{\lambda_{n}} b_{i}^{\dagger} X^{i}, c^{\dagger}(X):=\sum_{i=0}^{\lambda_{n}} c_{i}^{\dagger} X^{i}\) and \(d^{\dagger}(X):=\sum_{i=0}^{\lambda_{n}} d_{i}^{\dagger} X^{i}\),
Let \(\mu(X) \leftarrow\) FFTMult \(\left(a^{\dagger}(X), b^{\dagger}(X)\right)\); Let \(\nu(X) \leftarrow \operatorname{FFTMult}\left(c^{\dagger}(X), d^{\dagger}(X)\right)\);
for \(i \leftarrow 1\) to \(n\) do: \(\mu_{2 \lambda_{i}} \leftarrow \mu_{2 \lambda_{i}}-a_{i} b_{i}\);
Let \(\mu(X) \leftarrow \mu(X)-\nu(X)\);
```

Algorithm 2: FFT-based prover's computation of $\left\{\mu_{\ell}\right\}$ in the product argument

Theorem 4. Let Λ be the progression-free set from [Elk11]. The communication (argument size) of Prot. 2 is 2 elements from \mathbb{G}_{2}. The prover's computation is dominated by $\Theta\left(r_{3}^{-1}(n) \cdot \log r_{3}^{-1}(n)\right)$ multiplications in \mathbb{Z}_{p} and two $\Theta\left(r_{3}^{-1}(n)\right)$-wide multi-exponentiations in \mathbb{G}_{2}. The verifier's computation is dominated by 5 bilinear pairings and 1 bilinear-group multiplication. The CRS consists of $\Theta\left(r_{3}^{-1}(n)\right)$ group elements.
Proof. By Lem. 2, the size of the CRS is $\Theta(|\hat{\Lambda}|)=\Theta\left(r_{3}^{-1}(n)\right)$. From the CRS, the verifier only needs to access g_{1}, \hat{g}_{1}, and D. Since $2 \wedge \Lambda \subseteq \hat{\Lambda}$, the statement about the prover's computation follows from Fast Fourier Transform [CT65] based polynomial multiplication [GS66] techniques. To compute all the coefficients of the polynomial $\mu(X):=\sum_{i=1}^{n} \sum_{j=1: j \neq i}^{n}\left(a_{i} b_{j}-c_{i}\right) X^{\lambda_{i}+\lambda_{j}}$, the prover executes Alg. 2 Here, FFTMult denotes an FFT-based polynomial multiplication algorithm.

After using FFTMult to compute the initial version of $\mu(X)$ and $\nu(X), \mu_{\ell}=\sum_{(i, j) \in[n]^{2}: \lambda_{i}+\lambda_{j}=\ell} a_{i} b_{j}$ and $\nu_{\ell}=\sum_{(i, j) \in[n]^{2}: \lambda_{i}+\lambda_{j}=\ell} c_{i}$. Thus, after the penultimate step of Alg. $2, \mu_{\ell}=\sum_{(i, j) \in \mathfrak{J}_{1}(\ell)} a_{i} b_{j}$, and after the last
step, $\mu_{\ell}=\sum_{(i, j) \in \mathfrak{I}_{1}(\ell)} a_{i} b_{j}-c_{i}$, as required by Prot. 2 . Since FFT takes time $\Theta(N \log N)$, where $N=r_{3}^{-1}(n)$ is the input size, we have shown the part about the prover's computational complexity. The verifier's computational complexity follows from the description of the argument.

FFT does not help to speed up Groth's product argument from Gro10], since there $\lambda_{n}=\Theta\left(n^{2}\right)$. FFT does also not seem to be useful in the case of the permutation argument from [Lip12]. Finally, it may be possible to speed up Alg. 2, by taking into account the fact that all $a^{\dagger}, b^{\dagger}, c^{\dagger}$ and d^{\dagger} have only n non-zero monomials.

Using Efficient Multi-Exponentiation. Let $\alpha:=\max \left(\|a\|_{\infty},\|b\|_{\infty},\|c\|_{\infty}\right)$, where the prover has committed to \boldsymbol{a} and \boldsymbol{b}. (See Sect. 6 for the concrete values of α.) The number of bilinear-group operations the prover has to perform (on top of computing the exponents by using the FFT-based polynomial multiplication) to compute π is dominated by $L(2, n, p)+L\left(2, r_{3}^{-1}(n), \Theta\left((\alpha n)^{2}\right)\right)$. The very conservative value $\Theta\left((\alpha n)^{2}\right)$ follows from $\left|\mu_{\ell}\right|=$ $\left|\sum_{(i, j) \in \mathfrak{I}_{1}(\ell)}\left(a_{i} b_{j}-c_{i}\right)\right| \leq \sum_{(i, j) \in \mathfrak{I}_{1}(\ell)}\left|a_{i} b_{j}-c_{i}\right| \leq \sum_{(i, j) \in \mathfrak{I}_{1}(\ell)}\left(\alpha^{2}+\alpha\right)<\left(n^{2}-n\right)\left(\alpha^{2}+\alpha\right)=\Theta\left((\alpha n)^{2}\right)$.

Due to Fact 1 for $n=\Omega(\log p), L(2, n, p)=2 \log _{2} p+(2+o(1)) \cdot n \log _{2}(p+1) /\left(\log _{2}\left(2 n \log _{2}(p+1)\right)\right)+$ $O(n)=(2+o(1)) \cdot \log _{2} p \cdot n / \log _{2} n$, and, since in our applications, $n \gg \log _{2} \Theta\left((\alpha n)^{2}\right)$,

$$
\begin{aligned}
L\left(2, r_{3}^{-1}(n), \Theta\left((\alpha n)^{2}\right)\right) & =2 \log _{2}\left(\alpha n^{2}\right)+\frac{(2+o(1)) r_{3}^{-1}(n) \log _{2} \Theta\left((\alpha n)^{2}\right)}{\left(\log _{2}\left(2 r_{3}^{-1}(n) \log _{2} \Theta\left((\alpha n)^{2}\right)\right)\right)}+O\left(r_{3}^{-1}(n)\right) \\
& =\frac{(2+o(1)) r_{3}^{-1}(n)}{\left(\log _{2} r_{3}^{-1}(n)\right)} \cdot 2 \log _{2}(\alpha n)
\end{aligned}
$$

Thus, the prover has to compute

$$
(2+o(1)) \cdot\left(\frac{n}{\log _{2} n} \cdot \log _{2} p+\frac{r_{3}^{-1}(n)}{\log _{2} r_{3}^{-1}(n)} \cdot 2 \log _{2}(\alpha n)\right)
$$

bilinear-group multiplications. We will instantiate α and other values in Sect. 6

5 Shift And Rotation Arguments

In a right shift-by- ξ argument (resp., right rotation-by- ξ argument), the prover aims to convince the verifier that for two commitments A and B, he knows how to open them as $A=\mathcal{C o m}\left(\mathrm{ck} ; \boldsymbol{a} ; r_{a}\right)$ and $B=\mathcal{C}$ om $\left(\mathrm{ck} ; \boldsymbol{b} ; r_{b}\right)$, such that $a_{i}=b_{i+\xi}$ for $i \in[n-\xi]$ and $a_{n-\xi+1}=\cdots=a_{n}=0$ (resp., $a_{n-\xi+1}=b_{1}, \ldots a_{n}=b_{\xi}$). That is, $\left(a_{n}, \ldots, a_{1}\right)=\left(0, \ldots, 0, b_{n}, \ldots, b_{\xi+1}\right)$ (resp., $\left.\left(a_{n}, \ldots, a_{1}\right)=\left(b_{\xi}, \ldots, b_{1}, b_{n}, \ldots, b_{\xi+1}\right)\right)$. Left shift and left rotation arguments are defined dually, and we omit their descriptions. While in the current paper we only need the (right) shift-by- 1 argument, the case of general ξ is only slightly more difficult to present.

Groth [Gro10] and Lipmaa [Lip12] defined NIZK arguments for arbitrary permutation ϱ (i.e., $a_{\varrho(i)}=b_{i}$ for public ϱ). However, their permutation arguments are quite complex and computationally intensive. Moreover, many applications do not require arbitrary permutations. We give examples of the latter in Sect. 6

We now describe the new right shift-by- ξ argument $\operatorname{rsft}_{\xi}(\llbracket(A, \tilde{A}) \rrbracket)=\llbracket(B, \tilde{B}) \rrbracket$, that is much simpler and significantly more computation-efficient than the generic permutation arguments of Groth and Lipmaa. One can design a very similar rotation argument, see App. D

Let $\log _{g_{1}} A=r_{a} \sigma^{v}+\sum_{i=1}^{n} a_{i} \sigma^{\lambda_{i}}$ and $\log _{g_{1}} B=r_{b} \sigma^{v}+\sum_{i=1}^{n} b_{i} \sigma^{\lambda_{i}}$. We replace σ with a formal variable X. If the prover is honest (full derivation of this is given in the proof of Thm. 5], then

$$
F(X):=X^{\xi} \cdot \log _{g_{1}} A-\log _{g_{1}} B=-\sum_{i=1}^{\xi} b_{i} X^{\lambda_{i}}+\sum_{i=\xi+1}^{n} b_{i}\left(X^{\lambda_{i-\xi}+\xi}-X^{\lambda_{i}}\right)+r_{a} X^{v+\xi}-r_{b} X^{v} .
$$

Thus, one can verify that A is a right shift-by- ξ of B by checking that $\hat{e}\left(A, g_{2}^{\sigma^{\xi}}\right) / \hat{e}\left(B, g_{2}\right)=\hat{e}\left(g_{1}, \pi\right)$, where $\pi=$ $g_{2}^{F(\sigma)}$ is defined as in Prot. 3 As seen from the proof of the following theorem, the actual security proof, especially for the (weaker version of) soundness, is more complicated. Complications arise from the use of polynomials of type $X^{i}-X^{j}$ in the verification equation; because of this we must rely on a less straightforward variant of the PSDL assumption than before. One has also to be careful in the choice of the set Λ : if say $\lambda_{n-\xi}+\xi=\lambda_{n}$, then some of the monomials of $F(X)$ will collapse, and the security proof will not go through.

Theorem 5. Let $n=\operatorname{poly}(\kappa)$. Let $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \subset \mathbb{Z}$, s.t. $\lambda_{i+1}>\lambda_{i}, \lambda_{i} \neq \lambda_{j}+\xi$ for $i \neq j$, and $\lambda_{i}=\operatorname{poly}(\kappa)$. Let $v>\lambda_{n}+\xi$ be an integer, s.t. $v=\operatorname{poly}(\kappa)$. Let Γ be the (Λ, v) commitment scheme in \mathbb{G}_{1}.
(1) Prot. 3 is perfectly complete and perfectly witness-indistinguishable.
(2) Let $\bar{\Phi}_{\text {rsft }}^{\xi}:=\left\{X^{v}, X^{v+\xi}\right\} \cup\left\{X^{\lambda_{i}}\right\}_{i=1}^{\xi} \cup\left\{X^{\lambda_{i}+\xi}-X^{\lambda_{i+\xi}}\right\}_{i=1}^{n-\dot{\xi}}$. If $\mathcal{G}_{\text {bp }}$ is $\Phi_{\text {rsft }}^{\xi}-P S D L$ secure, then an NUPPT adversary against Prot. 3 has negligible chance, given $\mathrm{crs} \leftarrow \mathcal{G}_{\text {crs }}\left(1^{\kappa}, n\right)$ as an input, of outputting inp ${ }^{\mathrm{rsft}} \leftarrow(A, \tilde{A}, B, \tilde{B})$ and an accepting argument $\pi^{\mathrm{rsft}} \leftarrow(\pi, \tilde{\pi})$ together with a witness $w^{\mathrm{rsft}} \leftarrow$ $\left(\boldsymbol{a}, r_{a}, \boldsymbol{b}, r_{b},\left(f_{\phi}^{*}\right)_{\phi \in \Phi_{\text {rstt }}^{\xi}}\right)$, such that
(a) $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{Z}_{p}^{n}, r_{a}, r_{b} \in \mathbb{Z}_{p}$, and $f_{\phi}^{*} \in \mathbb{Z}_{p}$ for $\phi \in \Phi_{\text {rsft }}^{\xi}$,
(b) $(A, \tilde{A})=\operatorname{Com}\left(\tilde{\mathrm{ck}} ; \boldsymbol{a} ; r_{a}\right),(B, \tilde{B})=\operatorname{Com}\left(\tilde{\mathrm{ck}} ; \boldsymbol{b} ; r_{b}\right)$,
(c) $\log _{g_{2}} \pi=\log _{\tilde{g}_{2}} \tilde{\pi}=\sum_{\phi \in \Phi_{\text {rst }}^{\xi}} f_{\phi}^{*} \cdot \phi(\sigma)$, and
(d) $\left(a_{n}, a_{n-1}, \ldots, a_{1}\right) \neq\left(0, \ldots, 0, b_{n}, \ldots, b_{\xi+1}\right)$.

The reduction time is dominated by the time it takes to factor a degree- $(v+1)$ polynomial in $\mathbb{Z}_{p}[X]$.
(See App. C for a proof.) In an upper level argument, the verifier must check that $\hat{e}\left(A, \tilde{g}_{2}\right)=\hat{e}\left(\tilde{A}, g_{2}\right)$, and $\hat{e}\left(B, \tilde{g}_{2}\right)=\hat{e}\left(\tilde{B}, g_{2}\right)$. A simple valid choice of Λ is the initial segment of $\mathbb{Z}_{\xi} \cup\left(\mathbb{Z}_{\xi}+2 \xi\right) \cup\left(\mathbb{Z}_{\xi}+4 \xi\right) \cup \cdots$.

```
CRS generation \(\mathcal{G}_{\text {crs }}\left(1^{\kappa}, n\right)\) :
    Set gk := \(\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, \hat{e}\right) \leftarrow \mathcal{G}_{\text {bp }}\left(1^{\kappa}\right), g_{1} \leftarrow \mathbb{G}_{1} \backslash\{1\}, g_{2} \leftarrow \mathbb{G}_{2} \backslash\{1\}, \sigma, \tilde{\alpha} \leftarrow \mathbb{Z}_{p} ;\)
    For each \(z \in\{1,2\}\) do: \(\tilde{g}_{z} \leftarrow g_{z}^{\tilde{\alpha}}\);
    For each \(\ell \in\{v\} \cup \Lambda\) do: \(\left(g_{1, \ell}, \tilde{g}_{1, \ell}\right) \leftarrow\left(g_{1}, \tilde{g}_{1}\right)^{\sigma^{\ell}}\);
    Set \(g_{2, \xi} \leftarrow g_{2}^{\sigma^{\xi}}\);
    For each \(i \in\left\{\lambda_{1}, \ldots, \lambda_{\xi}, v, v+\xi\right\}\) do: \(\left(g_{2, i}, \tilde{g}_{2, i}\right) \leftarrow\left(g_{2}, \tilde{g}_{2}\right)^{\sigma^{i}}\);
    For each \(i \in[1, n-\xi]\) do: \(\left(h_{2, i}, \tilde{h}_{2, i}\right) \leftarrow\left(g_{2}, \tilde{g}_{2}\right)^{\sigma^{\lambda_{i}+\xi}-\sigma^{\lambda_{i+\xi}}}\);
    Set \(\tilde{c k} \leftarrow\left(\mathrm{gk} ;\left(g_{1, \ell}, \tilde{g}_{1, \ell}\right)_{\ell \in\{v\} \cup \Lambda}\right)\);
    Return crs \(\leftarrow\left(\widetilde{\mathrm{ck}}, g_{1}, \tilde{g}_{1}, g_{2}, g_{2, \xi},\left(g_{2, i}, \tilde{g}_{2, i}\right)_{i \in\left\{\lambda_{1}, \ldots, \lambda_{\xi}, v, v+\xi\right\}},\left(h_{2, i}, \tilde{h}_{2, i}\right)_{i \in[1, n-\xi]}\right)\);
Argument generation \(\mathcal{P}_{\mathrm{rsft}}\left(\mathrm{crs} ;(A, \tilde{A}, B, \hat{B}, \tilde{B}),\left(\boldsymbol{a}, r_{a}, \boldsymbol{b}, r_{b}\right)\right)\) :
    Set \((\pi, \tilde{\pi}) \leftarrow \prod_{i=1}^{n-\xi}\left(h_{2, i}, \tilde{h}_{2, i}\right)^{b_{i+\xi}} \cdot \prod_{i=1}^{\xi}\left(g_{2, \lambda_{i}}, \tilde{g}_{2, \lambda_{i}}\right)^{-b_{i}} \cdot\left(g_{2, v+\xi}, \tilde{g}_{2, v+\xi}\right)^{r_{a}} \cdot\left(g_{2, v}, \tilde{g}_{2, v}\right)^{-r_{b}}\);
    Return \(\pi^{\text {rsft }} \leftarrow(\pi, \tilde{\pi}) \in \mathbb{G}_{2}^{2}\),
Verification \(\mathcal{V}_{\text {rsft }}\left(\operatorname{crs} ;(A, \tilde{A}, B, \hat{B}, \tilde{B}), \pi^{\text {rsft }}\right)\) :
    if \(\hat{e}\left(A, g_{2, \xi}\right) / \hat{e}\left(B, g_{2}\right)=\hat{e}\left(g_{1}, \pi\right)\) and \(\hat{e}\left(g_{1}, \tilde{\pi}\right)=\hat{e}\left(\tilde{g}_{1}, \pi\right)\) then \(\mathcal{V}_{\text {rsft }}\) accepts, else \(\mathcal{V}_{\text {rsft }}\) rejects;
```

Protocol 3: New right shift-by- ξ argument $\operatorname{rsft}_{\xi}(\llbracket(A, \tilde{A}) \rrbracket)=\llbracket(B, \tilde{B}) \rrbracket$

Theorem 6. Let Λ and v be as defined in Thm. 5 Let $\beta \leftarrow\|\boldsymbol{b}\|_{\infty}, \beta<p$. Assume $n>\log _{2} \beta$. The argument size of Prot. 3 is 2 elements from \mathbb{G}_{2}. The prover's computation is dominated by $\Theta(n) \mathbb{Z}_{p}$-multiplications and $(2+o(1)) \cdot \log _{2} \beta \cdot n / \log _{2} n+O(n)$ bilinear-group multiplications. The verifier's computation is dominated by 5 bilinear pairings. The CRS consists of $\Theta(n)$ group elements.

Proof. By using Pippenger's algorithm, the prover computes two multi-exponentiations in

$$
L(2, n, \beta)=2 \log _{2} \beta+(1+o(1)) \cdot \frac{2 n \log _{2}(\beta+1)}{\left(\log _{2}\left(2 n \log _{2}(\beta+1)\right)\right)}+O(n)=(2+o(1)) \cdot \frac{n \log _{2} \beta}{\log _{2} n}+O(n)
$$

bilinear-group multiplications. Other claims are straightforward.

6 Applications

We will now describe how to use the new product and shift arguments to improve on the range argument of [CLZ12], and to construct new set partition and subset sum arguments. Then, we show how to combine subset sum and range arguments to construct a decision knapsack argument. In all three cases, the shift argument is mainly used to construct an intermediate scan argument. Recall that vector \boldsymbol{b} is a scan [Ble90] of vector a, if $b_{i}=\sum_{j>i} a_{j}$. As demonstrated over and over in [Ble90], vector scan (also known as all-prefix-sums) is a powerful operator that can be used to solve many important computational problems. In the context of zero knowledge, we will only need to be able to verify that one vector is a scan of the second vector.

In a scan argument, the prover aims to convince the verifier that given two commitments A and B, he knows how to open them as $A=\mathcal{C o m}\left(\mathrm{ck} ; \boldsymbol{a} ; r_{a}\right)$ and $B=\mathcal{C o m}\left(\mathrm{ck} ; \boldsymbol{b} ; r_{b}\right)$, s.t. $b_{i}=\sum_{j>i} a_{j}$. A scan argument is just equal to a right shift-by- 1 argument $\operatorname{rsft}_{1}(\llbracket B \rrbracket)=\llbracket A+B \rrbracket$, that proves that $b_{i}=a_{i+1}+b_{i+1}$, for $i<n$, and $b_{n}=0$. Thus, $b_{n}=0, b_{n-1}=a_{n}, b_{n-2}=a_{n-1}+b_{n-1}=a_{n-1}+a_{n}$, and in general, $b_{i}=\sum_{j>i} a_{j}$.

6.1 Improved Range Argument

Since the used commitment scheme is homomorphic, the generic range argument (prove that the committed value x belongs to the interval $[L, H]$ for $L<H$) is equivalent to proving that the committed value $y=x-L$ belongs to the interval $[0, H-L]$. In what follows, we will therefore concentrate on this simpler case.

In [CLZ12], the authors proposed a new range argument that is based on the product and permutation arguments from [Lip12]. Interestingly enough, [CLZ12] makes use of the permutation argument only to show that a vector is a scan of another vector. More precisely, they first apply a permutation argument, followed by a product argument (meant to modify a rotation to a right shift-by-1 by clearing out one of the elements). Hence, we can replace the permutation and product arguments from [Lip12] with the right shift-by-1 (or scan) and product arguments from the current paper. Thus, it suffices for Λ to be an arbitrary progression-free set. The resulting range argument is also shorter by one product argument. The security proof does not change significantly. To show that the range argument is computationally sound, one has to assume that the product argument and the right shift-by-1 argument are weakly sound (and that the PKE assumption holds).

The use of the new basic arguments will decrease the number of \mathbb{Z}_{p}-multiplications - except when computing the multi-exponentiations - in the main range argument from $\Theta\left(n^{2} n_{v}\right)$, where $n_{v} \approx \log _{2} u$, to $\Theta\left(r_{3}^{-1}(n)\right.$. $\left.\log r_{3}^{-1}(n) \cdot n_{v}\right)=o\left(\log H \cdot 2^{\left.2 \sqrt{2 \log _{2} \log _{u} H} \cdot \log \log _{u} H\right) \text {. By using Pippenger's algorithm [Pip80], the cost of the }}\right.$ multi-exponentiation decreases to $(2+o(1)) \cdot 2 r_{3}^{-1}(n) \log _{2}(u n) / \log _{2} r_{3}^{-1}(n)$ bilinear-group multiplications. The communication decreases by $4+2+3=9$ group elements, due to the replacement of the permutation argument with the right shift-by- 1 argument (minus 4), having one less product argument (minus 2), and also because one needs to commit to one less element $\left(\left(C_{\text {rrot }}, \hat{C}_{\text {rrot }}, \tilde{C}_{\text {rrot }}\right)\right.$ in [CLZ12], minus 3$)$. The verifier also has to perform $7+5+4=16$ less pairings, due to the replacement of the permutation argument with the right shift-by- 1 argument (minus 7) and one less product argument (minus 5). Also, it is not necessary to verify the correctness of $\left(C_{\text {rrot }}, \hat{C}_{\text {rrot }}, \tilde{C}_{\text {rrot }}\right)$ (minus 4). One can analogously compute the verifier's computational complexity, see Tbl. 2 .

Remark 1. In the permutation argument of [Lip12], the verifier also has to compute a certain triple $\left(T^{*}, \hat{T}^{*}, T_{2}^{*}\right)$ by using 3 multi-exponentiations. This is not included in the comparison table (or the claims) in [Lip12], and the same mistake was replicated in [CLZ12]. Tbl. 1 and Tbl. 2 correct this mistake, by giving the correct complexity estimation of the arguments from [Lip12[CLZ12] $\left.\right|^{4}$

Since the non-balanced range argument only uses one permutation argument, the corrected permutation argument of this paper makes the argument shorter by 4 group elements, and decreases the verifier's workload by 7 pairings.

One can consider now several settings. The setting $u=2$ minimizes the communication and the verifier's computational complexity. The setting $u=2^{\sqrt{\log _{2} H}}$ minimizes the total length of the CRS and the argument. The setting $u=H$ minimizes the prover's computational complexity. See Tbl. 2.

6.2 Set Partition

Assume we want to construct an efficient argument for some NP-complete problem. Circuit-SAT seems to require the use of product and permutation arguments [Gro10 Lip12], so we will try to find another problem. A simple example is the set partition problem, defined as follows. Let $n \ll p$. Given a multiset $\mathcal{S}=\left(s_{1}, \ldots, s_{n}\right)$, with $s_{i} \in \mathbb{Z}_{p}$, and a commitment B, the prover has to convince the verifier that he knows how to open the commitment as $B=\mathcal{C o m}\left(\mathrm{ck} ; \boldsymbol{b} ; r_{b}\right)$, such that $b_{i} \in\{-1,1\}$, and $\sum_{i=1}^{n} b_{i} s_{i}=0$. If we define $\mathcal{V}=\left\{i: b_{i}=1\right\}$, then $\sum_{i=1}^{n} b_{i} s_{i}=0$ is equivalent to $\sum_{i \in \mathcal{V}} s_{i}=\sum_{i \in \mathcal{S} \backslash \mathcal{V}} s_{i}$. The prover computes the set partition argument as follows. Here, C commits to $\boldsymbol{c}=\left(b_{1} s_{1}, \ldots, b_{n} s_{n}\right), S$ commits to \boldsymbol{s}, and D commits to \boldsymbol{d}, the scan of \boldsymbol{c}. That is, $d_{i}=$

[^1]$\sum_{j>i} c_{j}$, and in particular, $d_{1}=\sum_{j>1} c_{i}$ and $c_{1}+d_{1}=\sum_{j \geq 1} c_{j}$. We omit the proof of this argument since it is similar to the proof in the next subsection.

Compute a product argument π_{1} for $b_{i} \cdot b_{i}=1$, showing that $b_{i} \in\{-1,1\}$;
Compute a product argument π_{2} for $c_{i}=b_{i} \cdot s_{i}$;
Compute a scan argument π_{3} showing that \boldsymbol{d} is the scan of \boldsymbol{c};
Compute a restriction argument π_{4} showing that the first coordinate of $\boldsymbol{c}+\boldsymbol{d}$ is 0 ;
The set partition argument is equal to ($B, C, D, \pi_{1}, \ldots, \pi_{4}$);

6.3 Subset Sum Argument

Another simple example is subset sum, where the prover aims to prove that he knows a non-zero subset of the input set S that sums to 0 . In a subset sum argument, the prover aims to convince the verifier that given $\mathcal{S}=$ $\left(s_{1}, \ldots, s_{n}\right) \subseteq \mathbb{Z}_{p}, n \ll p$, and a commitment B, he knows how to open it as $B=\mathcal{C o m}\left(\mathrm{ck} ; \boldsymbol{b} ; r_{b}\right)$, such that \boldsymbol{b} is non-zero and has Boolean elements, and $\sum_{i=1}^{n} b_{i} s_{i}=0$. That is, $b_{i}=1$ iff s_{i} belongs to the subset of S that sums to 0 . (Here as always, the committed elements belong to \mathbb{Z}_{p}. Thus, $\sum_{i=1}^{n} b_{i} s_{i}=0$ holds modulo p.)

In the new subset sum argument, both parties compute a commitment S to s. The prover commits to a Boolean vector \boldsymbol{b} and to a vector \boldsymbol{c}, s.t. $c_{i}=b_{i} s_{i}$. He computes a commitment D to the scan \boldsymbol{d} of vector \boldsymbol{c}. I.e., $d_{i}=$ $\sum_{j>i} c_{j}$, and in particular, $d_{1}=\sum_{j>1} c_{i}$ and $c_{1}+d_{1}=\sum_{j \geq 1} c_{j}$. The resulting subset sum argument can be seen as a slight modification of the set partition argument. The main conceptual difference is that we also need to prove $\boldsymbol{b} \neq \mathbf{0}$ (this was not necessary in the set partition argument).

The prover computes the subset sum argument as follows.
Compute a product argument π_{1} for $b_{i}^{2}=b_{i}$, showing that \boldsymbol{b} is Boolean;
Compute an argument π_{2} showing that $\boldsymbol{b} \neq \mathbf{0}$;
Compute a product argument π_{3} showing that $c_{i}=b_{i} \cdot s_{i}$ for $i \in[n]$;
Compute a scan argument π_{4} showing that \boldsymbol{d} is the scan of \boldsymbol{c};
Compute a restriction argument π_{5} showing that the first coordinate of $\boldsymbol{c}+\boldsymbol{d}$ is 0 ;
The subset sum argument is equal to $\left(B, C, D, \pi_{1}, \ldots, \pi_{5}\right)$;
Here, π_{5} is computed by using the restriction argument from [Gro10], which adds linear number of elements to the CRS, but has a constant complexity otherwise. The subargument π_{2} is computed as follows.

```
Assume \(B=g_{1, v}^{r_{b}} \prod g_{1, \lambda_{i}}^{b_{i}} ;\)
/* we want to show that \(\boldsymbol{b} \neq \mathbf{0}\) */
```

Assume that $\stackrel{\circ}{g}_{1, i}=g_{1 i}^{\alpha}$ and $\stackrel{\circ}{g}_{2}=g_{2}^{\dot{\alpha}}$ for a secret $\stackrel{\circ}{\alpha}$;
Create $\stackrel{\circ}{B} \leftarrow \stackrel{\circ}{g}_{1, v}^{r_{b}} \cdot \prod_{i=1}^{n} \stackrel{\circ}{g}_{1, \lambda_{i}}^{b_{i}}$ and a hybrid $B^{*} \leftarrow g_{1, v}^{r_{b}} \cdot \prod \stackrel{\circ}{g}_{1, \lambda_{i}}^{b_{i}}$;
Show that $\stackrel{\circ}{B} / B^{*}=\left(\stackrel{\circ}{g}_{1, v} / g_{1, v}\right)^{r_{b}}$ commits to zero by using the zero argument from [LZ12];
Verifier checks that $\hat{e}\left(B, \circ_{2}\right) \neq \hat{e}\left(B^{*}, g_{2}\right)$;
Note that the verifier can check that $\stackrel{\circ}{B}$ is correct by checking that $\hat{e}\left(\stackrel{\circ}{B}, g_{2}\right)=\hat{e}\left(B, \stackrel{\circ}{g}_{2}\right)$. It is straightforward to prove that the new subset sum argument is complete and perfectly zero-knowledge. It is also computationally sound under appropriate assumptions. See App. Ffor a proof.

The resulting subset sum argument is simpler than the Circuit-SAT arguments of Gro10 Lip12] that consist of ≥ 7 product and permutation arguments. Moreover, instead of the product and permutation arguments it only uses product and a more efficient right shift-by-1 argument (zero argument is trivial).

6.4 Decision Knapsack Argument

In the (NP-complete) decision knapsack problem one has to decide, given a set \mathcal{S}, integers W and B, and a benefit value b_{i} and weight w_{i} of every item of \mathcal{S}, whether there exists a subset $\mathcal{T} \subseteq \mathcal{S}$, such that $\sum_{i \in \mathcal{T}} w_{i} \leq W$ and $\sum_{i \in \mathcal{T}} b_{i} \geq B$. One can combine a version of the subset sum argument of Sect. 6.3 with the range argument of Sect. 6.1 to construct a decision knapsack argument, where the prover convinces the verifier that he knows such a subset \mathcal{T}. See Alg. 5 in App. G.

7 Conclusions And Open Questions

Groth [Gro10] and Lipmaa [Lip12] have recently proposed NIZK arguments based on a simple language consisting of permutation, Hadamard product, and Hadamard sum NIZK arguments. Unfortunately, in the first two
arguments, the prover's computation is quadratic. In this paper, we showed how to reduce prover's computation in the Hadamard product to $n^{1+o(1)}$. In addition, we proposed a linear-complexity shift-by- ξ argument. We demonstrated the power of a simpler language (consisting of right shift-by-1, Hadamard product, and Hadamard sum NIZK arguments) by proposing modular NIZK arguments for NP-complete languages subset sum and decision knapsack, and by simplifying the range argument from [CLZ12].

The main open questions are to construct denser progression-free sets for small values of n (i.e., to improve $r_{3}(n)$ for $n \lesssim 2^{30}$), to investigate whether the product argument can be made even more efficient, to construct other interesting basic arguments, and to construct efficient modular arguments based on such basic arguments.

Acknowledgments. This work was partially done while the third author was working at the University of Tartu, Estonia. The first two authors were supported from research theme IUT2-1 and European Regional Development Fund through the Estonian Center of Excellence in Computer Science, EXCS.

References

BCC88. Guilles Brassard, David Chaum, and Claude Crépeau. Minimum Disclosure Proofs of Knowledge. Journal of Computer and System Sciences, 37(2):156-189, 1988.
BCI^{+}13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct Non-interactive Arguments via Linear Interactive Proofs. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 315-333, Tokyo, Japan, March 3-6, 2013. Springer, Heidelberg.
BF01. Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil Pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213-229, Santa Barbara, USA, August 19-23, 2001. Springer, Heidelberg.
BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-Interactive Zero-Knowledge and Its Applications. In STOC 1988, pages 103-112, Chicago, Illinois, USA, May 2-4, 1988. ACM Press.
Bla02. Matt Blaze, editor. FC 2002, volume 2357 of LNCS, Southhampton Beach, Bermuda, March 11-14, 2002. Springer, Heidelberg.
Ble90. Guy Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.
Bou00. Fabrice Boudot. Efficient Proofs That a Committed Number Lies in an Interval. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 431-444, Bruges, Belgium, May 14-18, 2000. Springer, Heidelberg.
CCs08. Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient Protocols for Set Membership and Range Proofs. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 234-252, Melbourne, Australia, December 7-11, 2008. Springer, Heidelberg.
CGH98. Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Methodology, Revisited. In Jeffrey Scott Vitter, editor, STOC 1998, pages 209-218, Dallas, Texas, USA, May 23-26, 1998.
CLs10. Rafik Chaabouni, Helger Lipmaa, and abhi shelat. Additive Combinatorics and Discrete Logarithm Based Range Protocols. In Ron Steinfeld and Philip Hawkes, editors, ACISP 2010, volume 6168 of LNCS, pages 336-351, Sydney, Australia, July 5-7, 2010. Springer, Heidelberg.
CLZ12. Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang. A Non-Interactive Range Proof with Constant Communication. In Angelos Keromytis, editor, FC 2012, volume 7397 of LNCS, pages 179-199, Bonaire, The Netherlands, February 27-March 2, 2012. Springer, Heidelberg.
CT65. James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation, 19:297-301, 1965.
Dyb12. Janusz Dybizbański. Sequences Containing No 3-Term Arithmetic Progressions. Electronic Journal of Combinatorics, 19(2):P15, 2012.
Elk11. Michael Elkin. An Improved Construction of Progression-Free Sets. Israeli Journal of Mathematics, 184:93-128, 2011.

ET36. Paul Erdős and Paul Turán. On Some Sequences of Integers. Journal of the London Mathematical Society, 11(4):261-263, 1936.
GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic Span Programs and NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume ? of LNCS, pages ?-?, Athens, Greece, April 26-30, 2013. Springer, Heidelberg.
GK03. Shafi Goldwasser and Yael Tauman Kalai. On the (In)security of the Fiat-Shamir Paradigm. In FOCS 2003, pages 102-113, Cambridge, MA, USA, October, 11-14 2003. IEEE, IEEE Computer Society Press.
GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive Proof-Systems. In Robert Sedgewick, editor, STOC 1985, pages 291-304, Providence, Rhode Island, USA, May 6-8, 1985. ACM Press.
Gro10. Jens Groth. Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321-340, Singapore, December 5-9, 2010. Springer, Heidelberg.

GS66. W. Morven Gentleman and Gordon Sande. Fast Fourier Transforms - For Fun And Profit. In Fall Joint Computer Conf. AFIPS Proc., volume 29, pages 563-578, Washington, DC, USA, 1966. ACM.
GW11. Craig Gentry and Daniel Wichs. Separating Succinct Non-Interactive Arguments from All Falsifiable Assumptions. In Salil Vadhan, editor, STOC 2011, pages 99-108, San Jose, California, USA, June 6-8, 2011. ACM Press.
HSV06. Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The Eta Pairing Revisited. IEEE Transactions on Information Theory, 52(10):4595-4602, 2006.
Jou00. Antoine Joux. A One-Round Protocol for Tripartite Diffie-Hellman. In Wieb Bosma, editor, ANTS 2000, volume 1838 of $L N C S$, pages 385-394, Leiden, The Netherlands, 2-7 June 2000. Springer, Heidelberg.
LAN02. Helger Lipmaa, N. Asokan, and Valteri Niemi. Secure Vickrey Auctions without Threshold Trust. In Blaze [Bla02], pages 87-101.
Lip03. Helger Lipmaa. On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In Chi Sung Laih, editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 398-415, Taipei, Taiwan, November 30-December 4, 2003. Springer, Heidelberg.

Lip12. Helger Lipmaa. Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of $L N C S$, pages 169-189, Taormina, Italy, March 18-21, 2012. Springer, Heidelberg.
LLL82. Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and Laszlo Lovász. Factoring Polynomials with Rational Coefficients. Mathematische Annalen, 261:513-534, 1982.
LZ12. Helger Lipmaa and Bingsheng Zhang. A More Efficient Computationally Sound Non-Interactive Zero-Knowledge Shuffle Argument. In Ivan Visconti and Roberto De Prisco, editors, SCN 2012, volume 7485 of LNCS, pages 477-502, Amalfi, Italy, September 5-7, 2012. Springer, Heidelberg.
Pip80. Nicholas Pippenger. On the Evaluation of Powers and Monomials. SIAM Journal of Computing, 9(2):230-250, 1980.

RKP09. Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally Composable Adaptive Priced Oblivious Transfer. In Hovav Shacham and Brent Waters, editors, Pairing 2009, volume 5671 of LNCS, pages 231-247, Palo Alto, CA, USA, August 12-14, 2009. Springer, Heidelberg.
San11. Tom Sanders. On Roth's Theorem on Progressions. Annals of Mathematics, 174(1):619-636, July 2011.
Sho97. Victor Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In Walter Fumy, editor, EUROCRYPT 1997, volume 1233 of LNCS, pages 256-266, Konstanz, Germany, 11-15 May 1997. Springer, Heidelberg.
SOK00. Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems Based on Pairing. In SCIS 2000, Okinawa, Japan, 2000.
TV06. Terrence Tao and Van Vu. Additive Combinatorics. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2006.
vHN10. Mark van Hoeij and Andrew Novocin. Gradual Sub-lattice Reduction and a New Complexity for Factoring Polynomials. In Alejandro López-Ortiz, editor, LATIN 2010, volume 6034 of LNCS, pages 539-553, Oaxaca, Mexico, April 19-23, 2010. Springer, Heidelberg.

A Proof of Thm. 1

Proof. In the generic group model [Sho97], an adversary \mathcal{A} only performs generic group operations (multiplications in $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T}, bilinear pairings, and equality tests). A generic adversary produces an element of \mathbb{Z}_{p}, which depends only on gk and $\left(\left(g_{1}, g_{2}\right)^{\phi(\sigma)}\right)_{\phi \in\{1\} \cup \Phi}$. The only time \mathcal{A} gets any information is when an equality (collision) between two previously computed elements of either $\mathbb{G}_{1}, \mathbb{G}_{2}$ or \mathbb{G}_{T} occurs. We prove that finding even a single collision is difficult even if \mathcal{A} can compute an arbitrary group element in unit time.

Assume that \mathcal{A} can find a collision $y=y^{*}$ in group \mathbb{G}_{1}. Then it must be the case that

$$
y=\prod_{\phi_{\ell} \in\{1\} \cup \Phi} g_{1}^{a_{\ell} \phi_{\ell}(\sigma)}
$$

and

$$
y^{*}=\prod_{\ell \in\{0\} \cup \Lambda} g_{1}^{a_{\ell}^{*} \phi_{\ell}(\sigma)}
$$

for some known values of a_{ℓ} and a_{ℓ}^{*}. But then also

$$
\sum_{\ell \in\{0\} \cup \Lambda}\left(a_{\ell}-a_{\ell}^{*}\right) \phi_{\ell}(\sigma) \equiv 0 \quad(\bmod p) .
$$

Fig. 1. Comparison of the asymptotics of the prover's computational complexity - in the log-scale - in the arguments for NP-complete languages of [GGPR13] (blue), current paper (with the Erdős-Turán progression-free set, cyan), and [Gro10] (green). The x axis corresponds to the main input parameter (the size of the circuit in the case of Circuit-SAT or the size of the set in the case of Set Partition). Importantly, the new argument provides the best prover's computational complexity for almost all values of the main input parameter for which the prover's computation is not too large

Since \mathcal{A} does not know the actual representations of the group elements, it will perform the same group operations independently of σ. Thus a_{ℓ} and a_{ℓ}^{*} are independent of σ. By the Schwartz-Zippel lemma modulo p, the probability that

$$
\sum_{\ell \in\{0\} \cup \Lambda}\left(a_{\ell}-a_{\ell}^{*}\right) \phi_{\ell}(\sigma) \equiv 0 \quad(\bmod p)
$$

is equal to d / p for randomly chosen a_{ℓ} and a_{ℓ}^{*}. If \mathcal{A} works in polynomial time $\tau=\operatorname{poly}(\kappa)$, it can generate at most τ such group elements. The total probability that there exists a collision between any two generated group elements is thus upper bounded by $\binom{\tau}{2} \cdot d / p$, and thus a successful \mathcal{A} requires time $\Omega(\sqrt{p / d})$ to produce one collision.

A similar bound $\binom{\tau}{2} \cdot d / p$ holds for collisions in \mathbb{G}_{2}. In the case of \mathbb{G}_{T}, the pairing enables \mathcal{A} to compute up to τ different values

$$
y=\hat{e}\left(g_{1}, g_{2}\right)^{\sum_{\phi_{1 i} \in\{1\} \cup \Phi} \sum_{\phi_{2 j} \in\{1\} \cup \Phi} a_{i j} \phi_{1 i}\left(\sigma_{1}\right) \phi_{2 j}(\sigma)}
$$

and thus we get an upper bound $\binom{\tau}{2} \cdot 2 d / p$, and thus a successful \mathcal{A} requires time $\Omega(\sqrt{p / d})$ to produce one collision.

B Proof of Thm. 2

Proof. Perfect hiding: follows from the fact that the output of \mathcal{C} om is a random element of \mathbb{G}_{1}. Computational binding: Assume that $\mathcal{A}_{\mathcal{C} \text { m }}$ is an adversary that can break the binding property with some nonnegligible probability. We construct the following adversary $\mathcal{A}_{p d l}$, see Prot. 3 , against the Φ_{Γ}-PDL assumption in \mathbb{G}_{1} that works with the same probability. Here, \mathcal{C} is the challenger of the PDL game.

Assume that on step $1, \mathcal{A}_{\mathcal{C} \text { om }}$ is successful with some probability ε_{c}. Thus, with probability $\varepsilon_{c},\left(\boldsymbol{a}, r_{a}\right) \neq$ $\left(\boldsymbol{b}, r_{b}\right)$ and

$$
g_{z}^{r_{a} \sigma^{v}} \cdot \prod_{i \in[n]} g_{z}^{a_{i} \sigma^{\lambda_{i}}}=g_{z}^{r_{b} \sigma^{v}} \cdot \prod_{i \in[n]} g_{z}^{b_{i} \sigma^{\lambda_{i}}} .
$$

But then

$$
g_{z}^{\left(r_{a}-r_{b}\right) \sigma^{v}+\sum_{i=1}^{n}\left(a_{i}-b_{i}\right) \sigma^{\lambda_{i}}}=1,
$$

```
\(\mathcal{C}\) sets gk \(\leftarrow \mathcal{G}_{\text {bp }}\left(1^{\kappa}\right), g_{z} \leftarrow \mathbb{G}_{z} \backslash\{1\}\), and \(\sigma \leftarrow \mathbb{Z}_{p}\);
\(\mathcal{C}\) sends (gk; \(\left.\left(g_{z}^{\sigma^{\ell}}\right)_{\ell \in\{v\} \cup \Lambda}\right)\) to \(\mathcal{A}_{p d l}\);
\(\mathcal{A}_{p d l}\) sets \(\hat{\alpha}^{*} \leftarrow \mathbb{Z}_{p}\);
\(\mathcal{A}_{p d l}\) sets ck \(\leftarrow\left(\mathrm{gk} ;\left(\left(g_{z}, g_{z}^{\hat{\alpha}^{*}}\right)^{\sigma^{\ell}}\right)_{\ell \in \Lambda},\left(g_{z}, g_{z}^{\hat{\alpha}^{*}}\right)^{\sigma^{v}}\right)\);
\(\mathcal{A}_{p d l}\) obtains \(\left(\boldsymbol{a}, r_{a}, \boldsymbol{b}, r_{b}\right) \leftarrow \mathcal{A}_{\text {com }}(\mathrm{ck})\);
if \(\boldsymbol{a} \notin \mathbb{Z}_{p}^{n} \vee \boldsymbol{b} \notin \mathbb{Z}_{p}^{n} \vee r_{a} \notin \mathbb{Z}_{p} \vee r_{b} \notin \mathbb{Z}_{p} \vee\left(\boldsymbol{a}, r_{a}\right)=\left(\boldsymbol{b}, r_{b}\right) \vee \mathcal{C o m}\left(\mathrm{ck} ; \boldsymbol{a}, r_{a}\right) \neq \mathcal{C o m}\left(\mathrm{ck} ; \boldsymbol{b}, r_{b}\right)\) then \(\mathcal{A}_{p d l}\) aborts ;
else
\(\mathcal{A}_{p d l}\) sets \(\delta(X) \leftarrow\left(r_{a}-r_{b}\right) X^{v-\lambda_{1}}+\sum_{i=1}^{n}\left(a_{i}-b_{i}\right) X^{\lambda_{i}-\lambda_{1}}\).
\(\mathcal{A}_{\text {pdl }}\) sets \(\left(t_{1}, \ldots, t_{v-\lambda_{1}+1}\right) \leftarrow \operatorname{PolyFact}(\delta)\);
\(\mathcal{A}_{p d l}\) finds by an exhaustive search a root \(\sigma_{0} \in\left\{t_{1}, \ldots, t_{v-\lambda_{1}+1}\right\}\), such that \(g_{z}^{\sigma^{\lambda_{1}}}=g_{z}^{\sigma_{0}^{\lambda_{1}}}\);
    \(\mathcal{A}_{p d l}\) returns \(\sigma \leftarrow \sigma_{0}\) to the challenger;
end
```

Algorithm 3: Adversary in Thm. 2

```
\(\mathcal{C}\) forms crs as in Prot. 3
\(\mathcal{C}\) sends crs to \(\tilde{\mathcal{A}}\);
\(\tilde{\mathcal{A}}\) obtains \(\left(\right.\) inn \(\left.^{\text {rsft }}, w^{\text {rsft }}, \pi^{\text {rsft }}\right) \leftarrow \mathcal{A}_{\text {rsft }}\) (crs);
if the conditions \(2 a-2 d\) in the statement of Thm. 5 do not hold then \(\tilde{\mathcal{A}}\) aborts ;
else
    \(\tilde{\mathcal{A}}\) expresses \(F(X)\) as a polynomial \(f(X)=\sum_{\phi \in \Phi^{\pi}} f_{\phi} \cdot \phi(X) ;\)
    \(\tilde{\mathcal{A}}\) computes a polynomial \(f^{*}(X):=\sum_{\phi \in \Phi_{\text {rsft }}^{\xi}} f_{\phi}^{*} \cdot \phi(X)\);
    \(\tilde{\mathcal{A}}\) lets \(\delta(X) \leftarrow f(X)-f^{*}(X)\);
    \(\tilde{\mathcal{A}}\) uses a polynomial factorization algorithm in \(\mathbb{Z}_{p}[X]\) to compute all \(\leq(v+2)\) roots of \(\delta(X)\);
    \(\tilde{\mathcal{A}}\) finds by an exhaustive search a root \(\sigma_{0}\), such that \(g_{1}^{\sigma^{\ell}}=g_{1}^{\sigma_{0}^{\ell}}\);
    \(\tilde{\mathcal{A}}\) returns \(\sigma \leftarrow \sigma_{0}\);
end
```

Algorithm 4: Construction of $\tilde{\mathcal{A}}$ in the security reduction of Thm. 5
and thus

$$
\left(r_{a}-r_{b}\right) \sigma^{v}+\sum_{i=1}^{n}\left(a_{i}-b_{i}\right) \sigma^{\lambda_{i}} \equiv 0 \quad(\bmod p)
$$

or equivalently,

$$
\left(r_{a}-r_{b}\right) \sigma^{v-\lambda_{1}}+\sum_{i=1}^{n}\left(a_{i}-b_{i}\right) \sigma^{\lambda_{i}-\lambda_{1}} \equiv 0 \quad(\bmod p)
$$

Since $v>\lambda_{n}, \delta(X)$, as defined on step 2 is a degree- $\left(v-\lambda_{1}\right)$ non-zero polynomial.
Thus, the adversary has generated a non-trivial degree- $\left(v-\lambda_{1}\right)$ polynomial $f(X)$ such that $f(\sigma) \equiv 0$ $(\bmod p)$. Hence, $\mathcal{A}_{p d l}$ can use polynomial factorization to find all roots of δ, and one of those roots must be equal to σ. On step 3, $\mathcal{A}_{p d l}$ finds the correct root by an exhaustive search among all roots returned in the previous step. Thus, clearly $\mathcal{A}_{p d l}$ returns the correct value of sk (and thus violates the Φ_{Γ}-PDL assumption) with probability ε_{c}. Finally, the time of $\mathcal{A}_{p d l}$ is clearly dominated by the execution time of $\mathcal{A}_{\mathcal{C} 0}$ and the time to factor δ.

Extractability: By the Φ_{Γ}-PKE assumption in group \mathbb{G}_{z}, for every committer \mathcal{A} there exists an extractor $X_{\mathcal{A}}$ that can open the commitment in group \mathbb{G}_{z}, given access to \mathcal{A} 's inputs and random tape. Since the commitment scheme is computationally binding, then the extracted opening has to be the same that \mathcal{A} used.

C Proof of Thm. 5 (Shift Argument Security)

Proof. Denote $h \leftarrow \hat{e}\left(g_{1}, g_{2}\right)$ and

$$
F(\sigma):=\log _{h}\left(\hat{e}\left(A, g_{2, \xi}\right) / \hat{e}\left(B, g_{2}\right)\right)
$$

WITNESS-InDISTINGUISHABILITY: since argument $\pi^{\text {rsft }}$ that satisfies the verification equations is unique, all witnesses result in the same argument, and therefore the permutation argument is witness-indistinguishable.

Perfect completeness. The second verification is straightforward. For the first verification $\hat{e}\left(A, g_{2, \xi}\right) / \hat{e}\left(B, g_{2}\right)=\hat{e}\left(g_{1}, \pi\right)$, consider

$$
F(X):=X^{\xi} \cdot \log _{g_{1}} A-\log _{g_{1}} B
$$

where we have replaced σ with a formal variable X. Clearly,

$$
\begin{align*}
F(X)= & \sum_{i=1}^{n} a_{i} X^{\lambda_{i}+\xi}-\sum_{i=1}^{n} b_{i} X^{\lambda_{i}}+r_{a} X^{v+\xi}-r_{b} X^{v} \\
= & \sum_{i=n-\xi+1}^{n} a_{i} X^{\lambda_{i}+\xi}+\sum_{i=1}^{n-\xi} a_{i} X^{\lambda_{i}+\xi}-\sum_{i=1}^{\xi} b_{i} X^{\lambda_{i}}-\sum_{i=\xi+1}^{n} b_{i} X^{\lambda_{i}}+r_{a} X^{v+\xi}-r_{b} X^{v} \\
= & \sum_{i=1}^{\xi} a_{n-\xi+i} X^{\lambda_{n-\xi+i}+\xi}+\sum_{i=1}^{n-\xi} a_{i} X^{\lambda_{i}+\xi}-\sum_{i=1}^{\xi} b_{i} X^{\lambda_{i}}-\sum_{i=1}^{n-\xi} b_{i+\xi} X^{\lambda_{i+\xi}}+r_{a} X^{v+\xi}-r_{b} X^{v} \tag{2}\\
= & \underbrace{\sum_{i=1}^{n-\xi}\left(a_{i}-b_{i+\xi}\right) X^{\lambda_{i}+\xi}+\sum_{i=1}^{\xi} a_{n-\xi+i} X^{\lambda_{n-\xi+i}+\xi}}_{=: F_{\pi}(X)}+ \\
& \underbrace{\sum_{i=1}^{n-\xi} b_{i+\xi}\left(X^{\lambda_{i}+\xi}-X^{\lambda_{i+\xi}}\right)-\sum_{i=1}^{\xi} b_{i} X^{\lambda_{i}}+r_{a} X^{v+\xi}-r_{b} X^{v}}_{i=1} .
\end{align*}
$$

If the prover is honest, then $a_{i}=b_{i+\xi}$ for $i \in[n-\xi]$ and $a_{i}=0$ for $i \in[n-\xi+1, n]$, and thus $F(X)=F_{\pi}(X)$ is spanned by $\{\phi(X)\}_{\phi \in \Phi_{\text {vst }}^{\xi}}$. With π as defined in Prot. 3 the second verification holds as $\hat{e}\left(g_{1}, \pi\right)=\hat{e}\left(g_{1}, \pi^{F(\sigma)}\right)=$ $h^{F(\sigma)}=\hat{e}\left(A, g_{2,1}\right) / \hat{e}\left(B, g_{2}\right)$.

WEAKER VERSION OF SOUNDNESS. Assume that $\mathcal{A}_{\text {rsft }}$ is an adversary that can break the last statement of the theorem. We construct an adversary $\tilde{\mathcal{A}}$ against the $\Phi_{\text {rsft }}^{\xi}$-PSDL assumption, see Prot. 4 Here, \mathcal{C} is the challenger of the PSDL game, and

$$
\Phi^{\pi}:=\left\{X^{\lambda_{i}+\xi}, X^{\lambda_{i}}\right\}_{i=1}^{n} \cup\left\{X^{v+\xi}, X^{v}\right\}
$$

is defined by following the first line of Eq. (2). Let us analyse the advantage of $\tilde{\mathcal{A}}$. First, clearly $\mathrm{crs}_{t d}$ has the same distribution as $\mathcal{G}_{\text {crs }}\left(1^{\kappa}\right)$. Thus, $\mathcal{A}_{\text {rsft }}$ gets a correct input, and succeeds with some probability $\operatorname{Succ}_{\mathcal{A}_{\text {rsft }}}^{\text {sound }}\left(\Pi_{\text {rsft }}\right)$. Clearly, $\tilde{\mathcal{A}}$ aborts with probability $1-\operatorname{Succ}_{\mathcal{A}_{\mathcal{A}_{\text {sft }}}}^{\text {sound }}\left(\Pi_{\text {rsft }}\right)$.

Otherwise, with probability $\operatorname{Succ}_{\mathcal{A}_{\mathrm{rst}}}^{\text {sound }}\left(\Pi_{\mathrm{rsft}}\right)$, inp ${ }^{\text {rsft }}=(A, \tilde{A}, B, \tilde{B})$ and $w^{\mathrm{rsft}}=\left(\boldsymbol{a}, r_{a}, \boldsymbol{b}, r_{b},\left(f_{\phi}^{*}\right)_{\phi \in \Phi_{\mathrm{rsft}}^{\xi}}\right)$, such that the conditions 2a, 2d hold. In particular, $f(X)=F(X)$ in Eq. 22, and

$$
f^{*}(X)=\sum_{i=1}^{\xi} f_{X^{\lambda_{i}}}^{*} \cdot X^{\lambda_{i}}+\sum_{i=\xi+1}^{n} f_{X^{\lambda_{i-\xi}}+\xi-X^{\lambda_{i}}}\left(X^{\lambda_{i-\xi}+\xi}-X^{\lambda_{i}}\right)+f_{X^{v+\xi}}^{*} X^{v+\xi}+f_{X^{v}}^{*} X^{v}
$$

For the rest of the proof to go through, we need that all polynomials that are present in monomials $F_{\text {con }}(X)$ $\left(\Phi^{*}:=\left\{X^{\lambda_{i}+\xi}: i \in[n-\xi]\right\} \cup\left\{X^{\lambda_{n-\xi+i}+\xi}: i \in[\xi]\right\}=\left\{X^{\lambda_{i}+\xi}: i \in[1, n-\xi]\right\} \cup\left\{X^{\lambda_{i}+\xi}: i \in\right.\right.$ $\left.[n-\xi+1, n]\}=\left\{X^{\lambda_{i}+\xi}: i \in[n]\right\}\right)$ are different from each other and from all polynomials in $\Phi_{\mathrm{rsft}}^{\xi}$. This follows from the conditions (i) $\lambda_{j} \neq \lambda_{i}$, (ii) $\lambda_{j}+\xi \neq \lambda_{i}$, (iii) $\lambda_{i} \neq v$, and (iv) $\lambda_{i}+\xi \neq v$, for $i, j \in[n], i \neq j$.

Since $\left(a_{n}, a_{n-1}, \ldots, a_{1}\right) \neq\left(0, \ldots, 0, b_{n}, \ldots, b_{\xi+1}\right), f(X)$ has at least one more non-zero monomial, either of type $a_{i} X^{\lambda_{i}+\xi}$ or of type $\left(a_{i-\xi}-b_{i}\right) X^{\lambda_{i-\xi}+\xi}$, than $f^{*}(X)$. Since $X^{\lambda_{i-\xi}+\xi}$ cannot be represented as a linear combination of polynomials from $\Phi_{\mathrm{rsft}}^{\xi}, f(X)$ and $f^{*}(X)$ are different polynomials with $f(\sigma)=f^{*}(\sigma)=F(\sigma)$.

Thus, $\delta(X)$ is a non-zero degree- $(v+1)$ polynomial, such that $\delta(\sigma)=0$. Therefore, $\tilde{\mathcal{A}}$ can use an efficient polynomial factorization algorithm to find all roots of δ, and one of those roots must be equal to σ. On step $3, \tilde{\mathcal{A}}$ finds which root is equal to σ by an exhaustive search among all roots returned in the previous step. Thus, clearly $\tilde{\mathcal{A}}$ returns the correct value of σ (and thus violates the $\Phi_{\text {rsft }}^{\xi}$-PSDL assumption) with probability $\operatorname{Succ}_{\mathcal{A}_{\text {sst }}}^{\text {sound }}\left(\Pi_{\mathrm{rsft}}\right)$. Finally, the execution time of $\tilde{\mathcal{A}}$ is clearly dominated by the execution time of $\mathcal{A}_{\text {rsft }}$ and the time to factor δ.

D Rotation Argument

Since the rotation argument uses basically the same underlying ideas as the shift argument of Sect. 5 , we will only comment on the differences between the new shift argument and the corresponding rotation argument.

In the right rotation-by- ξ argument,

$$
\begin{aligned}
F(X)= & \sum_{i=1}^{n} a_{i} X^{\lambda_{i}+\xi}-\sum_{i=1}^{n} b_{i} X^{\lambda_{i}}+r_{a} X^{v+\xi}-r_{b} X^{v} \\
& =\sum_{i=n-\xi+1}^{n} a_{i} X^{\lambda_{i}+\xi}+\sum_{i=1}^{n-\xi} a_{i} X^{\lambda_{i}+\xi}-\sum_{i=\xi+1}^{n} b_{i} X^{\lambda_{i}}-\sum_{i=1}^{\xi} b_{i} X^{\lambda_{i}}+r_{a} X^{v+\xi}-r_{b} X^{v} \\
= & \sum_{i=1}^{\xi} a_{n-\xi+i} X^{\lambda_{n-\xi+i}+\xi}+\sum_{i=1}^{n-\xi} a_{i} X^{\lambda_{i}+\xi}-\sum_{i=1}^{n-\xi} b_{\xi+i} X^{\lambda_{\xi+i}}-\sum_{i=1}^{\xi} b_{i} X^{\lambda_{i}}+r_{a} X^{v+\xi}-r_{b} X^{v} \\
= & \underbrace{\sum_{i=1}^{\xi}\left(a_{n-\xi+i}-b_{i}\right) X^{\lambda_{n-\xi+i}+\xi}+\sum_{i=1}^{n-\xi}\left(a_{i}-b_{\xi+i}\right) X^{\lambda_{i}+\xi}}_{=: F_{c o n}(X)}+ \\
& \underbrace{\sum_{i=1}^{\xi} b_{i}\left(X^{\lambda_{n-\xi+i}+\xi}-X^{\lambda_{i}}\right)+\sum_{i=1}^{n-\xi} b_{\xi+i}\left(X^{\lambda_{i}+\xi}-X^{\lambda_{\xi+i}}\right)+r_{a} X^{v+\xi}-r_{b} X^{v}}_{F_{\pi}(X)}
\end{aligned}
$$

Thus, if the prover is honest then $F(X)=F_{\pi}(X)$.
Here, Φ is different,

$$
\Phi_{\text {rot }}^{\xi}=\left\{X^{v}, X^{v+\xi}\right\} \cup\left\{X^{\lambda_{n-\xi+1}+\xi}-X^{\lambda_{i}}\right\}_{i=1}^{\xi} \cup\left\{X^{\lambda_{i}+\xi}-X^{\lambda_{i+\xi}}\right\}_{i=1}^{n-\xi} .
$$

Moreover, for the proof of soundness to go through, it is necessary that all polynomials that are present in $F_{\text {con }}(X)$ (i.e., from the set $\Phi^{*}:=\left\{X^{\lambda_{n-\xi+i}+\xi}: i \in[\xi]\right\} \cup\left\{X^{\lambda_{i}+\xi}: i \in[n-\xi]\right\}=\left\{X^{\lambda_{i}+\xi}: i \in[n]\right\}$), are mutually different and also different from every polynomial in $\Phi_{\text {rot }}^{\xi}$. For this it is sufficient that exactly the same conditions hold as in the case of the right shift-by- ξ argument, i.e., $\lambda_{i+1}>\lambda_{i}, \lambda_{j} \neq \lambda_{i}+\xi$ for $i \neq j$, and $v>\lambda_{n}+\xi$.

With this modification, one can construct a rotation argument that is very similar to Prot. 3 .

E Range Argument

Theorem 7. Let $\Gamma=\left(\mathcal{G}\right.$ com, $\left.\mathcal{C o m}, \mathcal{G}^{\text {com }}{ }_{t d}, \mathcal{C o m}_{t d}, \mathcal{O p e n}_{t d}\right)$ be the be the (Λ, v) commitment scheme in group \mathbb{G}_{1}. Let $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a progression-free tuple of integers, such that $\lambda_{i+1}>\lambda_{i}+1$ and $\lambda_{i}=\operatorname{poly}(\kappa)$. Let

$$
\begin{equation*}
\Phi:=\Phi_{\times} \cup \Phi_{\mathrm{rsft}}^{1}=\left\{X^{v}, X^{v+1}, X^{\lambda_{1}}\right\} \cup\left\{X^{\lambda_{i-1}+1}-X^{\lambda_{i}}\right\}_{i=2}^{n} \cup\left\{X^{\ell}\right\}_{\ell \in \hat{\Lambda}} . \tag{3}
\end{equation*}
$$

Let $v>\max \left(2 \lambda_{n}-\lambda_{1}, \lambda_{n}+1\right)$ be linear in $\lambda_{n}-\lambda_{1}$. The range argument of [CLZ12], when modified as in Sect. 6.1. is complete and computationally zero knowledge. Also, if $\mathcal{G}_{\text {bp }}$ is Φ-PSDL secure and the Φ-PKE assumption holds in \mathbb{G}_{1} and the Φ-PKE assumption holds in \mathbb{G}_{2}, then the range argument is computationally sound.

Proof. Similar to [CLZ12]. Note that $\lambda_{i+1}>\lambda_{i}+1$ guarantees that both $\lambda_{i+1}>\lambda_{i}$ and $\lambda_{j} \neq \lambda_{i}+1$ for $i \neq j$.

F Subset Sum

Recall $\Phi_{\Gamma}=\left(\left\{X^{v}\right\} \cup\left(X^{\lambda_{i}}\right)_{i=1}^{n}\right)$. We will need $\Phi_{\text {res }}$-PKE assumptions to guarantee soundness of the restriction argument from [Gro10], where $\Phi_{\text {res }}$ depends concretely on the restricted coordinates. Since $\Phi_{\text {res }} \subseteq \Phi_{\Gamma}$ (for example, in the following theorem, $\Phi_{\text {res }}:=\left\{X^{v}\right\} \cup\left\{X^{\lambda_{i}}\right\}_{i=2}^{n}$), we will not have to explicitly mention it.

Theorem 8. Let $\Gamma=\left(\mathcal{G}\right.$ com, $\mathcal{C o m}, \mathcal{G}$ com $\left._{t d}, \mathcal{C o m}_{t d}, \mathcal{O p e n}_{t d}\right)$ be the be the (Λ, v) commitment scheme in group \mathbb{G}_{1}. Let $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a progression-free tuple of integers, such that $\lambda_{i+1}>\lambda_{i}+1$ and $\lambda_{i}=\operatorname{poly}(\kappa)$. Let Φ be as in Eq. (3). Let $v>\max \left(2 \lambda_{n}-\lambda_{1}, \lambda_{n}+1\right)$ be linear in $\lambda_{n}-\lambda_{1}$. The new subset sum argument is perfectly complete and perfectly zero-knowledge. Also, $\mathcal{G}_{\mathrm{bp}}$ is Φ-PSDL secure and the Φ_{Γ}-PKE assumption holds in \mathbb{G}_{1} and the Φ-PKE assumption holds in \mathbb{G}_{2}, then the subset sum argument is computationally sound.

Table 2. Comparison of NIZK range arguments. Here, $\mathfrak{m} / \mathfrak{m}_{b} / \mathfrak{e} / \mathfrak{p}$ means the number of multiplications in \mathbb{Z}_{p}, bilinear-group multiplications, exponentiations and pairings. Communication is given in group elements. Here, $n \approx \log _{u} H, n_{v}=\left\lfloor\log _{2}(u-\right.$ 1) $\rfloor, h=\log _{2} H, N=r_{3}^{-1}(h)=o\left(h 2^{2 \sqrt{2 \log _{2} h}}\right)$, and $N^{*}=r_{3}^{-1}(\sqrt{h})=o\left(\sqrt{h} \cdot 2^{2 \sqrt{\log _{2} h}}\right)$.

	CRS length	Arg. length	Prover comp.	Verifier comp.
RKP09]	$\Theta(1)$	$\Theta(h)$	$\Theta(h)$	$\Theta(h)$
RKP09	$\Theta(h / \log h)$			
Chaabouni, Lipmaa, and Zhang [CLZ12]				
General	$\Theta\left(r_{3}^{-1}(n)\right)$	$5 n_{v}+40$	$\Theta\left(n^{2} n_{v}\right) \mathfrak{m}+\Theta\left(r_{3}^{-1}(n) n_{v}\right) \mathfrak{e}$	$\Theta(n) \mathfrak{e}+\left(9 n_{v}+81\right) \mathfrak{p}$
$u=2$	$\Theta(N)$	40	$\Theta\left(h^{2}\right) \mathfrak{m}+\Theta(N) \mathfrak{e}$	$\Theta(h) \mathfrak{e}+81 \mathfrak{p}$
$u=2^{\sqrt{h}}$	$\Theta\left(N^{*}\right)$	$\approx 5 \sqrt{h}+40$	$\Theta\left(h^{3 / 2}\right) \mathfrak{m}+\Theta\left(\sqrt{h} \cdot N^{*}\right) \mathfrak{e} \approx$	$\approx \Theta(\sqrt{h}) \mathfrak{e}+(9 \sqrt{h}+81) \mathfrak{p}$
$u=H$	$\Theta(1)$	$\approx 5 h+40$	$\Theta(h) \mathfrak{m}+\Theta(h) \mathfrak{e}$	$\approx \Theta(1) \mathfrak{e}+(9 h+81) \mathfrak{p}$
The current paper				
General	$\Theta\left(r_{3}^{-1}(n)\right)$	$5 n_{v}+31$	$\Theta\left(r_{3}^{-1}(n) \log r_{3}^{-1}(n) \cdot n_{v}\right) \mathfrak{m}+\Theta\left(r_{3}^{-1}(n) n_{v}\right) \mathfrak{m}_{b}$	$\left(9 n_{v}+65\right) \mathfrak{p}$
$u=2$	$\Theta(N)$	31	$\Theta(N \cdot \log N) \mathfrak{m}+\Theta(N) \mathfrak{m}_{b}$	$65 p$
$u=2^{\sqrt{h}}$	$\Theta\left(N^{*}\right)$	$\approx 5 \sqrt{h}+31$	$\Theta\left(\sqrt{h} \cdot N^{*} \cdot \log N^{*}\right) \mathfrak{m}+\Theta\left(\sqrt{h} \cdot N^{*}\right) \mathfrak{m}_{b}$	$\approx(9 \sqrt{h}+65) \mathfrak{p}$
$u=H$	$\Theta(1)$	$\approx 5 h+31$	$\Theta(h) \mathfrak{m}+\Theta(h) \mathfrak{m}_{b}$	$\approx(9 h+65) \mathfrak{p}$

Proof. Perfect completeness: Assume the prover is honest. The product arguments π_{1} and π_{3} will correctly verify due to Theorem 3 and replacing (A, B, C) in the theorem respectively to (B, B, B) and (B, S, C) in the subset sum protocol. The correctness of the non-zero argument π_{2} can be seen as follows: π_{2} shows that B commits to the same value (and uses the same randomizer) as B. It also shows that B^{*} commits to the same value as both B and \grave{B}. More precisely, the zero argument convinces the verifier that B^{*} is correctly computed from $\stackrel{\circ}{B}$. Therefore the last check shows that B does not commit to 0 , since otherwise $\hat{e}\left(B, \stackrel{\circ}{g}_{2}\right)=\hat{e}\left(B^{*}, g_{2}\right)$. The right shift-by-1 argument π_{4} will also be correctly verified due to Theorem 5 . Finally, π_{5} correctly verifies that the first element of $\boldsymbol{c}+\boldsymbol{d}$ is 0 due to the completeness of the restriction argument [Gro10].

AdAPTIVE COMPUTATIONAL SOUNDNESS: Let A be an NUPPT adversary that produces commitments B, C, D and an accepting argument $\left(B, C, D, \pi_{1}, \ldots, \pi_{5}\right)$. By the Φ-PKE assumption in \mathbb{G}_{2} and by Thm. 3 and Thm. 5] the product and shift arguments are weakly sound according to the statements of corresponding theorems. (I.e., the extractor can open the inputs to the arguments to values that satisfy required restrictions.)

By the Φ_{Γ}-PKE assumption in \mathbb{G}_{1}, there exists a non-uniform PPT extractor X_{A} that, given A 's input and access to A 's random coins, extracts all openings of B, C, and D. From the weaker version of soundness of the product and shift arguments (Theorem 3 and Theorem 5), and the soundness of the non-zero argument, we have that if $\mathcal{G}_{\mathrm{bp}}$ is Φ-PSDL secure then the following relations hold:

1. B commits to \boldsymbol{b} such that $b_{i}^{2}=b_{i} \Longleftrightarrow b_{i} \in\{0,1\}$
2. $\boldsymbol{b} \neq 0$, so at least one of the b_{i} 's is 1 .
3. C commits to \boldsymbol{c} such that $c_{i}=b_{i} s_{i}$.
4. D commits to \boldsymbol{d} such that $d_{i}=\sum_{j>i} c_{j}$.

Up to this point, it has been verified that B is a commitment of a non-zero vector of boolean elements, and hence C is a commitment of $\boldsymbol{c}=\left(b_{i} s_{i}\right)$ where each element is either 0 or s_{i}, and at least one of the elements is $c_{i}=$ s_{i}. Now since D is verified to be the scan of c, we have that the first element of $\boldsymbol{c}+\boldsymbol{d}$ is a sum $\sum_{i>1} b_{i} s_{i}$. From the $\Phi_{\text {res }}$-PKE assumption that guarantees the soundness of the restriction argument (Theorem 1 and Theorem 2 of [Gro10]), we have that a correct verification implies that $(\boldsymbol{c}+\boldsymbol{d})_{1}=0$, so A has indeed committed to a correct solution of subset sum.

Perfect zero knowledge: We construct a simulator $\mathcal{S}=\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$. \mathcal{S}_{1} will create a correctly formed CRS together with a simulation trapdoor $t d=\sigma$. The adversary then outputs a correct statement C_{S} together with a witness w_{S}. The simulator \mathcal{S}_{2} creates a commitment to $\boldsymbol{b}=(1,1, \ldots, 1)$ and commitments to the corresponding vectors $\boldsymbol{c}, \boldsymbol{d}$. Due to the knowledge of trapdoor $t d$ and the commitment scheme being computationally (not perfect) binding, all the product, scan, non-zero and restriction arguments can be simulated correctly. This simulated NIZK argument ψ^{\prime} is perfectly indistinguishable from the real argument ψ.

G Decision Knapsack

It is clear from the description of this argument that it works correctly. The decision knapsack argument is clearly perfectly zero knowledge and computationally sound under appropriate assumptions. The concrete complexity of the decision knapsack argument depends on both how one defines m in Groth's balancing technique and u in the range argument.

Theorem 9. Let $\Gamma=\left(\mathcal{G}\right.$ com, $\left.\mathcal{C o m}, \mathcal{G}^{\text {com }}{ }_{t d}, \mathcal{C o m}_{t d}, \mathcal{O p e n}_{t d}\right)$ be the be the (Λ, v) commitment scheme in group \mathbb{G}_{1}. Let $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a progression-free tuple of integers, such that $\lambda_{i+1}>\lambda_{i}+1$ and $\lambda_{i}=\operatorname{poly}(\kappa)$. Let Φ be as in Eq. (3). Let $v>\max \left(2 \lambda_{n}-\lambda_{1}, \lambda_{n}+1\right)$ be linear in $\lambda_{n}-\lambda_{1}$. The decision knapsack protocol described by Alg. 5 is perfectly complete and perfectly zero-knowledge. Also, if $\mathcal{G}_{\mathrm{bp}}$ is Φ-PSDL secure and the Φ_{Γ}-PKE assumption holds in \mathbb{G}_{1} and the Φ-PKE assumption holds in \mathbb{G}_{2}, then the decision knapsack protocol is computationally sound.

```
Let \(F\) be a commitment of \(\boldsymbol{f}=(1,0, \ldots, 0,0)\) with randomness 0 ;
Let \(t_{i}=1\) iff \(i \in \mathcal{T}\);
Generate a commitment \(T\) of \(\boldsymbol{t}\);
Prove that \(T\) is Boolean by using a product argument \(\pi_{1}\);
Generate a commitment \(W_{T}\) of \(\boldsymbol{w}_{\boldsymbol{T}}=\left(w_{1} t_{1}, \ldots, w_{n} t_{n}\right)\);
Prove that \(W_{T}\) was computed correctly by using a product argument \(\pi_{2}\);
Generate a scan \(A\) of \(W_{T}, a_{i}=\sum_{j>i} w_{j} t_{j}\);
Prove that \(A\) was computed correctly by using a scan argument \(\pi_{3}\);
Generate a commitment \(C\) of \(\left(\sum_{i=1}^{n} w_{i} t_{i}, 0, \ldots, 0\right)\);
Prove that \(C\) was created correctly ( \(\boldsymbol{c}\) is a Hadamard product of \(\boldsymbol{f}\) and \(\boldsymbol{w}_{\boldsymbol{T}}+\boldsymbol{a}\) ) by using a product argument \(\pi_{4}\);
Generate a commitment \(B_{T}\) of \(\boldsymbol{b}_{\boldsymbol{T}}=\left(b_{1} t_{1}, \ldots, b_{n} t_{n}\right)\);
Prove that \(B_{T}\) was computed correctly by using a product argument \(\pi_{5}\);
Generate a scan \(D\) of \(B_{T}, d_{i}=\sum_{j>i} b_{j} t_{j}\);
Prove that \(D\) was computed correctly by using a scan argument \(\pi_{6}\);
Generate a commitment \(E\) of \(\left(\sum_{i=1}^{n} b_{i} t_{i}, 0, \ldots, 0\right)\);
Prove that \(E\) was created correctly ( \(\boldsymbol{e}\) is a Hadamard product of \(\boldsymbol{f}\) and \(\boldsymbol{b}_{\boldsymbol{T}}+\boldsymbol{d}\) ) by using a product argument \(\pi_{7}\);
Prove that the first element of \(C\) is \(\leq W\) by using a range argument \(\pi_{8}\);
Prove that the first element of \(E\) is \(\geq B\) by using a range argument \(\pi_{9}\);
The whole argument is ( \(T, W_{T}, A, C, B_{T}, D, E, \pi_{1}, \ldots, \pi_{9}\) );
```

Algorithm 5: The decision knapsack argument

Proof. Perfect completeness: Assume the prover is honest. The product arguments $\pi_{1}, \pi_{2}, \pi_{4}, \pi_{5}, \pi_{7}$ will correctly verify due to Theorem 3 and replacing (A, B, C) in the theorem respectively to $(T, T, T),\left(T, \boldsymbol{W}, W_{T}\right)$, $(A, F, C),\left(T, \boldsymbol{B}, B_{T}\right)$ and (D, F, E) in the decision knapsack protocol. Here, $F=\{1,0, \cdots, 0\}$. The right shift-by-1 arguments π_{3}, π_{6} will also be correctly verified due to Theorem 5 . Finally, π_{8} and π_{9} correctly verifies from the completeness of the range argument.

ADAPTIVE COMPUTATIONAL SOUNDNESS: Let A be a non-uniform PPT adversary that produces commitments B, C, D and an accepting NIZK argument $\left(T, W_{T}, A, C, B_{T}, D, E, \pi_{1}, \cdots, \pi_{9}\right)$. By the Φ-PKE assumption in \mathbb{G}_{2} and by Thm. 3 and Thm. 5 , the product and shift arguments are weakly sound according to the statements of corresponding theorems. (That is, the extractor can open the inputs to the arguments to values that satisfy required restrictions.) By Thm. 7 t the range argument is computationally sound.

By the Φ_{Γ}-PKE assumption in \mathbb{G}_{1}, there exists a non-uniform PPT extractor X_{A} that, given A 's input and access to A 's random coins, extracts all openings of $T, W_{T}, A, C, B_{T}, D, E$, and F. From the weaker version of soundness of the product and shift arguments (Thm. 3 and Thm. 5], and the soundness of the non-zero argument (Thm. 7), we have that the following relations hold:

1. T commits to \boldsymbol{t} such that $t_{i}^{2}=t_{i} \Longleftrightarrow t_{i} \in\{0,1\}$,
2. W_{T} commits to $\boldsymbol{w}_{\boldsymbol{T}}$ such that $\left(w_{T}\right)_{i}=w_{i} t_{i}$,
3. A commits to \boldsymbol{a} such that $a_{i}=\sum_{j>i} w_{j} t_{j}$,
4. C commits to the Hadamard product \boldsymbol{c} of \boldsymbol{f} and $\boldsymbol{w}_{\boldsymbol{T}}+\boldsymbol{a}$, so $\boldsymbol{c}=\left(1 \cdot\left(\boldsymbol{w}_{\boldsymbol{T}}+\boldsymbol{a}\right)_{1}, 0 \cdot\left(\boldsymbol{w}_{\boldsymbol{T}}+\boldsymbol{a}\right)_{2}, \ldots, 0\right.$. $\left.\left(\boldsymbol{w}_{\boldsymbol{T}}+\boldsymbol{a}\right)_{n}\right)=\left(\sum_{i=1}^{n} w_{i} t_{i}, 0, \cdots, 0\right)$,
5. B_{T} commits to $\boldsymbol{b}_{\boldsymbol{T}}$ such that $\left(b_{T}\right)_{i}=b_{i} t_{i}$,
6. D commits to \boldsymbol{d} such that $d_{i}=\sum_{j>i} b_{j} t_{j}$,
7. E commits to the Hadamard product \boldsymbol{e} of \boldsymbol{f} and $\boldsymbol{b}_{\boldsymbol{T}}+\boldsymbol{d}$, so $\boldsymbol{e}=\left(1 \cdot\left(\boldsymbol{b}_{\boldsymbol{T}}+\boldsymbol{d}\right)_{1}, 0 \cdot\left(\boldsymbol{b}_{\boldsymbol{T}}+\boldsymbol{d}\right)_{2}, \cdots, 0 \cdot\left(\boldsymbol{b}_{\boldsymbol{T}}+\right.\right.$ $\left.\boldsymbol{d})_{n}\right)=\left(\sum_{i=1}^{n} b_{i} t_{i}, 0, \cdots, 0\right)$.
From the soundness of the range argument, a correct verification of π_{8} will imply that $\boldsymbol{c}_{1} \in[0, B]$ while a correct verification of π_{9} will imply that $\boldsymbol{e}_{1} \in\left[E, 2^{\kappa}\right]$ for some κ.

PERFECT ZERO KNOWLEDGE: We can construct a simulator $\mathcal{S}=\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ analogous to the simulator for subset sum.

[^0]: ${ }^{3}$ For an explanation and motivation of weak soundness, we refer the reader to [Gro10]Lip12]

[^1]: ${ }^{4}$ The range argument from [CLZ12] only uses the permutation argument with one fixed permutation (rotation), and thus the value $\left(T^{*}, \hat{T}^{*}, T_{2}^{*}\right)$, that corresponds to this concrete permutation, can be put to the CRS. After this small modification, the verifier's computational complexity actually does not increase compared to what was claimed in [CLZ12]. Since [CLZ12] itself did not mention this, we consider it to be an additional small contribution of the current paper.

