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Abstract

Differential fault analysis (DFA) poses a significant threat to Advanced Encryption Stan-
dard (AES). It has been demonstrated that DFA can use only a single faulty ciphertext to
reveal the secret key of AES in an average of 230 computation. Traditionally, concurrent error
detection (CED) is used to protect AES against DFA. However, we emphasize that conven-
tional CED assumes a uniform distribution of faults, which is not a valid assumption in the
context of DFA. In contrast, we show practical examples which highlight that an attacker
can inject specific and exploitable faults, thus threatening existing CED. This paper brings
to the surface a new CED approach for cryptography, aimed at providing provable security
by detecting all possible DFA-exploitable faults, which is a small subset of the entire fault
space. We analyze the fault coverage of conventional CED against DFA-exploitable faults,
and we find that the fault coverage of most of these techniques are significantly lower than
the one they claimed. We stress that for security, it is imperative that CED should provide
100% fault coverage for DFA-exploitable faults. We further propose an invariance-based CED
which provides 100% provable security against all known DFA of AES.

Keywords: Differential Fault Analysis, Concurrent Error Detection

1 Introduction

In addressing the security requirements of various information disciplines, e.g., networking, telecom-
munications, database systems, and mobile applications, applied cryptography has recently gained
immense importance. To satisfy the high throughput requirements of such applications, the cryp-
tographic systems are implemented either as cryptographic accelerators (ASIC and FPGA imple-
mentations), or as cryptographic libraries (optimized software routines). The complexity of these
hardware and software implementations is raising concerns regarding their security and reliability.

Advanced Encryption Standard (AES) is the standard secret key algorithm [32]. To provide
high security features, AES implementations have been employed in an increasing number of
consumer products with dedicated hardware, e.g., smart cards, cell phones, servers, FPGAs, and
TV set-top boxes. Although AES is difficult to break mathematically, these hardware circuits,
unless carefully designed, may result in security vulnerabilities.
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Because the AES algorithm is public, it is subject to continuous, vigilant, expert cryptanalysis.
To obtain the secret key, which allows one to recover the encrypted information, an attacker
must perform a brute force analysis that requires a prohibitively large number of experiments.
Some of the attacks includes linear cryptanalysis differential cryptanalysis truncated differentials
square attack interpolation attack algebraic attack and hybrid attack [17]. Although these purely
mathematical attacks reduce the key search space, they cannot break AES [17].

It is imperative that hardware and software implementations of cryptographic algorithms
should prevent not only purely mathematical cryptanalysis, but also leakage of secret keys due to
deliberately injected faults. An attacker can inject malicious faults into a cryptographic device.
By building correlations between the non-faulty and corresponding faulty outputs, an attacker
is able to drastically reduces the key space needed to brute force the secret key. This is known
as Differential fault analysis (DFA). Radiation, heat, incorrect voltages, and atypical clock rates
all cause cryptographic devices to malfunction [5]. DFA of the Data Encryption Standard (DES)
and other symmetric block ciphers are demonstrated in [9]. Later, DFA of AES has been studied
extensively [35, 34, 13, 10, 26, 31, 36, 40]. DFA has evolved into an effective attack and needs to
be carefully analyzed and suitably countered.

In recent years, DFA has been demonstrated to be practical, inexpensive, and dangerous [12, 5,
6]. Optical fault injection attack employed a $30 camera flashgun and a microscope to demonstrate
its effectiveness on widely used smart cards [15]. Other inexpensive, controlled fault injection
methods include varying the supply voltage, the clock frequency, and the operating temperature,
and introducing glitches in the clock signal and the supply voltage [6]. Glitches can be introduced in
the clock signal and supply voltage at the desired clock cycle, therefore enabling fault injections to
disrupt the correct function of cryptographic systems [38]. The success of several DFA of AES has
been achieved by injecting clock glitches [36, 4]; such shortening causes multiple errors corrupting
a single byte or multiple bytes. An attacker is able to inject transient faults by lowering the supply
voltage, also known as underpowering. Because this attack does not require precise timing, the
faults tend to occur uniformly throughout the computation, thus, requiring the attacker to discard
those faulty ciphertexts that are useless. This methodology is reported to be effective on ASIC
implementations of AES [37, 7], as well as FPGA implementation [21].

Once a DFA attack has been developed and made public, its application does not always re-
quire high technical skills and/or expensive equipment. Therefore, incorporating countermeasures
against DFA into cryptographic devices is necessary for security purposes. National Institute of
Standards and Technology (NIST) formulates security requirements for cryptographic modules in
FIPS 140 [33]. It defines four levels of security. At security level 4, the highest, the protection
circuitry shall either (1) shut down the module to prevent further operation or (2) immediately
zeroize all plaintexts and secret keys. Because faults can be detected using concurrent error de-
tection (CED) [22], CED is used as a major countermeasure for DFA attacks. Traditionally, fault
coverage indicates the number of random faults being detected. It is also used to show the security
provided by CED against DFA.

Until now, CED for AES has been extension of conventional techniques [41, 8, 20, 27, 18, 11,
14, 16, 19]. Several researchers have compared the effectiveness of CED [25, 24]; however, they
still focus more on reliability, and there is little discussion on the fault models the attacker actu-
ally uses. Whereas conventional CED targets randomly injected single bit transient,
intermittent, and permanent faults, DFA uses a small class of single bit, deliberately
injected multiple bit and byte transient faults at specific locations in the design and
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in specific instances during its operation. At first glance, conventional CED may appear to
target DFA-exploitable faults as well. However, this is not the case. At best, they provide approx-
imate fault coverage against naturally occurring multiple bit and byte faults1. These techniques
typically miss the carefully constructed and deliberately injected multiple bit and byte faults. For
example, while parity-based CEDs detect all random single bit faults that affect the parity, they
can miss all carefully crafted multiple bit and multiple byte faults that are vulnerable to DFA.

1.1 Contributions

We analyze all DFA of AES and the security of four different types of CED. Our contributions are
as follows:

• We propose the need for special CED for DFA of AES, in contrast to conventional CED.

• We analyze all DFA of AES and develop the inter-relationships of the DFA-exploitable faults.

• We analyze various CEDs for their strengths against DFA of AES and present counter-
examples of DFA-exploitable faults which are missed by these CEDs.

• We present an invariance-based CED which is capable to detect provably all DFA-exploitable
faults in 100% of the cases.

The rest of the paper is organized as follows: In Section 2, we introduce the AES algorithm,
DFA attack procedure, and conventional CEDs. In Section 3, we summarize the fault models in
previous DFA of AES and find out their internal relationships. In Section 4.1, we analyze the
security of conventional CEDs against DFA. In Section 5, we propose the invariance-based CED
and analyze its strength against DFA. In Section 6, we conclude the paper.

2 Preliminaries

2.1 AES Algorithm

AES is an iterative block cipher with key lengths of 128, 192, and 256. We consider 128-bit key
for AES, but the conclusions apply to the other key sizes. AES encrypts a 128-bit input plaintext
into a 128-bit output ciphertext with a 128-bit user key using 10 nearly identical rounds plus
an initial special round (round 0). One AES encryption round consists of SubBytes, ShiftRows,
MixColumns, and AddRoundKey denoted by B, S, M , and A, respectively, as shown in Figure
1. In round 0, only AddRoundKey is performed and in round 10, MixColumns is not performed.
Each operation in every round acts on a 128-bit input state, where each state element is a byte
in GF (28). Each byte is denoted by sr,c (0 ≤ r, c ≤ 3) indicating that this byte is in row r and
column c in the state matrix.

1The fault coverage is estimated by simulating only a small subset of randomly injected multiple bit and byte
faults.
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Figure 1: One AES encryption round.

S =


s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

 = [sr,c]
3
r,c=0 (1)

In SubBytes, all bytes are processed separately by 16 S-boxes (SBs in Figure 1). Each SB
performs a nonlinear transformation of the input byte. If X is the input, the output is:

Y = B(X) = [xr,c]
3
r,c=0 (2)

In ShiftRows, the rows of the state are shifted cyclically byte-wise using a different offset for
each row. Row 0 is not shifted, while rows 1, 2, and 3 are cyclically shifted to the left by one, two,
and three bytes respectively. The resulting output is:

Z = S(Y ) =


y0,0 y0,1 y0,2 y0,3
y1,1 y1,2 y1,3 y1,0
y2,2 y2,3 y2,0 y2,1
y3,3 y3,0 y3,1 y3,2

 = [yr,(r+c) mod 4]
3
r,c=0 = [zr,c]

3
r,c=0 (3)

In MixColumns, the output state is obtained by multiplying the output of ShiftRows by a
constant matrix. The resulting output is:

U = M(Z) = [ur,c]
3
r,c=0 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




z0,0 z0,1 z0,2 z0,3
z1,0 z1,1 z1,2 z1,3
z2,0 z2,1 z2,2 z2,3
z3,0 z3,1 z3,2 z3,3

 (4)

In AddRoundKey, the round key K = [kr,c]
3
r,c=0 is added (modulo-2) to the 128-bit state U .

The resulting round output is:

V = A(K,U) = [kr,c]
3
r,c=0 + [ur,c]

3
r,c=0 = [vr,c]

3
r,c=0 (5)
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Figure 2: Three steps of DFA.

2.2 Differential Fault Analysis

DFA is applicable to almost any secret key cryptosystem proposed so far in the open literature.
DFA has been used to attack many secret key cryptosystems, including DES, IDEA, and RC5 [9].

There has been considerable number of work about DFA of AES. Some of the DFA proposals
are based on theoretical model [10, 35, 13, 34, 26, 31, 40, 36], while others launched successful
attacks on ASIC and FPGA devices using previously proposed theoretical models [37, 21, 7, 2, 36].
The key idea of DFA is composed of three steps as shown in Figure 2. (1) Run the cryptographic
algorithm and obtain non-faulty ciphertexts. (2) Inject faults, i.e., unexpected environmental
conditions into cryptographic implementations, rerun the algorithm with the same input, and
obtain faulty ciphertexts (3) Analyze relationship between the non-faulty and faulty ciphertexts
to significantly reduce the key search space.

Practicality of DFA depends on the underlying fault model and the number of faulty ciphertext
pairs needed. In Section 3, we will analyze all the fault models DFA uses and point out their
relationships.

2.3 Concurrent Error Detection

Previous work on CEDs can be classified into four types of redundancy: information, time, hard-
ware, and hybrid redundancy.

2.3.1 Information Redundancy

Many CEDs are based on error detecting codes. In these techniques, the input message is encoded
to generate a few check bits, and these bits are propagated along with the input message. The
information is validated when the output message is generated. Three information redundancy
techniques are discussed below:

Parity-1: [41] uses only single bit parity for the entire 128-bit output, and the parity bit is
checked once for the entire round.

Parity-16: Another category of parity technique is proposed in [8, 29, 28]. In these tech-
niques, one parity bit is generated for each byte of the input. While [8] and [29] apply to S-box
implementation using look-up table (LUT) and finite field arithmetic, respectively. [28] gives a
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Figure 3: Four different CED techniques. (a) Information redundancy. (b) Time redundancy. (c)
Hardware redundancy. (d) Hybrid redundancy.

general parity formation for all S-box implementations. While gaining higher fault coverage, the
area overhead of Parity-16 is more than Parity-1.

Robust Code: The parity code suffers from nonuniform fault coverage [18], e.g., parity-1
cannot detect even number of faulty bits, and parity-16 cannot detect even number of faulty bits
in each byte. To address the limitation of parity code, A systematic robust code is proposed [18].
It provides uniform fault coverage for all types of faults. The key idea is to construct a prediction
circuit at the input of the round to predict nonlinear property of the output of the round. There
are three components at the round output to extract the nonlinear property of the output, the
compressor, linear compressor, and the cubic function. Each byte of the compressor output is L(j)
is equivalent to the componentwise XOR of four bytes of the same column. The prediction circuit
is composed of a linear predictor, linear compressor, and a cubic function, each of which is the
next stage of the previous one. The linear predictor will take the round key and the round input
and generate a 32-bit output. Linear compressor and cubic function will reduce the 32-bit data
into 28 bits. The output of the linear predictor Ll(j) is the same as the output of the compressor.

2.3.2 Time Redundancy

In time redundancy, the function is computed twice on the same input, and the results are com-
pared with each other as shown in Figure 3(b). One redundant encryption cycle is required to
check each round, and this technique cannot detect permanent faults. A variation of the time
redundancy is proposed in [23]. In this method, the function is computed on both clock edges to
speed up the computation.

2.3.3 Hardware Redundancy

In hardware redundancy methods, the circuit is duplicated. As shown in Figure 3(c), both original
and duplicated circuits are fed with the same inputs and the outputs are compared with each other
[16].
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Table 1: A summary of DFA of AES. ? CT = ciphertext. † Only one byte in a word is faulty. ‡
Two or three bytes in a word are faulty. 3 All four bytes in a word are faulty.

Fault Model No. of Faulty CTs ? Key Search Space Experiment

3.1.1 Faults are injected in any location and any round

Random 2128 2128 N/A

3.1.2 Faults are injected in AddRoundKey in round 0

Single bit [10] 128 1 No

3.1.3 Faults are injected between the output of 7th and the input of 8th round MixColumns

Single byte
[35] 2 240 underpowering [37, 21]
[31] 2 232 No
[40] 1 28 No

Multiple byte

DM0 [36] 1 232

overclocking [36]
DM1 [36] 1 264

DM2 [36] 1 296

DM3 [36] 2128 2128

3.1.4 Faults are injected between the output of 8th and the input of 9th round MixColumns

Single bit [13] ≈ 50 1 overclocking [2]

Single byte
[34] ≈ 40 1 underpowering [7]
[26]† 6 1 No

Multiple byte
DM0 [26]‡ 6 1 No
DM0 [26]3 1500 1 No

2.3.4 Hybrid Redundancy

In [19], the authors consider a hybrid CED method in which at the operation, round, and algorithm
levels for AES. A single operation, a round, or the entire encryption blocks are followed by their
inverses. The detail is shown in Figure 3(d). In this technique, the results are compared with the
original input. Although most of the faults are detected by this technique, both encryption and
decryption blocks have to be added to the chip. Therefore, this technique suffers from more than
100% overhead.

3 DFA and Associated Fault Models

In this section, we classify the fault models used in DFA and analyze their relationship. We also
conduct a practical fault attack to demonstrate the practicality of the most general fault model
in [36].

3.1 DFA of AES: Fault Models

DFA exploits a small subspace of all possible faults. Moreover, DFA-exploitable faults are transient
and mostly multiple bit and byte faults. Transient faults can leak the information of the key in a
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stealthy way, because their presence is temporary. This implies that fault models such as stuck at
faults, are not relevant for DFA. Further, the fault injection techniques are not random, rather,
they are biased depending on the region in which the DFA works. Hence, it is important to
develop suitable CED with this perspective and to prove formally that all DFA-exploitable faults
are detectable. Table 1 is a summary of the published DFA of AES. We classify the DFA fault
models in four scenarios by the location and round in which faults are injected. Faults can be
injected either (I) in any location and any round, (II) in AddRoundKey in round 0, (III) between
the output of 7th and the input of 8th round MixColumns, or (IV) between the output of 8th and
the input of 9th round MixColumns. In each scenario, we analyze the (A) fault models, (B) number
of faulty ciphertexts needed, (C) the key search space for brute force after obtaining the faulty
outputs to recover the secret, and (D) the experimental validation of the attack. The considered
transient faults are categorized into single bit, single byte, and multiple byte transient faults.

3.1.1 Faults Are Injected in Any Location and Any Round

In the first fault model in Table 1, the attacker injects faults in any random location and any
random round. These faults are equivalent to naturally occurring faults. In this case, the attacker
will not gain any useful information. Even if he gets all possible 2128 faulty ciphertexts, he cannot
reduce the key search space. Because the key search space is 2128, this fault model is impractical
for the attacker.

3.1.2 Faults Are Injected in AddRoundKey in Round 0

The only fault model an attacker uses in this scenario is single bit transient fault.
Single bit transient fault: In [10], the attacker is able to set or reset every bit of the first

round key one bit at a time. This attack recovers the entire key using 128 faulty ciphertexts with
each faulty ciphertext uniquely revealing one key bit. Hence, the key search space required to
reveal the key is one. However, as transistor size scales, this attack becomes impractical even with
expensive equipments such as lasers to inject the faults, because it requires precise control of the
fault location [1].

3.1.3 Faults Are Injected between the Output of 7th and the Input of 8th MixColumns

The attacker uses various fault models and analysis in this scenario including single and multiple
byte fault.

Single byte transient fault: The three different attacks using this fault model are shown
in Table 1. In the first DFA [35], two faulty ciphertexts are needed to obtain the key. This fault
model is experimentally verified in [37, 21]. In [37], underpowering is used to inject faults into a
smart card with AES ASIC implementation. Although no more than 16% of the injected faults
fall into the single byte fault category, only 13 faulty ciphertexts are needed to obtain the key. In
[21], the authors underpower an AES FPGA implementation to inject faults with a probability of
40% for single byte fault injection.

In the second DFA [31], two faulty ciphertexts are also needed to reveal the key. Because this
attack exploits the faults in a different way, the key search space is 232.

The attack in [40] is similar to [31], but further improved. For the same fault model, the key
search space is reduced to only 28 with a single faulty ciphertext.
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Figure 4: DFA and diagonal fault models. The first state matrix is an example of DM0. Only
diagonal D0 is affected by a fault. The second state matrix is an example of DM1. Both D0

and D3 are corrupted by a fault. The third state matrix is an example of DM2. Three diagonals
D0, D1, and D2 are corrupted by a fault. The last state matrix is an example of DM3, all four
diagonals are corrupted in the fourth state matrix.

Multiple byte transient fault: [36] proposes a general byte fault model called diagonal
fault model. The authors divide the AES state matrix into four different diagonals and each
diagonal has four bytes. A diagonal is a set of four bytes of the AES state matrix, where the ith

diagonal is defined as follows:

Di = {sj,(j+i)mod4 ; 0 ≤ j < 4} (6)

We obtain the following four diagonals.

D0 = (s0,0, s1,1, s2,2, s3,3), D1 = (s0,1, s1,2, s2,3, s3,0),

D2 = (s0,2, s1,3, s2,0, s3,1), D3 = (s0,3, s1,0, s2,1, s3,2)

The diagonal fault model is classified into four different cases, diagonal fault models 0, 1, 2, and
3, denoted as DM0, DM1, DM2, and DM3. As shown in Figure 4, for DM0, faults can be injected
in one of the diagonals; D0, D1, D2, or D3. For DM1, faults can be injected in at most two
diagonals. For DM2, faults can be injected in at most three diagonals. Finally, for DM3, faults
can be injected in at most four diagonals. For each of the four different diagonals affected, faults
propagate to different columns as shown in Figure 5. Therefore, if faults are injected into one, two,
or three diagonals, the key search space is reduced to 232, 264, or 296, respectively. The authors
also validate the diagonal fault model with a practical fault attack on AES FPGA implementation
using overclocking. In Section 3.3, we also perform a fault injection experiment to validate this
general fault model.

3.1.4 Faults Are Injected between the Output of 8th and the Input of 9th MixColumns

Single bit transient fault: In [13], the attacker needs only three faulty ciphertexts to succeed
with a probability of 97%. The key search space is trivial. [2] validates this single bit attack on a
Xilinx 3AN FPGA using overclocking. It is reported that the success rate of injecting this kind
of fault is 90%.

Single byte transient fault: In [34], the authors use a byte level fault model. They are
able to obtain the key with 40 faulty ciphertexts, and the key is uniquely revealed. This model is
used in a successful attack by underpowering a 65nm ASIC chip [7]. In this attack, 39881 faulty
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Figure 5: Fault propagation of diagonal faults. The upper row shows the diagonals that faults
are injected in. The lower row shows the corresponding columns being affected.

ciphertexts are collected during the 10 experiments; 30386 of them were actually the outcome of
a single byte fault. Thus, it has a successful injection rate of 76%.

Multiple byte transient fault: [26] presents a DFA of AES when the faults are injected in a
32-bit word. The authors propose two fault models. In the first model, they assume that at least
one of the bytes among the four targeted bytes is non-faulty. This means the number of faulty
bytes can be one, two, or three bytes. So this fault model includes the single byte fault model. If
only one single byte fault is injected, six faulty ciphertexts are required to reveal the secret key.
Whereas the second fault model requires around 1500 faulty ciphertexts. These faulty ciphertexts
derive the entire key at constant time. Though the second fault model is much more general, the
amount of faulty ciphertexts it requires is very large, it is difficult for the attacker to get all the
ciphertexts without triggering the CED alarm.

In summary, the attacker can obtain the secret key with one or two faulty ciphertexts when
single or multiple byte transient faults are injected. Therefore, the CED should have 100%
fault coverage, because even a single missed fault can be sufficient to leak the key,
rendering the CED useless.

3.2 Relationships between the Discussed Fault Models

As previously mentioned, DFA of AES does not exploit all possible faults. Rather, it exploits
a subset of faults, namely single bit, single byte, and multiple byte transient faults injected in
selected locations and rounds. Therefore, understanding the relationships between various fault
models is the basis for analyzing the security of conventional and new CED as well as for designing
new DFA-specific CED. Because DFA of AES targets the last few rounds2, we synthesize the
relationships between different fault models based on the locations and rounds they are injected
in. The goal is to identify the fault space for which 100% fault coverage is necessary.

3.2.1 Faults Are Injected in Any Location and Any Round

In this fault model, the attacker cannot derive any useful information from the faults.

2In general, the practical faults used in DFA target the 7th, 8th, and 9th rounds.
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Figure 6: Relationships between DFA fault models when faults are injected between (a) the
output of 7th and the input of 8th round MixColumns, (b) output of 8th and the input of 9th round
MixColumns.

3.2.2 Faults Are Injected in AddRoundKey in Round 0

As we mentioned previously, this attack uses a very restricted fault model, and it is not practical.
Thus, this fault model is also not useful for the attacker.

3.2.3 Faults Are Injected between the Output of 7th and the Input of 8th MixColumns

Figure 6a summarizes the relationships between the DFA-exploitable fault models by injecting
faults in the output of 7th round MixColumns and the input of 8th round MixColumns.

Single byte faults are, in turn, a subset of the DM0 faults which, in turn, are a subset of the
DM1 faults, and so on. The relationship is summarized in (7).

Single Byte ⊂ DM0 ⊂ DM1 ⊂ DM2 ⊂ DM3 (7)

A more careful look reveals that two byte faults can be either DM0 or DM1 but not DM0.
Moreover, three byte faults can be either DM0, DM1, or DM2. Four byte faults can be either
DM0, DM1, DM2, or DM3. Similarly, the relationship between faulty bytes from 5 to 12 and
diagonal fault models are summarized in Figure 6(a).

Such an analysis of the fault classes will enable one to clearly determine the capabilities of a
given CED technique. As shown in Figure 6(a), DM3 includes all possible byte transient faults.
The attacks proposed in [36] show that DFA based on DM0, DM1, and DM2 leads to the successful
retrieval of the key. Remember that DM3 faults are the universe of all possible transient faults
injected in the selected AES round. These faults spread across all four diagonals of the AES
state and hence, are not vulnerable to DFA as mentioned in Section 3.1.3. These fault models
are multiple byte transient faults and thus, attacks based on these models are more feasible than
those based on single byte transient faults, which are a subset of the model DM0. The considered
fault models are vulnerable to DFA in the following order: (i) the DM0 type faults reduce the
key space of AES to 232, (ii) the DM1 type faults reduce the key space to 264, and (iii) the DM2
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type faults reduce the key space to 296 after a single fault induction. The more encompassing the
fault model is, the more realistic the attacks based on it are. Consider the cardinalities of the
identified fault classes, the number of possible DM0, DM1, and DM2 faults are 234, 3 × 265, and
298, respectively. The number of possible DM3 faults is 2128 in the state matrix3. If all faults are
equiprobable during injection (this is the perspective of conventional fault injection and detection
studies), the probability of injecting DM0, DM1, and DM2 faults is negligible. The probability
that a randomly injected fault is a DM0, DM1, or DM2 type fault is 2−94, 1

3
× 2−63, and 2−30,

respectively. However, we stress that a DFA attacker does not use uniformly distributed fault
injection. Rather, he characterizes the device and uses specific fault injections which results in
high success rates. We prove this concept in our experiment in Section 3.3. Thus, it is important
to develop error detection techniques that consider this bias towards DFA-exploitable faults. This
is not the case with conventional CED techniques. Conventional CED techniques, such as parity,
do not provide a 100% fault coverage for the DFA-exploitable faults injected between the 7th− 9th

rounds. This will be described in Section 4.

3.2.4 Faults Are Injected between the Output of 8th and the Input of 9th MixColumns

Figure 6(b) summarizes the relationships between the DFA-exploitable fault models by injecting
faults in the output of 8th and the input of 9th round MixColumns. Single bit transient faults are
a subset of single byte faults. Single byte faults are again a subset of DM0 faults. Two and three
byte faults are a subset of DM0 faults. Again, attacks based on multiple byte faults are more
feasible than those based on single bit and single byte faults.

Until now, we highlighted the importance of understanding the fault models for
AES. As a designer, we must develop countermeasures for these fault models which, thus, are
actually exploitable in practical DFA. We point out that unlike conventional error detection ar-
chitectures, DFA countermeasures must focus on the smaller class of faults and leading to oppor-
tunities for 100% provable coverage with respect to the targeted DFA. In the following section, we
present a case study of fault injection through a simple laboratory set-up.

3.3 Practicality of DFA

Some fault attacks can be realized by using simple laboratory set-ups such as the one shown in
Figure 8a. The set-up is comprised of a function generator hooked up to a Xilinx Spartan-3E
FPGA device on which the AES runs. The design operates correctly when using the Slow Clock
with a clock frequency of 72MHz. When the clock is switched to the Fast Clock, which has a
clock frequency of 85-120MHz, at the beginning of the 8th round encryption, it creates critical
path violations inside the circuit.

We injected several faults into the AES by overclocking the system in increments of 1MHz.
For each overclocking step, we ran 512 encryptions and collected the samples through Xilinx
ChipScope Pro [42]. The distribution of the observed faults is shown in Figure 8(a). When the
system is only slightly overclocked, i.e., when the Fast Clock is in the range of 85-92MHz, we see
that DM0 faults are injected. When the frequency of the Fast Clock is gradually increased in the

3The number of faults is calculated based on a simple assumption that the faults are injected at the input to the
round. If the faults can be injected anywhere in the AES round, all of these numbers can be proportionally scaled.
Further, this is ignoring all permanent and intermittent faults as they are not exploitable from a DFA perspective.
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Figure 7: Fault injection set-up to launch faults according to the diagonal fault models.
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Figure 8: Fault injection results. (a) Number of DM0, DM1, DM2, and DM3 faults as a function
of the overclocking frequency. (b) Number of different DM0, DM1, DM2, and DM3 faults as a
function of the overclocking frequency.

range of 98-108MHz, DM1 faults are injected. In the range of 109-110MHz, we observe DM2 faults
being injected. We can also see that there are clearly identifiable regions where DM0, DM1, or
DM2 faults can be injected. If the clock frequency is beyond 111MHz, the probability of injecting
the DM3 faults increases, and all four diagonals will be affected.

The number of different types of faults is shown in Figure 8(b). This figure shows fault
injections succeed within the 512 fault injections and the type of faults injected. and it shows
that the fault injections have a deterministic nature. When the Fast Clock is in the range of 85-
92MHz, the injected DM0 faults are the same. When the frequency of the Fast Clock is gradually
increased in the range of 93-97MHz, DM0 and DM1 faults are injected. Similarly, the DM0 faults
in this frequency range are all the same. A similar observation also applies to DM1 faults. In the
range of 98-101MHz, we observe DM1 faults being injected. In the range of 102-108MHz, different
DM1 faults are injected. In the range of 109-114MHz, DM1, DM2, and DM3 faults are different.
Between 115-120MHz, most of those faults injected are DM3 faults.

This experiment was repeatable on different AES implementations with different plaintexts
and keys. The general observations are quite similar and are summarized as follows:

• At the beginning of the fault injection, we can inject single byte faults that can be exploited
by the attacks proposed in [35, 31, 36].

• When the system is highly overclocked, DM3 faults dominate. These faults and the resulting
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faulty ciphertexts are not vulnerable to DFA.

• Between the two extremes discussed above, DM0, DM1, and DM2 faults are injected. DM0
faults reduce the key space of AES to 232, DM1 to 264, and DM2 to 296.

These observations show that the fault distribution is not uniform and is biased
depending on the operating region of the device, which the attacker can control.
Because conventional CED assumes that all faults are equally probable, there is a
significant gap between conventional CED and CED for DFA. Thus, the attacker can
accordingly characterize a device and perform directed variations in the operating conditions, e.g.,
overclocking, to inject exploitable faults and exploit them for DFA with a very high chance of
success. From a designer’s perspective, we would like to develop countermeasures that prevent
such reductions in key search space or detect such faults so that no exploitable information about
the key is leaked.

From this summary, we can see that the attacker can obtain the secret key easily with only
two or even one faulty output with the respective practical fault model. Therefore, 100% fault
coverage for these fault models is necessary for CEDs.

As shown in Figure 6a, we can see that there are random, single bit, single byte, and multiple
byte fault models, each of which is a subset of the previous one. From the summary of DFA,
it is obvious that the attacker cannot exploit all kinds of faults. Only single bit, single byte,
and multiple byte faults as mentioned above are exploitable. Because only a small subset of the
random faults are vulnerable to attack, the CED should classify different fault models and give
provable 100% fault coverage for the fault models that are vulnerable to the attacker. Otherwise,
even very high fault coverage for random faults may compromise the security of AES. We look into
characterizing the various CED techniques in their ability to detect the faults in these different
DFA-exploitable classes of faults.

4 Security Analysis and Fault Coverage

In this section, we analyze the security of the conventional CEDs and point out their fault coverage
decrease significantly when DFA-exploitable faults are injected.

4.1 Conventional CED VS CED for DFA

Table 2 compares the fault coverage of different CEDs. One of the shortcomings of conventional
CEDs is that they are mostly tailored to detect randomly injected faults, i.e., they generally do
not prioritize DFA-exploitable faults. On the other hand, DFA attacks do not benefit from all
possible faults, i.e., the secret key can be broken by injecting specific faults. Accordingly, to
equip a cryptographic circuit with a CED technique aiming at detecting the deliberately inserted
faults and preventing secret key leakage, the overall fault coverage of the circuit should not be
considered; i.e., only the coverage of a specific set of faults from which the attacker can break
the secret key, should be considered. Security is more important than reliability in cryptographic
hardware. Even by applying a CED technique that detects 99% of faults, the secret key can still
be leaked by repeating an experiment 100 times. Accordingly, the fault coverage should be 100%
to defend against DFAs.
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Table 2: Fault coverage of different CED techniques against natural and DFA faults ¶ Information
redundancy. § Time redundancy. ? Hardware redundancy. ] Hybrid redundancy. 3 Invariance-
based CED. † Only one byte in a word is faulty. ‡ Two or three bytes in a word are faulty. ℵ All
four bytes in a word are faulty. [ This technique provides close to 100% fault coverage (1− 2−56).

CED Random
Single bit Single byte Multiple byte

[10] [13] [35] [31] [34] [40] [26]† [26]‡ [26]ℵ
[36]

DM0 DM1 DM2
[41] 48-53 100 100 50 50 50 50 50 50 50 50 50 50

[8] 99.997 100 100 50 50 50 50 50
75–

93.75
50– 75– 87.5–

87.5 93.75 99.61 99.98
Info.

[29] 97.035 100 100 50 50 50 50 50
75–

93.75
50– 75– 87.5–

Red. ¶ 87.5 93.75 99.61 99.98

[28] 99.996 100 100 50 50 50 50 50
75–

93.75
50– 75– 87.5–

87.5 93.75 99.61 99.98

[18][ <100 <100 <100 <100 <100 <100 <100 <100 89.99 99.6 99.6 99.94 99.936
Time

[25] 100 100 100 100 100 100 100 100 100 100 100 100 100
Red. §

H.W.
[16] 100 100 100 100 100 100 100 100 100 100 100 100 100

Red. ?

Hybrid
[19] 100 100 100 100 100 100 100 100 100 100 100 100 100

Red. ]

Invar.
[14] 99.999 100 100 100 100 100 100 100 100 100 100 100 100

CED 3

We analyze the fault coverage of three various CEDs against DFA. Fault coverage (FC) is
calculated as:

FC = 1− Tundetected

Ttotal − Tcorrect

where Ttotal is the total number of experiments, Tundetected is the number of experiments in which
faults are excited but not detected, and Tcorrect represents the number of experiments in which the
faults are not excited.

4.1.1 Security Analysis of Parity-1

Parity-1 considers one parity bit for the 128-bit state matrix. This parity bit provides 50% fault
coverage for the data it protects. Apparently, it provides 100% fault coverage against single bit
faults. However, the technique cannot detect any even number of faults. The fault coverage is
1 − 50% = 50%. For parity-1, the value of the parity bit is not affected by the location and the
type of faults; fault coverage for the single byte and multiple byte faults are equal.

As we discussed in section 3, an attacker needs only one or two faulty outputs to break the
secret key. Therefore, by using parity-1 technique with 50% fault coverage, the attacker can access
the secret key by at most four experiments. Accordingly, parity-1 does not provide enough security
against DFA.

DM0 fault counterexamples for parity-1: Assume the input of the 8th round is X. The
parity of the input is Parity(X). Therefore, the parities after SubBytes, ShiftRows, and Mix-
Columns are Parity(Y ), Parity(Z), and Parity(U), respectively. Because ShiftRows and Mix-
Columns do not change the parity of the state matrix [41], Parity(Y ) = Parity(Z) = Parity(U).
The key of this AES round is K. The parity of the key is Parity(K). The predicted output
parity is Parity(U)⊕Parity(K). Because the output of this round is V , the actual output parity
is Parity(V ). When there is no fault, Parity(V ) = Parity(U) ⊕ Parity(K). When there is an
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attacker injects faults into the chip, let the faults affect any even number of bits in one diagonal
of the input to MixColumns. The faulty input of MixColumns becomes Zf . For this case, the
outputs of the MixColumns and AddRoundKey become U f and V f . Because changing an even
number of bits does not affect the parity, the parity of the faulty input equals the parity of the
correct input Parity(Zf ) = Parity(Z). Recall that MixColumns does not change the parity of
the state matrix [41], thus, Parity(U f ) = Parity(Zf ). The output parity of the AddRoundKey
then becomes Parity(V f ) = Parity(U f ) ⊕ Parity(K). Because Parity(Zf ) = Parity(Z), we
know Parity(V f ) = Parity(V ). Therefore, parity-1 cannot detect an even number of DM0 faults.
Similar to the previous counterexample, if any even number of faults affect multiple diagonals at
the input of the MixColumns, the faults will be detected because Parity(Zf ) = Parity(Z) still
holds true.

4.1.2 Security Analysis of Parity-16

In this technique, a parity bit is generated for every eight bit data in the state matrix. Similar to
parity-1, parity-16 provides 100% fault coverage for single bit faults. For single byte faults, the
probability of detecting a fault is 50%, while for multiple byte faults, the probability of detecting
a fault equals to one minus the probability of detecting none of the faults in each byte. Therefore,
the fault coverage is:

FC = 1− (1− 50%)n (8)

where n is the number of faulty bytes. Obviously this technique is also insecure against the DFA
described in [26, 36, 40, 31].

Using (8), when exactly three bytes are faulty, the fault coverage is 87.5%. Similarly, for a four
byte fault, the fault coverage is 93.75%. Both of these cases show security provided by parity-16
is insufficient. In the former case, an attacker can succeed with eight experiments, while in the
latter, the key can be obtained by 16 experiments.

For the diagonal fault model DM0, a fault can affect from one to four bytes of data in a
diagonal. When four bytes are affected, parity-16 has the highest fault coverage (93.75%), while
the fault of this technique is 50% when only one byte is affected. On average, fault coverage is

Detectable faults

All possible faults
=

(C4
4 × 232 − C3

4 × 224 − C2
4 × 216 − C1

4 × 28)× 93.75%

232
+

+
C3

4 × 224 × 87.5% + C2
4 × 216 × 75% + 4× 28 × 50%

232
≈ 93.74%

It is close to the best case fault coverage. But as we have pointed out, the attacker will aim for the
fault that is more likely to escape from the CED. For DM1 and DM2 faults, n changes between
two to eight and three to 12, respectively. Accordingly, the highest fault coverage for detecting
DM1 and DM2 faults using parity-16 is 99.61% and 99.98%, respectively. However, the lowest
fault coverage while using parity-16 to detect DM1 and DM2 faults is 75% and 87.5%, respectively.
Accordingly, an attacker only requires four times to break the secret key if the DM1 faults are
carefully crafted. The number of experiments are eight while DM2 faults are injected.

DM0 fault counterexample for parity-16: Assume the input of the 8th round is [xr,c]
3
r,c=0.

The parity bits of the input are [pinr,c]
3
r,c=0. The key input of this AES round is [kr,c]

3
r,c=0. The

parity bits of the key are [pkr,c]
3
r,c=0. The parity bits of the output of the S-box are [pBr,c]

3
r,c=0.
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ShiftRows only cyclically shifts the parity bits. Therefore, the output parity bits of the ShiftRows
becomes [pSr,c]

3
r,c=0 = [pBr,(r+c) mod 4]

3
r,c=0. After MixColumns, the parity becomes [pMr,c]

3
r,c=0. Finally,

the predicted parity bits are [pprer,c ]3r,c=0 = [pMr,c]
3
r,c=0 ⊕ [pkr,c]

3
r,c=0, which matches the actual parity

[pKr,c]
3
r,c=0. An attacker can flip an even number of bits in any number of bytes in the same

diagonal. Then the parity bit of that faulty byte is the same as the nonfaulty one. Therefore, the
countermeasure is successfully defeated.

Similarly, we can easily find out that if any even number of bits in arbitrary number of output
bytes are flipped by the attacker, parity-16 will not detect it.

4.1.3 Security Analysis of Robust Code

Robust code is designed to address the nonuniform fault coverage problem of linear code such as
parity. By using the nonlinear robust code with r check bits, the percentage of undetectable faults
is reduced from 2−r to 2−2r compared to the parity code, and it provides uniform fault coverage
regardless of the fault distribution [3]. In [18], r is 28 because of the hardware overhead is low for
the cubic network implementation. The fault coverage of this technique is

1− 2−56 < 100%

However, in the following we will show that a bias fault injection will also significantly reduce the
fault coverage of this technique.

DM0 fault counterexamples for robust code: Let the input of the round be X. Then,
the output of ShiftRows is Z, and the output of the MixColumns is U . Therefore L(j) = [ui,j]

3
i=0⊕

[ki,j]
3
i=0. Assume e0, e1, e2, and e3 are the DM0 fault in each bytes in the diagonal at the input of

ShiftRows which is equivalent to a column at the input of MixColumns. If e0 ⊕ e1 ⊕ e2 ⊕ e3 = 0,
then the robust code fails. The reason is explained as below. The faulty bytes occur at the input
of MixColumns. They are z

′
0,j = z0,j ⊕ e0, z

′
1,j = z1,j ⊕ e1, z

′
2,j = z2,j ⊕ e2, and z

′
3,j = z3,j ⊕ e3,

respectively. From (4), we know that at the input

[u
′

i,j]
3
i=0 = 02 · z′

0,j ⊕ 03 · z′

1,j ⊕ z
′

2,j ⊕ z
′

3,j ⊕ z
′

0,j ⊕ 02 · z′

1,j ⊕ 03 · z′

2,j ⊕ z
′

3,j⊕

z
′

0,j ⊕ z
′

1,j ⊕ 02 · z′

2,j ⊕ 03 · z′

3,j ⊕ 03 · z′

0,j ⊕ z
′

1,j ⊕ z
′

2,j ⊕ 02 · z′

3,j

= 02 · z0,j ⊕ 02e0 ⊕ 03 · z1,j ⊕ 03e1 ⊕ z2,j ⊕ e2 ⊕ z3,j ⊕ e3

⊕z0,j ⊕ e0 ⊕ 02 · z1,j ⊕ 02e1 ⊕ 03 · z2,j ⊕ 03e2 ⊕ z3,j ⊕ e3

⊕z0,j ⊕ e0 ⊕ z1,j ⊕ e1 ⊕ 02 · z2,j ⊕ 02e2 ⊕ 03 · z3,j ⊕ 03e3

⊕03 · z0,j ⊕ 03e0 ⊕ z1,j ⊕ e1 ⊕ z2,j ⊕ e2 ⊕ 02 · z3,j ⊕ 02e3

= z0,j ⊕ z1,j ⊕ z2,j ⊕ z3,j = [ui,j]
3
i=0

Therefore, L
′
(j) = [u

′
i,j]

3
i=0 ⊕ [ki,j]

3
i=0 = L(j). The faults will not be detected. Hence, the proba-

bility of detecting such kind of fault is 1− 1
256

= 99.6%.
Similarly, we can easily find out that if the fault affect the same bit position in even number

of byte quantities, and these byte quantities move to the same column before MixColumns, then
the robust code technique will not detect it.
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4.2 Detecting All DFA-exploitable Faults is Important

As we observe, though most of the CEDs provide high fault coverage, the fault coverage is not
100%. Further, the above experimental result shows that an attacker has directed fault injection
capabilities as opposed to the uniform fault distribution assumed in conventional CEDs. While
aiming to detect all faults in other VLSI designs may be an objective, for cryptographic circuits,
however, security is more important than reliability. This is because an attacker can characterize
the device and operate it at a region where the faults are missed by the CED with a much higher
probability than if the faults were random. This obviates the necessity of CEDs which have
provable 100% security, w.r.t., all the DFA-exploitable faults. The previous discussions in Section
3, also shows that the DFA exploitable faults are a small subspace of the entire fault space. Hence
a CED architecture for DFA should provide provable security for all the DFA-exploitable faults.
In the next section, we propose such a scheme based on invariance-based CED, with provable
security against all the DFA-exploitable faults.

5 Invariance-based CED

In this section, we elaborate an invariance-based CED technique, which was proposed in [14]. We
prove that this technique detects all faults which are exploitable by DFA.

In this technique, the authors discuss that for each AES round i represented by A(K, (M(S(B(S))))),
at least one byte permutation for the input S exists such that

A(K, (M(S(B(S))))) = P−1(A(P (K), (M(S(B(P (S))))))) (9)

where S is the 128-bit state input of round i, P is a permutation, and P−1 denotes the inverse
function of P . The authors show that one of the byte permutations is as below:

P1(S) = P1([sr,c]
3
r,c=0) =


s0,3 s0,0 s0,1 s0,2
s1,3 s1,0 s1,1 s1,2
s2,3 s2,0 s2,1 s2,2
s3,3 s3,0 s3,1 s3,2

 = [sr,(c+3) mod 4]
3
r,c=0 (10)

P−11 ([sr,(c+3) mod 4]
3
r,c=0) = [sr,c]

3
r,c=0 (11)

5.1 CED Architecture

The architecture of the invariance-based CED is shown in Figure 9, Similar to the regular time
redundancy technique, one encryption cycle is required to check each round. Let us called the
normal round and the check round C1 and C2. During C1, a regular encryption is performed with
input state matrix X and key matrix K, and the encryption result V is stored in RegY. During
C2, the permuted input X

′
and K

′
are used as for encryption. At the end of this cycle, the output

V
′
is inverse permuted and compared with the value stored in the data register (V 1). If the results

are equal, no fault is detected. Otherwise, the error detection signal is raised. In this method, C1
can be any normal encryption cycle, and C2 is the corresponding extra cycle, during which the
permuted inputs are used.
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Figure 9: Invariance-based CED.

Figure 10: Diagonal fault propagation in the invariance-based CED when diagonal D0 is faulty.

5.2 Security Analysis of the Invariance-based CED

In [14], the authors prove that the invariance-based CED provides 100% fault coverage for single
bit and single byte faults. we prove that this technique also provides 100% fault coverage for the
diagonal faults of DM0, DM1, and DM2 models. An attacker cannot benefit from injecting DM3
faults to break the secret key. Accordingly, we did not include this fault model in our discussion.

Theorem 1 For the diagonal fault model, at least one column differs between the original com-
putation and the permuted computation.

Proof We prove this theorem for DM0, DM1, and DM2 fault models. The theorem holds true
for DM3 faults too but since injecting DM3 faults are not useful in breaking the secret key, we do
not discuss those faults.

Case 1: DM0 faults. Assume that a fault affects only the diagonal of Dj in C1 (the first
encryption cycle used for CED), where Dj = xi,(i+j) mod 4 (0 ≤ i ≤ 3, 0 ≤ j ≤ 3). Accordingly,
Si,(i+j) mod 4 generates faulty output(s) of yi,(i+j) mod 4. After performing ShiftRows, the outputs
are [zr,c]

3
r,c=0 = [yr,(r+c) mod 4]

3
r,c=0, and the faulty state elements are [zr,j]

3
r=0 = yi,(i+j) mod 4. In

MixColumns, a fault is propagated from a single faulty input to all the state elements residing
in the same column, i.e., [ur,j]

3
r=0. After AddRoundKey, [vr,j]

3
r=0 are the faulty state elements.

However, in C2 (the second encryption cycle used for CED), we use X
′

and K
′

as the permuted
inputs. Using the same steps shown above, faulty state elements are represented as [v

′
r,j]

3
r=0. From

equation (11), we know that
[v

′

r,j]
3
r=0 = [vr,(j+3) mod 4]

3
r=0 (12)

Assume that that the faulty column in C1 is the column j. Considering the above equation, the
faulty column in C2 is the column (j+3) mod 4, where 0 ≤ i, j ≤ 3. Therefore, j 6= (j+3) mod 4.
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As an example, consider Figure 5. Assume that in the normal round, diagonal D0 is faulty. In
C1, after performing SubBytes, ShiftRows, MixColumns, and AddRoundKey, column 0 holds the
faulty bytes. Figure 10 shows the effect of the faults on the permuted round, using the proposed
CED. As shown in this figure, the proposed CED changes the location of the diagonal affected by
the fault. Accordingly, in the normal operation diagonal 0 is affected, while in the CED-related
operation (performed in C2) column 3 is affected, and column 0 is non-faulty.

Case 2: DM1 Faults. Assume that multiple faults affect two diagonals in C1; diagonals
Dj1 = xi,(i+j1) mod 4 and Dj2 = xi,(i+j2) mod 4 where 0 ≤ i ≤ 3, and j1 6= j2.

In C1, while performing SubBytes, SBi,(i+j1) mod 4 and SBi,(i+j2) mod 4 generate faulty output
yi,(i+j1) mod 4 and yi,(i+j2) mod 4, respectively. After performing ShiftRows, MixColumns, and Ad-
dRoundKey, similar to Case 1, [vr,j1]

3
r=0 and [vr,j2]

3
r=0 are the faulty state elements. On the other

hand, we apply the permuted inputs in C2. Using the same steps shown above, faulty state el-
ements are represented as [v

′
r,j1]

3
r=0 and [v

′
r,j2]

3
r=0. Therefore, the faulty columns in C1 are the

columns of j1 and j2, while the faulty columns in C2 correspond to column (j1 + 3) mod 4 and
(j2 + 3) mod 4 in C1. Note that j1 6= (j1 + 3) mod 4 and j2 6= (j2 + 3) mod 4. Therefore, the
location of the faulty columns in normal and CED-related rounds are different.

As an example, let s0,0, s1,1, s2,2, and s3,3 be the state elements of first faulty diagonal. Similarly,
assume that s0,1, s1,2, s2,3, and s3,0 are the state elements residing in another faulty diagonal. In C1,
after performing AddRoundKey, the faulty columns are shown as [vr,0]

3
r=0 and [vr,1]

3
r=0. However,

in C2, the faulty columns are represented as [v
′
r,0]

3
r=0 and [v

′
r,1]

3
r=0, because [v

′
r,0]

3
r=0 = [vr,3]

3
r=0 and

[v
′
r,1]

3
r=0 = [vr,0]

3
r=0. Similar to the case of DM0, the faulty columns in C1 and C2 are different.

Case 3: DM2 faults. The same proof used for Case 2 can be used for this case.
As discussed above, by using invariance-based CED to detect DM0, DM1, and DM2 fault mod-

els, at least one column of the original and permutated data states are different. Therefore, using
the discussed invariance-based CED, all diagonal faults can be detected. Accordingly, invariance-
based CED has 100% fault coverage for diagonal fault models of DM0, DM1, and DM2.

6 Conclusion

DFA is proven to be practical and low-cost. CEDs are used to detect the deliberately injected
faults, However, conventional CEDs do not differentiate random and malicious faults. In conven-
tional CEDs, their claims of security are based on the fault coverage of random fault model. But
from an attacker’s perspective, only a subset of the fault space is enough for successful attacks.
Consequently, conventional CEDs may in fact miss the carefully constructed and deliberately in-
jected faults by DFA. Further, they entail a large overhead. Moreover, since an exponentially
large number of random faults are possible, fault simulation of randomly injected faults is used to
estimate the fault coverage of the developed countermeasures. While this is reasonable for random
faults (from single bit to a very limited extent multiple bit faults), it is unacceptable for carefully
crafted and deliberately injected faults in the context of DFA. Simulations may miss such faults
even though they may be harmful with respect to DFA. For example, parity-based techniques have
50% fault coverage of random number of faults for each of the unit a parity bit protects.

We show that such CEDs still allow DFA to succeed. Consequently, focusing on countermea-
sures useful in detecting DFA-exploitable faults and leveraging those properties that a DFA attack
exploits is an important focus of this research. Our hypothesis is that such an investigation helps
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us develop CED techniques that have a provably 100% fault coverage for DFA-exploitable faults,
and also have high fault coverage for natural faults (assessed using simulation of randomly injected
faults), but have very low overhead.

Therefore, we analyze the fault coverage of DFA-exploitable faults for conventional CEDs. We
discover that most of the claims of security in previous work are not always true, because their
fault coverage are based on the wrong attack model. Some CEDs such as parity provide only 50%
fault coverage against DFA. Other CEDs which provide 100% fault coverage against DFA can
incur more than 100% hardware overhead, e.g., hardware redundancy, hybrid redundancy, and
robust code. The proposed invariance-based CED provides provably 100% fault coverage while
only a minimum amount of overhead.

Note that a majority of the DFA attacks assume faults are injected in the datapath of AES.
Our future research will explore the protection of key schedule unit. DFA of the key schedule of
AES are proposed in [35, 39, 30]. State machine validation and duplication techniques can be use
to protect the key schedule unit with small overhead. [23]. Nonlinear robust code can also be
applied to protect the state machine [3].

Although the main discussion focuses on AES-128, it is note that the same conclusion also
apply to AES-192 and AES-256 due to the similar datapath. We hope that this work will bring a
new era to the CED for cryptographic devices.
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