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Abstract. Differential fault analysis (DFA) poses a significant threat to Advanced Encryption Standard (AES). Only
a single faulty ciphertext is required for contemporary DFA to extract the secret key of AES using an average of 230

computations. Concurrent error detection (CED) is widely used to protect AES against DFA. Traditionally, these CEDs
are evaluated with uniformly distributed faults, and the resulting fault coverage indicates the security strength of CEDs.
However, DFA-exploitable faults are not uniformly distributed and are a small subspace of the entire fault space. We
provide a systematic study of various DFAs of AES and experimentally show that in the context of DFA, the attacker is
capable of biasing the induced faults to improve the success rate of the attacks. Then we show that the fault coverage of
most CED techniques drops significantly against the fault model used by the attacker. This work challenges the traditional
use of fault coverage for uniformly distributed faults as a metric for evaluating security against DFA. Good cryptographic
designs always consider the worst scenario. Because a single carefully injected fault can leak the secret key, we propose
a DFA-aware design flow for CEDs. We point out that CEDs should provide 100% fault coverage for DFA-exploitable
faults. We show that cryptographic algorithm-specific CEDs have higher fault coverage against DFA faults and lower
area overhead compared to general CEDs.

1 Introduction

Security is only as strong as its weakest link. In addressing the security requirements of various information disciplines,
e.g., networking, telecommunications, database systems, and mobile applications, applied cryptography has recently gained
immense importance. To satisfy the high throughput requirements of such applications, cryptographic systems are imple-
mented either as cryptographic accelerators, or as cryptographic libraries. The complexity of these hardware and software
implementations is raising concerns regarding their security and reliability.

Advanced Encryption Standard (AES) is the standard secret key algorithm [45]. To provide high security features, AES
implementations have been employed in an increasing number of consumer products with dedicated hardware; e.g., smart
cards, servers, FPGAs, and TV set-top boxes. Because the AES algorithm is public, it is subject to continuous, vigilant,
expert cryptanalysis. Purely mathematical attacks, such as linear and differential cryptanalysis, reduce the key search space,
but they cannot break AES [25].

Although AES is difficult to break mathematically, its hardware implementation, unless carefully designed, may result
in security vulnerabilities. Because an attacker can inject malicious faults into a cryptographic device and build correlations
between the faulty and the corresponding fault-free outputs, he is able to drastically reduce the key search space and
extract the key in a short time. This is known as differential fault analysis (DFA). Radiation, heat, incorrect voltages, and
atypical clock rates all cause cryptographic devices to malfunction [7]. DFA of Data Encryption Standard (DES) and other
symmetric block ciphers are demonstrated in [11]. Later, DFA of AES has been studied extensively [12,20,41,43,47–49,56].

In recent years, DFA has been demonstrated to be practical, and inexpensive [7, 8, 19, 26]. Optical fault injection attack
employed a $30 camera flashgun and a microscope to demonstrate its effectiveness on widely used smart cards [23, 54].
Several DFAs of AES have been shown by injecting clock glitches [2, 6, 49]; such shortening causes multiple errors,
corrupting a single byte or multiple bytes. An attacker can also inject transient faults by lowering the supply voltage or
injecting power glitches. This methodology is reported to be effective on ASIC implementations of AES [9, 53], as well as
FPGA implementations [16,30]. Varying the operating temperature may also inject controlled faults [8]. The attackers may
also inject faults with more costly schemes, including shooting lasers [1, 15, 16] or applying electromagnetic pulse [18].

Once a DFA attack has been developed and made public, its application does not always require high technical skills
and/or expensive equipment. Therefore, it is necessary to incorporate countermeasures against DFA into cryptographic
devices. The National Institute of Standards and Technology (NIST) formulates security requirements for cryptographic



modules in FIPS 140 [46]. FIPS 140 defines four levels of security. At security level 4, the highest, the protection circuitry
shall either (1) shut down the module to prevent further operation or (2) immediately zeroize all plaintexts and secret keys.
Because faults can be detected using concurrent error detection (CED) [33], it is used for both reliability and security
purposes.

Various CEDs have been proposed [10,13,16,17,21,24,27,28,35–37,39,42,44,51,57]. Traditionally, the fault coverage
is derived from uniformly distributed transient and permanent faults. Although the fault coverage in these papers indicates
reliability, it is also used to indicate the security against DFA. Recent literature highlights that the probability of successful
attacks is enhanced when attackers bias the fault [22,59]. Researchers have compared CEDs for their fault coverage [38,39];
however, these analyses lack discussions on the DFA fault models and the actual ability of attackers. Therefore, re-analysis
of the security of CEDs is important. In this paper, we present a comprehensive analysis of the DFAs of AES and show
that the DFA faults are a small subspace of the entire fault space. We show that DFA faults drastically reduce the fault
coverage previously reported for CEDs. We present fault injection results to show that an attacker is capable of injecting
biased faults, as opposed to uniform fault distribution in most previously reported CED designs. We also analyze the other
fault injection techniques to evaluate the attacker’s ability.

Note that most DFAs focus on the AES datapath. DFA of the AES key schedule is proposed in [5, 32, 48, 55]. State
machine validation and duplication techniques can be used to protect the key schedule unit with low overhead [37]. Thus,
we do not focus on these DFAs. Most of the DFAs focus on AES-128 datapath. Although several attacks are proposed
for the AES-192 and AES-256 datapath [4, 31, 50], the discussion in this paper will hold true because the fault coverage
does not depend on the number of rounds. Fault sensitivity analysis exploits the fact that the delays of different input to
output paths is different [34]. It builds a correlation between the hamming weight of the input and the delay characteristics.
Although this attack injects faults into the chip, it does not utilize the value of the faulty output; instead, it uses the timing
side channel information provided by faults. Thus, this attack is out of the scope of this paper.

1.1 Contributions

In this paper, we provide a systematic study of CEDs with the actual DFAs in perspective. Our key contributions are
summarized as follows:

– We systematically analyze all DFAs of AES and their underlying fault models to identify the fault space which can be
exploited in a fault attack.

– We analyze the fault coverage of CEDs against DFA, considering the practical fault injection ability of an attacker.
– We propose a CED design flow for AES which takes DFA as a first order consideration. We emphasize that design for

the worst case scenario is important for cryptographic devices. Therefore, CEDs should detect 100% DFA faults.

The rest of the paper is organized as follows: In Section 2, we introduce the AES algorithm, DFA attack procedure,
and CED techniques. In Section 3, we summarize the fault models in previous DFA of AES and find out their internal
relationships. In Section 4, we analyze the security of CEDs against DFA. In Section 5, we conclude the paper.

2 Preliminaries

2.1 AES Algorithm

AES is a block cipher with key lengths of 128, 192, and 256. We consider 128-bit key for AES, but the conclusions apply
to the other key sizes. AES encrypts a 128-bit plaintext into a 128-bit ciphertext with a 128-bit user key using 10 nearly
identical rounds plus an initial round (round 0). One AES encryption round consists of SubBytes, ShiftRows, MixColumns,
and AddRoundKey denoted by SB, SR, MC, and AR, respectively, as shown in Fig. 1. In round 0, only AddRoundKey
is used and in round 10, MixColumns is not used. Each operation in every round acts on a 128-bit input state, where each
state element is a byte in GF (28). Each byte is denoted by sr,c (0 ≤ r, c ≤ 3) indicating that this byte is in row r and
column c in the state matrix. 

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

 = [sr,c]r,c=0..3 (1)



Fig. 1: One typical AES encryption round (The last round does not have MixColumns).

In SubBytes, each byte is processed by an S-box (SB in Fig. 1). Each SB performs a nonlinear transformation of the
input byte. If X is the input, the output is:

Y = SB(X) = SB([xr,c]r,c=0..3) = [yr,c]r,c=0..3 (2)

In ShiftRows, each row of the state is shifted cyclically byte-wise using a different offset. Row 0 is not shifted, while
rows 1, 2, and 3 are cyclically shifted to the left by one, two, and three bytes respectively. The resulting output is:

Z = SR(Y ) =


y0,0 y0,1 y0,2 y0,3
y1,1 y1,2 y1,3 y1,0
y2,2 y2,3 y2,0 y2,1
y3,3 y3,0 y3,1 y3,2


= [yr,(r+c) mod 4]r,c=0..3 = [zr,c]r,c=0..3 (3)

In MixColumns, the output state is obtained by multiplying the output of ShiftRows by a constant matrix. The resulting
output is:

U =MC(Z) = [ur,c]r,c=0..3

=


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



z0,0 z0,1 z0,2 z0,3
z1,0 z1,1 z1,2 z1,3
z2,0 z2,1 z2,2 z2,3
z3,0 z3,1 z3,2 z3,3

 (4)

In AddRoundKey, the round key K = [kr,c]r,c=0..3 is added (modulo-2) to the 128-bit state U . The resulting round
output is:

V = AR(K,U) = [kr,c]r,c=0..3 + [ur,c]r,c=0..3 = [vr,c]r,c=0..3 (5)

2.2 Differential Fault Analysis

There is a considerable amount of work on DFA of AES. Some of the DFA proposals are based on theoretical models
[12,20,41,43,47–49,56], while others launched successful attacks on ASIC and FPGA devices using previously proposed
theoretical models [2, 9, 16, 18, 30, 49, 53]. The key idea of DFA is composed of three steps as shown in Fig. 2. (1) Run
the cryptographic algorithm and obtain fault-free ciphertexts. (2) Inject faults, i.e., unexpected environmental conditions
into cryptographic implementations, rerun the algorithm with the same input, and obtain faulty ciphertexts. (3) Analyze the
relationship between the fault-free and faulty ciphertexts to significantly reduce the key search space.

Practicality of DFA depends on the underlying fault model and the number of faulty ciphertext pairs needed. In Section
3, we will analyze all the fault models DFA uses and point out their relationships.



Fig. 2: Three steps of DFA.

2.3 Concurrent Error Detection

Previous work on CEDs can be classified into four types of redundancy: information, time, hardware, and hybrid, as shown
in Fig. 3.

Information Redundancy Many CEDs are based on error detecting codes. In these techniques, the input message is
encoded to generate a few check bits, and these bits are propagated along with the input message. The information is
validated when the output message is generated as shown in Fig. a. Three information redundancy techniques are discussed
below:

Parity-1 One can use single bit parity for the entire 128-bit state, and the parity bit is checked once for the entire round [57].

Parity-16 One parity bit can be generated for each input byte. While some parity-16 techniques depend on the S-box
implementations [10, 42], a general parity formation is proposed in [35]. While gaining higher fault coverage, the area
overhead of Parity-16 is more than Parity-1.

Robust Code The parity code suffers from nonuniform fault coverage [27], e.g., parity-1 cannot detect an even number of
faulty bits, and parity-16 cannot detect an even number of faulty bits in each byte. Robust code addresses the limitation of
parity code, because it provides uniform fault coverage for all types of faults [27]. The key idea is to construct a prediction
circuit at round input to predict a nonlinear property of the round output as shown in Fig. b. The prediction circuit is
composed of a linear predictor (L-Predict), linear compressor (L-Compress), and a cubic function (Cubic), where each is
the next stage of the previous one. The linear predictor will take the round key and the round input and generate a 32-bit
output. The linear compressor and cubic function will reduce the 32-bit data into 28 bits. There are three components at
the round output to extract the nonlinear property of the output: the compressor (Compress), the linear compressor, and the
cubic function. Each byte of the compressor output L(j) is equivalent to the componentwise XOR of four bytes of the same
column. The output of the linear predictor Ll(j) is the same as the output of the compressor. A detailed description of this
technique is in [27].

Time Redundancy The function is computed twice with the same input, and the results are compared with each other as
shown in Fig. c. One redundant encryption cycle is required to check each round. Although time redundancy has low area
overhead, it cannot detect permanent and transient faults that appear in both normal and the redundant computations.

Straightforward Recomputation A time redundancy is proposed in [39]. The design simply recomputes the input and no
hardware change is required.

DDR CED : A variation of the time redundancy is proposed in [37]. The function is computed on both clock edges to speed
up the computation.
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Fig. 3: Four CEDs. (a) Information redundancy: parity. (b) Information redundancy: robust code. (c) Time redundancy. (d)
Hardware redundancy. (e) Hybrid redundancy: inverse function. (f) Hybrid redundancy: invariance-based CED.

Hardware Redundancy The original circuit is duplicated, and both original and duplicated circuits are fed with the same
inputs and the outputs are compared with each other as shown in Fig. d. Hardware redundancy technique offers high fault
coverage against both naturally occurring faults [39], but it may be bypassed by an attacker who can inject the same faults
in both copies of the hardware. Layout obfuscation can be used to confuse the attacker and thus reduce the probability of
injecting the same fault [24]. However, both techniques have 100% hardware overhead.

Hybrid Redundancy Hybrid redundancy techniques combine the characteristics of the previous CED categories, and they
often explore certain properties in the underlying algorithm and/or implementation.

Inverse function : In [28], an operation, a round, or the entire encryption is followed by its inverse, and the results are
compared with the original input. The detail is shown in Fig. e. Most faults are detected, but both encryption and decryption
have to be on the chip. If counter mode, cipher feedback mode, or output feedback mode is used, there is no need to
implement both encryption and decryption. In this case, the technique suffers from more than 100% area overhead. Low
performance and area overhead are achieved by merging the encryption and decryption datapaths [51]. In this technique,
both encryption and decryption are deeply pipelined. In encryption, each stage performs a function in one clock cycle, and
the inverse function in the next clock cycle. The authors optimize the area by sharing hardware between functions and their
inverses.

Invariance-based CED : In [21], redundant rounds are inserted in the encryption. In each redundant round, the input data is
permuted and AES computes the permuted data. Then, the round output is inverse permuted and compared with the original
output. Any mismatch shows that faults are detected. The invariance-based CED provides close to 100% fault coverage to
both permanent and transient faults.



Table 1: A summary of DFA of AES. ? CT = ciphertext. † Only one byte in a word is faulty. ‡ Two or three bytes in a word
are faulty. ♦ All four bytes in a word are faulty.

Fault Model No. of Faulty CTs ?Key Search Space Source of Fault
clock power laser EM

3.1 Faults are injected in any round and into any location

Random 2128 2128

3.1 Faults are injected in round 0 and into AddRoundKey

Single bit [12] 128 1

3.1 Faults are injected between the output of 7th and the input of 8th round MixColumns

Single-byte
[48] 2 240 [30, 53] [16] [18]
[43] 2 232 [16] [18]
[56] 1 28 [16] [18]

Multiple byte

DM0 [49] 1 232 [49] [18]
DM1 [49] 1 264 [49] [18]
DM2 [49] 1 296 [49] [18]
DM3 [49] 2128 2128 [49] [18]

3.1 Faults are injected between the output of 8th and the input of 9th round MixColumns

Single bit [20] ≈ 50 1 [2] [18]

Single byte
[47] ≈ 40 1 [9] [16] [18]
[41]† 6 1 [16] [18]

At the input of 9th MixColumns

Multiple byte
DM0 [41]‡ 6 1 [18]
DM0 [41]♦ 1500 1 [18]

Recomputing with Shifted Operands In [16], the authors also insert redundant rounds. In each redundant round, the input
data is cyclically shifted, and the order is restored after S-boxes. This technique also has close to 100% fault coverage on
S-boxes. However, because the CED for the other three round operations is time redundancy, it suffers the drawback of
these these operations.

3 Biased Faults and DFA Fault Models

We first study DFA fault models. Then we formulate the relationships among fault models to identify the DFA fault space.
We also show that an attacker can control the fault injection to inflict the targeted faults with a high probability.

3.1 DFA of AES: Fault Models

DFA exploits a small subspace of all possible faults. Moreover, DFA faults are transient and mostly multiple bit and byte
faults. Transient faults can leak the key in a stealthy way, because their presence is temporary. This implies that fault
models, such as stuck at faults, are not relevant for DFA. Further, fault injections are not random; rather, they are biased
depending on the region in which the DFA works. Table 1 is a summary of the published DFA of AES. According to the
information-theoretic [50] and the reduction proofs [4], we have covered the most efficient attacks in this paper. We classify
the DFA fault models in four scenarios by the round and location which the fault occurs as shown in Table 1. Faults appear
either (3.1) in any round and into any location, (3.1) in round 0 into AddRoundKey , (3.1) between the output of 7th and
the input of 8th round MixColumns, or (3.1) between the output of 8th and the input of 9th round MixColumns. In each
scenario, we analyze the (A) the fault model, (B) the number of faulty ciphertexts needed, (C) the remaining key search
space after obtaining the faulty outputs to extract the key, and (D) the source of the faults. The considered transient faults
are categorized into single bit, single byte, and multiple byte transient faults.



Faults are Injected in any Round and into any Location The attacker injects faults in any round and any location.
These faults are equivalent to naturally occurring random faults. Natural faults may leak information, but the probability is
extremely low. First of all, if natural faults do not occur after the 7th and before the 9th round MixColumns, the attacker
cannot use DFA. Secondly, even if the natural faults occur after the 7th and before the 9th round MixColumns, faults may
not last for only one clock cycle. The faulty outputs will not be useful for DFA if faults last for more than one clock cycle.
Thirdly, even if faults occur during the right time, they are not exploitable if they do not fit into DFA fault models which
we will discuss later. Given the huge uncertainty in time and space, the probability that natural faults are exploitable is
minuscule.

Faults are Injected in Round 0 and into AddRoundKey The only fault model an attacker uses in this scenario is single
bit transient fault.

Single bit transient fault If the attacker is able to set or reset every bit of the first round key one bit at a time, he can recover
the entire key using 128 faulty ciphertexts with each faulty ciphertext uniquely revealing one key bit [12]. Hence, the key
search space is one. Because this attack requires precise control of the fault location and fault value, it becomes impractical
even with expensive equipment such as lasers to inject the faults as transistor size scales [1].

Faults are Injected between the Output of 7th and the Input of 8th MixColumns The attacker uses single and multiple
byte fault in this scenario.

Single byte transient fault The three attacks are shown in Table 1. In the first DFA [48], two faulty ciphertexts are needed
to obtain the key with 240 key search space. This fault model is experimentally verified in [30, 53]. In [53], power glitch is
used to inject faults into a smart card. In the second DFA [43], two faulty ciphertexts are needed to reveal the key. Because
this attack exploits the faults more efficiently, the key search space is 232. The attack in [56] is similar to [43], but further
improved. The key search space is reduced to only 28 with a single faulty ciphertext.

Multiple byte transient fault Diagonal fault model is proposed in [49]. The authors divide the AES state matrix into four
diagonals. A diagonal is a set of four bytes of the state matrix, where the ith diagonal is defined as follows:

Di = {sj,(j+i)mod4 ; 0 ≤ j < 4} (6)

We obtain the following four diagonals.

D0 = (s0,0, s1,1, s2,2, s3,3), D1 = (s0,1, s1,2, s2,3, s3,0),

D2 = (s0,2, s1,3, s2,0, s3,1), D3 = (s0,3, s1,0, s2,1, s3,2)

Faults in the diagonal fault model are denoted asDMd. They affect d diagonals of the state matrix (1 ≤ d ≤ 4). This model
is further classified into four submodels:

1. DM (i)
0 : Faults affect i byte(s) of one diagonal (1 ≤ i ≤ 4).

2. DM (i,j)
1 : Faults affect at most two diagonals; One with i faulty bytes and the other with j (1 ≤ i, j ≤ 4).

3. DM (i,j,k)
2 : Faults affect at most three diagonals, where the faulty diagonals have i, j and k faulty bytes, respectively

(1 ≤ i, j, k ≤ 4).
4. DM (i,j,k,l)

3 : Faults affect at most four diagonals, where the faulty diagonals have i, j, k, l faulty bytes, respectively
(1 ≤ i, j, k, l ≤ 4).

Fig. 4 shows four examples. From left to right are DM (2)
0 , DM (2,2)

1 , DM (2,2,2)
2 , and DM (2,2,2,1)

3 . For each diagonal
affected, faults propagate to different columns as shown in Fig. 5. If faults are injected into one, two, or three diagonals,
the key search space is reduced to 232, 264, or 296, respectively. If faults are injected into four diagonals, the attacker is not
able to do better than brute force.

Faults Are Injected between the Output of 8th and the Input of 9th MixColumns



Fig. 4: Diagonal fault models. The first is a DM (2)
0 example. Two bytes in D0 are affected. The second is a DM (2,2)

1

example. Two bytes in D0 and two bytes in D3 are affected. The third is a DM (2,2,2)
2 example. The last is a DM (2,2,2,1)

3

example; all four diagonals are affected.

Fig. 5: Propagation of diagonal faults. The upper row shows the diagonals that faults are injected into. The lower row shows
the corresponding columns affected.

Single bit transient fault In [20], the attacker needs only three faulty ciphertexts to succeed with a probability of 97%. The
key search space is trivial.

Single byte transient fault In [47], the authors are able to obtain the key with 40 faulty ciphertexts, and the key is uniquely
revealed.

Multiple byte transient fault Another DFA injects faults into a 32-bit word [41]. The authors propose two fault models.
In the first, the number of faulty bytes can be one, two, or three. It includes the single byte fault model. If only one single
byte fault is injected, six faulty ciphertexts are required to reveal the secret key. The second fault model does not require
the knowledge of the number of faulty bytes. However, it requires around 1,500 faulty ciphertexts. These uniquely reveal
the key.

3.2 Relationships between Fault Models

DFAs exploit a subset of faults, namely single bit, single byte, and multiple byte transient faults injected in selected rounds
and into selected locations. Therefore, understanding the relationships among fault models is the basis for analyzing the
security of CEDs. Because DFAs target the last few rounds1, we synthesize the relationships between different fault models
based on the rounds and the locations they are injected into. The goal is to identify the fault space for which 100% fault
coverage is necessary.

Faults are Injected in any Round and into any Location As previously shown, the attacker cannot derive enough useful
information from the faults.

Faults are Injected in Round 0 and into AddRoundKey The fault model is very restricted and is not practical.

1 In general, the faults used in DFA target the 7th, 8th, and 9th rounds.
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Fig. 6: Relationships between DFA fault models when faults are injected between (a) the output of 7th and the input of 8th

round MixColumns, (b) output of 8th and the input of 9th round MixColumns.

Faults Are Injected between the Output of 7th and the Input of 8th MixColumns Fig. a shows the relationships among
DFA fault models in this category. Single byte faults are, a subset of the DM0 faults which are a subset of the DM1 faults
and so on. This is summarized as below:

Single Byte ⊂ DM0 ⊂ DM1 ⊂ DM2 ⊂ DM3 (7)

A more careful look reveals that two byte faults are either DM0 or DM1. Three byte faults are either DM0, DM1, or
DM2. Four byte faults are either DM0, DM1, DM2, or DM3. Similarly, the relationships among five to 12 byte faults and
diagonal fault models are show in Fig a.

Such an analysis of the fault classes will enable one to clearly determine the capabilities of CEDs. As shown in Fig.
a, DM3 includes all possible transient faults. DFA based on DM0, DM1, or DM2 leads to the successful retrieval of the
key [49] . Remember that DM3 faults are the universe of all possible transient faults injected in the selected AES round.
These faults spread across all diagonals and are not exploitable by DFA, as mentioned in Section 3.1. These fault models
are multiple byte transient faults and thus, attacks based on these models are more feasible than those based on single byte
transient faults. The fault models are exploitable by DFA in the following order: (i)DM0 faults reduce the key search space
to 232, (ii) DM1 faults reduce the key search space to 264, and (iii) DM2 faults reduce the key search space to 296 after a
single fault injection. The more encompassing the fault model is, the easier the attacks are. Considering the cardinalities of
the identified fault classes, the number of possible DM0, DM1, and DM2 faults are 234, 3 × 265, and 298, respectively.
DM3 has 2128 possible faults2. If all faults are equiprobable, the probability of injecting DM0, DM1, and DM2 faults is
negligible. The probability that a randomly injected fault is a DM0, DM1, or DM2 type fault is 2−94, 1

3 × 2−63, and 2−30,
respectively.

Faults Are Injected between the Output of 8th and the Input of 9th MixColumns Fig. b shows the relationships
among DFA fault models. Single bit faults are a subset of single byte faults which are a subset of DM0 faults.

3.3 Injecting Biased Faults

Because DFA attackers do not inject uniformly distributed faults, they characterize the device and inject biased faults to
achieve high success rates. In this section, we present a case study of fault injection through a laboratory set-up and analyze
the other fault injection cases.

2 The number of faults is calculated with an assumption that the faults are injected at the input to the round. If the faults can be injected
anywhere in the AES round, all these numbers can be proportionally scaled. Further, this ignores all permanent and intermittent faults
because they are not exploitable from by DFA.



Fig. 7: Fault injection set-up using clock glitches.
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Fig. 8: Probability of repeating the same faults when clock frequency changes.

Clock We launched a fault attack with laboratory set-ups as shown in Fig. 7. The set-up included a function generator
hooked up to a Xilinx Spartan-3E FPGA on which the AES ran. Slow Clock had the normal clock frequency of the design.
When the 8th round encryption started, the device switched to the Fast Clock before returning to the normal clock frequency,
creating critical path violations inside the circuit. We used ChipScope Pro 10.1 analyzer [58] to observe the faulty bytes in
the AES. The experiment started with a fast clock frequency set to 72MHz. This frequency was gradually increased at the
rate 0.2MHz per step. At each step, we performed 512 fault injections.

The general observations are summarized as follows:

– At the beginning of the fault injection, we injected single byte faults that can be exploited by the attacks proposed
in [43, 48, 49].

– When the system was highly overclocked, DM3 faults dominated. These faults were not exploitable by DFA.
– Between the two extremes discussed above, DM0, DM1, and DM2 faults were injected.

Fig. 8 shows the repeatability of faults. The first fault appears when the fast clock is 72.6MHz, although only DM (1)
1

faults are observed when clock frequency is lower than 73.8MHz. The experiment was continued with up to 80MHz, and
we observed that the probability of acquiring a sample belonging to a particular fault model is not uniform. For example, in
most cases, the faults belong to DM (1)

0 (black), DM (1,1)
1 (blue), and DM (1,2)

1 (red) for which the attacks reduce the key
space to 28, 216, and 224, respectively. The highest probability of repeating DM (1)

0 , DM (1,1)
1 , and DM (1,2)

1 faults is 44%,
38.5%, and 72%, respectively. Experiments show that the same faults can be reproduced, thus showing that attackers can
inject DFA faults deliberately.

Clock glitch injection is also used in [2]. The authors validated a single bit attack on a Xilinx 3AN FPGA. The proba-
bility injecting this kind of fault was 90%.

Power In [53], power glitch was used to inject faults into a smart card. Although no more than 16% of injected faults
are single byte faults, only 13 faulty ciphertexts were needed to obtain the key. In [30], the authors underpowered an AES
FPGA implementation to inject single byte faults with a probability of 40%. In [9], the attacker injected power glitch into a



65nm ASIC chip. 39,881 faulty ciphertexts were collected, and 30,386 were the outcome of single byte faults. Thus, it has
76% probability to inject DFA faults.

Laser In [15], attackers targeted a Xilinx Virtex-2 device. He modified in average of 2.35 bits and 1.99 bits, with 40
µm and 8 µm laser spots, respectively. The probability of modifying CLB contents on the FPGAs ranged from 99.15% to
100% depending on the laser configuration. Moreover, a similar injection technique was used to target the same FPGA [16].
Attackers were able to inject faults in specific rounds to increase the probability to bypass DDR CED. During 1400 laser
shots, 50.2% of the faults led to ciphering errors. and 18.1% were undetected, which means that 36.2% of the effective fault
injections were undetected.

EM Pulse In [18], attackers characterized the electromagnetic fault injection effect on an AES FPGA implementation.
They divided the FPGA chip into 30×30 positions. They did 1,000 encryptions with the same plaintext for each position.
The results were reported on three locations. For the first, second, and third locations, the most sensitive byte is the 15th,
11th, and 7th, respectively. The probability of injecting single bit and single byte faults in these bytes is (80%, 3%), (0%,
53%), and (15%, 20%), respectively.

In summary, attackers are able to reproduce the faults in high probability in these fault injections techniques.

3.4 Adversary Model VS CED

From the previous analysis, it is obvious that the attacker cannot exploit all kinds of faults. Only single bit, single byte, and
multiple byte faults as mentioned above are exploitable.

The strength of the DFA adversary lies in its controllability of faults. Ideally, attackers injects faults of arbitrary nature
inside a circuit through various mechanisms. However, when the adversary tries to bypass the CED techniques, he needs
to carefully control the faults over temporal and spatial dimensions. It is possible to inject the same faults in a device for a
specific duration. It is also possible to inject the same fault in two hardware units with similar layout, although it requires
high spatial precision. The comparator is assumed to be fault free. In practice, it may be subjected to clock, power, laser, or
EM pulse attack. To defend against clock glitch, one can use WDDL logic style [52]. To defend against power or EM pulse
attack, one can use power supply noise detector for the comparator [40]. To defend against laser, one can use shielding [14].

The attacker can characterize a device and perform directed variations in the operating conditions, e.g., clock glitch, to
inject DFA faults to extract the key. From a designer’s perspective, we would like to develop countermeasures that detect
such faults so that the key is not leaked or prevent reductions in key search space. In the next section, we evaluate CEDs
for their ability in detecting DFA faults.

4 DFA-aware CED Design Flow for Cryptographic Device

We analyze the fault coverage of CEDs against DFA faults. Attackers can obtain the secret key with one or two faulty
ciphertexts when single or multiple byte transient faults are injected as shown in Table 1. Therefore, CEDs should provide
100% fault coverage for DFA faults, because even a single missed DFA fault can be sufficient to reveal the key, rendering
the CED useless.

We propose a DFA-aware CED design flow for cryptographic device as shown in Fig.9. The CED design should first
go through the security evaluation (blue) and is evaluated against DFA fault models. When the fault coverage for DFA
faults meets the security requirement, the design is sent for reliability evaluation. Depending on the reliability requirement,
the designer will decide whether to go through the traditional CED design flow or not. In the traditional CED design
flow (white), the CED is evaluated against faults with uniform distribution. Then the fault coverage is used as the quality
of the CED. This methodology is widely used for other domains such as microprocessors [33]. However, cryptographic
components are critical in achieving security objectives, and security should be the first order consideration. The traditional
CED design flow does not take fault injection attack into full consideration.

The benefit of considering the DFA faults are two fold:

– It makes the security evaluation of the design more accurate. Even a CED technique with 99% fault coverage of
random faults will appear vulnerable against biased faults as shown in Table 2. We will analyze the fault coverage in
the following subsections.
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Fig. 9: DFA-aware CED design flow

– It brings down the cost of CED. Developing a technique with fault coverage of 100% for random faults will be very
expensive. Therefore, by prioritizing DFA faults, secure but low cost solutions are also possible.

In this work, fault coverage (FC) is calculated as:

FC = 1− Tundetected
Ttotal − Tcorrect

where Ttotal is the total number of fault injections, Tundetected is the number of fault injections in which faults are excited
but not detected, and Tcorrect represents the number of fault injections in which the faults are not excited.

4.1 Security Analysis of Information Redundancy

Security Analysis of Parity-1 Parity-1 considers one parity bit for the 128-bit state matrix. Apparently, it provides 100%
fault coverage against single bit faults. However, the technique cannot detect an even number of faults. The fault coverage
is 1− 50% = 50%. For parity-1, the value of the parity bit is not affected by the location of faults; fault coverage for single
and multiple byte faults are equal.

As we discussed in Section 3, an attacker needs only one or two faulty ciphertexts. Therefore, by using parity-1 tech-
nique with 50% fault coverage, the attacker defeat parity-1 by at most four experiments.

Security Analysis of Parity-16 Similar to parity-1, parity-16 provides 100% fault coverage for single bit faults. For single
byte faults, the probability of detecting a fault is 50%, while for multiple byte faults, the fault coverage is:

1− (1− 50%)n (8)

where n is the number of faulty bytes. Obviously this technique is not secure against DFA.
From (8), when exactly three bytes are faulty, the fault coverage is 87.5%. Similarly, for a four byte fault, the fault

coverage is 93.75%. Both of these cases show security provided by parity-16 is insufficient. In the former case, an attacker
can succeed with eight experiments, while in the latter, the key can be obtained by 16 experiments.



Table 2: Fault coverage of CEDs against random and DFA faults 1 Information redundancy. 2. Time redundancy. 3.
Hardware redundancy. 4. Hybrid redundancy. 5. Only one byte in a word is faulty. 6. Two or three bytes in a word are
faulty. 7. All four bytes in a word are faulty. 8. This technique provides 1 − 2−56 ≈ 100% fault coverage. 9. The fault
coverage of random fault is 1− 2−38 ≈ 100%. 10. The fault coverage of random fault is 1− 2−37 ≈ 100%. 11. The fault
coverage is for ShiftRows, MixColumns, and AddRoundKey. The fault coverage of DFA for SubBytes is 1−2−38 ≈ 100%.

CED

Fault coverage

Random

Biased fault
Single bit Single byte Multiple byte Area Throu.

[12] [20] [48] [43] [56] [47] [41]5 [41]6 [41]7 [49] overhead Reduct.
DM0 DM1 DM2

[57] 50 100 100 50 50 50 50 50 50 50 50 50 50 7.4 6.4

[10] 99.998 100 100 50 50 50 50 50
75–

93.75
50– 75– 87.5–

113.3 32.1
87.5 93.75 99.61 99.98

Info.
[35] 99.998 100 100 50 50 50 50 50

75–
93.75

50– 75– 87.5–
8.2-26.9 ∼0

Red. 1 87.5 93.75 99.61 99.98

[42] 99.998 100 100 50 50 50 50 50
75–

93.75
50– 75– 87.5–

43-46.1 20
87.5 93.75 99.61 99.98

[27]8 ≈100 100 100 100 100 100 100 100 89.99 99.6 99.6 99.94 99.936 77 13
Time [39]9 ≈100 99.8 99.8 98.4 98.4 98.4 98.4 98.4 93.6 93.6 93.6 93.6 93.6 ∼0 50
Red. 2 [37]9 ≈100 99.8 99.8 98.4 98.4 98.4 98.4 98.4 93.6 93.6 93.6 93.6 93.6 36 15-55
H.W. [39]10 ≈100 99.22 99.22 93.75 93.75 93.75 93.75 93.75 75 75 75 75 75 100.1 ∼0
Red 3 [24]10 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 100.1 ∼0

[28]10 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 19-38 24-61

Hyb. [51]10 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 ≈100 24.8 14.5
Red. 4 [21] 99.999 100 100 100 100 100 100 100 100 100 100 100 100 13.2-27.3 10-50

[16]11 ≈100 99.8 99.8 98.4 98.4 98.4 98.4 98.4 93.6 93.6 93.6 93.6 93.6 2.7 50

For DM0, a fault can affect from one to four bytes of data in a diagonal. When four bytes are affected, parity-16 has
the highest fault coverage (93.75%), while the fault of this technique is 50% when only one byte is affected. On average,
fault coverage is

Detectable faults
All possible faults

=

(C4
4 × 232 − C3

4 × 224 − C2
4 × 216 − C1

4 × 28)× 93.75%

232
+

+
C3

4 × 224 × 87.5% + C2
4 × 216 × 75% + 4× 28 × 50%

232

≈ 93.74%

It is close to the best case fault coverage. But we pointed out, the attacker will aim for faults that escape from the CED.
For DM1 and DM2 faults, n changes between two to eight and three to 12, respectively. Accordingly, the highest fault
coverage for detectingDM1 andDM2 faults using parity-16 is 99.61% and 99.98%, respectively. However, the lowest fault
coverage while using parity-16 to detect DM1 and DM2 faults is 75% and 87.5%, respectively. Accordingly, an attacker
only requires four times to break the secret key if the DM1 faults are carefully crafted. The number of experiments are
eight while DM2 faults are injected.

Security Analysis of Robust Code Robust code is designed to address the nonuniform fault coverage problem in linear
code such as parity. By using robust code with r check bits, the percentage of undetectable faults is reduced from 2−r

to 2−2r compared to the parity code, and it provides uniform fault coverage [3]. In [27], r is 28 because of the hardware
overhead is low for the cubic network implementation. The fault coverage is

1− 2−56 ≈ 100%



However, we show that a biased fault injection significantly reduces the fault coverage of robust code. Let the round
input be X . Then, the output of ShiftRows is Z, and the output of MixColumns is U . Therefore L(j) = [ui,j ]i=0..3 ⊕
[ki,j ]i=0..3. Assume e0, e1, e2, and e3 are the DM0 fault in each bytes in the diagonal at the input of ShiftRows which
is equivalent to a column at the input of MixColumns. If e0 ⊕ e1 ⊕ e2 ⊕ e3 = 0, then the robust code fails. The detailed
explanation is given in the appendix. Hence, the probability of detecting such kind of fault is

1− 1/256 = 99.6%

Similarly, we can find out that if the fault affect the same bit position in even number of byte quantities, and these byte
quantities move to the same column before MixColumns, then the robust code technique will not detect it.

4.2 Security Analysis of Time Redundancy

We call the computation and the recomputation of each round Ri and R
′

i, respectively (i ∈ {1, 2, ..., 10}). Rf represents
the faulty round(s). Based on the duration of the faults, we classify the faults into three categories:

Category 1: Only one round is affected. This includes all faults that have a duration of odd number of rounds. For exam-
ple, if the same fault appears for three rounds, it must belong to one of the following sets {R′

i−1, Ri, R
′

i} or {Ri, R
′

i, Ri+1}
(2 ≤ i ≤ 9). Because the same faults will not be detected in the computation and recomputation of the same round, the
faults are either detected in R

′

i−1 or Ri+1. Thus, it is equivalent to faults appear in one round. There are 20 cases, i.e.,
Rf ∈ {R1, R

′

1, R2, R
′

2, ..., R10, R
′

10}. In this category, the fault coverage is 100%.
Category 2: Two rounds are affected and they are the computation of one round and the recomputation of another round,

There are nine cases, i.e., Rf ∈ {(R
′

1, R2), (R
′

2, R3), ..., (R
′

9, R10)}. In this category, the fault coverage is 100%.
Category 3: Two rounds are affected and they are the computation and recomputation of the same round. There are

10 possible cases, i.e., Rf ∈ {(R1, R
′

1), (R2, R
′

2), ..., (R10, R
′

10)}. We define Pr as the probability of injecting the same
faults. Then in this category, the fault coverage is Pr × 0% + (1 − Pr) × 100% = 1 − Pr × 100%. Category 2 and 3
include all the faults that have a duration of even number of rounds and the reason is similar to category 1.

Therefore, there categories includes 20 + 9 + 10 = 39 cases. The overall fault coverage is:

100%× (20/39 + 9/39) + (1− Pr)× 10/39

= 1− Pr × 10/39 (9)

With random fault model, the probability of injecting the same faults in two rounds is 1/(2128 − 1). According to (9),
the fault coverage for random fault is

1− 1/(2128 − 1))× 10/39 ≈ 1− 10−38

When attackers are able to bias the fault, the probability that he injects a single bit fault in both rounds is 1/128×PrDFA,
where PrDFA is the probability that attackers are able to reproduce the same fault. PrDFA depends on the fault injection
technique. The worse case is when PrDFA is one, which means attackers accurately reproduces the fault. A good practice
to design a secure cryptographic system is to consider the worse case scenarios [29]. So the fault coverage of single bit
fault is

1− 1/128× PrDFA × 10/39 ≈ 1− 0.2%× PrDFA ≥ 99.8%

Similarly, the fault coverage for single byte fault is:

1− 1/16× PrDFA × 10/39 ≈ 1− 1.6%× PrDFA ≥ 98.4%

The fault coverage for DM0 fault is:

1− 1/4× PrDFA × 10/39 ≈ 1− 6.4%× PrDFA ≥ 93.6%

Similarly, the worst case fault coverage for DM1 and DM2 faults is 93.6% as well. As shown in Fig. 10, when the
attacker can precisely bias the fault distribution with a probability of 100%, the fault coverage against DM0 fault decreases
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Fig. 10: The relationship between fault coverage and the probability of injecting the same fault PrDFA

significantly from 100% to 93.6%. For single bit and single byte faults, the fault coverage drops to 99.8% and 98.4%,
respectively.

As mentioned in Section 3.4, an attacker can tweak the number of cycles faults persist. Therefore, straightforward
recomputation are vulnerable in the presence of an attacker, because he can control the fault injection period so that the
fault appears in both the computation and recomputation. Although the DDR technique requires significant changes to the
AES circuit, the attacker successfully break the DDR CED by injecting faults that persist in both the computation and
recomputation. [16].

4.3 Security Analysis of Hardware Redundancy

To break hardware redundancy, the attacker needs to inject the same faults in both hardware copies. In two copies of the
hardware, we call one original and the other one duplication. The probability that the same faults appears randomly in both
of the copies is: 1/(2128 − 1). Therefore, the fault coverage is 1− 1/(2128 − 1) ≈ 100%.

Similar to time redundancy, when the attacker is able to bias the fault, the fault coverage for single bit fault injected by
the attacker is:

1− (1/128)× PrDFA ≈ 1− 0.78%× PrDFA ≥ 99.22%

The worst case fault coverage of single byte is 93.75%. For DM0, DM1, DM2, the worst fault coverage is 75%.
Hardware redundancy can be hardened by layout obfuscation technique [24]. By permuting the wires between two

copies of the hardware, one can create at least 256! = 8 ∗ 10506 different wire sequence in AES. Therefore, it significantly
increase the difficulty of injecting the same fault in both copies of the hardware.

4.4 Security Analysis of Hybrid Redundancy

Security Analysis of Inverse Function Because the algorithmic property of AES, each plaintext and key input pair
corresponds to a unique ciphertext. Similarly, this one to one mapping is also true for decryption. Previous works such
as [28] and [35] claim that this technique has 100% fault coverage, because if the attacker make the AES generate a faulty
ciphertext, the decryption will not generate the correct plaintext. Our analysis shows that the fault coverage is close to 100%
even against a DFA attacker. For example, if the attacker is able to flip a single bit at 10th round AddRoundKey during
encryption, the encryption will generate a faulty output. Then, the attacker flips that bit back at the 1st round AddRoundKey
during decryption, the decryption will generate the original plaintext. This is possible because the ith round in encryption
corresponds to the 10 − ith round in decryption. To generalize this, if a fault F occurs in the ith round encryption, the
complementary fault value F can occur at the 10 − ith round decryption to offset the first fault so that the decryption
generate the original plaintext to bypass the detection. Therefore, the fault coverage of inverse function against random
faults is 1− 1/(2128 − 1). Because the key is not known to the attacker, the attacker needs to guess the value of F to inject
F . The complexity of guessing F is 2128. Therefore, it is difficult for the attacker to do better than brute force.



Fig. 11: Diagonal fault propagation in the invariance-based CED when diagonal D0 is faulty.

Security Analysis of the Invariance-based CED In [21], the authors prove that the invariance-based CED provides 100%
fault coverage for single bit and single byte faults. We prove that this technique also provides 100% fault coverage for the
diagonal faults ofDM0,DM1, andDM2 models. An attacker cannot benefit from injectingDM3 faults to break the secret
key. Accordingly, we do not include this fault model in our discussion.

In this method, for each AES round i represented by A(K, (M(S(B(S))))), byte-permutation of P exists for the state
input of S such that In this technique, the authors discuss that for each AES round i represented by A(K, (M(S(B(S))))),
at least one byte permutation for the input S exists such that

AR(K, (MC(SR(SB(S))))) =

P−1(AR(P (K), (MC(SR(SB(P (S))))))) (10)

where S is the 128-bit state input of round i, P is a permutation, and P−1 denotes the inverse function of P . The authors
show that one of the byte permutations is as below:

P1(S) = P1([sr,c]r,c=0..3) =


s0,3 s0,0 s0,1 s0,2
s1,3 s1,0 s1,1 s1,2
s2,3 s2,0 s2,1 s2,2
s3,3 s3,0 s3,1 s3,2

 = [sr,(c+3) mod 4]r,c=0..3 (11)

P−1
1 ([sr,(c+3) mod 4]r,c=0..3) = [sr,c]r,c=0..3 (12)

Theorem 1. For the diagonal fault model, at least one column differs between the original computation and the permuted
computation.

Proof. We prove this theorem for DM0, DM1, and DM2 fault models. The theorem holds true for DM3 faults too but
since injecting DM3 faults are not useful in revealing the secret key, we do not discuss those faults.

Case 1: DM0 faults. Assume that a fault affects only the diagonal of Dj in C1 (the first encryption cycle used for
CED), where Dj = xi,(i+j) mod 4 (0 ≤ i ≤ 3, 0 ≤ j ≤ 3). Accordingly, Si,(i+j) mod 4 generates faulty output(s)
of yi,(i+j) mod 4. After performing ShiftRows, the outputs are [zr,c]r,c=0..3 = [yr,(r+c) mod 4]r,c=0..3, and the faulty state
elements are [zr,j ]r=0..3 = yi,(i+j) mod 4. In MixColumns, a fault is propagated from a single faulty input to all the state
elements residing in the same column, i.e., [ur,j ]r=0..3. After AddRoundKey, [vr,j ]r=0..3 are the faulty state elements.
However, in C2 (the second encryption cycle used for CED), we use X

′
and K

′
as the permuted inputs. Using the same

steps shown above, faulty state elements are represented as [v
′

r,j ]r=0..3. From equation (12), we know that

[v
′

r,j ]r=0..3 = [vr,(j+3) mod 4]r=0..3 (13)

Assume that that the faulty column in C1 is the column j. Considering the above equation, the faulty column in C2 is
the column (j + 3)mod 4, where 0 ≤ i, j ≤ 3. Therefore, j 6= (j + 3)mod 4.

Take Fig. 5 as an example. Assume that in the normal round, diagonal D0 is faulty. In C1, after performing SubBytes,
ShiftRows, MixColumns, and AddRoundKey, column 0 has the faulty bytes. Fig. 9 shows the effect of the faults in both
the normal and permuted rounds in the invariance-based CED. In the normal round, diagonal 0 (blue) is affected. Therefore
column 0 (blue) is faulty at the end of the round. In the permuted round, diagonal 3 (yellow) is affected. Therefore column
3 (yellow) is faulty at the end of the round. However, diagonal 0 is fault-free at the end of the permuted round. Because the



diagonals affected by the faults are different in the two rounds, faults are detected. Therefore, the invariance-based CED
changes the diagonal affected by the fault.

Case 2: DM1 Faults. Assume that multiple faults affect two diagonals in C1; diagonals Dj1 = xi,(i+j1) mod 4 and
Dj2 = xi,(i+j2) mod 4 where 0 ≤ i ≤ 3, and j1 6= j2.

In C1, while performing SubBytes, SBi,(i+j1) mod 4 and SBi,(i+j2) mod 4 generate faulty output yi,(i+j1) mod 4 and
yi,(i+j2) mod 4, respectively. After performing ShiftRows, MixColumns, and AddRoundKey, similar to Case 1, [vr,j1]r=0..3

and [vr,j2]r=0..3 are the faulty state elements. On the other hand, we apply the permuted inputs in C2. Using the same steps
shown above, faulty state elements are represented as [v

′

r,j1]r=0..3 and [v
′

r,j2]r=0..3. Therefore, the faulty columns in C1
are the columns of j1 and j2, while the faulty columns in C2 correspond to column (j1+ 3)mod 4 and (j2+ 3)mod 4 in
C1. Note that j1 6= (j1 + 3)mod 4 and j2 6= (j2 + 3)mod 4. Therefore, the location of the faulty columns in normal and
CED-related rounds are different.

As an example, let s0,0, s1,1, s2,2, and s3,3 be the state elements of first faulty diagonal. Similarly, assume that s0,1,
s1,2, s2,3, and s3,0 are the state elements residing in another faulty diagonal. In C1, after performing AddRoundKey, the
faulty columns are shown as [vr,0]r=0..3 and [vr,1]r=0..3. However, in C2, the faulty columns are represented as [v

′

r,0]r=0..3

and [v
′

r,1]r=0..3, because [v
′

r,0]r=0..3 = [vr,3]r=0..3 and [v
′

r,1]r=0..3 = [vr,0]r=0..3. Similar to the case of DM0, the faulty
columns in C1 and C2 are different.

Case 3: DM2 faults. The same proof used for Case 2 can be used for this case.

The invariance-based CED to detect DM0, DM1, and DM2 faults, because at least one column of the original and
permutated data states are different. Therefore, the invariance-based CED has 100% fault coverage for single bit, single
byte, and diagonal faults.

Security Analysis of the general RESO technique For S-boxes, the fault coverage of the general RESO technique is the
same as the the invariance-based CED, because the cyclical shift is a specific form of permutation. Because the cyclical
shift is inverse shifted after the S-box, the data are simply computed on the other three operations twice. Therefore, for the
other three round operations, the fault coverage will be the same as time redundancy. It is possible that the attacker injects
faults in the other three round operations, and the faults persisted in both the computation and recomputation. Therefore,
its worst case fault coverage is the same as time redundancy.

We have evaluated the security of CEDs in the presence of DFA. Due to practical concerns, designers have a limited
resource to achieve security against DFA. Thus, hardware and computation overheads are important criteria to choose a
suitable CED. In the next section, we will analyze the area overhead and throughput reduction of these CEDs.

4.5 Area and Throughput Analysis

The area overhead and the throughput reduction of previously discussed CEDs are shown in Table 2.
Information redundancy allows various trade-off between area and throughput depending on the error detecting codes

used. Parity-1 [57] incurs only 7.4% area overhead and 6.4% throughput degradation. Parity-16 in [10] has a significant
113.1% area overhead and 32.1% throughput degradation. This technique replaces the 256×8 memory by the 512×9
memory for each S-box, and therefore the area overhead is significant. Parity-16 in [35] uses a systematic parity formation,
and it has around 8.2-26.9% area overhead and almost no performance overhead. Parity-16 in [42] applies to polynomial
and normal basis S-box implementations. It has 43-46.1% area overhead and around 20% throughput reduction. Although
parity techniques can be implemented with low area overhead and throughput reduction, as mentioned in the previous
section, their fault coverage for DFA-exploitable faults are not high. Robust code [27] increase the area by 77% and the
throughput drops by 13%. Due to the nonlinear property in robust code, it has the highest fault coverage against DFA attack.

Straightforward recomputation [39] requires small changes to the circuit, and thus the area overhead is almost 0%.
However, the throughput is halved. DDR CED [37] requires more changes, and thus it has 36% area overhead. Because
the DDR CED allows the chip to operate at a higher frequency, the throughput reduction ranges from 15-55% depending
on the clock frequency. Both of these techniques are not sufficient for security, because the attacker can inject faults that
persist in the computation and recomputation as discussed in Section 4.2.

Hardware redundancy [24] has almost no throughput overhead but 100% hardware overhead. Its advantage is high
assurance for security.



Inverse function [28] has 19-38% area overhead and 24-61% throughput reduction. These variations depends on whether
the CED is implemented at the operation, round, or algorithm level. In cases where counter mode encryption is used, a
decryption unit is not in the original chip. Therefore, a decryption unit is added and thus causing a significant increase in area
overhead which is around 119-138%. Moreover, if the AES is implemented in composite field, hardware sharing between
S-box and inverse S-box is possible to decrease the hardware cost to 24.8% (from 38%) [51]. The reason why they can
achieve such a low area overhead is that S-boxes occupy more than half of the implementation area. The invariance-based
CED [21] has 13.2-27.3% area overhead and 10-50% throughput reduction. Because it uses an algorithmic property of AES,
it is able to provide high fault coverage against DFA-exploitable faults with small area overhead. However, this technique
requires AES to be implemented with 128-bit datapath. It will have the same fault detection capability as straightforward
recomputation when used in 32-bit or 8-bit AES implementation.

5 Conclusion

DFA is proven to be practical and low-cost. CEDs are used to detect deliberately injected faults. However, previous CED
techniques do not differentiate between random and malicious faults. Their claims of security are based on the fault cover-
age of uniformly distributed faults. From an attacker’s perspective, only a subset of the fault space is enough for successful
attacks.

We proposed a DFA-aware CED design flow which prioritizes the DFA faults. This flow brings two advantages over the
traditional flow: (1) It provides an accurate security evaluation of CEDs. (2) It brings the possibility of designing low-cost
and secure CEDs. We establish the inter-relationships of various fault models and the type of faults that are possible to
inject. With this adversary model, we analyze the security of the most common CEDs. These faults can bypass most CED
techniques.

Neither hardware redundancy nor time redundancy guarantees security against a strong adversary. Hardware redun-
dancy can be hardened against this kind of adversary by employing layout obfuscation. Information redundancy techniques
offer a large trade-off space. However, parity-based techniques do not provide sufficient protection against DFA. Moreover,
the robust code provides high security, but the area overhead is close to hardware redundancy. Hybrid redundancy tech-
niques are highly secure and they provide flexible trade-off between security and cost. The area overhead of the inverse
function technique is large only if counter mode, cipher feedback mode, or output feedback mode is used. Though the
throughput is reduced by at most half, the invariance-based CED provides high security for all DFA-exploitable faults with
very low area overhead, and it has no limitation on the mode of operations. But it is not applicable when AES is not imple-
mented with 128-bit datapath. Therefore, with security against DFA in mind, designers also need to select the appropriate
CEDs for their specific implementations.
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6 Appendix: Counterexamples

DM0 fault counterexamples for parity-1: Assume the input of the 8th round is X . The parity of the input is Parity(X).
Therefore, the parities after SubBytes, ShiftRows, and MixColumns are Parity(Y ), Parity(Z), and Parity(U), respec-
tively. Because ShiftRows and MixColumns do not change the parity of the state matrix [57], Parity(Y ) = Parity(Z) =
Parity(U). The key of this AES round isK. The parity of the key isParity(K). The predicted output parity isParity(U)⊕
Parity(K). Because the output of this round is V , the actual output parity isParity(V ). When there is no fault,Parity(V ) =
Parity(U) ⊕ Parity(K). When there is an attacker injects faults into the chip, let the faults affect any even number of
bits in one diagonal of the input to MixColumns. The faulty input of MixColumns becomes Zf . For this case, the outputs
of the MixColumns and AddRoundKey become Uf and V f . Because changing an even number of bits does not affect the
parity, the parity of the faulty input equals the parity of the correct input Parity(Zf ) = Parity(Z). Recall that Mix-
Columns does not change the parity of the state matrix [57], thus, Parity(Uf ) = Parity(Zf ). The output parity of the
AddRoundKey then becomes Parity(V f ) = Parity(Uf ) ⊕ Parity(K). Because Parity(Zf ) = Parity(Z), we know
Parity(V f ) = Parity(V ). Therefore, parity-1 cannot detect an even number of DM0 faults. Similar to the previous
counterexample, if any even number of faults affect multiple diagonals at the input of the MixColumns, the faults will be
detected because Parity(Zf ) = Parity(Z) still holds true.

DM0 fault counterexample for parity-16: Assume the input of the 8th round is [xr,c]r,c=0..3. The parity bits of
the input are [pinr,c]r,c=0..3. The key input of this AES round is [kr,c]r,c=0..3. The parity bits of the key are [pkr,c]r,c=0..3.
The parity bits of the output of the S-box are [pBr,c]r,c=0..3. ShiftRows only cyclically shifts the parity bits. Therefore, the
output parity bits of the ShiftRows becomes [pSr,c]r,c=0..3 = [pBr,(r+c) mod 4]r,c=0..3. After MixColumns, the parity becomes
[pMr,c]r,c=0..3. Finally, the predicted parity bits are [pprer,c ]r,c=0..3 = [pMr,c]r,c=0..3 ⊕ [pkr,c]r,c=0..3, which matches the actual
parity [pKr,c]r,c=0..3. An attacker can flip an even number of bits in any number of bytes in the same diagonal. Then the
parity bit of that faulty byte is the same as the fault-free one. Therefore, the countermeasure is successfully defeated.

Similarly, if any even number of bits in arbitrary number of output bytes are flipped by the attacker, parity-16 will not
detect it.

DM0 fault counterexamples for robust code: Let the input of the round be X . Then, the output of ShiftRows is Z,
and the output of the MixColumns is U . Therefore L(j) = [ui,j ]i=0..3⊕ [ki,j ]i=0..3. Assume e0, e1, e2, and e3 are theDM0

fault in each bytes in the diagonal at the input of ShiftRows which is equivalent to a column at the input of MixColumns. If
e0 ⊕ e1 ⊕ e2 ⊕ e3 = 0, then the robust code fails. The reason is explained as below. The faulty bytes occur at the input of
MixColumns. They are z

′

0,j = z0,j ⊕ e0, z
′

1,j = z1,j ⊕ e1, z
′

2,j = z2,j ⊕ e2, and z
′

3,j = z3,j ⊕ e3, respectively. From (4),
we know that at the input

[u
′

i,j ]i=0..3 = 02 · z
′

0,j ⊕ 03 · z
′

1,j ⊕ z
′

2,j ⊕ z
′

3,j⊕

z
′

0,j ⊕ 02 · z
′

1,j ⊕ 03 · z
′

2,j ⊕ z
′

3,j⊕

z
′

0,j ⊕ z
′

1,j ⊕ 02 · z
′

2,j ⊕ 03 · z
′

3,j⊕

03 · z
′

0,j ⊕ z
′

1,j ⊕ z
′

2,j ⊕ 02 · z
′

3,j

= 02 · z0,j ⊕ 02e0 ⊕ 03 · z1,j ⊕ 03e1 ⊕ z2,j ⊕ e2 ⊕ z3,j ⊕ e3
⊕z0,j ⊕ e0 ⊕ 02 · z1,j ⊕ 02e1 ⊕ 03 · z2,j ⊕ 03e2 ⊕ z3,j ⊕ e3
⊕z0,j ⊕ e0 ⊕ z1,j ⊕ e1 ⊕ 02 · z2,j ⊕ 02e2 ⊕ 03 · z3,j ⊕ 03e3

⊕03 · z0,j ⊕ 03e0 ⊕ z1,j ⊕ e1 ⊕ z2,j ⊕ e2 ⊕ 02 · z3,j ⊕ 02e3

= z0,j ⊕ z1,j ⊕ z2,j ⊕ z3,j = [ui,j ]i=0..3

Therefore, L
′
(j) = [u

′

i,j ]i=0..3 ⊕ [ki,j ]i=0..3 = L(j).


