
New Impossibility Results for Concurrent Composition and
a Non-Interactive Completeness Theorem for Secure Computation

Shweta Agrawal ∗ Vipul Goyal † Abhishek Jain ‡ Manoj Prabhakaran § Amit Sahai ¶

Abstract

We consider the client-server setting for the concurrent composition of secure protocols: in this setting, a
single server interacts with multiple clients concurrently, executing with each client a specified protocol where
only the client should receive any nontrivial output. Such a setting is easily motivated from an application
standpoint. There are important special cases for which positive results are known – such as concurrent
zero knowledge protocols – and it has been an open question explicitly asked, for instance, by Lindell
[J. Cryptology’08] – whether other natural functionalities such as Oblivious Transfer (OT) are possible in this
setting.

In this work:

• We resolve this open question by showing that unfortunately, even in this very limited concurrency setting,
broad new impossibility results hold, ruling out not only OT, but in fact all nontrivial asymmetric
functionalities. Our new negative results hold even if the inputs of all honest parties are fixed in advance,
and the adversary receives no auxiliary information.

• Along the way, we establish a new unconditional completeness result for asymmetric functionalities,
where we characterize functionalities that are non-interactively complete secure against active adversaries.
When we say that a functionality F is non-interactively complete, we mean that every other asymmetric
functionality can be realized by parallel invocations of several copies of F , with no other communication
in any direction. Our result subsumes a completeness result of Kilian [STOC’00] that uses protocols
which require additional interaction in both directions.

∗UCLA. Email: shweta@cs.ucla.edu. Research supported in part from a DARPA/ONR PROCEED award, NSF grants 1136174,
1118096, 1065276, 0916574 and 0830803, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects
Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0389. The views expressed are those of the author and do
not reflect the official policy or position of theDepartment of Defense or the U.S. Government.
†MSR, India. Email: vipul@microsoft.com
‡UCLA. Email: abhishek@cs.ucla.edu
§UIUC. Email: mmp@uiuc.edu Supported by NSF grant CNS 07-47027.
¶UCLA. Email: sahai@cs.ucla.edu. Research supported in part from a DARPA/ONR PROCEED award, NSF grants 1136174,

1118096, 1065276, 0916574 and 0830803, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects
Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0389. The views expressed are those of the author and do
not reflect the official policy or position of theDepartment of Defense or the U.S. Government.

0

1 Introduction

Consider the following scenario: Goldman Sachs, which has collected in-depth market research and analysis on
various companies, wishes to offer a paid service to high-profile investors who are interested in using this market
research. For this purpose, it has set up a large server to which potential clients can connect in order to obtain
answers to queries of an authorized kind (for which they have paid). Potential investors, however, are wary of
Goldman Sachs learning about their business plans, and would want to hide the queries from Goldman Sachs –
indeed, Goldman Sachs should learn nothing at all except that the client performed an authorized query. On the
other hand, Goldman Sachs would like to ensure that in one session, a client can only learn the answer to a single
query of a kind that it is authorized to ask. In particular, it would like to ensure that multiple clients who may
connect to the server simultaneously, cannot perform a coordinated attack to learn more information than what
each of them paid for (or even carry out an unauthorized query).

Can we satisfy these requirements? While well-known two-party computation protocols (e.g., [Yao86,
GMW87]) offer remarkably powerful simulation-based security guarantees, these guarantees hold only in the
stand-alone model, where only one protocol execution takes place. Our scenario is slightly more complex, as
it has some mild concurrency in that multiple clients may interact with the server concurrently. At the same
time, we are making the plausible assumption that the server is programmed only to interact with clients using the
prescribed protocol, and we do not seek to guarantee security of any other protocols that the clients may be engaged
in while they are communicating with the server1. Arguably, such a client-server setting (formally, asymmetric
functionalities in a “fixed-role concurrent self composition” setting) is of great practical relevance. But apart from
the practical significance, from a theoretical point of view, it is an important question as to whether restricting to
such a model of concurrent executions of a single protocol, allows us to recover strong security guarantees for
two-party computation (at least for some functionalities).

In this work, we consider secure computation in the client-server setting, and show that, even in this highly
restricted concurrency setting, broad impossibility results for secure computation hold.

• We establish new and broad impossibility results for achieving security under fixed-roles concurrent self
composition, ruling out all finite functionalities (except “trivial” ones which have universally composable
protocols), including many natural functionalities such as oblivious transfer. Our results hold even if the
inputs to the parties in all sessions are fixed before the protocols commence.
• Along the way, we establish a new unconditional completeness result for asymmetric functionalities, where

we characterize functionalities that are non-interactively complete2 for secure computation against active
adversaries. This subsumes a result of Kilian [Kil00] that used a protocol which had additional interaction
and, for its security, relied on the properties of a Nash equilibrium of a zero-sum game.

Background: Security under Concurrent Composition. With the proliferation of the network setting, in
particular the Internet, the last decade has seen a push towards constructing protocols that have strong concurrent
composability guarantees. For example, we could require security under concurrent self-composition (which is the
focus of this work): a protocol should remain secure even when there are multiple copies executing concurrently.
The framework of universal composability (UC) [Can01] was introduced to capture the more general setting of
concurrent general composition, where a protocol may be executed concurrently with not only several copies of
itself but also with other arbitrary protocols.

General positive results for UC secure computation have been obtained based on various trusted setup
assumptions such as a common random string [CF01, CLOS02, BCNP04, CPS07, Kat07, LPV09]. Whether a
given set of players is actually willing to trust an external entity, however, is debatable. Indeed a driving goal in
cryptographic research is to eliminate the need to trust other parties. Ideally, we would like to achieve security
under concurrent composition in the plain model (which is the main focus of this work).

1If we did consider the security of other protocols that the clients were engaged in, then known sweeping impossibility results would
apply. See further details below.

2We say that a functionality F is non-interactively complete if every other asymmetric functionality can be realized by parallel
invocations of several copies of F , with no other communication in any direction.

1

The Dark Side of Concurrency. Unfortunately, in the plain model, by and large, most of the results have been
negative.3 UC secure protocols for most functionalities of interest were ruled out in [CF01, CKL03, PR08].
(Recently, these were extended to various public key models in [KL11].) These impossibility results were extended
to the setting of general composition by Lindell [Lin03] who proved that security under concurrent general
composition implies UC security. Later, Lindell [Lin04] established broad negative results even for the setting of
concurrent self-composition by showing equivalence of concurrent self-composition and general composition for
functionalities where each party can “communicate” to the other party via its output (referred to as bit transmitting
functionalities). Barak et al. [BPS06] (and more recently, [Goy11]) obtained negative results for very specific
functions in the “static-input” setting (i.e., where the inputs of honest parties are fixed in advance for all the
protocol sessions).

On the positive side, there has been much success in obtaining construction for zero-knowledge and related
functionalities, with security in similar models (e.g., [DNS98, RK99, KP01, PRS02, BPS06, Lin08]). Very
recently, Goyal [Goy11] has been able to obtain positive results for a large class of functionalities in this setting
with the restriction that an honest party uses the same, static input in all of the sessions. However these results do
not translate to the more general setting where the server may choose different inputs in different sessions. Indeed,
in a scenario such as the one discussed earlier, if the server is required to use the same static input in all sessions,
it will have to allow all clients the same level of access, and further use its entire database in every computation
(which may be impractical).

Our Question: Static-Input, Fixed-Roles Concurrent Self-Composition? In this work, we study the
(im)possibility of achieving secure two-party computation with respect to a very weak notion of concurrency as
occurs in the client-server setting: one server interacts with many clients using the same protocol, always playing
the same role, while each (honest) client interacts only with the server. Further, the functionalities being computed
are asymmetric, in that only the client gets any output.4

The adversarial model is that either the clients or the server may be adversarial – this is referred to as the
fixed roles setting in the literature [Lin04].5,6 We note that this is a very natural setting and captures several
important functionalities such as oblivious transfer. However, despite extensive prior work on concurrent
security, this setting has remained largely unstudied for general secure two-party computation (with the exception
of [BPS06, Goy11] as discussed above). Indeed, concurrent security of oblivious transfer under (unbounded)
concurrent composition was left was an explicit open problem by Lindell (see [Lin08, pg. 6]).

The importance of the above question stems from the fact that if the answer is positive, then it would enable
security of many application scenarios, such as the one discussed at the beginning. On the other hand, if the answer
is negative, then the situation would indeed be quite stark, and reaffirm the need for relaxing the standard security
definitions. The recent positive results of Goyal [Goy11] may give hope that the answer is positive. Unfortunately,
in this work, we show that the latter case holds.

We now proceed to describe our results.

1.1 Our Results

We obtain negative results regarding two-party computation with security under concurrent self-composition in the
fixed-roles setting, along with positive results on UC-secure reductions that were used to get the negative results.
(These are formally stated in Section 6.)

3We remark that several works have obtained positive results for “non-standard” simulation-based security, in which the simulator, for
example, has access to super-polynomial computational power [Pas03, PS04, BS05, MPR06, GJO10, CLP10, GGJS12]. In this work, we
will focus on security w.r.t. standard (polynomial time) simulation.

4Functionalities in which both parties receive output (which is not entirely a function of their local input) are more “complex” and
already ruled out by Lindell [Lin04], when the inputs could be adaptively chosen.

5One could consider the corruption model where one or more clients and the server are corrupted. We note that if communication
pattern is “bipartite” (i.e., honest clients do not talk to each other), then this is also covered in the fixed roles setting.

6Note that in the setting of inter-changeable roles (i.e., where parties may assume different roles in different protocol executions),
essentially all non-trivial functionalities allow bit-transmission, and hence the negative results of Lindell [Lin04] are applicable.

2

• We give a full-characterization of security under concurrent self-composition for deterministic asymmetric
finite functionalities (in which only one party receives output). (Theorem 5.) Specifically, we prove that
no non-trivial deterministic asymmetric finite functionality can be computed securely under concurrent self
composition, while trivial ones can be computed UC securely against active adversaries. (A deterministic
asymmetric functionality is said to be non-trivial if there does not exist a single input for the receiver that
“dominates” all other inputs.) Our results are unconditional and hold in the static-input setting, and thus
also rule out the more general case where a party may choose its input in a session adaptively, based on the
outcomes of the previous sessions. Further, our results are “robust” in the sense that the impossibility is not
because honest parties could choose their inputs by reacting to signals sent by corrupt parties over subliminal
channels.

In particular, our results rule out concurrent security of 1-out-of-2 oblivious transfer and thus settle the open
question of Lindell [Lin08]. Furthermore, to the best of our knowledge, these are the first broad impossibility
results in the static-input setting. (In contrast, prior works which considered static inputs [BPS06, Goy11]
only ruled out very specific functionalities.)

• To prove the above, we first construct a new UC-secure asynchronous non-interactive protocol for 1-out-
of-2 oblivious transfer (FOT) using any given non-trivial deterministic asymmetric functionality F , thereby
subsuming a result of Kilian [Kil00]. By a non-interactive protocol we mean that the only step in the protocol
is to invoke, in parallel, several copies of the given functionality F ; we say that the protocol is asynchronous
if it remains secure even if the adversary can adaptively schedule the different invocations ofF . (Theorem 3.)

– Combining the above protocol with a UC-secure non-interactive protocol from [IPS08, Full version] for
any asymmetric functionality F given FOT, we obtain a full characterization of completeness among
deterministic asymmetric functionalities with respect to non-interactive reductions. (Theorem 7.)

• We further devise a composition theorem for static-input fixed-role concurrent security. (Theorem 1.) This
theorem holds only for asynchronous non-interactive protocols. Given this theorem and our asynchronous
non-interactive OT protocol, we complete the proof of our main result by establishing the impossibility of
static-input, fixed-role concurrently secure protocols for FOT. (Theorem 2.)

1.2 Our Techniques

Asynchronous Non-Interactive Protocol for FOT. As mentioned above, the first ingredient in our main result,
and a contribution of independent interest, is an asynchronous non-interactive protocol for FOT given any non-
trivial deterministic asymmetric functionality F . To obtain the impossibility result in the static-input setting it is
vital that this protocol is non-interactive and asynchronous.

Let F be a non-trivial asymmetric functionality that takes inputs x and y from Alice and Bob respectively, and
outputs f(x, y) to Bob. The intuitive reason why such a functionality F can yield FOT is that Bob has no input
which will let it learn Alice’s input to F exactly (up to equivalent inputs), where as Alice does not learn anything
about Bob’s input to F . In particular, one can find two inputs ŷ0 and ŷ1 for Bob, such that if Alice chooses her
input x at random, the only way Bob can learn f(x, ŷ0) with full certainty is if he chooses ŷ0 as his input; similarly,
unless he deterministically chooses ŷ1 as his input, Bob will be left with some entropy regarding f(x, ŷ1). Thus
Bob can choose to learn at most one of f(x, ŷ0) and f(x, ŷ1) exactly. There are two main challenges in turning
this idea into an implementation of FOT:

– Bob learns some information about f(x, ŷ0) when he uses ŷ1 as an input, and vice versa, whereas in FOT,
he should not learn any information about one of Alice’s two inputs (and learn the other one completely).

– Alice and Bob may deviate from the prescribed distributions when choosing their inputs to F . In particular,
any solution to the above issue should work even if Bob uses an input other than ŷ0 and ŷ1.

Kilian [Kil00] handles the issue of active adversaries using properties of a Nash equilibrium of an appropriate
zero-sum game. However, this approach (apart from being not asynchronous) appears suitable only for constructing

3

an erasure channel, and does not permit Bob to use an input. (Converting the erasure channel to FOT requires
interaction.) The way [KM11] handles active corruption using cut-and-choose checks is highly interactive and
again inadequate for our purposes.

One natural approach one could consider is to use an extractor to amplify the uncertainty Bob has about
f(x, ŷ0) or f(x, ŷ1) from many invocations of F (with x independently randomly chosen each time). That is, if
Bob has some uncertainty about at least one of the strings, R0 and R1 where R0 (respectively, R1) is defined as
the string of outputs Bob would have received if he chose ŷ0 (respectively, ŷ1) as his input in all invocations of
F , then Alice can choose two seeds for a strong extractor and obtain two masks r0 and r1 as the strings extracted
from R0 and R1 respectively, using these seeds. Unfortunately, this is not secure in an asynchronous protocol.
Alice must transmit the extractor seeds she picked to Bob (for which she can use instances of F). However, in an
asynchronous non-interactive protocol, a corrupt Bob can first receive the extractor seeds before picking its inputs
for the other instances of F ; hence the seeds are not independent of the information Bob obtains about R0 and R1,
and the guarantees of extraction no more hold.

We get around this by avoiding using the full power of extractors, and in fact using a deterministic function in
its place. For instance, when f is a boolean function, consider defining r0 as simply the XOR of all the bits in R0

(and similarly r1). Since Alice picks her input x to F independently for each invocation, this still guarantees that
if Bob has uncertainty about sufficiently many bits in R0, then he has almost no information about r0.

But using a linear function in place of the extractor will not suffice when Bob can use inputs other than ŷ0 and
ŷ1. In particular, for boolean functions again, if there is an input ŷ2 such that f(x, ŷ2) = f(x, ŷ0)⊕ f(x, ŷ1), then
using this input in all invocations, Bob can learn R0 ⊕ R1, and r0 ⊕ r1. Our solution to this is to use a simple
“quadratic” function, after appropriately mapping Bobs outputs to a field. This lets us ensure that one of the two
“extracted” strings r0 and r1 remains almost uniformly random, even given the other string.

Impossibility for FOT. As the next step towards our final impossibility result, we rule out a protocol for
concurrent OT even for the case where both parties have fixed roles. The basic idea behind this impossibility result
builds on the techniques from [BPS06, Goy11]. The proof proceeds in the following steps. Suppose, towards
contradiction, we are given a protocol ΠOT that securely realizes OT in our setting.

1. First, we will construct an instance of the chosen protocol attack for this protocol. More precisely, we will
construct a protocol Π̂OT such that the protocols ΠOT and Π̂OT are insecure when executed concurrently.
We will have three parties in the system: Alice and Eve running ΠOT (as sender and receiver respectively);
Eve and David running Π̂OT (as sender and receiver respectively). In our chosen protocol attack, Eve will
be the corrupted party acting as man-in-the-middle between Alice and David and violating security of ΠOT

(see Section 4 for more details of this step).

2. Next, we will use one time programs (OTPs) [GKR08, GIS+10] to eliminate David. In more detail, Eve
simply gets a set of one-time programs implementing the next message function of David.

3. To execute these one-time programs, the (possibly adversarial) Eve is required to carry out a number of
oblivious transfer invocations. In these invocations, Alice can be given the required key and can act as
the sender. Fortunately, oblivious transfer is exactly the functionality that ΠOT provides! So these OT
invocations can be executed using the protocol ΠOT.

4. Thus, now there are only Alice and Eve running a number of concurrent executions of ΠOT. Hence, the
chosen protocol attack we started with can now be carried out in our setting of concurrent self-composition
with static-inputs and fixed-roles.

More details are provided in Section 4.

4

2 Preliminaries

Below we present some of the important definitions we need. Throughout this paper, we denote the security
parameter by κ.

2.1 Notation

The following standard notation will be used throughout the paper. We say that a function f : R+ → R+ is
negligible if for all d > d0 we have f(λ) < 1/λd for sufficiently large λ. We write f(λ) < negl(λ). For two
distributions D1 and D2 over some set Ω we define the statistical distance SD(D1,D2) as

SD(D1,D2) :=
1

2

∑
x∈Ω

∣∣Pr
D1

[x]− Pr
D2

[x]
∣∣

We say that two distribution ensembles D1(λ) and D2(λ) are statistically close or statistically indistinguishable if
SD
(
D1(λ),D2(λ)

)
is a negligible function of λ.

Similarly, we say that D1(λ) and D2(λ) are computationally indistinguishable (denoted as D1
c≡ D1) if for ev-

ery probabilistic polynomial time distinguisher Dist, we have that |Pr (Dist(D1(λ)) = 1)−Pr (Dist(D2(λ)) = 1) | =
µ(λ) where µ(·) is some negligible function of λ.

2.2 Real and Ideal models.

IDEAL MODEL. An ideal execution with an adversary who controls P2 proceeds as follows (when the adversary
controls P1, the roles are simply reversed):

Inputs: P1 and P2 obtain a vector of m inputs (where m denotes the number of sessions that P1 and P2 will
execute), denoted ~x and ~y respectively.

Session initiation: The adversary initiates a new session by sending a start-session message to the trusted party.
The trusted party then sends (start-session, i) to P1, where i is the index of the session.

Honest party sends input to trusted party: Upon receiving (start-session, i) from the trusted party, honest
party P1 sends (i, xi) to the trusted party, where xi denotes P1’s input for session i.

Adversary sends input to trusted party and receives output: Whenever the adversary wishes, it may send a
message (i, y′i) to the trusted party for any y′i of its choice. Upon sending this pair, it receives back
(i, f2(xi, y

′
i)) where xi is the input value that P1 previously sent to the trusted party for session i. The

only limitation is that for any i, the trusted party accepts at most one pair indexed by i from the adversary.

Adversary instructs trusted party to answer honest party: When the adversary sends a message of the type
(send-output, i) to the trusted party, the trusted party sends (i, f1(xi, y

′
i)) to Pi, where xi and y′i denote the

respective inputs sent by P1 and adversary for session i.

Outputs: The honest party P1 always outputs the values f1(xi, y
′
i) that it obtained from the trusted party. The

adversary may output an arbitrary (probabilistic polynomial-time computable) function of its auxiliary input
z, input vector ~y and the outputs obtained from the trusted party.

Let S be a non-uniform probabilistic polynomial-time machine (representing the ideal-model adversary). Then,
the ideal execution of a functionF with security parameter κ, input vectors ~x, ~y and auxiliary input z to S, denoted
idealF ,S(κ, ~x, ~y, z), is defined as the output pair of the honest party and S from the above ideal execution.

REAL MODEL. We now consider the real model in which a real two-party protocol is executed (and there exists no
trusted third party). Let F be as above and let Π be a two-party protocol for computing F . Let A denote a non-
uniform probabilistic polynomial-time adversary that controls either P1 or P2. Then, the real concurrent execution

5

of Π with security parameter κ, input vectors ~x, ~y and auxiliary input z to A, denoted realΠ,A(κ, ~x, ~y, z), is
defined as the output pair of the honest party and A, resulting from the following real-world process. The parties
run concurrent executions of the protocol Π, where the honest party follows the instructions of Π in all executions.
The honest party initiates a new session i with input xi whenever it receives a start-session message from A.
The scheduling of all messages throughout the executions is controlled by the adversary. That is, the execution
proceeds as follows: the adversary sends a message of the form (i,msg) to the honest party. The honest party then
adds msg to its view of session i and replies according to the instructions of Π and this view.

2.3 One Time Programs

A one-time program (OTP) [GKR08, GIS+10] for a function f allows a party to evaluate f on a single input x
chosen by the party dynamically. Thus, a one-time program guarantees that no efficient adversary, after evaluating
the one-time program on some input x, can learn anything beyond (x, f(x)). In particular he gains no information
about f(y) for any y 6= x outside of the information provided by f(x). OTPs are non interactive; an OTP
corresponding to some function f , OTP-msgf given to a user by some environment (or user) U allows the user to
evaluate f once on some input of its choice, with no further interaction with U . It is shown in [GKR08, GIS+10]
that OTPs cannot be implemented by software alone. Thus, an OTP is typically implemented as a software plus
hardware package, where the hardware is assumed to be secure (that is, can only be accessed in a black box way
via its interface), and the software can be read and tampered with. The secure hardware devices that are used are
called one time memory devices (OTM).

An OTM is a memory device initialized by two keys k0, k1 which takes as input a single bit b, outputs kb and
then “self destructs”. OTMs were inspired by the oblivious transfer protocol, and indeed, for our purposes, we
will find it necessary to use oblivious transfer in place of one time memory tokens. This approach is not new and
has been used in previous works as well [GIS+10]. Thus, for our setting, we will define one-time programs in the
FOT-hybrid model directly for ease of use. We state this definition in terms of an asynchronous, non-interactive
protocol (as defined above) for an asymmetric “one-time program functionality” FOTP, which accepts a circuit f
from the party P1 and an input x from the party P2, and returns f(x) to P2 (and notifies P1) (see Figure 1). The
protocol is required to be secure only against corruption of P2. Note that the requirement of being non-interactive
makes this non-trivial (i.e., P2 cannot send its input to P1 and have it evaluated).

Ideal Functionality of One Time Program
In Figure 1, we describe the ideal functionality of a One Time Program.

Functionality FOTP

Create Upon receiving (sid, create, P1, P2, f) from P1 (with a fresh session ID sid), where f is
a circuit for a function, do:

1. Send (sid, create, P1, P2, size(f)) to P2, where the size outputs the size of the circuit and
the number of input wires it has.

2. Store (sid, P2, f).

Execute Upon receiving (sid, run, x) from P2, find the stored tuple (sid, P2, f) (if no such tuple
exists, do nothing). Send (sid, value, f(x)) to P2 and delete tuple (sid, P2, f). (If x is not of the
right size, define f(x) = ⊥.) Send (sid,evaluated) to P1.

Figure 1: Ideal functionality for One-time Program.

Definition 1 (One-Time Program). (Adapted from [GKR08, GIS+10]) A one-time program (OTP) scheme is an
asynchronous two-party non-interactive protocol ΠFOT (in the FOT-hybrid model) that UC-securely realizes FOTP

6

(as defined in Figure 1) when the adversary is allowed to corrupt only P2.

In other words, if ΠFOT is a one-time program scheme, then for every probabilistic polynomial time adversary
A corrupting P2, and adaptively scheduling the FOT sessions in the real-model execution of Π, there exists a
probabilistic polynomial time ideal-world adversary SimOTP (the simulator), such that for every environment Z , it
holds that IdealfSimOTP,Z

c≡ RealΠA,Z , where IdealfSimOTP,Z
and RealΠA,Z denote the outputs produced by SimOTP and

A respectively.

We shall refer to an execution of an OTP scheme with input f for P1 as an OTP for f .

We note that OTPs exist if a (standalone secure) Oblivious Transfer protocol exists [GIS+10], which in turn
exists if a concurrent secure OT protocol exists. Thus, for proving the impossibility of concurrent secure OT
protocols, we can assume the existence of OTPs “for free.”

Intuitively, this means that for every probabilistic polynomial time algorithm A given access to a one-time
program (or non interactive protocol Π) for some function f , there exists another probabilistic polynomial time
algorithm SimOTP which is given one time black box access to f , i.e. it can request to see the value f(x) for any
x of its choice, such that (for any f) the output distributions of SimOTP (denoted by IdealfSimOTP

) and A (denoted

by RealΠA) are computationally indistinguishable, even to a machine that knows f .

According to our definition above, in an OTP protocol all communication is via asynchronous, parallel
invocations of FOT. However, to reflect the structure of OTPs as originally defined in [GKR08, GIS+10] we
shall consider the protocol to consist of some FOT instances invoked to simply communicate a message OTP-msg
(which, w.l.o.g, an adversary would schedule first) and several other OT instances whose outputs we shall refer to
as keys. (The reader may consider the OTP-msg to be empty, without any harm.)

Properties of OTPs: OTPs can be seen as providing a stronger privacy guarantee than garbled circuits. The
garbled circuit construction works against honest-but-curious adversaries, but in our case we will need to consider
malicious adversaries. More precisely, the garbled circuit simulator generates a dummy garbled circuit for circuit
C, after the input x is specified, i.e. only after it knows the circuit’s outputC(x). On the contrary, in our setting, we
will need the simulator to construct the garbled circuit before he knows which input the adversary will choose to
run it on. Garbled circuit simulators cannot handle this but OTP simulators can. We note that Barak et al. [BPS06]
handle this by augmenting the garbled circuit construction with a masking technique, in which the desired output of
the garbled circuit is masked with a random value in a way that allows the simulator to produce the garbled circuit
for some random output (prior to knowing the desired output of the circuit), and provide keys/inputs after knowing
the circuit output, in a manner that the input masks and output mask cancel each other out. Goyal [Goy11] instead
used one-time programs that offer a cleaner abstraction to handle this issue directly. Hence we will find it more
convenient to work directly with one-time programs.

OTP simulator : In the real world, the output of the adversary A consists of a one time program OTP-msgReal

for a function f of circuit size ` (say), as well as one input to OTP-msgReal, denoted by keysReal =
{keyReal1 , . . . keyRealk } (for k input wires). Thus, RealΠA,Z = {OTP-msgReal, keysReal}.

We describe how our OTP simulator (denoted by SimOTP) interacts with some environment (or user), say U .

1. U gives SimOTP a circuit size `, SimOTP returns a one time program OTP-msgIdeal for circuit size `.

2. Let us assume that OTP-msgIdeal has k input wires, and denote these inputs by keyIdeal1 , . . . , keyIdealk .
U may query SimOTP for the inputs to be provided to OTP-msgIdeal. Then, SimOTP returns inputs
{keyIdeal1 , . . . , keyIdealt } for the first t bits, for some t < k (we refer to the inputs as keys since they are
similar to the keys that are input to garbled circuits).

3. After returning t inputs, SimOTP produces a value, say x, and queries U for f(x), i.e. the desired output of
OTP-msgIdeal on x.

7

4. U provides the output, at which point SimOTP returns the values for the remaining input wires {keyIdealt+1 , . . . , key
Ideal
k }.

We will denote keysIdeal = {keyIdeal1 , . . . , keyIdealk }.

5. Output IdealfSimOTP
= {OTP-msgIdeal, keysIdeal} c≡ {OTP-msgReal, keysReal} = RealΠA,Z .

Secure Computation Under Concurrent Self-Composition. In this section, we present the definition for
concurrently secure two-party computation.

The definition we give below is an adaptation of the definition of security under concurrent self-composition
from [Lin04], but with two further restrictions to the model — fixed-roles and static-inputs — i.e., there are only
two parties engaged in multiple executions of a given protocol, with each playing the same “role” in all the sessions,
and the inputs of the honest parties for each session is fixed in advance. (Recall that since the focus in this work is
on obtaining impossibility results, our results are stronger by adding these restrictions.) Some parts of the definition
below have been taken almost verbatim from [Lin04].

A two-party functionality7 F with input domains X and Y for the two parties is defined by two functions
f1 : X ×Y → ZA and f2 : X ×Y → ZB , where ZA, ZB are the output domains. For most part we shall consider
the input and output domains to be finite sets. Such functionalities are called finite functionalities. (Again, since
our focus is on impossibility results, it is more interesting to show impossibility of finite functionalities than of
infinite functionalities.)

We will denote the two parties that wish to jointly instantiate F as Alice and Bob (or sometimes P1 and P2). If
Alice’s input is x ∈ X and Bob’s input is y ∈ Y , then the functionality would output f1(x, y) to Alice and f2(x, y)
to Bob (unless aborted by a corrupt party). A functionality is called asymmetric if only Bob receives any output;
more precisely, in an asymmetric functionality f1 is the constant function (Alice does receive this fixed output
to indicate the termination of execution). An asymmetric functionality will be defined using a single function
f : X × Y → Z.

In this work, we consider a malicious, static adversary. The scheduling of the messages across the concurrent
executions is controlled by the adversary. The security of a protocol is analyzed by comparing what an adversary
can do in the protocol to what it can do in an ideal scenario, where a trusted party computes the function output
on the inputs of the parties. We do not require fairness (i.e., our impossibility is not a consequence of requiring
fairness) and hence in the ideal model, we allow a corrupt party to receive its output in a session and then optionally
block the output from being delivered to the honest party, in that session. Unlike in the case of stand-alone
computation, in the setting of concurrent executions, the trusted party computes the functionality many times,
each time upon different inputs. In Section 2.2 we present further details of the real and ideal model executions,
following the description in [Lin04].

The output pair of the ideal-model adversary S and the honest party (or both parties, when neither corrupt) in
an ideal-model execution of a functionality F with security parameter κ, input vectors ~x, ~y and auxiliary input z to
S, will be denoted as IDEALF ,S(κ, ~x, ~y, z). Similarly, the output pair of the real-model adversaryA and the honest
party (or parties) in a real-model concurrent execution of a protocol Π with security parameter κ, input vectors ~x,
~y and auxiliary input z to A will be denoted by REALΠ,A(κ, ~x, ~y, z).

Definition 2 (Security under Concurrent Self-Composition). A protocol Π is said to securely realize a functionality
F under concurrent composition if for every real model non-uniform probabilistic polynomial-time adversary A,
there exists an ideal-model non-uniform probabilistic expected polynomial-time adversary S , such that for all
polynomials m = m(κ), every z ∈ {0, 1}∗, every pair of input vectors ~x ∈ Xm, ~y ∈ Y m,

{IDEALF ,S(κ, ~x, ~y, z)}κ∈N
c≡ {REALΠ,A(κ, ~x, ~y, z)}κ∈N

We shall also consider a few stronger security definitions, that we achieve in our positive results (used in
proving the main negative result). Firstly, we can require the above to hold even with probabilistic expected

7All functionalities considered in this paper are (unfair) secure function evaluation (SFE) functionalities. For simplicity we shall not
explicitly qualify them as SFE or non-reactive.

8

polynomial time adversaries in the real-model. Secondly, we could in fact allow the real-model adversary to be
computationally unbounded, and allow the ideal-model adversary to be unbounded too.8 Also, we shall consider
Universally Composable (UC) security [Can01, Can05]. We shall not present the details of the UC security
definition (which has several slight variants, with essentially the same properties), but remark that it implies
concurrent self-composition and more.

Finally, sometimes we permit the real model protocols to invoke ideal functionalities as sub-protocols (denoted
like ΠF , where F is the ideal functionality invoked by the parties in Π). In all the instances we do this, we
can actually consider UC-security of the protocol; however this definition can be easily generalized to security
under concurrent self-composition too, and would be useful in stating a composition theorem (without involving
UC-security).

Non-Interactive Protocols and Asynchronous Non-Interactive Protocols. A two-party protocol ΠF (i.e., in
the F-hybrid model) is called a non-interactive protocol if the protocol has the following structure: the two parties
carry out local computation; then together they invoke one or more parallel, synchronized sessions of F ; then
they carry out more local computation and produce outputs. By synchronized sessions we mean that even corrupt
players can invoke these sessions only in parallel.9 We shall also require that all copies of F are invoked with the
same fixed roles for the two parties.

A two-party protocol ΠF is called an asynchronous non-interactive protocol if the protocol has the above
structure, but the parallel sessions of F are parallel but asynchronous. By this we mean that a corrupt player
can invoke these sessions in arbitrary order, choosing the inputs for each session based on the outputs from prior
sessions; the honest players have to choose their inputs a priori and remain oblivious to the order in which the
sessions are invoked.

One Time programs. A one-time program (OTP) [GKR08, GIS+10] for a function f allows a party to evaluate
f on a single input x chosen by the party dynamically. As introduced in [GKR08, GIS+10], an OTP is implemented
as a package consisting of some software and hardware tokens (specifically one time memory tokens), that
essentially provided the party with asynchronous access to several oblivious transfer invocations. We shall treat
OTPs as an asynchronous non-interactive protocol in the OT-hybrid model (as was done in [GIS+10]), that securely
realizes an asymmetric “one-time program functionality” FOTP against corruption of the receiver alone. (See in
Section 2.3 for a discussion.) FOTP accepts a circuit f from the party P1 and an input x from the party P2, and
returns f(x) to P2 (and notifies P1) (see Figure 1 in Section 2.3).

Definition 3 (One-Time Program). (Adapted from [GKR08, GIS+10]) A one-time program (OTP) scheme is an
asynchronous two-party non-interactive protocol ΠFOT (in the FOT-hybrid model) that UC-securely realizes FOTP

(as defined in Figure 1) when the adversary is allowed to corrupt only P2.

We shall refer to the collection of inputs P1 provides to the FOT instances in an execution of ΠFOT when its input
is a circuit f , as an OTP for f .

We note that OTPs exist if a (standalone secure) Oblivious Transfer protocol exists [GIS+10], which in turn
exists if a concurrent secure OT protocol exists. Thus, for proving the impossibility of concurrent secure OT
protocols, we can assume the existence of OTPs “for free.”

Our use of OTP parallels the use of garbled circuits in the impossibility result in [BPS06]. Following [Goy11],
we use OTPs instead of garbled circuits, since they have stronger security properties (namely, security against an
actively corrupt receiver), and allows one to simplify the construction in [BPS06].

8This is not a strengthening of the security definition, as the ideal-model is more relaxed now; however, the protocols we shall consider
will satisfy this definition in addition to the other definitions.

9A more accurate notation for such a protocol that invokes at most t sessions of F , would be ΠF
t

, where F t stands for a non-reactive
functionality implementing t independent copies of f . For simplicity we do not use this notation.

9

3 A Non-Interactive Protocol for OT from Any Non-Trivial Asymmetric SFE

The goal of this section is to obtain an asynchronous, non-interactive protocol for FOT in the F-hybrid model, for
any finite deterministic “non-trivial” asymmetric functionality F . For our purposes, we define a trivial asymmetric
functionality as follows. (As elsewhere in this paper, we consider only deterministic functionalities.)

Definition 4 (Dominating input.). In an asymmetric functionality defined by a function f : X × Y → Z, an
input y ∈ Y for the receiver is said to dominate another input y′ ∈ Y if ∀x1, x2 ∈ X , f(x1, y) = f(x2, y) =⇒
f(x1, y

′) = f(x2, y
′).

Definition 5 (Trivial functionality.). An asymmetric functionality is called trivial if there exists an input for Bob
that dominates all of its other inputs in the functionality.

Background. In [Kil00] Kilian presented an elegant protocol to show that any non-trivial asymmetric func-
tionality is complete for security against active adversaries. The protocol, which constructs an erasure channel
from a non-trivial asymmetric functionality F , achieves security against active adversaries by using an input
distribution to F derived from the Nash equilibrium of a zero-sum game defined using F . Kilian shows that
an adversary deviating from the prescribed distribution cannot change the erasure probability in the protocol. This
rather enigmatic protocol does invoke F with fixed roles, but is not useful for showing impossibility of concurrent
secure protocol for F , because it is modestly interactive (two steps which should occur one after the other) and
more importantly, because it yields only an erasure channel and not a

(
2
1

)
-OT.10 The only known substitute for

this protocol, by [KM11], is much more interactive, involving several rounds of communication in both directions,
apart from the invocation of F . Our challenge is to devise an asynchronous non-interactive protocol which uses F
with fixed-roles and directly yields

(
2
1

)
-OT. Being non-interactive and asynchronous requires that all the sessions

are invoked together by an honest party, but the adversary is allowed to schedule them adaptively, and base its inputs
for later sessions based on the outputs from earlier sessions (rushing adversary). As mentioned in Section 1.2, this
rules out some standard techniques like privacy amplification (using extractors), since the adversary can learn the
seed used for extraction before it extracts partial information about a string to which the extraction will be applied.

We present a new and simple non-interactive OT protocol which uses a simple non-linear “extraction” strategy
that does not require a seed, but is sufficient to amplify the uncertainty about certain values into almost zero
information about at least one of two extracted values. Our protocol is in fact UC-secure (in the PPT as well as
information theoretic settings) and is asynchronous.

3.1 The New Protocol

Our asynchronous non-interactive protocol UC-securely realizes the
(

2
1

)
-OT functionality FOT in the F-hybrid

model, where F is a finite11 asymmetric functionality defined by a function f : X × Y → Z, and F is not trivial.
Note that (since domination is transitive) this means that there are at least two inputs in Y — denoted by ŷ0 and ŷ1

— which are not dominated by any other input y ∈ Y .

To define the protocol, first we pick a prime number p ≥ min{|X|, |Z|}. Then we can define two maps to
relabel the columns corresponding to ŷ0 and ŷ1 in the function table of f using elements in Zp – i.e., two injective
functions N0 : Z0 → Zp, N1 : Z1 → Zp, where Zb = {f(x, ŷb)|x ∈ X} – such that there exist x̂0, x̂1 ∈ X
satisfying the following. [

N0

(
f(x̂0, ŷ0)

)
N1

(
f(x̂0, ŷ1)

)
N0

(
f(x̂1, ŷ0)

)
N1

(
f(x̂1, ŷ1)

)] =

[
0 1
1 0

]
We claim that this is possible as follows.

10Our impossibility result in Section 4 holds only for
(
2
1

)
-OT, and not for erasure channels. Indeed, using techniques in [Goy11, GJO10],

it would be possible to construct concurrent secure protocols for an asymmteric functionality like erasure channels, in which Bob does not
have any input.

11For simplicity, following [Kil00], we require |X|, |Y | to be constant. But the security of the protocol presented here only requires |X|
to be poly(κ) where κ is the security parameter. Alternatively, if |Y | is poly(κ), we can have the protocol use a uniform distribution over a
subset of X of size at most 2|Y |, restricted to which the functionality is still non-trivial.

10

Claim 6. If f : X × Y → Z is a function with two inputs ŷ0, ŷ1 ∈ Y which are not dominated by any other input
in Y , for any number p ≥ min{|X|, |Z|}, there exist two injective functions N0 : Z0 → Zp, N1 : Z1 → Zp, where
Zb = {f(x, ŷb)|x ∈ X}, such that there exist x̂0, x̂1 ∈ X satisfying the following:[

N0

(
f(x̂0, ŷ0)

)
N1

(
f(x̂0, ŷ1)

)
N0

(
f(x̂1, ŷ0)

)
N1

(
f(x̂1, ŷ1)

)] =

[
0 1
1 0

]
Proof. Define N0 and N1 as follows. Since ŷ0 does not dominate ŷ1, there are x1, x2 ∈ X such that f(x1, ŷ

0) =
f(x2, ŷ

0) = α (say), but f(x1, ŷ
1) 6= f(x2, ŷ

1); we letN0 : α 7→ 0. Symmetrically, there are x3, x4 ∈ X such that
f(x3, ŷ

0) 6= f(x4, ŷ
0) but f(x3, ŷ

1) = f(x4, ŷ
1) = β ,say; we let N1 : β 7→ 0. Now, since f(x1, ŷ

1) 6= f(x2, ŷ
1),

w.l.o.g assume that f(x1, ŷ
1) 6= β (swapping x1 and x2 if necessary), and then let N1 : f(x1, ŷ

1) 7→ 1. Similarly,
since f(x3, ŷ

0) 6= f(x4, ŷ
0), w.l.o.g assume that f(x3, ŷ

0) 6= α (swapping x3 and x4 if necessary), and then let
N0 : f(x3, ŷ

0) 7→ 1. (Then we can extend N0 and N1 arbitrarily as injective mappings from Z0 and Z1 (resp.) to
Zp, since than p ≥ |Z0| and p ≥ |Z1|.) We can then set x̂0 to be x1 and x̂1 to be x3.

To illustrate this for the case of boolean functions (p = |Z| = 2), we note that for a non-trivial boolean
functionality, the function table of f , restricted to the two columns corresponding to ŷ0 and ŷ1 must have one of
the following minors (possibly with the columns reordered, in the last case):

[
0 1
1 0
0 0

] [
0 1
1 0
1 1

] [
0 0
0 1
1 1

]
. In the first two

cases N0, N1 can be the identity map and in the last case exactly one of N0, N1 would be the identity.

The protocol is now defined as follows, in terms of the inputs ŷ0, ŷ1 ∈ Y , x̂0, x̂1 ∈ X and the functionsN0, N1

as identified above.

Alice’s program: Alice’s input is two bits s0, s1.

1. Alice carries out the following computations:

• For i = 1 to 2κ, pick xi ← X .
• For each i, let R0

i = N0(f(xi, ŷ
0)) and R1

i = N1(f(xi, ŷ
1)).

• Let r0 =
∑κ

i=1R
0
iR

0
κ+i, and r1 =

∑κ
i=1R

1
iR

1
κ+i.

• Let m0 = s0 + r0 and m1 = s1 + r1 (interpreting bits s0, s1 as elements in {0, 1} ⊆ Zp).

2. Alice invokes, in parallel, several copies of F with the following inputs:

• Sessions i = 1 to 2κ with inputs xi.
• 2dlog pe more sessions to “communicate” the bits of (m0,m1): in a session to send a bit 0, use input
x̂0, and in a session to send a bit 1, use input x̂1.

3. If all F sessions are completed, then Alice completes the protocol (i.e., outputs an acknowledgment).

Bob’s program: Bob’s input is a choice bit b.

1. Bob invokes the same copies of F as Alice with the following inputs:

• In each of the 2κ sessions numbered i = 1 to 2κ, use input ŷb, and obtain Rbi .

• In each of the sessions used for communication, use input ŷ0; obtain all bits of (m0,m1).

2. If all sessions of F are completed, compute rb =
∑κ

i=1R
b
iR

b
κ+i, and sb = mb − rb. Then, if sb = 0 output

0, otherwise output 1.

11

Intuition. The protocol is easily seen to be correct. Also, security when Alice is corrupt is easy to argue as F
does not give any output to Alice. (The simulator can extract Alice’s inputs by considering what Bob would output
when his input is b = 0 and b = 1.) The interesting case is when Bob is corrupt.

Note that in the protocol, all the instances of F are invoked in parallel by the honest parties, but a rushing
adversary that corrupts Bob can dynamically schedule the sessions and also choose its inputs for these sessions
adaptively, based on the outputs received thus far. The main idea behind showing security against Bob is that one
of r0 and r1 appears completely random to Bob (even given the other one), no matter how he chooses his inputs
yi. For this we define a pair of F sessions (i, κ+ i) to be a “0-undetermined pair” if R0

iR
0
κ+i is not completely

determined by the view of the adversary in those sessions, combined with R1
iR

1
κ+i; simiarly we define the pair to

be a “1-undetermined pair” if R1
iR

1
κ+i is not completely determined by the view of the adversary in those sessions,

combined with R0
iR

0
κ+i. Then, as shown in Claim 7, there will be a constant probability that any pair will be either

0-undetermined or 1-undetermined.

Note that for any input y that the adversary chooses in the first session out of a pair, it does not dominate at least
one of ŷ0 and ŷ1. With constant probability the adversary will be left with some uncertainty about either f(x, ŷ0)
or f(x, ŷ1), where x stands for Alice’s input in this session. Suppose f(x, ŷ0) is not fully determined. Now, with
a further constant probability Alice’s input in the other session in the pair would be x′ = x̂1. Then, even if Bob
learns x′ exactly, he remains uncertain of f(x, ŷ0).f(x′, ŷ0) = f(x, ŷ0) · 1. This uncertainty remains even if Bob
learns f(x, ŷ1).f(x′, ŷ1) = f(x, ŷ1) · 0, as it is independent of x. This slight uncertainty about a term in r0 or r1

gets amplified by addition in Zp.
To complete the intuitive argument of security, we need to also consider how the simulator for Bob can extract

his input bit b. The simulator would let Bob schedule several sessions, until a constant fraction of the pairs (i, κ+i)
have had both sessions completed. At this point Bob would have already accumulated sufficient uncertainty about
one of r0 and r1, say rb, that will remain no matter what he learns from the remaining sessions. Further, not having
invoked the remaining sessions will ensure that at this point he still has no information about the other element rb.
So, at this point, the simulator will send b = 1−b to the ideal FOT and learn what rb should be, and can henceforth
“pretend” that it was always using that value of rb. Pretending thus (i.e., sampling Alice’s inputs for the remaining
sessions according to the right conditional distribution) can be efficiently done by rejection sampling (since p is a
constant).

Formal Proof. Note that in the protocol, all the instances of F are invoked in parallel by the honest parties, but
a rushing adversary that corrupts Bob can dynamically schedule the sessions and also choose its inputs for these
sessions adaptively, based on the outputs received thus far.

When Both Parties are Honest. Correctness when both parties are honest follows from the fact that an honest
Bob can exactly compute rb by using inputs as prescribed by the protocol.

When Alice is Corrupt. Security when Alice is corrupt easily follows from the fact that F does not give any
output to Alice. We consider an efficient simulator which waits for Alice to invoke all the sessions of F , and based
on Alice’s inputs to instances of F , computes both (r0,m0) and (r1,m1). Then, for j = 0, 1 it computes the
number sj = mj − rj and sets the bit s′j = 0 if sj = 0, and s′j = 1 otherwise. The simulator sends (s′0, s

′
1) to the

ideal FOT functionality, to complete the simulation. It is easy to verify that this is a perfect simulation.

When Bob is Corrupt. The main idea behind showing security against Bob is that one of r0 and r1 appears
completely random to Bob (even given the other one), no matter how he chooses his inputs yi. For this we define a
pair of F sessions (i, κ+ i) to be a “0-undetermined pair” if R0

iR
0
κ+i is not completely determined by the view of

the adversary in those sessions, combined with R1
iR

1
κ+i; simiarly we define the pair to be a “1-undetermined pair”

if R1
iR

1
κ+i is not completely determined by the view of the adversary in those sessions, combined with R0

iR
0
κ+i.

As shown below, given the way we have defined R0
i and R1

i (and N0 and N1), there will be a constant probability
that any pair will be either 0-undetermined or 1-undetermined.

12

Claim 7. There is a constant ε > 0,12 such that, for any pair of sessions (i, κ + i), for any adversarial strategy
of scheduling them and choosing yi and yκ+i, with probability at least ε the pair will be either 0-undetermined or
1-undetermined.

Proof. W.l.o.g, we can assume that the adversary schedules session i first (the other case being symmetric).
Suppose it uses input yi = y for this session. Note that y does not dominate at least one of ŷ0 and ŷ1 (if
y 6∈ {ŷ0, ŷ1}, it dominates neither).

Suppose y does not dominate ŷ0. That is, there exists some x, x′ ∈ X such that f(x, y) = f(x′, y) but
f(x, ŷ0) 6= f(x′, ŷ0). With probability 2/|X|, the input xi ∈ {x, x′}. Further, independently, with probability
1/|X|, xκ+i = x̂1. Thus with probability 2/|X|2, we will have R0

iR
0
κ+i = f(xi, ŷ

0).1 = f(xi, ŷ
0) and R1

iR
1
κ+i =

f(xi, ŷ
1).0 = 0. In this case, the adversary cannot determineR0

iR
0
κ+i (which could be either f(x, ŷ0) or f(x′, ŷ0)),

given f(xi, y), f(xκ+i, y
′) for any y′ (or even xκ+i itself) and R1

iR
1
κ+i = 0.

Similarly, if y does not dominate ŷ1, then with probability at least 2/|X|2, R1
iR

1
κ+i cannot be completely

determined from f(xi, y), xκ+i and R0
iR

0
κ+i = 0.

Thus, in either case, with probability at least 2/|X|2, the pair becomes either 0-undetermined or 1-undetermined.

This slight uncertainty about a term in r0 or r1 gets amplified by addition in Zp (see Lemma 8). To formalize
the intuition into a proof of security, we need to build an appropriate simulator, that works even when Bob can
schedule the F sessions in arbitrary order. We divide the invocations of F into the following imaginary phases:

• Communication Phase: W.l.o.g, we assume that Bob first schedules all the communication sessions, and uses
input ŷ0 in them. (Any other strategy is “dominated” by this, in that it can be simulated by an adversary as
above.)

• Phase 1: This phase starts when Bob invokes one of the 2κ sessions numbered 1 to 2κ, and lasts until, for
c1κ values of i ∈ [κ], both sessions i and κ+ i have been invoked (where c1 is a constant to be determined).

• Phase 2: This phase consists of the rest of the invocations of F .

The simulator will behave differently based on which phase it is in, as follows:

• Communication Phase: Randomly pick m0,m1 ← Zp, and faithfully simulate all the communication
sessions using these.

• Phase 1: In Phase 1, to simulate a new session i, accept yi from Bob and return f(xi, yi) for a uniformly
random input xi.

• Input Extraction: At the end of Phase 1, the simulator asserts that c2κ of these pairs are either 0-undetermined
or 1-undetermined (for a constant c2, also to be determined), and else aborts the simulation. (This, as we shall
argue, happens with negligible probability.) Then, for b ∈ {0, 1}, at least (c2/2)κ pairs are b-undetermined.
Simulator sends b = 1− b to FOT and gets back sb ∈ {0, 1}.

• Phase 2: Now the simulator will sample xi for the remaining sessions uniformly at random, but conditioned
on rb = mb − sb, where rb =

∑κ
i=1R

b
iR

b
κ+i. This can be done efficiently by rejection sampling. (The

simulator can abort after κ unsuccessful trials.)
12Recall that we treat |X|, |Y | as constants. All the positive constants in this analysis are Ω(poly(1/|X|)).

13

We shall argue that, for a suitable choice of the constants c1, c2, for any input (s0, s1) for Alice, the above
simulation is good – i.e., indistinguishable from an actual execution of the protocol.

The analysis rests on the following observations about the real execution:

1. (r0, r1) are almost (i.e., up to negligible statistical distance) uniformly distributed over Zp × Zp.

2. Conditioned on any value of (r0, r1), xi in the sessions invoked by the adversary in Phase 1 are almost
uniformly random.13

3. Let (b, b) be defined after Phase 1 the same way it is defined by the simulator. Then, rb is almost uniform
even conditioned on rb and the view of the adversary in Phase 1 and Phase 2.

Given the above three observations, it is immediate that the simulation is good. In the rest of the proof we prove
the above three observations.

To prove the first item note that except with negligible probability, for N = Θ(κ) values of i ∈ [κ], xi = x̂0

and for another N values of i, xi = x̂1. We will condition on this event happening, and let S0 be the set of
first N indices i with xi = x̂1; similarly let S1 be the set of first N indices i with xi = x̂0. Note that then
r0 = u0 + v0 where u0 :=

∑
i∈S0

N0

(
f(xκ+i, ŷ

0)
)

and v0 is indepedent of u0; similarly r1 = u1 + v1 where
u1 :=

∑
i∈S1

N1

(
f(xκ+i, ŷ

1)
)

and v1 is indepedent of u1. (v0 and v1 are correlated.) To show that (r0, r1) is
almost uniformly distributed in Zp×Zp, it is enough to show that (u0, u1) are distributed that way. Firstly, since S0

and S1 are disjoint, they are independent of each other. To see that they are almost uniform, we rely on Lemma 8,
using distributions D0 and D1 defined as the distribution of N0

(
f(x, ŷ0)

)
and N1

(
f(x, ŷ1)

)
respectively, for

uniform x← X .

To prove the second item, for ease of analysis, we shall consider a stronger adversary for Phase 1, which learns
the value of xi in each session it invokes in Phase 1. W.l.o.g we may assume that it first invokes the sessions i = 1
to κ, and then adaptively invokes sessions i ∈ T ⊆ [κ + 1, 2κ] where |T | = c1κ. There is a constant c such that,
except for a negligibly probable event — which we shall condition on not occuring — there are at least cκ values
of i ∈ [κ] for which xi = x̂0 and cκ values of i ∈ [κ] for which xi = x̂1. We shall set c1 so that c > c1. Then
there are sets S0, S1 ⊆ [κ+ 1, 2κ]\T , with |S0| = |S1| = (c− c1)κ such that for i ∈ S0, xi = x̂1 and for i ∈ S1,
xi = x̂0. Using S0, S1 to define u0, u1 as before, similar to the argument above, we have rb = ub + vb, where
(u0, u1) is almost uniform over Zp×Zp and (almost) independent of vb and the xi values revealed to the adversary
in Phase 1.

Finally, to prove the third item, we return to the normal adversary (who does not learn xi exactly, but only
f(xi, yi) for a yi that it adaptively chooses). By Claim 7, except with negligible probability, out of the c1κ
pairs that have both sessions invoked, at least (c2/2)κ pairs are b-undetermined. The distribution from which
an undetermined value for the pair (i, κ + i) is sampled is decided by (xi, yi, xκ+i, yκ+i). Hence there are only a
constant number of such distributions. LetD be the most frequent of these distributions among the b-undetermined
(c2/2)κ pairs. Let W ⊆ [κ] be such that for i ∈ W , the pair (i, κ+ i) is b-undetermined and is associated with the
distribution D. Then |W | = Θ(κ). We can consider revealing (xj , xκ+j) for all j 6∈W , as well as the adversary’s
view (i.e., f(xi, yi), f(xκ+i, yκ+i)) and RbiR

b
κ+i for all i ∈ W (since the definition of being undetermined allows

conditioning on the last two). Then by Lemma 8, similar to above arguments, rb is still uniform conditioned on rb
and the view of the adversary (which are subsumed by (xj , xκ+j) for j 6∈W , and RbiR

b
κ+i for i ∈W).

Lemma 8. Let p be a fixed prime number. Let D be a distribution over Zp, such that for some constant ε > 0,
for all z ∈ Zp, Pra←D[a = z] < 1 − ε. For any positive integer N , let a1, · · · , aN be i.i.d random variables
sampled according to D. Then the statistical distance between the distribution of

∑N
i=1 ai (summation in Zp) and

the uniform distribution over Zp is negligible in N .

13Note that which sessions are invoked can depend on (r0, r1), but for any such choice of sessions, the values of xi in those sessions
will be (almost) independent of (r0, r1).

14

Proof. We give an elementary argument to prove this lemma. First, for simplicity, consider the case that each ai
has a support of size two. W.l.o.g, we can assume that one of the values in the support is 0. This is because,
otherwise we can simply consider the summation of a′i = ai − z∗, where z∗ is an element in the support of ai, and
the statistical distance of

∑
i ai from the uniform distribution is the same as that of

∑
i a
′
i.

Then, let ai be z with probability δ and 0 with probability 1−δ, where δ is bounded away from 0 and 1. For any
value w ∈ Zp, consider Pr [

∑
i ai = w]. Let u = wz−1 (u ∈ Zp will be treated as an integer in {0, · · · , p − 1}).

Then

Pr

[∑
i

ai = w

]
=
∑
t≥0

(
N

tp+ u

)
δtp+u(1− δ)N−(tp+u)

Pr

[∑
i

ai = 0

]
=
∑
t≥0

(
N

tp

)
δtp(1− δ)N−tp.

(1)

We argue that, for any w ∈ Zp, the above two summations are close to each other.14 For this we show that, for all
values of u,

∑
t≥0

(
N

tp+u

)
δtp+u(1− δ)N−(tp+u) = 1

p ± (1− α)N for some constant 0 < α < 1.

Let Sk = ((1− δ) + δωk)N where ω = ei2π/p, is a pth root of unity. Using the binomial expansion of Sk and
the fact that

∑p−1
k=0 ω

k = 0, we get

∑
t≥0

(
N

tp+ u

)
δtp+u(1− δ)N−(tp+u) =

1

p

p−1∑
k=0

ω−kuSk.

Now,
∑p−1

k=0 ω
−kuSk = 1 +

∑p−1
k=1 ω

−kuSk, because S0 = 1. Further, for 0 < k ≤ p− 1, |(1− δ) + δωk| ≤ 1−α,
where we take α = 1−|(1−δ)+δω|. Since p is a constant and δ is also a constant with 0 < δ < 1, α is a constant
with 0 < α < 1. Then,

p−1∑
k=1

ωkuSk ≤
p−1∑
k=1

|ωkuSk|

=

p−1∑
k=1

|Sk| ≤ (p− 1)(1− α)N < p(1− α)N .

Thus indeed, ∑
t≥0

(
N

tp+ u

)
δtp+u(1− δ)N−(tp+u) =

1

p
± (1− α)N

Since this holds for all values of u, including u = 0, the difference between the two probabilities in (1) is at
most 2(1− α)N , which is negligible in N .

This proves the lemma when D has a support of size 2. For the general case, when D has a larger support, let
z0, z1 be two elements with the most weight according to D. Then, we note that there would be a constant γ > 0
such that, except with negligible probability, for at least γN values of i ∈ [N], ai ∈ {z0, z1}. So we can condition
on this event occurring. Conditioned on this,

∑
i ai is distributed as v +

∑γN
i=1 ui where ui are i.i.d according to

D restricted to {z0, z1}, and v is independent of u. By appealing to the case of binary support, we conclude that∑
i ai is almost uniformly random.

Going Beyond Finite Functionalities. We note that if |Y | is poly(κ), then we can have the above protocol use a
uniform distribution over a subset ofX of size at most 2|Y |, restricted to which the functionality is still non-trivial.

14We thank Hemanta Maji for spotting a flaw in an earlier argument, and suggesting a new argument.

15

Thus, we note that our protocol can be easily made to work for infinite functionalities f for which there exists a
bounded-size subset of X , restricted to which f is non-trivial.

In order to extend our results to all non-trivial infinite functionalities, we can further build upon the above idea.
We note in our OT protocol presented in Section 3, if we can somehow “restrict” Bob to using non-dominating
inputs ŷ0 and ŷ1 (more generally, a bounded-size subset), then we would only require Alice to sample her inputs
in the protocol from a bounded-size subset of domain X . In this case, our protocol can easily handle asymmetric
infinite functionalities.

Then, we note that our impossibility results for static-input fixed-roles concurrent self composition can be
easily extended to rule out all non-trivial asymmetric infinite functionalities in the following manner:

• First, towards a contradiction, given a static-input fixed-roles concurrently secure protocol Π for a non-trivial
asymmetric infinite functionality f , we can “compile” it using stand-alone zero knowledge proof system to
obtain a static-input fixed-roles concurrently secure protocol Π∗ for functionality f∗, where f∗ is the same
as f , except that Bob’s input domain Y ∗ is bounded-size. Very roughly, the compiled protocol Π∗ works as
follows: with each outgoing message m in Π, Bob now additionally gives a zero-knowledge proof to prove
that the message was computed using an input in Y ∗.

• Now, combining Π∗ with our asynchronous non-interactive OT protocol for f∗ and the composition theorem
in Section 5, we can obtain a static-input fixed-roles concurrently secure protocol for OT. Combining this
with the impossibility result for OT in Section 4, we obtain a contradiction.

Remark. We note that a downside of the above approach is that it requires computational assumptions (in
particular, one-way functions for zero-knowledge proofs). This is in contrast to the case of asymmetric finite
functionalities where we obtained an unconditional (non-interactive) completeness result.

4 Impossibility of Concurrent Oblivious Transfer

In this section, we will prove the impossibility of
(

2
1

)
-OT secure under concurrent self-composition in the static-

input, fixed-roles setting. To show this, we proceed as follows. First, we note that for any functionality to be
secure, it must hold that for every input to the functionality, a real world attack, successful with non-negligible
probability (say) ε, implies an ideal world attack that succeeds with probability at least ε − negl. Now, suppose
towards contradiction, we are given a protocol ΠOT that securely realizes the OT functionality FOT under static-
input, fixed-roles concurrent self-composition. We will exhibit a set of inputs (for sender and receiver) and a
real-world adversarial receiver that is able to perform a concurrent attack and manages to learn a secret value,
called secretwith probability 1. We will then prove that if there exists an adversarial receiver in the ideal world
that is able to learn secret with high enough probability, then we can break the stand-alone security of ΠOT against
a cheating sender, thus arriving at a contradiction.

The high level structure of our proof is as follows:

1. First, we will construct an instance of the chosen protocol attack for the OT functionality. More precisely,
let ΠOT be a secure protocol that implements the OT functionality. Then we will construct a protocol Π̂OT

such that the protocols ΠOT and Π̂OT are insecure when executed concurrently.

2. Next, we will use one time programs (OTPs) to transform the above concurrent protocol executions of ΠOT

and Π̂OT into self composition of OT protocol ΠOT.

3. This will provide us with particular inputs to the OT functionality, such that when a malicious receiver Bob
engages in concurrent executions of ΠOT with an honest sender Alice (with these inputs), he will be able to
output secret with probability 1. This will give us a real world attack.

4. We will then show the infeasibility of an adversarial receiver in the ideal world that successfully outputs
secret with probability at least 1− negl. In particular, we will show that such an adversarial receiver can be
used to used to construct a stand-alone cheating sender for ΠOT.

16

4.1 Chosen Protocol Attack

Let ΠOT be a protocol that securely realizes the OT functionality. To fix notation, let us consider two parties Alice
and Bob that are executing an instance of ΠOT. Say that Alice’s input bits are denoted by s0 and s1 and Bob’s
input bit is b. Upon successful completion of the protocol, Bob obtains sb. Next, let Π̂OT be a slightly modified
version of ΠOT where the receiver Bob also has both of Alice’s inputs, s0 and s1 in addition to his bit b. In Π̂OT,
Bob and Alice run an execution of ΠOT with inputs b and s0, s1 respectively. Upon receiving an output s∗, Bob
checks whether s∗ = sb. If so, he sends secret = sb̄ to Alice.

Now, consider the following scenario involving three parties Alice, Eve and David. Alice holds input bits
s0, s1, while David holds s0, s1, as well as a random input bit b. Alice plays the sender with receiver Eve in an
execution of ΠOT, and Eve plays sender with receiver David in an execution of Π̂OT. It is clear that a malicious Eve
can launch “man-in-the-middle” attack, playing simultaneously with Alice and David, and by merely forwarding
Alice’s message to David and David’s back to Alice, she can learn the value secret = sb̄. However, note that if
the execution of ΠOT is replaced with an ideal call to the OT functionality, then the attack does not carry through.
(To avoid repetition, we skip proof details here and instead present them later more formally).

4.2 Converting Π̂OT to ΠOT

Note that the above attack is valid in the setting of concurrent general composition. However, we are interested
in the setting of concurrent self composition, where only ΠOT is executed concurrently. Towards this end, in this
section, we will convert the protocol Π̂OT into a series of OT calls which can be implemented by ΠOT. Since ΠOT

executed concurrently with Π̂OT is insecure, this will allow us to show that ΠOT is insecure under concurrent self
composition.

To begin, we transform the protocol Π̂OT run by Eve (as sender) and David into a sequence of calls made by
Eve to an ideal reactive functionality (with inputs fixed in advance). As in [BPS06], it is natural to instantiate
this ideal functionality by the next message function FDavid of David’s strategy in protocol Π̂OT. Then Eve can
simulate the interaction with David by invoking FDavid each time she expects a message from David.

More precisely, the inputs to FDavid will be the bits s0 and s1, a random bit b, a message from Eve denoted
by ei, and a state statei−1 (since FDavid is a reactive functionality, it needs to know statei−1 in order to compute
statei), and the output of FDavid will be David’s ith message in Π̂OT and statei. By doing this, Eve can, as before,
play the receiver in an execution of ΠOT with Alice as the sender (with inputs s0, s1) and carry out the man in the
middle attack by invoking FDavid. We will denote the real world attacker played by Eve as above, by Ê real.

As the next step, we will to replace the ideal calls to FDavid made by Ê real by a series of OTs executed between
Alice and Ê real. Let n denote the number of messages that David sends in protocol Π̂OT. Then, consider the one
time programs OTP-msg1, . . . ,OTP-msgn where OTP-msgi computes the ith next message function of David.
We will provide Alice with all the keys {keysi}ni=1 to the OTPs. Then, to evaluate the ith OTP, Ê real executes
(multiple sessions of) ΠOT with Alice to obtain the keys corresponding to her input.

Also note that OTPs are stateless by definition, but David’s next message functionality is stateful, i.e. David’s
(i + 1)th message depends on the previous i messages. Looking ahead, we will require that the OTPs only
be invoked by the ideal world attacker in consecutive order. We ensure this by allowing each OTP-msgi to
pass its private state to OTP-msgi+1 using standard techniques (as used in [BPS06, Goy11]). Specifically, we
will add to the (fixed) inputs of OTP-msgi a key K for an authenticated encryption scheme. Now, OTP-msgi
outputs not only David’s next message di, but also an authenticated encryption of its resultant state, denoted by
τi = EncK(statei). As input, OTP-msgi requests not only message ei, but also a valid authenticated encryption
τi−1 such that DecK(τi−1) = statei−1. This forces the functionality FDavid implemented by OTPs, to be invoked
in proper order. For the rest of the article, we will assume that any OTPs we use are made “stateful” in this way.

Note that there are two kinds of executions of ΠOT being carried out between Alice and Ê real : the “main”
OT execution where Alice uses inputs s0, s1, and the additional OT executions that allow Eve to obtain keys for
the one time programs. For clarity of exposition, we will refer to the “main” execution as Πmain

OT and each of the
remaining ones as ΠDavid

OT .

17

4.3 Attack in the real world

Now, we will describe the explicit execution of OTs between Alice and Ê real , where Ê real recovers secret = sb̄.
The protocol is as follows:

Alice’s program: Alice is given input bits s0, s1 for Πmain
OT and all the one time program keys {keysi}ni=1 for

OTP-msg1, . . . ,OTP-msgn

Alice behaves honestly according to the protocol ΠOT and responds honestly to all OT invocations made by
Ê real.

Ê real’s program: Ê real is given input bit b̂ for Πmain
OT and the one time programs {OTP-msgi}ni=1 where OTP-msgi

computes the ith next message function of David. Let s0, s1 and b denote the fixed inputs (hardwired) in the OTPs
such that secret = sb̄.

For i = 1, . . . , n, do:

1. Upon receiving ith message from Alice in Πmain
OT , say ai, suspend (temporarily) the ongoing Πmain

OT session
and start a new ΠDavid

OT session with Alice to compute the ith message that David would have sent in response
had he received ai from Eve. Depending on ai, retrieve the corresponding keys keysi from Alice to input to
OTP-msgi. End the ΠDavid

OT protocol.

2. Run OTP-msgi with keys keysi and obtain output di.

3. If i ≤ n− 1, resume the suspended Πmain
OT protocol and send di back to Alice as response. Otherwise, output

the value secret received from OTP-msgn.

Thus, using a sequence of OT executions, a dishonest Ê real is able to recover secret = sb̄ with probability 1.

4.4 Infeasibility of Ideal world attacker

In this section, we will prove the infeasibility of an ideal world adversarial receiver that succeeds in outputting
secret with the same probability as Ê real. Towards a contradiction, let us assume that there exists an ideal world
attacker Ê ideal that successfully outputs secret with probability at least 1 − negl. Ê ideal has oracle access to the
ideal OT functionality FOT, which for notational clarity we will (as before) divide into two kinds of OTs – FMain

OT

and FDavid
OT . Then, we have two possible cases:

Case 1: With probability at least 1
2 + non− negl, Ê ideal queries FMain

OT for the same bit as is built into the David
OTP (since David was a receiver in the OT protocol, he has a random input bit which is built into the OTPs
implementing his messages). In this case, we construct a stand-alone cheating sender Ŝ that executes OT
protocol ΠOT with an honest receiver R, and uses Ê ideal to learn R’s secret input bit b with probability at
least 1

2 + non− negl. This will imply that ΠOT is standalone insecure, a contradiction.

Case 2: With probability at most 1
2 + negl, Ê ideal queries the same bit as in the OTPs. That is, with probability

1
2 − negl, Ê ideal queries different bit. In this case, we will show via an information theoretic argument, that
with probability at least 1

4 − negl, Ê ideal cannot output secret. Since by assumption Ê ideal succeeds with
probability at least 1− negl, this is a contradiction.

These cases are analyzed below.

18

Figure 2: Stand-alone Cheating Sender Ŝ.

Case 1: Lets say that Ê ideal queries the same bit as in the OTP with probability at least 1
2 + non− negl. In

this case, we will construct a stand-alone cheating sender Ŝ that uses such a Ê ideal to learn R’s secret bit with
probability at least 1

2 + non− negl. The interaction is captured in Figure Figure 2.

Note that in order for Ŝ to successfully run Ê ideal, Ŝ will need to provide inputs to Ê ideal and answer its queries
to FOT. Note that Ê ideal may query the ideal OT functionality FMain

OT or the ideal David OT functionality FDavid
OT .

For all of these tasks, Ŝ makes use of the one time program simulator SimOTP.

The cheating sender Ŝ works as follows:

Ŝ’s program:

1. Ŝ runs Ê ideal: Ŝ provides as inputs to Ê ideal the (simulated) one time programs OTP-msg1, . . . ,OTP-msgn
computed by the OTP simulator SimOTP where OTP-msgi corresponds to the ith next message function of
David as described before.

2. If Ê ideal makes queries to FDavid
OT , Ŝ needs to return keys for the OTPs OTP-msg1, . . . ,OTP-msgn.

Consider the queries made by Ê ideal for OTP-msgi w.l.o.g for some i ∈ [n].

• Ê ideal wishes to obtain keys keysi corresponding to OTP-msgi. Let us assume that OTP-msgi has k
input wires. Ê ideal begins to query Ŝ for the keys (one query per input wire). Ŝ forwards each query to
SimOTP and receives some key in response which it forwards back to Ê ideal.
• At some point, after returning t keys (for some t < k) for OTP-msgi, SimOTP makes its one-time

input query with some value x and requests the value FDavid
i (x).

• Ŝ parses this query as a message msgŜi and sends it toR.

• In response, R sends some message msgRi back to Ŝ . Upon receiving msgRi , Ŝ provides msgRi as
a response to SimOTP. Upon receiving this, SimOTP resumes answering FDavid

OT queries by returning
keys back to Ŝ for OTP-msgi, which Ŝ forwards to Ê ideal. Let us denote all the keys returned by
SimOTP for OTP-msgi as keysi. Then, we have that OTP-msgi(keysi) = msgRi .

3. If Ê ideal makes a query to FMain
OT with input bit b, Ŝ outputs this bit b and halts.

19

It follows from the description of Ŝ that Ŝ successfully mirrors its interaction withR by the interaction between
Ê ideal and {OTP-msg}ni=1. In particular, the secret bit b in the simulated OTPs correspond to the input bit b of the
receiver R. Then, since (by our assumption) Ê ideal queries the same bit b as in the OTPs with probability at least
1
2 + non− negl, Claim 9 follows.

Claim 9. Ŝ successfully outputsR’s secret bit with probability at least 1
2 + non− negl.

Case 2: Consider the case where Ê ideal queries the same bit as in the OTP with probability ≤ 1
2 + negl. This

implies that with probability ≥ 1
2 − negl, Ê ideal queries different bit. Then, Ê ideal received a different bit from

FMain
OT than what it needs in order to learn secret. In this case, Ê ideal fails to guess sb correctly with probability

at least 1
4 − negl and hence cannot output secret with probability at least 1

4 − negl. Since we assume that Ê ideal
succeeds with probability at least 1− negl, this is a contradiction.

5 A Composition Theorem for Static-Input Fixed-Role Concurrent Security

In this section, we give a composition theorem for static-input fixed-role concurrent (self-composition) security.
Very roughly, the composition theorem says the following: suppose we are given an asynchronous non-interactive
protocol ΠF that realizes functionality G with static-input fixed-role concurrent security in the F-hybrid model.
Then, replacing each ideal invocation of F in ΠF with a static-input fixed-role concurrently secure protocol for F
yields a (real-world) protocol that realizes G with the same security.

More formally, the composition theorem is stated as follows:

Theorem 1. Suppose ΠF is an asynchronous, non-interactive protocol that securely realizes G under concurrent
self-composition in the static-input, fixed-role setting, and is secure against expected PPT adversaries. Also,
suppose ρ is a protocol (in the plain model) that securely realizes F under concurrent self-composition in the
static-input, fixed-role setting. Then Πρ securely realizes G under concurrent self-composition in the static-input,
fixed-role setting.

Proof. Let A denote a non-uniform probabilistic polynomial-time real-world adversary for protocol Πρ in the
static-input fixed-role concurrent setting. For any suchA, we will construct a non-uniform probabilistic (expected)
polynomial-time ideal-world adversary S that satisfies Definition 2. We will construct S by the following series of
steps:

Step 1: Given A, we will first construct a real-world adversary A′ for protocol ρ in the static-input fixed-role
concurrent setting.

Step 2: Next, given A′, by static-input fixed-role concurrent security of ρ, we will obtain a simulator S ′ for ρ.

Step 3: Now, given S ′, we can easily obtain an (hybrid-world) adversary AF for ΠF in the static-input fixed-role
concurrent setting.

Step 4: Finally, given AF , by relying on the static-input fixed-role concurrent security of the asynchronous non-
interactive protocol ΠF , we obtain our final simulator S .

Before we proceed to elaborate on these steps, we first setup some notation. We model Πρ (as well as ρ) as a
two-party protocol between Alice and Bob. Let m denote the total number of concurrent executions of Πρ that
A participates in. We will denote these sessions by s1, . . . , sm. Note that since we are in the fixed-roles setting,
A corrupts parties with the same role (i.e., either Alice or Bob) in all the executions of Πρ. For simplicity of
exposition, we denote the honest party in session si by a unique identifier Pi. In reality, the machines Pi may not
be unique and more than one Pi may in fact refer to a single honest party; thus capturing the scenario where A
engages in more than one protocol session with an honest party. We further note that since we are in the static-input
setting, the inputs of P1, . . . , Pm are fixed prior to any protocol execution. Let k denote the number of invocations

20

of F in the asynchronous non-interactive protocol ΠF . Then, note that a session si of Πρ consists of k executions
of ρ, denoted si,1, . . . , si,k. Thus, m sessions of Πρ consist of m · k sessions of ρ.

We now proceed to explain Steps 1 to 4 in more detail.

Step 1: Given adversary A, we construct a real-world adversary A′ for ρ in the following manner. A′ starts by
internally running A. If A wishes to corrupt all parties playing the role of Alice (resp., Bob) in the m sessions of
Πρ, thenA′ corrupts Alice (resp., Bob) in all them ·k sessions of ρ. WheneverA wishes to schedule a new session
si,j of ρ in session i of Πρ, A′ schedules a new session of ρ with party Pi. A′ simply forwards the messages of ρ
between Pi and A. Finally, A stops and outputs its view. A′ outputs the same view and halts.

It follows from the above description that if A is a non-uniform probabilistic polynomial-time real-world
adversary for m sessions of Πρ in the static-input fixed-roles concurrent setting, then A′ is a non-uniform
probabilistic polynomial-time real-world adversary for m ·k sessions of ρ in the static-input fixed-roles concurrent
setting. Note that the view output by A′ is identical to that output by A.

Step 2: Next, since ρ realizes F in the static-input fixed-roles concurrent setting, givenA′, we immediately obtain
an non-uniform probabilistic (expected) polynomial-time ideal-world adversary S ′ that corrupts the same parties
as A′ does and outputs a view (computationally) indistinguishable from that output by A′.

Step 3: Now, given S ′, we construct a (hybrid-world) adversaryAF for protocol ΠF in the following manner. AF
starts by internally running S ′. If If S ′ wishes to corrupt all parties playing the role of Alice (resp., Bob) in the
m · k ideal-world sessions with F , then AF corrupts Alice (resp., Bob) in all the m sessions of Πρ. Now, consider
any i ∈ [m]. Whenever S ′ issues a query to functionality F for a session si,j such that it has never previously
queried F for a session si,j′ (where j′ 6= j),AF initiates the session si of ΠF with party Pi and forwards the query
of S ′ to F and returns F’s response to S ′. Any future queries of S ′ for session si,j′ are simply forwarded by AF
to F and the response is returned to S ′. This completes the description of AF .

It follows immediately from the above description that if S ′ runs in (expected) polynomial-time, then AF runs
in (expected) polynomial time as well, and outputs a view identical to that output by S ′. Further, note that by
definition, S ′ makes m · k total ideal invocations of F . However, these invocations of F may be in any arbitrary
order. Specifically, the k invocations si,1, . . . , si,k of F corresponding to a single session si of ΠF may not be in
parallel. Therefore, the resultant adversary AF is asynchronous in that it may make the k queries to F for a single
session of ΠF in any arbitrary order.

Step 4: Finally, since ΠF realizes G in F-hybrid model in the static-input fixed-roles concurrent setting, and since
ΠF is asynchronous, given adversary AF , we obtain an ideal-world adversary S that only interacts with G and
outputs a view indistinguishable from that output by AF . This is our final simulator. (Note that since AF may be
expected polynomial-time, we require that ΠF is secure against expected polynomial-time adversaries.)

6 Putting it All Together

In this section we summarize our results. All functionalities referred to below are 2-party finite deterministic non-
reactive functionalities. For brevity and clarity we drop these qualifiers. In Section 4 we showed the following
impossibility.

Theorem 2. There does not exist a protocol that securely realizes FOT under concurrent self-composition even in
the static-input, fixed-role setting.

In Section 3 we gave a new asynchronous, non-interactive protocol for OT using any non-trivial asymmetric
functionality:

Theorem 3. For any non-trivial asymmetric functionality F , there exists an asynchronous, non-interactive
protocol ΠF that UC-securely realizes FOT. This protocol is also secure against computationally unbounded
adversaries and expected PPT adversaries.

21

In Section 5, we prove the following composition theorem for security under concurrent self-composition in
the static-input, fixed-role setting.

Theorem 4. Suppose ΠF is an asynchronous, non-interactive protocol that securely realizes G under concurrent
self-composition in the static-input, fixed-role setting, and is secure against expected PPT adversaries. Also,
suppose ρ is a protocol (in the plain model) that securely realizes F under concurrent self-composition in the
static-input, fixed-role setting. Then Πρ securely realizes G under concurrent self-composition in the static-input,
fixed-role setting.

Since UC-security implies security under concurrent self-composition in the static-input, fixed-role setting, by
composing the OT protocol in Theorem 3 with a hypothetical protocol for any non-trivial asymmetric functionality
F (using Theorem 1), we will obtain a protocol for FOT, contradicting Theorem 2. This gives our main
impossibility result:

Theorem 5. For any non-trivial asymmetric functionality F , there does not exist a protocol (in the plain model)
that securely realizes F under self-composition even in the static-input, fixed-role setting. (On the other hand,
every trivial asymmetric functionality has a UC-secure protocol.)

Another consequence of the protocol in Theorem 3 is to give a characterization of functionalities that are non-
interactively complete against active adversaries. This is because FOT itself has this property, as was shown by the
following non-interactive (but not asynchronous) protocol from [IPS08].

Theorem 6. [IPS08, Full version] For any asymmetric functionality G, there exists a non-interactive protocol
ΦFOT that UC-securely realizes G. This protocol is also secure against computationally unbounded adversaries
and expected PPT adversaries.

Since the protocols in our positive results above are UC-secure, by the UC theorem their composition is secure.
Further, composing a non-interactive protocol in FOT-hybrid with a non-interactive protocol for FOT in F-hybrid
gives a non-interactive protocol in F-hybrid. This gives us the following characterization:

Theorem 7. In the class of asymmetric functionalities, every non-trivial functionality is non-interactively complete
with respect to UC security (against active adversaries).

That is, for any two asymmetric functionalities F , G, if F is non-trivial, then there exists a non-interactive
protocol ΨF that UC-securely realizes G. This protocol is also secure against computationally unbounded
adversaries and expected PPT adversaries.

Theorem 5 and Theorem 7 are the main results in this work. In addition, the protocol in Theorem 3 is of
independent interest.

References

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable protocols
with relaxed set-up assumptions. In FOCS, pages 186–195, 2004.

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-malleable zero knowledge. In
FOCS, pages 345–354, 2006.

[BS05] Boaz Barak and Amit Sahai. How to play almost any mental game over the net - concurrent
composition via super-polynomial simulation. In FOCS, pages 543–552, 2005.

[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–147, 2001.

[Can05] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
http://eprint.iacr.org/2000/067, 2005.

22

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO, pages 19–40,
2001.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable
two-party computation without set-up assumptions. In EUROCRYPT, pages 68–86, 2003.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party
and multi-party secure computation. In STOC, pages 494–503, 2002.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security in the plain
model from standard assumptions. In FOCS, pages 541–550, 2010.

[CPS07] Ran Canetti, Rafael Pass, and Abhi Shelat. Cryptography from sunspots: How to use an imperfect
reference string. In FOCS, pages 249–259, 2007.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In STOC, pages 409–418,
1998.

[GGJS12] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently secure computation in
constant rounds. In EUROCRYPT, 2012.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia. Founding
cryptography on tamper-proof hardware tokens. In TCC, pages 308–326, 2010.

[GJO10] Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. Password-authenticated session-key generation on
the internet in the plain model. In CRYPTO, pages 277–294, 2010.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In Proceedings
of the 28th Annual conference on Cryptology: Advances in Cryptology, CRYPTO 2008, pages 39–56,
2008.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In STOC, pages 218–229,
1987.

[Goy11] Vipul Goyal. Positive results for concurrently secure computation in the plain model. IACR Cryptology
ePrint Archive, 2011:602, 2011.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer -
efficiently. In CRYPTO, pages 572–591, 2008. Preliminary full version on http://www.cs.uiuc.edu/
∼mmp/.

[Kat07] J. Katz. Universally composable multi-party computation using tamper-proof hardware. In Advances
in Cryptology — Eurocrypt 2007, volume 4515 of Lecture Notes in Computer Science, pages 115–128.
Springer, 2007.

[Kil00] Joe Kilian. More general completeness theorems for secure two-party computation. In STOC, pages
316–324, 2000.

[KL11] Dafna Kidron and Yehuda Lindell. Impossibility results for universal composability in public-key
models and with fixed inputs. J. Cryptology, 24(3):517–544, 2011.

[KM11] Daniel Kraschewski and Jörn Müller-Quade. Completeness theorems with constructive proofs for finite
deterministic 2-party functions. In TCC, pages 364–381, 2011.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-logarithm rounds. In
STOC, pages 560–569, 2001. Preliminary full version published as cryptology ePrint report 2000/013.

23

http://www.cs.uiuc.edu/~mmp/
http://www.cs.uiuc.edu/~mmp/

[Lin03] Yehuda Lindell. General composition and universal composability in secure multi-party computation.
In FOCS, pages 394–403, 2003.

[Lin04] Yehuda Lindell. Lower bounds for concurrent self composition. In TCC, pages 203–222, 2004.

[Lin08] Yehuda Lindell. Lower bounds and impossibility results for concurrent self composition. J. Cryptology,
21(2):200–249, 2008.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework for
concurrent security: universal composability from stand-alone non-malleability. In STOC, pages 179–
188. ACM, 2009.

[MPR06] Silvio Micali, Rafael Pass, and Alon Rosen. Input-indistinguishable computation. In FOCS, pages
367–378, 2006.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol composition. In
EUROCRYPT, pages 160–176, 2003.

[PR08] Manoj Prabhakaran and Mike Rosulek. Cryptographic complexity of multi-party computation
problems: Classifications and separations. In CRYPTO, pages 262–279, 2008.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with logarithmic round-
complexity. In FOCS, pages 366–375, 2002.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal composability
without trusted setup. In STOC, pages 242–251, 2004.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge proofs. In
EUROCRYPT, pages 415–431, 1999.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In FOCS, pages 162–167, 1986.

24

	Introduction
	Our Results
	Our Techniques

	Preliminaries
	Notation
	Real and Ideal models.
	One Time Programs

	A Non-Interactive Protocol for OT from Any Non-Trivial Asymmetric SFE
	The New Protocol

	Impossibility of Concurrent Oblivious Transfer
	Chosen Protocol Attack
	Converting OT"0362OT to OT
	Attack in the real world
	Infeasibility of Ideal world attacker

	A Composition Theorem for Static-Input Fixed-Role Concurrent Security
	Putting it All Together

