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Abstract

In the setting of cryptographic protocols, the corruption of a party has traditionally been
viewed as a simple, uniform and atomic operation, where the adversary decides to get control
over a party and this party immediately gets corrupted. In this paper, motivated by the fact
that different players may require different resources to get corrupted, we put forth the notion
of resource-based corruptions, where the adversary must invest some resources in order to do so.

If the adversary has full information about the system configuration then resource-based
corruptions would provide no fundamental difference from the standard corruption model. How-
ever, in a resource “anonymous” setting, in the sense that such configuration is hidden from the
adversary, much is to be gained in terms of efficiency and security.

We showcase the power of such hidden diversity in the context of secure multiparty com-
putation (MPC) with resource-based corruptions and prove that it can effectively be used to
circumvent known impossibility results. Specifically, if OPT is the corruption budget that vi-
olates the completeness of MPC (the case when half or more of the players are corrupted), we
show that if hidden diversity is available, the completeness of MPC can be made to hold against
an adversary with as much as a B · OPT budget, for any constant B > 1. This result requires
a suitable choice of parameters (in terms of number of players and their hardness to corrupt),
which we provide and further prove other tight variants of the result when the said choice is not
available. Regarding efficiency gains, we show that hidden diversity can be used to force the
corruption threshold to drop from 1/2 to 1/3, in turn allowing the use of much more efficient
(information-theoretic) MPC protocols.

We achieve the above through a series of technical contributions:

The modeling of the corruption process in the setting of cryptographic protocols through
corruption oracles as well as the introduction of a notion of reduction to relate such oracles;

the abstraction of the corruption game as a combinatorial problem and its analysis; and,
importantly,

the formulation of the notion of inversion effort preserving (IEP) functions which is a type
of direct-sum property, and the property of hardness indistinguishability. While hardness
indistinguishability enables the dissociation of parties’ identities and the resources needed
to corrupt them, IEP enables the discretization of adversarial work into corruption tokens,

all of which may be of independent interest.
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1 Introduction

The notion of computing in the presence of an adversary which controls or gets access to parts of
the system is at the heart of modern cryptography. This paradigm has given rise to cryptosystems
and protocols which achieve general tasks in the presence of powerful adversaries. A prime example
of the paradigm are “completeness theorems” which show that a distributed cryptographic proto-
col exists where an adversary controlling any minority of the parties, cannot prevent the secure
computation of any efficient functionality defined over their inputs [23]. Similar secure multiparty
computation (MPC) results hold over secure channels (and no additional cryptography) with an
adversary controlling less than a third of the parties [6, 11]. Furthermore, these results are tight
in the sense that when the adversary controls more parties there are functionalities that cannot be
securely implemented.

In the works thus far however, the corruption of a party has been viewed as a simple, uniform
and atomic operation where the adversary decides to corrupt a party and this party gets corrupted.
The only limit the adversary has is on the number of individual party’s corruptions and restrictions
on when and how it can corrupt.

In this paper we are motivated by the fact that different players may require different resources
to get corrupted. Indeed, the price paid for penetrating one organization, measured for example
by the amount of money that a corrupt employee might have demanded, may differ from the cost
of getting into another organization. Another example of a more cryptographic nature is when
two organizations employ different password policies, or utilize VPN’s relying on cryptosystems of
different strengths. Taking such real world considerations into account gives rise to the notion we
put forth of resource-based corruption, where the adversary must invest certain resources in order
to corrupt a party. The initiation of the study of corruption models which describe situations like
the above is our first contribution.

In a setting where the adversary has full information about a system, resource-based corruptions
provide no fundamental divergence from the logic of the standard corruption model. The adversary,
given an initial corruption budget, will target the largest subset of the system that it can afford and
if such subset if large enough, the disruption of various security properties will ensue (as it follows
from, e.g., [12]). The interesting case thus arises when the parties act on the system “anonymously”
from the point of view of the adversary, in the sense that the association of parties’ names and
the individual corruption resources they require remains hidden. In this way, it seems plausible
that a portion of the corruption budget will have to be wasted to learn the system configuration.
Our second contribution is thus the investigation of the quantitative effect of this type of hidden
diversity in the context of resource-based corruptions.

The problem the adversary faces can be abstracted as the following combinatorial game. The
adversary is given a number of balls (“corruption tokens”) and is faced with a sequence of buckets
with the objective to fill a certain fraction of them. While it knows all the bucket sizes, it does
not know their correspondence to the individual buckets in the sequence. If OPT is the minimum
number of balls required to fill a given percentage of the buckets had the adversary been privy to the
correspondence between the buckets and their sizes, how many balls as a function of OPT would
be required if such hidden diversity is provided? We analyze this setting as “the combinatorics of
hidden diversity” and show a number of results concerning the initial partial knowledge given to the
adversary and the strategies it can apply. The analysis leads to corruption strategies (algorithms)
and corruption impossibilities (lower bounds), under various cases of partial knowledge and size
parameters.

Most importantly, we prove that the “value of hidden diversity” can be unbounded! Specifically,
for any B there are ways to choose buckets’ sizes so that the required resources needed by the
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adversary to reach its target would be B · OPT , i.e., an arbitrarily high inflation of the required
corruption budget (the cryptographic implications of this are shown below).

To realize the abstractions made above—including the combinatorial game for corruptions—
we introduce a formal framework where there is a special entity called a corruption oracle that
mediates the adversary’s corruption capability. We describe a variety of natural corruption oracles
and introduce a notion of reduction between them that makes the translation between different
corruption games that an adversary might choose feasible. In particular this allows us to capture
and quantify the setting where corruptions occur due to the inversion of computationally hard
problem instances (what we call “computational corruptions”).

Our third contribution is the study of the sufficient conditions under which such computational
corruptions can be abstracted as token-based corruptions. First, we formulate the notion of In-
version Effort Preserving (IEP) functions, which, at a high level, postulates a complexity lower
bound on the problem of solving (inverting) multiple instances simultaneously as a function of the
sum of the complexities of solving those instances individually. This notion is a type of generalized
direct-sum property. Such direct-sum properties have been studied in other contexts such as com-
munication complexity and complexity of quadratic forms (see, e.g., [18, 29, 17]) and also relate
to the notion of hardness amplification [41, 27]. We show that the IEP property holds for random
functions as well as exponentiation maps in idealized models such as the random oracle model [4]
and the generic group model (e.g., [40]), respectively; we also provide evidence that it holds in
the computational model under complexity of factoring assumptions. Second, we formulate the
notion of hardness indistinguishability which, essentially, expresses the inability of the adversary
to distinguish between two or more inversion instances of different complexity. We express this
property in the statistical sense, something that facilitates our reductions between corruption mod-
els. Effectively, the former notion (IEP) enables the discretization and token abstraction of the
computational effort against a sequence of problems, while the latter (indistinguishability) provides
the uncertainty the adversary faces while deciding its corruption budget allocation. In turn, these
two notions rely on the hardness of the inversion problem of a function when measured in an exact
sense, a notion we also formalize, relate to past notions and investigate.

Putting everything together, we show how hidden diversity in the context of resource-based
corruptions enables us to get around impossibility results. Going back to our motivating example
of secure multiparty computation, the impossibility result states that when the adversary has
corruption resources that exceed those needed to control a minority of players, many functionalities
have to be given up. Specifically we prove the following (informally stated):

Let OPT be the optimal corruption budget for which the completeness of MPC is violated.
Assuming hidden diversity, there exist configurations such that:

For any B, the completeness of MPC holds against any adversary with less than B · OPT
corruption budget assuming a sufficient number n of players (where n = Ω(log(1ϵ ) ·B), and ϵ is
the probability of error).

The above assumes the hardness of individual corruptions is not bounded. If, on the other
hand, a bound M is imposed, the completeness of MPC holds against any adversary with less

than ∼ (
√
M

log( 1
ϵ
)
) ·OPT corruption budget assuming n ≥

√
M .

These results are expressed formally in Theorems 3.3 and 3.6, respectively. In addition, we provide
evidence that the above results are essentially tight. For example, for the second formulation
above, when the adversary’s budget reaches an amount ∼

√
M · OPT , there is a strategy that

always corrupts half the players (Corollary 3.5).
Another way to exploit hidden diversity that we consider is to improve the efficiency of the

implementation of MPC (as opposed to increasing the corruption budget the protocol can tolerate).
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We prove that, assuming the same OPT corruption budget, hidden diversity forces the corruption
threshold to drop from 1/2 to 1/3, in turn allowing the use of much more efficient (information-
theoretic) MPC protocols (see Theorem 3.7).

The above results demonstrate that there exist settings of player diversity that can be quite
beneficial from a security standpoint if the diversity is appropriately hidden. This opens up the
possibility for further investigation of the benefits of hidden diversity in various settings where a
specific player configuration is assumed (or even can be imposed). In addition, we remark that in
this paper we focus on corruptions that require effort from the adversary, which capture a wide
range of attacks, from cryptographic- (e.g., an offline dictionary attack against a password file) to
system-based (e.g., a brute force search against address space layout randomization), since they
provide a fertile ground for relevant theoretical analysis (in contrast to settings where corruption
happens essentially for free).

Related work. To our knowledge, this is the first time that hidden diversity in terms of cor-
ruption effort is identified and used as a mechanism to boost security guarantees. This can be
juxtaposed with results in the theory of cryptography that showed how other types of adversarial
uncertainty can be beneficial, perhaps the closest one of which is (sender) anonymity. For example,
it has been shown that variants of an anonymous channel can be used to implement unconditionally
secure point-to-point channels and a broadcast channel [19, 28], as well as more efficient natural
secure computation tasks, such as private information retrieval (PIR) [28].

With respect to resource-based corruptions, the notion of general adversary structures [25],
where the adversary can choose different sets of players to corrupt from a collection of possible
choices, not necessarily determined by their size, can be cast as an instance of resource-based
corruption for an appropriate adversary budget and players’ corruption thresholds. The two models,
in fact, can be shown to be equivalent; the resource-based corruption model, however, is the one
that enables us to reason about hidden diversity which is our main focus.

There is also related work regarding the “lower-bounding” of adversarial effort, including the
notion of “moderately hard functions” to fight spam [16], cryptographic key escrow [39, 2], time-lock
puzzles and timed-release cryptography (e.g., [36, 7, 21]), and resource fairness [20]. We note that
in most such applications, however, the common theme is relating work to time, and thus crafting
problems whose solution is hard to parallelize, which is not the case here. In terms of measuring
adversarial effort, our approach is along the same lines as precise zero-knowledge [32] where the
knowledge gained by a player is measured in terms of its actual computation.

In an independent development, Bellare, Ristenpart and Tessaro [3] recently introduced the
notion of multi-instance (MI) security, which relates to the notion of IEP functions introduced here.
In settings where it is computationally feasible for instances to be compromised (“inverted,” in our
parlance), such as password-based cryptography, the application where the notion is showcased, it is
shown that security can be amplified linearly in the number of instances in the random oracle (RO)
model under a proper modeling. Such modeling, called “left-or-right xor” (LORX), is introduced in
[3], aiming to capture the level of multi-instance security of a cryptographic primitive (encryption
in that paper) with respect to indistinguishability-type challenges. In contrast, and in line with our
objectives, the IEP property captures the multi-instance hardness behavior of one-way functions,
and, as opposed to LORX, is cast as an intrinsic complexity characteristic that expresses the rate
of hardness growth as a function of the number of instances.

As we already mentioned above, the notion of IEP functions also bears some resemblance
to hardness amplification and direct-product theorems [41, 27]; we elaborate on such relation in
Appendix A.2. Finally, similar notions to the notion of exact hardness that we put forth in this
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paper have been considered in the literature; see Section 4.1 and in particular Appendix A.1 for a
comparison to another “more refined than asymptotic” measure of inversion difficulty considered
by Haitner, Harnik and Reingold [24].

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we
introduce the notion of resource-based corruptions, corruption oracles and reductions between them.
In Section 3, we present the combinatorial analysis that allows us to prove the gains of hidden
diversity at an abstract, “token” level. Finally, in Section 4 we give the definitions and instantiations
of exact hardness, IEP and hardness indistinguishability, which enable the application of the results
to the computational-corruption setting. For ease of readability, some of the proofs, comparisons
to related notions, candidate functions satisfying the Section 4 definitions, as well as additional
analysis and constructions, are presented in the appendix. We first introduce some basic notation.

Notation. We use λ ∈ N to denote the security parameter. All quantities are assumed to be
functions of λ unless otherwise noted. Let X,Y be random variables with range in {0, 1}. We write

X
ϵ≈ Y if we have that |Pr[X = 1]−Pr[Y = 1]| < ϵ.

2 Resource-based Corruptions

A main goal of this paper is to formulate the cost for an adversary to “corrupt” parties running a
cryptographic protocol, in contrast to the traditional approach where the adversary gains control of
parties for free. We will be modelling this process in what nowadays is the widely accepted method
to formulate the security of a protocol carrying out a given task: the “trusted-party paradigm” [23].
Recall that in this paradigm, the protocol execution is compared with an ideal process where the
outputs are computed by a trusted party that sees all the inputs. A protocol is then said to securely
carry out a given task if running the protocol with a realistic adversary amounts to “emulating”
the ideal process with the appropriate trusted party. In the perhaps most developed version of the
paradigm, due to Canetti [8], the task of distinguishing between the two experiments is assigned
to an entity (a polynomial-time interactive Turing machine [ITM]) called the environment, and
denoted by Z, which is also in charge of producing the inputs for and receiving the outputs from
both executions. Besides Z, the other basic entities (also ITMs) involved in the real-world execution
are n players P1, ..., Pn, and an adversary A. We will be using a variant of this formulation, similar
to [20], meant to capture synchronous communication and exact running-time bounds1.

2.1 Corruption Oracles and Security Definition

We model the corruption process, under different costs, by the addition of a new entity (ITM) to
the real-world execution, which we call the corruption oracle (C), and whose essential purpose is
to interact with adversary A and manage its corruption capability. In more detail, the two basic
principles in C’s operation are as follows:

C is initialized with a random tape and the number of players n ∈ N involved in the system. It
may return some information about the players to the adversary A.

For each player Pi, A may engage C in a simple (corruption) protocol, call it ρi, to determine
whether player Pi gets corrupted. The adversary is free to schedule many such corruption
protocols concurrently (either statically for a static adversary or dynamically for an adaptive

1We note that these formulations are in fact more powerful than needed for this paper, as we will be focusing on
stand-alone protocol execution.
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one). If the protocol terminates with C accepting, then player Pi is declared corrupted, meaning
that A has access to Pi’s internal state, and is able to impersonate Pi in all of its subsequent
interactions (for a malicious A).

We consider communication with the corruption oracle as part of the adversary’s basic step of (sig-
nificant) computation (see Section 4.1). For succinctness, sometimes we will refer to the adversary
A interacting with corruption oracle C as AC . Following [8], we will use the notation execπ,AC ,Z to
denote the (binary) distribution ensemble describing Z’s output after interacting with adversary
A running with corruption oracle C, and players running protocol π.

In the ideal process we will model the corruption capability as follows. We consider a “wrapper”
functionality WC(F) that for any functionality F and corruption oracle C, “traps” the corruption
requests directed to a party participating in it; all other messages and requests it immediately
passes to the functionality. This will allow us to provide a corruption interface that is compatible
with the corruption-oracle modeling of the real world. In more detail, for each party Pi involved in
F the wrapper WC(F) initializes the corruption oracle and considers all parties as “uncorrupted.”
Mimicking the behavior of the real-world adversary attacking parties, S can submit corruption
messages for party Pi following the protocol ρi to WC(F), who maintains the state of the corruption
oracle. If, at some point, C terminates the execution of one of the ρi protocols and accepts, then
WC(F) sets the party Pi status to “corrupted,” issues a (standard) corruption message for Pi,
(Corrupt, Pi), to F , and returns the functionality’s response, namely, the party’s internal state
as kept by the functionality, back to S. In addition, we note that once a party is corrupted, the
ideal adversary is typically allowed to “re-write” the corrupted party’s internal state; WC(·) ignores
such messages while the party is uncorrupted. Let execWC(F),S,Z denote the (binary) distribution

ensemble describing Z’s output after interacting with adversary S and the ideal protocol for WC(F)
as specified above.

We now proceed to more formally specify how the two executions—real and ideal—would be
indistinguishable to the environment. The typical order of quantifiers in simulation-based security
definitions (∀A∃S∀Z) allows the ideal-world adversary to depend on the real-world adversary that
it simulates, but it should be independent of the environment. Following [20], we use a slight weak-
ening of this definition, which is appropriate for the setting of adversaries restricted to performing
a specific number of steps of the computation. Specifically, let t denote the number of steps taken
by the adversary, for t a monotonically increasing arithmetic function; we consider the “compound”
ITM ⟨Z,A⟩ (namely, two ITMs, interacting with each other and possibly with other ITMs in a
well-defined manner, treated as a single entity) as being t-bounded. (This refinement will become
useful when capturing corruptions as computational effort—cf. Section 4.)

Definition 2.1 For a given t, a protocol π is said to securely realize a functionality F against
t-bounded adversaries and corruption oracle C, if for all A there exists an ideal-world adversary S,
running in time t+ p, such that for all Z with ⟨Z,A⟩ being t-bounded,

execπ,AC ,Z
ϵ≈ execWC(F),S,Z ,

where ϵ is some negligible function and p some polynomial.

Next, we introduce the notion of safety for a corruption oracle.

Definition 2.2 For a given t, we say a corruption oracle C is t-safe if for all functionalities F
(including those that guarantee fairness and output delivery to all honest parties), there is a protocol
π that securely realizes F against t-bounded adversaries and C.
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If a corruption oracle is t-safe for all t, then we call it simply safe. For example, it can be derived
from [23, 9] that the standard (traditional) corruption oracle allowing less than 1/2 of the players
to be corrupted (to be denoted below as Cstd

1
2

) is safe. Further, in case we want to be explicit about

the parameters involved in the proof of safety, we will say that a corruption oracle C is (t, γ)-safe
if it holds that the above definition is satisfied with a simulation that may fail with probability at
most 1− γ.

2.2 Cost Measures and Relations between Corruption Oracles

Next, we will start by capturing two cost measures for corruptions, namely, the traditional one
(i.e., no cost) and the “token” based (i.e., discretized) measure, defining corruption oracles for
them, which will already enable us to establish the power of hidden diversity at an abstract level;
later on (Section 4) we will provide the final “translation” by presenting the computational-based
measure. In addition, we will define the “blinded” version of such oracles (which, looking forward,
will effectively model the hardness indistinguishability of functions put forth in Section 4.1), and
establish the relations between them.

Standard cryptographic corruption. In this case the corruption oracle is initialized with a
threshold α ∈ (0, 1), and maintains a counter ctr initially set to 0. The oracle provides the number
of players n to the adversary. The corruption protocol ρi consists of a single message (Corrupt, Pi)
that is to be transmitted by the adversary to the oracle. Given such a message, the oracle checks
whether ctr + 1 < ⌈α · n⌉, and in this case declares player Pi corrupted (with the effect described
above) and increases ctr by 1. We denote this corruption oracle by Cstd

α . For secure multi-party
computation applications, typical values of α are 1

2 (i.e., honest majority), 1
3 and 1 − 1

n (i.e., at
least one honest player).

Token-based corruption. In this case the corruption oracle is initialized with a vector s ∈ Nn

(s for bucket “sizes”) and a threshold k (total number of tokens); the threshold of player Pi is the
value si. The oracle gives to A the vector s, and maintains counters ctr1, . . . , ctrn initially set to 0.
Protocol ρi here consists of messages of the form (Corrupt, Pi, v) sent by A. The oracle checks
that v +

∑
i ctri ≤ k, and in this case it increases counter ctri by v; if it happens that ctri ≥ si,

then player Pi gets corrupted. We will denote the token-based corruption oracle by Ctk
s,k.

Blinded token-based corruption. This corruption oracle, denoted by Cbtk
s,k , is identical to Ctk

s,k

in operation with the following difference: whenever the adversary submits a (Corrupt, Pi, v)
message, the oracle performs the update operations on player Pp(i) where p is a secret random
permutation that is selected initially and maintained by the corruption oracle. Otherwise, the
blinded token-based corruption oracle behaves as the token-based corruption oracle. Given that
this oracle has a private state (permutation p), for technical reasons (to be revealed later) we will
also consider a “leaky” version of this corruption oracle that is parameterized by an ITM L and
operates on the private permutation p. In this leaky version, the adversary A may submit a special
request given which the corruption oracle will run L on its internal state and return its output to
A. We will denote the leaky version of this corruption oracle by Cbtk,L

s,k .

We now set out to study the relations between corruption oracles defined above. Our main tool
is the following definition.

Definition 2.3 Fix some ϵ > 0 and arithmetic function t. Given two corruption oracles C1 and
C2, we say that C2 dominates C1 with error ϵ and complexity t, denoted C1 ≤t

ϵ C2, provided the
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following holds: for n ∈ N and any n-party protocol π, for any A, there is an adversary B, running
in time t+ p, such that for all Z with ⟨Z,A⟩ being t-bounded,

execπ,AC1 ,Z
ϵ
≈ execπ,BC2 ,Z ,

where p is some polynomial.

The main intuition behind this definition is that if C2 dominates C1 and an adversary is given
a choice between the two, it may always opt for the former. The way we will employ the above
relation in our exposition is that if C2 dominates C1 and it happens that C2 is safe, then C1 is
also safe. More specifically, if C2 is (t, γ)-safe and we have that C1 ≤t

ϵ C2, then we have that C1 is
(t, γ − ϵ)-safe. It is easy to see that the relation ≤t

ϵ is reflexive and transitive and thus constitutes
a preorder for any choice of the parameters t, ϵ.

Another easy observation is that Cstd
γ1 ≤t

ϵ Cstd
γ2 provided that γ1 ≤ γ2, independently of the values

t, ϵ. This stems from the fact that the power of the adversary can only potentially increase in the
corruption oracle of the right-hand side. When the relation ≤t

ϵ holds for any function t, we will
write ≤ϵ.

From token-based corruptions to standard corruptions. Let A be any adversary that
interacts with CX

s,k for some s = (s1, . . . , sn) ∈ Nn, k ∈ N and X ∈ {tk, btk}. For some α ∈ (0, 1)

and complexity t, we denote by badtX[s, k, α] the supremum of the probability of the event that the

number of corrupted players reaches ⌈α · n⌉ in the execution of MCX
s,k , where M is any t-bounded

ITM. We have the following :

Lemma 2.4 For any n, k ∈ N, s ∈ Nn, α ∈ (0, 1) and arithmetic function t, we have that CX
s,k ≤t

ϵ

Cstd
α , where ϵ ≤ badtX[s, k, α] and X ∈ {tk, btk}.

Proof. The description of B is based on A. Specifically, B will simulate the corruption oracle
CX
s,k for A and whenever a player is corrupted according to the corruption oracle it will pass the

corresponding corruption message to its own corruption oracle Cstd
α . The only problem that may

occur in the simulation is when the corruption oracle of B rejects its corruption request for a
certain player while the corresponding player is expected to be corrupted by A. Using the fact that
Pr[X|¬B] = Pr[Y |¬B] implies that |Pr[X]−Pr[Y ]| ≤ Pr[B] for any three events X,Y,B over the
same probability space yields the proof, by taking X to be the output of A’s execution, Y to be
the output of B’s execution, and B the probability that A is able to successfully corrupt a player
while B is denied. �

This lemma would be most useful in case ϵ is negligible (cf. next section).

3 The Combinatorics of Hidden Diversity

In this section we will use the relations we established between the corruption oracles in the previous
section in order to derive cryptographic safety bounds at a purely combinatorial level. In particular
we will provide bounds for the “bad” event (Lemma 2.4) and negative results—for the adversary—
showing how the blinded version of corruption oracles remains safe for ranges of parameters that
are unsafe in the regular case, hence demanding from the adversary a substantially higher “budget”
to achieve its goal.

We defined two types of token-based corruption oracles, regular and blinded, which are specified
by two parameters: s, k. Let OPTα(s) be the minimal number of tokens that need to be invested
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in order to corrupt a set of players of size at least ⌈αn⌉ in the token-based corruption oracle model,
i.e., OPTα(s) = min{k : ∃C ⊆ {1, . . . , n} with |C| ≥ ⌈αn⌉ and

∑
i∈C si = k}. Based on this

definition, Lemma 2.4, and our observation that Cstd
1/2 is safe, we have the following.

Theorem 3.1 For any n ≥ 2, and s ∈ Zn, the corruption oracle Ctk
s,k is safe for any k < OPT1/2(s)

and unsafe for any k ≥ OPT1/2(s).

Proof. First, regarding cryptographic safety, we observe that as long as k < OPT 1
2
(s), it holds

that an honest majority of players is always guaranteed. Due to the results of [23], it follows that
a protocol can be constructed for any functionality F . On the flip side, if k > OPT 1

2
(s) this means

that there exists a set of players C for which it holds that k ≥
∑

i∈C si and |C| ≥ ⌈n2 ⌉. It follows
that by corrupting this set of players it is impossible to realize all functionalities (this follows from
the impossibility result of Cleve [12]). �

Next, we demonstrate how the blinded token-based corruption oracle remains safe for ranges of
parameters that are unsafe in the regular case.

Balls and buckets. The problem at hand can be rephrased as the following game, which is
further elaborated on in Appendix B. An adversary wishes to distribute balls (corresponding to
corruption tokens) to n buckets, so as to fill at least ⌈αn⌉ of them for some given α ∈ (0, 1). The
sizes of the buckets are given in the form of a vector s ∈ Zn. If the adversary has full information
about the buckets, it can achieve its goal by investing OPTα(s) balls. Given the characteristics of
the Cbtk

s,k oracle, we are interested in the case where the adversary does not know the correspondence
between buckets and s so it may have to waste a certain number of balls to reach the ⌈αn⌉ threshold.
Specifically, we assume that there is a hidden random permutation π that re-labels the buckets so
the adversary knows sπ = (sπ(1), . . . , sπ(n)). We note that it should be the case that s includes at
least 2 different sizes, since otherwise the hidden permutation would not stall the adversary in any
way. Specifically, the cardinality of the set {s | ∃i : s = si} is bigger than 1.

3.1 Increased Security from Hidden Diversity

We first consider the case when there are no restrictions on the number of sizes or their values.

Theorem 3.2 For any α, 0 < α < 1, constants B > 1 and ϵ > 0, and for any n ≥ log(1/ϵ) ·
max{1/α, (4B − 2)/(1− α)}, there exists a vector s ∈ Zn such that any adversary that is given sπ

for a random permutation π, and has fewer than B · OPTα(s) balls, has probability less than ϵ of
filling ⌈αn⌉ buckets.

Proof. We may assume without loss of generality that n > 8B/(1 − α). For a c, 0 < c ≤ α, to be
specified later, our instance will have ⌈cn⌉ buckets of size ⌈αn⌉ + 1, ⌈αn⌉ − ⌈cn⌉ buckets of size
1, and n − ⌈αn⌉ buckets of size (⌈cn⌉ + 2)B⌈αn⌉. An optimal solution will consist of the ⌈αn⌉
smallest buckets, and will have total size (⌈cn⌉+1)⌈αn⌉. This implies that we cannot afford to fill
any of the largest buckets if we are to use fewer than B · OPTα(s) = B(⌈cn⌉ + 1)⌈αn⌉ balls, and
any algorithm that fills ⌈αn⌉ buckets must find and fill all the buckets of size ⌈αn⌉+ 1.

But now note that the only way the adversary can tell whether a bucket has this size or one of
the larger ones is to place ⌈αn⌉ + 1 balls in the bucket. Thus, if the adversary is to use no more
than B(⌈cn⌉ + 1)⌈αn⌉ balls, it can test no more than B(⌈cn⌉ + 1) buckets with size exceeding 1,
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of which there are n − ⌈αn⌉ + ⌈cn⌉. The probability of finding all ⌈cn⌉ of the mid-size buckets is
then at most (

n− ⌈αn⌉
B(⌈cn⌉+ 1)− ⌈cn⌉

)/(
n− ⌈αn⌉+ ⌈cn⌉
B(⌈cn⌉+ 1)

)
.

Setting X = n− ⌈αn⌉ and Y = B(⌈cn⌉+ 1)− ⌈cn⌉, this is equal to(
X
Y

)/(
X + ⌈cn⌉
Y + ⌈cn⌉

)
=

(Y + 1)(Y + 2) · · · (Y + ⌈cn⌉)
(X + 1)(X + 2) · · · (X + ⌈cn⌉)

,

which we will be able to argue is sufficiently small if we can chose c > 0 such that, say, Y + ⌈cn⌉ ≤
(X+⌈cn⌉)/2. This requires that B⌈cn⌉+B < (n−⌈αn⌉+⌈cn⌉)/2, or (2B−1)⌈cn⌉ ≤ n−⌈αn⌉−2B.
which will be true so long as (2B−1)(cn+1) ≤ n(1−α)−1−2B, or (2B−1)(cn) ≤ n(1−α)−4B,
or c ≤ (1 − α)/(2B − 1) − 4B/(n(2B − 1). By our assumption that n > 8B/(1 − α), this means
that all we need for Y + ⌈cn⌉ < (X + ⌈cn⌉)/2 is that c ≤ (1− α)/(4B − 2). By our construction,
we also need c ≤ α, so it suffices to set c = min{α, (1− α)/(4B − 2)}.

Given that Y + ⌈cn⌉ < (X + ⌈cn⌉)/2, we then have that (Y + i)/(X + i) ≤ 1/2 for 1 ≤ i⌈cn⌉,
and hence the probability of success is at most

(Y + 1)(Y + 2) · · · (Y + ⌈cn⌉)
(X + 1)(X + 2) · · · (X + ⌈cn⌉)

< (1/2)⌈cn⌉ ≤ (1/2)cn .

Setting (1/2)cn = ϵ and solving for n yields the claimed result. �

The above theorem implies the following result.

Corollary 3.3 For any B > 1 and ϵ > 0, and for any n ≥ log(1/ϵ)(8B − 4), there exists a vector
s ∈ Zn such that the corruption oracle Cbtk

s,k is (1− ϵ)-safe provided that k < B ·OPT1/2(s).

Proof. We show that Cbtk
s,k ≤ϵ Cstd

n, 1
2

for the choice of parameters n, s, k of the previous theorem.

Cryptographic safety will follow then immediately due to Theorem 3.1.
In order to prove the reduction between the corruption oracles we need to provide an adversary

B operating with Cstd
n,1/2 for any adversary A operating with Cbtk

s,k . B will simply simulate the

corruption oracle of A and submit the corruption requests to Cstd
n,1/2 whenever a corruption with

Cbtk
s,k takes place. The simulator will fail with probability at most badbtk[s, k, 1/2] from Lemma 2.4.

Due to the previous theorem we can bound the probability by ϵ, which completes the proof. �
The above results require arbitrarily large bucket sizes (components of s). In real applications,

it is plausible that there might be some upper bound M on the maximum size. We now show how
an adversary can exploit this (and other restrictions), and what level of safety may remain.

Consider the following algorithm H2 that is a hybrid between two simple bucket-filling strate-
gies: one that continuously picks an empty bucket and fills it, and one that layers balls horizontally
across all buckets. Let M ′ = ⌊

√
M⌋. Algorithm H2 proceeds in two basic steps: (1) While less

than ⌈αn⌉ buckets are full and there is an unfull bucket containing fewer than M ′ balls, choose one
with the fewest balls and place a ball in it. (2) While less than ⌈αn⌉ buckets are full, pick an unfull
bucket and add balls until it is filled to capacity.

Let H2α(s) denote the worst-case number of balls that H2 must place in order to fill ⌈αn⌉
buckets. The following upper bound on the behavior of H2 is proved in Section B.3.4 of the
Appendix.

Theorem 3.4 For 0 < α < 1, n ∈ N and any s ∈ Zn with maximum size M , H2α(s)
OPTα(s)

≤ 1 +
√
M
α .
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Corollary 3.5 For any n > 1, M > 0, and any s ∈ Zn with maximum level M , the corruption
oracle Cbtk

s,k is unsafe whenever k ≥ (1 + 2
√
M) ·OPT1/2(s).

Proof. The proof follows as a direct application of the previous theorem. Specifically, we have that
due to the previous theorem there is an adversarial strategy that needs at most 1 + 2

√
M balls to

fill ⌈12 ·n⌉ buckets. It follows that with this strategy an adversary can corrupt ⌈12 ·n⌉ players always
and as we argued in Theorem 3.1, it follows that the corruption oracle is unsafe. �

The above relation between the maximum bucket size and unsafety is essentially tight—once
the number of corruption tokens drops below

√
M by a fixed fraction there exist s with maximum

size M where with high probability the adversary will fail to fill the target number of buckets.
Theorem B.8 in the Appendix implies the following.

Theorem 3.6 For any ϵ > 0 and any M ≥ 8, n > 4 with ⌈
√
M⌉ dividing n, there is an s ∈ Zn

with maximum size M , such that the corruption oracle Cbtk
s,k is (1 − ϵ)-safe provided that k <

δ ·
√
M ·OPT1/2(s) where δ = min

(
2/45, (4/15)/ log(1/ϵ)

)
.

It is worth notingthat this theorem becomes trivial if δ < 1/
√
M , since in that case we would

be given fewer than OPT1/2(s) balls and so even the unblinded corruption oracle would be safe.

This in turn implies that the theorem is only meaningful for ϵ > 2−(4/15)
√
M .

The above results about the cryptographic safety of the blinded token-based corruption oracle
are all proved using systems s that have three distinct sizes. The fact that we use more than two sizes
turns out to be necessary. For systems with just two sizes, Theorem B.4 in the Appendix implies
that there is an adversarial strategy that violates cryptographic safety given just 2 · OPT1/2(s)
corruption tokens. This bound turns out to be tight, as shown in Theorem B.5(B).

3.2 Increased Efficiency from Hidden Diversity

Next, we explore the question whether hidden diversity can be used to relax the computational
effort in secure multiparty computation (MPC). Consider an adversary that is given k < OPT1/2(s)

corruption tokens. Recall that the corruption oracle Ctk
s,k is safe for exactly this range of adversarial

resources, i.e., fully secure MPC can be achieved under computational assumptions [23, 33, 9].
The problem we investigate in this section is what potential benefits can be reaped in the hidden
diversity setting assuming the same level of adversarial resources. Theorem B.15 in the Appendix
implies the following result.

Theorem 3.7 For any β > 0, there are constants N > 1 and a < 1, such that for any n > N ,
there is a vector s ∈ Zn with Cbtk

s,k ≤an Cstd
1/4+β, provided that k ≤ OPT1/2(s).

Thus, if we choose β = 1/3−1/4 = 1/12 and an instance s with sufficiently large n, an adversary
will have probability less than ϵ of corrupting 1/3 or more participants, where “sufficiently large”
here again grows proportionally with log(1/ϵ). This result can be used to extend the application
domain of information-theoretic protocols for fully secure MPC such as those of [6, 14], which are
typically much more efficient than the cryptographic ones, but that in the regular corruption model
only tolerate a rate of corruptions less than 1/3.

Appendix B contains additional results in the blinded balls-and-buckets model, including ad-
versarial strategies that bound how much the previous result can be extended and an examination
of the case where the number of buckets n is bounded but not the maximum size M .
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4 Computational Corruptions

In this last section we turn to capturing and quantifying the setting where corruptions occur due
to the inversion of computationally hard problem instances (what we call “computational corrup-
tions”), and study the sufficient conditions under which such corruptions can be abstracted out
as token-based corruptions. We start by defining the corresponding corruption oracles. First, the
computational corruption oracle captures the setting where the adversary can corrupt a player by
“breaking in,” specifically by solving an instance of a computational problem that is otherwise
unrelated to the cryptographic protocol (for example, this would be the case when the adversary’s
offline attack against a cryptographic authentication protocol succeeds). The blinded computa-
tional corruption oracle extends the above to the setting where the adversary cannot determine the
correspondence between players and the instances that need to be solved for a break-in to occur.

Computational corruption oracle. The oracle is initialized with the description of functions
f1, . . . , fn and samples x1, . . . , xn from the functions’ respective domains. Subsequently, it provides
to the adversary the vector (y1, . . . , yn), where yi = fi(xi). The corruption protocol ρi here consists
of messages of the form (Corrupt, Pi, x) provided by A; if it happens that yi = fi(x), then player
Pi gets corrupted

2. We denote this oracle by Ccc
f
, where f = (f1, . . . , fn).

Blinded computational corruption oracle. This case is similar to computational corruption
with the difference that in addition, the corruption oracle is initialized with a random permutation
p. The oracle provides to A the vector (yp(1), . . . , yp(n)). The corruption protocol messages are as

in the case of Ccc
f
. We denote this corruption oracle by Cbcc

f
. We will be considering this definition

in the setting when the functions f are hardness indistinguishable.

Next, we introduce the two notions that play a fundamental role in the complexity interpretation
of resource-based corruptions.

4.1 Hardness Indistinguishability and Inversion-Effort-Preserving Functions

Both notions are related to the hardness of the inversion problem of a function when measured in
an exact sense. We start by explaining this notion of hardness first.

4.1.1 Exact hardness

Consider any function f : X → Y , where X = ∪λ∈NXλ, Y = ∪λ∈NYλ. In what follows, if λ is clear
from the context, we may denote Xλ and Yλ by simply X and Y , respectively.

An inversion algorithm for f with success p(λ) in time t(λ), is a non-uniform algorithm A that
for any λ, receives input f(x) where x is uniformly distributed over Xλ and returns a value that
belongs in f−1(f(x)) with probability at least p(λ) while being restricted to read at most t(λ)
symbols of its advice string and run for at most t(λ) steps. We write At to denote A restricted on
performing only t steps of computation and reading only t symbols of its advice string (for any λ).
We then denote the success probability of A, namely, Pr[At(f(x)) ∈ f−1(f(x))], by pA,t(λ). For
simplicity, in the sequel we may drop λ from pA,t(λ).

2As stated, the corruption protocol is an abstract version of a potentially more complex interaction where, for
example, yi is the public-key of player Pi and corruption takes place by getting ahold of the secret key xi via running
some algorithm against yi and then authenticating on behalf of Pi.
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We remark that the restriction on the number of steps may only bind a specific operation,
which would be computational significant compared to the others (such as, for example, modular
exponentiation). At times we may specify the input distribution to be other than the uniform
distribution over X; e.g., we may consider some X ′ ⊆ X and let x be distributed uniformly over
X ′. Unless otherwise noted we will assume that the uniform over X is used.

We are now ready to introduce exact hardness, a notion which will later on allow us to compare
functions according to their inversion difficulty. In a nutshell, the exact hardness of a function,
parameterized by ϵ, is the number of steps that necessarily needs to be surpassed in order to
achieve probability of success at least ϵ. More formally:

Definition 4.1 For any ϵ ∈ (0, 1) and a function f : X → Y , we define the exact hardness of f
with probability ϵ to be the maximum H ∈ N such that for any A and t ≤ H, it holds that pA,t < ϵ.
For each λ ∈ N, we denote the maximum such H by Hf,ϵ(λ).

Notions of similar nature have been considered in the literature; a salient difference is that
exact hardness fixes ϵ, and then calls for the largest possible t for which the function remains hard
to invert. Also, observe that, by definition, there is a (non-uniform) algorithm A that performs a
number of steps t = Hf,ϵ(λ) + 1 with a similarly sized advice string and satisfies pA,t(λ) ≥ ϵ for all
λ. This holds since if there is no such algorithm, then Hf,ϵ would not be the maximum possible for
that particular value of λ.

Similar notions to the notion of exact hardness that we put forth in this paper have been
considered in the literature. Notably, Nissan and Wigderson [35] define the hardness of a Boolean
function as the largest size of the circuit whose bias is still bounded by the inverse of its size. In
our setting, we are interested in fixing the bound of success to a certain level ϵ and maximizing
with respect to that (as opposed to allowing ϵ to vary as the inverse of the circuit size). Bellare and
Rogaway [5] define a function to be (t, ϵ)-secure if there is no “t-inverter” (an algorithm bounded
by t in number of steps and size) with success probability at least ϵ. Put in this latter context, our
notion of exact hardness can be defined by fixing ϵ and calling for the largest possible t for which
the function remains (t, ϵ)-secure. Another “more refined than asymptotic” measure of inversion
difficulty has been considered by Haitner, Harnik and Reingold [24] and we explore its relation to
exact hardness in Appendix A.1.

Next, we show two basic properties of our notion of exact hardness. Specifically, we show that
exact hardness is monotonically increasing in the probability of inversion success ϵ, and that there
is a natural upper bound for exact hardness that stems from the fact that any function over a finite
domain can be subjected to a brute-force attack.

Proposition 4.2 Let f : X → Y be any function. For any λ ∈ N we have:

1. For any 0 < ϵ ≤ ϵ′, it holds that Hf,ϵ(λ) ≤ Hf,ϵ′(λ).

2. For any ϵ > 0, Hf,ϵ(λ) ≤ ⌈ϵ · |Xλ|⌉.

Proof. We drop λ for notational simplicity. For the first property, assume for the sake of contradic-
tion that ϵ ≤ ϵ′ and Hf,ϵ > Hf,ϵ′ . Consider now an algorithm A running in t ≤ Hf,ϵ steps. It follows
that it has probability of success less than ϵ ≤ ϵ′. As a result any algorithm A running in time
at most Hf,ϵ has probability of success less than ϵ′. This contradicts that Hf,ϵ′ is the maximum
integer with this property.

For the second property, we consider the basic step to be the operation of reading a pair (x, y)
and an element y′ from the respective tapes they reside in, and testing whether y = y′. Now let
z ≥ 1 be an integer function and consider a family of advice strings that contain pairs of the type
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(xi, yi), i = 1, . . . , z, that belong to the graph of f following a lexicographic ordering. Consider now
the algorithm A that, given y, scans the advice string, and if it finds (xi, yi) such that y = yi it
returns xi. It is easy to see that the number of steps that A takes is z (in the worst case—without
loss of generality we can assume that A always takes that many steps). The success probability of
A is z

|X| , since the desired output x is selected at random from all inputs.
Recall now that no algorithm running Hf,ϵ steps can have probability of success at least ϵ. If,

for the sake of contradiction, we assume that for sufficiently large values of the security parameter
it holds that ⌈ϵ · |X|⌉ < Hf,ϵ, it follows that Hf,ϵ ≥ ⌈ϵ · |X|⌉+ 1; thus, setting z = ⌈ϵ · |X|⌉+ 1, we
have that A performs z ≤ Hf,ϵ operations and has success probability of success z

|X| > ϵ, which is
a contradiction. �

It is worth noting that in the specification of Hf,ϵ there is no presumption of a “minimal
hardness” for the inversion problem of the function f ; rather, Hf,ϵ is meant to capture the intrinsic
property of f that corresponds to the minimum computational effort (measured in basic operations
depending on the computational model) that is required to invert the function with a certain
probability of success. If one assumes that this value is sufficiently high, then the function would
be presumed to be one-way. To this end, we now show the basic relations between exact hardness
and one-wayness. Specifically, for one-wayness we have that for any ϵ that is bounded away from 0
by an inverse polynomial, the exact hardness of the function to beat ϵ should exceed any polynomial
function. Similarly, for weak one-way functions, we have that there is some threshold, which is an
inverse polynomial away from 1, that in order to be reached the exact hardness should exceed any
polynomial function.

Proposition 4.3 Let f : X → Y be a polynomial-time computable function. Then:

1. f is a one-way function if and only if ∀c1, c2 : ϵ = λ−c1 implies Hf,ϵ(λ) > λc2 for sufficiently
large λ.

2. f is a weak one-way function if and only if ∃c1 ∀c2 : ϵ = 1 − λ−c1 implies Hf,ϵ(λ) > λc2 for
sufficiently large λ.

Proof. The proofs of the two statements are similar so we only prove the first one. For the forward
direction, we assume that the function is one-way and ∃c1, c2 for which if ϵ = λ−c1 , then Hf,ϵ ≤ λc2 .
Then we have that there is some algorithm that runs in λc2 + 1 steps (which is a polynomial in λ)
and has success probability at least λ−c1 for infinitely many λ. This contradicts one-wayness.

For the backward direction, consider an algorithm A that attempts to invert f and runs in λc2

steps. Also let λc1 be any polynomial. Now suppose that the probability of inversion success is at
least λ−c1 for infinitely many choices of λ (i.e., the function f fails to be one-way). This contradicts
the fact that Hf,ϵ > λc2 , which states that in order to reach probability of success λ−c1 one has to
exceed λc2 steps. �

It is natural to ask how easy is to calculate Hf,ϵ for a function f . Naturally, any inversion
algorithm for f provides an upper bound for exact hardness, while any lower bound argument on the
complexity of the inversion problem of f is a lower bound for Hf,ϵ. While finding a formula for Hf,ϵ

might be hard for a given function f , for certain functions in idealized computational models, such
as random functions [4] or exponentiation maps in the generic group model (e.g., [40]), obtaining
exact formulae is in fact possible; we provide such results in Appendix A.3. Furthermore, under
cryptographic assumptions, reasonable ranges for Hf,ϵ can be stated; we do so for factoring-related
assumptions also in Appendix A.3.
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4.1.2 The IEP property

Next, we consider the setting where instead of just one, a set of functions are to be inverted, and
would like, in particular, to have a measure for their “combined” hardness, as a function of the
functions’ individual hardnesses.

Definition 4.4 Let ϵ > 0, n ∈ N and τ be a monotonically increasing function. We say a sequence
of functions {fi}i=1,...,n is τ -inversion effort preserving (τ -IEP) if for any subset S = {i1, . . . , im} ⊆
[n], it holds that HfS ,ϵ ≥ τ(

∑
i∈S Hfi,ϵ), where fS(x1, . . . , xm)

def
= ⟨fi1(x1), . . . , fik(xm)⟩.

Note that, trivially, Hf [n],ϵ ≥ maxiHfi,ϵ, since any algorithm that inverts a sequence of instances
will have to spend at least as much time as the time needed to invert the most difficult one.
Nevertheless, it is not guaranteed that the work performed for the solution of any single instance
cannot be used to speed up the solution of other instances. Essentially, the IEP property above
says that the speed-up that can occur is lower bounded by a value that is determined by the sum
of the individual exact-hardness functions, calibrated by a given function (τ). In the extreme case,
if τ is the identity function, then the instances have to be solved entirely independently and there
is no algorithm that can proceed towards solving a subset of the instances simultaneously with a
joint strategy.

Our IEP property is related to the notions of direct sum and direct product in complexity-
theoretic models. A direct sum results holds in a model for a problem if solving one instance x
of a problem costs c, then when given k independent instances x1, ..., xk, no significant gain is
achievable and the model requires about ck cost to solve all instances. A direct product result, on
the other hand, holds if a fixed probability p to solve a single instance correctly is given, then the
probability of solving a m-vector of instances drops exponentially with m (as in, for example, Yao’s
“concatenation lemma” [41]). We provide further context on this relation in Appendix A.2.

The IEP property can be proven to hold in idealized models such as the random oracle model
or the generic group model (we demonstrate this in Appendix A.3); furthermore, it is reasonable to
assume that it holds for standard cryptographic functions such as multiplication of primes, provided
that a suitably function τ is chosen (also Appendix A.3).

4.1.3 Hardness indistinguishability

To introduce this notion, we define first the notion of indistinguishability between two functions.
At a high level, it is the realization of this property that will provide the hiding of the functions’
hardness, “blinding” the adversary as to what functions to attack first.

Definition 4.5 For ϵ > 0, two functions f1 : X1 → Y1, f2 : X2 → Y2 are statistically indistinguish-
able if the random variables f1(x1), f2(x2) have statistical distance less than ϵ when xi is uniformly
drawn from Xi, for i = 1, 2.

We observe that for all but at most an ϵ fraction of y2 ∈ f2(X2) it holds that there is some x1
with f1(x1) = y2. The above definition is particularly interesting to us in the setting where, say,
Hf1,ϵ < Hf2,ϵ for some ϵ; i.e., the functions behave differently with respect to the exact hardness of
the inversion problem. In such case we will talk about hardness indistinguishability. Given that an
instance can be solved almost always in more than one way, hardness indistinguishability ensures
that the hardness level can be equivocated3.

3This property will become handy when designing simulators for reductions between corruption models (cf. Sec-
tion 2.2). We note that the reason for considering statistical as opposed to computational indistinguishability is that
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The definition extends to the case of a sequence of functions in a straightforward way. We will
call a sequence of functions indistinguishable when every pair of functions is indistinguishable. We
give two constructions of such functions one generic and one slightly more efficient that depends
on dense public-key cryptosystems [38]. Note that since indistinguishability is required in the
statistical sense, there is no need to consider how the decision problem amortizes over a sequence
of indistinguishable instances (as it is unattainable except with probability ϵ).

Our first construction is general and relies on the existence of regular one-way functions see
e.g., [22].

Construction #1. Let f1 : X1 → Y1 and f2 : X2 → Y2 be any two regular functions with exact
hardness Hfi,ϵ for i = 1, 2. We define the functions f ′

1, f
′
2 as follows f ′

1 : X1 × Y2 → Y1 × Y2 and
f ′
2 : Y1 ×X2 → Y1 × Y2 so that f ′

1(x1, y2) = (f1(x1), y2) and f ′
2(y1, x2) = (y1, f2(x2)). Observe that

Hf ′
i ,ϵ

= Hfi,ϵ for i = 1, 2. Moreover the domains of f ′
1, f

′
2 are efficiently sampleable (assuming those

of f1, f2 are). The proof of the following proposition is straightforward.

Proposition 4.6 For any regular f1, f2, the functions f ′
1, f

′
2 defined as above are (perfectly) hard-

ness indistinguishable.

The above approach generalizes easily to a sequence of functions (at the expense of increasing
linearly the length of the domain and range elements).

Construction #2. A more efficient way to construct indistinguishable functions is using dense
one-way functions along the lines of dense public-key cryptosystems of [38, 37]. Specifically, a one-
way function is called dense if its output is statistically indistinguishable from a random string of a
certain length. More formally, if f is the function, it holds that f(x) is statistically close to {0, 1}k
for some suitable k when x is uniformly distributed. In order to show hardness indistinguishability,
given a sequence of dense one-way functions, each function output can be padded with random
bits so that all of them match the length of the longest one. Based on the density property, the
functions modified as above are pairwise statistically indistinguishable.

We now briefly sketch how a dense one-way function can be constructed. Given a function
f : X → Y (for simplicity assume it is an injection), a dense one way function can be derived by
applying a strong randomness extractor that is also collision resistant (see [15]). Specifically, if Ext
is such an extractor, we have that f ′(r, x) = (r,Ext(r, f(x))) is a dense one-way function. Indeed,
since Ext is a strong extractor and r is a uniformly random seed, it holds that the output of f ′ is
almost uniformly distributed. On the other hand, given the collision resistance property of Ext any
inversion algorithm against f ′ can be turned to an algorithm inverting f , hence, f ′ is a one-way
function of exact hardness not much less than that of f . We omit further details.

4.2 From Computational Corruptions to Token-based Corruptions

We now have the tools to consider the relation between the computational corruption oracle and the
token-based corruption oracle. Connecting the two relies on whether the computation effort invested
by the adversary against corrupting players can be abstracted as discrete token investments. The
notion of IEP functions introduced above plays a crucial role here.

the former provides to the simulator the ability to “equivocate” even when the adversary is able to invert some of
the functions, as we allow in our corruption model.
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Theorem 4.7 Let ϵ > 0 and τ a monotonically increasing invertible function. Given a τ -IEP
sequence of functions f1, . . . , fn, we have that for any t there exist s, k, L such that

Ccc
f

≤t
ϵ Ctk

s,k and Cbcc
f

≤t
ϵ C

btk,L
s,k ,

where s = (s1, . . . , sn) is such that si = Hfi,ϵ for i = 1, . . . , n and k = ⌈τ−1(t)⌉, and where L(p)
operates so that it returns (yp(1), . . . , yp(n)) with yi = f(xi) and xi a randomly selected input of fi.

Proof. We first consider the relation between computational corruption and token-based corruption.
The adversary B will simulate A as well as the corruption oracle Ccc

f
. During the simulation,

B operates exactly as A with the following modification: when A submits a corruption request
(Corrupt, Pi, x), B submits (Corrupt, Pi, si) to the corruption oracle.

Corruption requests (Corrupt, Pi, x) for which it holds that fi(x) ̸= yi are ignored by B.
The only divergence in the simulation is when it may happen that A issues a corruption request

that is granted while the corresponding corruption request of B is denied. Suppose this happens
with probability at least ϵ. This means that B has used all its tokens ⌈τ−1(t)⌉, i.e., the set of players
C corrupted by A satisfies that

∑
i∈C si > ⌈τ−1(t)⌉ ≥ τ−1(t). Note that since A manages to corrupt

the set of players C with probability at least ϵ it follows that it runs for at least τ(
∑

i∈C Hfi,ϵ) + 1
steps due to the τ -IEP property, i.e., t ≥ τ(

∑
i∈C Hfi,ϵ)+1 > τ(

∑
i∈C si), which is a contradiction.

Regarding the relation of blinded computational corruption and leaky blinded token-based cor-
ruption we construct B as follows. When B receives s from its corruption oracle Cbtk,L

s,k it requests
to obtain the leak (yp(1), . . . , yp(n)) and returns this to the adversary A. Otherwise the simulation
and proof proceeds in the same fashion as before. �

We next consider the potential advantage that is given by the leaking capability of the leaky
blinded-token corruption oracle. We have the following:

Theorem 4.8 Let ϵ > 0, n, k ∈ N, s ∈ Nn be parameters. Given any sequence of statistically
indistinguishable functions f = ⟨f1, . . . , fn⟩ we have Cbtk,L

s,k ≤n·ϵ Cbtk
s,k , where L is defined as in

Theorem 4.7 and ϵ is an upper bound on the pairwise statistical distances for the sequence f .

Proof. Basically, B will simulate A as well as the leak that is received by A. The only issue in the
simulation is that S is not privy to the permutation of its corruption oracle and it will still need
to simulate the leak. B utilizes the sampler for the hardest of the f1, . . . , fn functions to obtain
n instances y1, . . . , yn. The simulator then provides (y1, . . . , yn) to A. The simulator proceeds
as follows: whenever the adversary submits a corruption message to the corruption oracle with a
certain number of balls the simulator passes through this request to its own corruption oracle. Due
to the fact that the sampling done is at a distance at most ϵ away from regular operation for each
pair of functions the behavior of A cannot result in a change of more than n · ϵ in the execution
experiment. �

With the above results we conclude that under the proper assumptions (IEP and hardness
indistinguishability) the (blinded) token-based corruption oracle is an accurate abstraction of the
(blinded) computational corruption oracle. It then follows from the results of Section 3 that the
blinded computational corruption oracle remains t-safe even for values of t that far exceed the
computational cost needed to corrupt a majority of player instances, thus establishing the value of
the hidden diversity approach put forth in this paper.

Acknowledgements: The authors are grateful to Ran Gelles, Arjen Lenstra and Alexander May
for valuable comments.
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A Hardness Indistinguishability and Inversion-Effort-Preserving
Functions (cont’d)

A.1 Exact Hardness vis-à-vis µ-Hardness

We relate the notion of exact hardness to another “more refined than asymptotic” measure of
inversion difficulty that has been considered in the literature, namely, the notion of one-wayness
with hardness µ by Haitner, Harnik and Reingold [24]. According to this definition, a function f is
one-way with hardness µ if for any A it holds that pA < tA · µ, where tA is the expected running
time of A and pA is the probability of success without bounding the running time of A (here both
µ and pA are functions of λ).

At a high level the following proposition suggests that exact hardness has an inverse multiplica-
tive relation with µ-hardness.

Proposition A.1 Let f : X → Y .

1. Suppose that for some T (λ), Hf,ϵ(λ) ≥ ϵ · T (λ) for all ϵ, λ. Then f is one-way with hardness
1
T .

2. Suppose f is one-way with hardness µ. Then, for any λ, ϵ > µ(λ), Hf,ϵ(λ) ≥ ⌊ ϵ
µ⌋.

Proof. 1. Let A be any non-uniform algorithm that inverts f , and ϵ = pA,t for some t. We know
that if t ≤ Hf,ϵ then pA,t < ϵ, so necessarily t > Hf,ϵ, from which by the first condition of the
theorem we obtain t > ϵ · T , i.e., t > pA,t · T , which implies pA,t < t · 1

T . Now we have that

pA = Pr[A succeeds] =
∑
t

Pr[A succeeds in t steps] ·Pr[A runs in t steps] <

1

T

∑
t

t ·Pr[A runs in t steps] = tA · 1
T

.

This completes the proof of part 1.

2. Now suppose that f is one-way with hardness µ. We show that for any ϵ it holds that Hf,ϵ ≥
⌊ϵ · µ−1⌋.

Suppose, for the sake of contradiction, that there is some ϵ for which Hf,ϵ < ⌊ ϵ
µ⌋ for sufficiently

large λ. Let ϵ′ = ϵ − µ > 0 based on the statement of the second part of the proposition. Now
observe that Hf,ϵ ≤ ϵ

µ − 1 = ϵ′

µ . Based on the property of Hf,ϵ, there is an algorithm A that runs

in Hf,ϵ + 1 steps and its probability of success is at least ϵ. Given that Hf,ϵ ≤ ϵ′

µ , we have that

tA ≤ ϵ′

µ +1. By the property of one-wayness with hardness µ we obtain that ϵ ≤ pA < tA ·µ ≤ ϵ′+µ;

i.e., ϵ < ϵ′ + µ, which is a contradiction. �

20



A.2 IEP vis-à-vis Hardness Amplification

The notion of inversion-effort-preserving sequence of functions with a certain exact hardness bears
some resemblance to hardness amplification and direct-product theorems [41, 27], which essentially
show that if there is a problem which is hard to solve on average, then solving multiple instances of
the problem becomes even harder. In order to clarify this relation we prove in this section a lower
bound on the exact hardness of f [n], defined as n copies of a function f ; the bound is a function of
the exact hardness of a single copy of f . The main idea of the proof is derived from Yao’s hardness
amplification theorem, which highlights the relation between weak one-way and one-way functions.

At a high level, what we show is that the exact hardness of f [n] for a certain (low) inversion
success probability α cannot drop much lower than a linear function of the exact hardness of a
single copy of f for a much higher inversion success probability 1− δ, with a factor which explicitly
depends on 1

α and 1
δ . This result by itself immediately implies the derivation of a one-way function

from a sufficient number of copies of a weak one-way function. On the other hand, this type of
hardness amplification cannot show an inversion-effort-preserving property for the function f . This
is the case since for IEP we would require a provable increase of the inversion effort as the instances
of the function accumulate if one wants to maintain a fixed success ratio (which is essentially a
type of a generalized direct sum statement akin to direct sum results in communication complexity
[17, 29, 10, 1]).

Theorem A.2 Let 0 < α, δ < 1
2 . For any f , f : X → Y , let f [n] denote its n-direct product. Then

Hf⟨n⟩,α ≥ ⌊
Hf,1−δ

m
⌋ − n,

where n = Ω(
log 1

α
δ ) and m = Ω(

ln 1
α
·ln 1

δ
αδ ), in the computational model where sampling from X and

testing whether f(x) = y for a given candidate pair (x, y) costs one step.

Proof. Let f [n] denote the parallel repetition of f , n times where n is a parameter to be determined.
Consider any algorithm A inverting f [n] and without loss of generality suppose that A returns

a vector (x1, . . . , xn) always. Let SA be the event that A succeeds and α = Pr[SA]. For each
i = 1, . . . , n, we define a subset Gi of X as follows: x ∈ Gi iff Pr[SA|xi = x] ≥ α

2n (so one can think
of Gi as the “good elements” of the i-th coordinate). Now suppose that for all j = 1, . . . , n it holds
that |Gj | < (α2 )

1/n · |X|. We observe that Pr[SA|xi ̸∈ Gi] ≤ maxx ̸∈Gi
Pr[SA|xi = x] < α

2n (due to
the fact that Pr[A|B ∪ C] ≤ max{Pr[A|B],Pr[A|C]} for mutually exclusive B,C). Given this we
have,

Pr[SA] ≤ Pr[SA ∧ (∧n
i=1xi ∈ Gi)] +

n∑
i=1

Pr[SA ∧ xi ̸∈ Gi]

≤ Pr[∧n
i=1xi ∈ Gi] +

n∑
i=1

Pr[SA|xi ̸∈ Gi]

< ((
α

2
)1/n)n +

α

2
= α

The above is a contradiction, thus we can deduce that there is a j such that |Gj | ≥ (α2 )
1/n|X|.

It follows that there exists a (non-uniform) algorithm A′ that inverts f : the advice of A′ is
the value j. Suppose m is a parameter to be determined later. Given y, A′ proceeds by randomly
sampling xli for i ∈ [n]\{j} and l = 1, . . . ,m, and forms instance yl = (yl1, . . . , y

l
n) by setting ylj = y
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and yli = f(xli) for i ̸= j. Then, A′ simulates A(yl), for l = 1, . . . ,m, and returns the value xlj if l

is found with f(xlj) = y. We use SA′ to denote the success probability of A′ overall, and Sl
A′ the

success probability in experiment l = 1, . . . ,m. We have:

Pr[SA′ ] ≥ Pr[∨m
l=1S

l
A′ |xj ∈ Gj ] ·Pr[xj ∈ Gj ] ≥ (1− (1− (

α

2n
)m) · (α

2
)1/n

To make the above probability greater than or equal to 1− δ, we proceed as follows:

1. We choose n such that (α2 )
1/n ≥ 1 − δ

2 , which follows from the fact that α
2 ≥ e−δn/2, i.e.,

ln α
2 ≥ − δn

2 , which in turn implies n ≥ ln(4α−2)
δ , and

2. we choose m such that (1 − (1 − ( α
2n)

m) ≥ 1 − δ
2 , which is equivalent to (1 − α

2n)
m ≤ δ

2 and

implied by e−α·m/2n ≤ δ
2 , i.e., m ≥ 2n ln 2

δ
α .

As a result from the above arguments we have that for any algorithm A that inverts f [n] in q
steps with probability α, we can construct an algorithm A′ that inverts f in mq + nm steps with

probability 1− δ where n = Ω(
log 1

α
δ ) and m = Ω(

ln 1
α
·ln 1

δ
αδ ). Note that a single“step” is assumed to

be sufficient to sample an input from the domain of f .
By definition we know that there is a (non-uniform) algorithm that inverts f [n] inHf [n],α+1 steps

with probability α. It then follows that there is an algorithm that inverts f in m·Hf [n],α+nm. steps
with probability 1−δ, i.e., Hf,1−δ < m ·Hf [n],α+nm. We conclude that Hf [n],α > Hf,1−δ/m−n−1
and the theorem follows. �

A.3 Candidate Functions

In this section we study and give bounds for the exact hardness, the IEP property and hardness
indistinguishability of several candidates, including random functions, discrete logarithm in the
generic group model, and factorization. We note that all the functions we present here can be used
in conjunction with constructions #1 and #2 given above to derive hardness indistinguishable
functions.

A.3.1 Random functions

We first consider the notion of exact hardness and argue that for the inversion problem of a function
that is modeled as a random oracle [4], we can calculate exactly the expression for exact hardness.
In this model, we only count queries to the random oracle as the basic computational operation,
and thus all complexity measures are expressed in terms of such queries.

Proposition A.3 Let ϵ > 0 and f : [2λ] → [2λ] be modelled as a random oracle. Then Hf,ϵ(λ) =
ϵ · 2λ − 1.

Proof. When f is modelled as a random oracle the probability Pr[At(f(x)) ∈ f−1(f(x))] is taken
over all possible choices of x (uniformly selected from [2λ]) and the choices of f (thought as a
random table with 2λ entries). Any algorithm that queries f will have probability (q + 1)2−λ of
returning the inverse of the input value y = f(x) if it is allowed q queries. To see this consider
the following: if A asks q distinct queries and finds the inverse among them it can return it for a
probability of success equal to 1; otherwise, any A no matter which strategy it follows will have
at best a 1

n−q chance of succeeding. Note that if A is repeating some queries the probability of
success would be worse, but this is something we can assume without loss of generality that it does
not happen given that there is no restriction in space for A. The statement of the proposition now
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follows since the probability of success is q2−λ + (1− q2−λ)(1/(2λ − q)) = (q + 1)2−λ by requiring
this probability to be less than ϵ and considering a query to f as the basic computational step. �

We now study the inversion-effort-preserving property of random oracles. We show that if the
functions are modeled as independent random oracles, then no speed up is possible for such set of
instances.

Proposition A.4 For n > 0, the sequence of functions {fi}i=1,...,n with fi : [2λ] → [2λ] is IEP
assuming each one of them is modelled as a random oracle.

Proof. We will use the fact that querying function fi gives no information about function fj for
j ̸= i. As in Proposition A.3, the inversion of function fi can succeed with probability (qi + 1)2−λ

as long as qi queries are made. Also as before, any algorithm inverting fi with probability ϵ requires
ϵ · 2λ − 1 queries to fi. We will show that any algorithm running in t = nϵ · 2λ − n steps cannot
invert all of the functions with probability greater than ϵ. We argue as follows. At the end of any
execution at the specified number of steps t we can build a table of size qi for each function fi; we
have that

∑n
i=1 qi ≤ t. By conditioning on the subset A of the functions for which a good query

has been made, we obtain that the probability of success can be upper-bounded by the expression

∑
A⊆[n]

∏
i∈A

qi
2λ

·
∏
i̸∈A

(1− qi
2λ

) ·
∏
i̸∈A

1

2λ − qi
=
∑
A⊆[n]

∏
i∈A qi

2λn
=

∏n
i=1(qi + 1)

2λn
≤
(
n+

∑n
i=1 qi

n · 2λ

)n

where the last inequality follows from the arithmetic and geometric means inequality. Now applying
the bound

∑n
i=1 qi ≤ t = nϵ · 2λ − n and the fact that ϵn ≤ ϵ we bound the probability by ϵ. The

result on HfS ,ϵ (cf. Definition 4.4) now immediately follows.
�

A.3.2 Discrete logarithm

We now consider the exact hardness of discrete logarithms in the generic group model (see, e.g.,
[40]). In this setting, any algorithm A solving the discrete logarithm is given the encodings of two
group elements, σ(1) and σ(x), where σ : Zq → S is a random permutation. Here q is a prime
number that is λ-bits.

A aims to discover x but has no way to internally emulate the group operation. Instead, the
algorithm operates with access to an oracle that takes input (r, s) and returns the value σ(r+ sx);
we measure those oracle calls as the basic steps taken by the algorithm.

We denote all the queries of A to the oracle by QA. A key observation used in [40] is that as
long as it holds that r+ sx = r′+ s′x mod q for two queries (r, s), (r′, s′) to the oracle, it is possible
to reconstruct x. The second key observation is that if this event does not occur then A’s behavior
is independent of x. It follows that the success of algorithm A in solving the discrete logarithm
problem is bounded by the probability that r+ sx = r′ + s′x or y = x for some (r, s), (r′, s′) ∈ QA,
where x is uniformly distributed over Zq and y is some arbitrarily distributed value (in this setting,
y would capture the output of A). If the algorithm performs k queries then we have that the
probability of success is bounded by (

(
k
2

)
+1)/q (this stems from the fact that the k queries can be

thought of lines over a plane that determine
(
k
2

)
cut points—the probability of equality amounts to

hitting one of those cut points). Based on this we state the following.

Proposition A.5 Let ϵ > 0 and q be a λ-bit prime number. Suppose f : Zq → S is the exponenti-
ation function over a generic multiplicative group. Then Hf,ϵ ≥

√
2qϵ.
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Proof. The proof follows from the argument presented above (due to [40]). Suppose Hf,ϵ < T =√
2qϵ. This means that there is an algorithm that in T steps achieves a probability of success ϵ.

But we observe that T is such that (
(
T
2

)
+ 1)/q < ϵ, hence a contradiction following the above

arguments (assuming T ≥ 2). �
Next, we consider the IEP property in the same setting. We consider the solution of n inde-

pendent instances of the discrete-logarithm problem over n groups. Each group is assumed to have
a separate encoding of elements σi that is independently selected. Specifically, an algorithm A is
given the pairs (σi(1), σ(xi)) for i = 1, . . . , n and aims to produce the vector (x1, . . . , xn). A is
allowed to access an oracle that accepts queries of the form (i, r, s) and returns σi(r + sxi).

Proposition A.6 Let ϵ > 0, n > 0 and q be a prime λ-bit number. Suppose f [n] : (Zq)
n → S1 ×

. . .× Sn is the coordinate-wise exponentiation function over a sequence of n generic multiplicative
groups. Then Hf [n],ϵ ≥

√
2n · ϵ1/n · q.

Proof. Suppose that Hf (n),ϵ < T = ⌈
√

2nϵ1/nq⌉. This means that there is an algorithm A that in
T steps has probability of success at least ϵ. Define by ti the number of queries posed to the i-th
oracle by A. Then it holds that

∑n
i=1 ti = T since we count only oracle queries in the running

time of A. We let Ci be the event that a collision has occurred at the i-th oracle. Now let B ⊆ [n]
be the set of groups over which the event Ci takes place, i.e., for all i, i ∈ B if and only if Ci is
true. Assuming this conditioning we know that the probability of success of algorithm A is at most
(1/q)n−|B| since it essentially has to guess all the other queries. Furthermore, the probability of
event B happening is the probability that we get a collision; given the independence of the group
encodings this is

∏
i∈B

(
ti
2

)
/q. So overall we have that the probability is bounded by

q−n ·
∑
B⊆[n]

∏
i∈B

(
ti
2

)
= q−n ·

n∏
i=1

(

(
ti
2

)
+ 1) ≤ (n · q)−n(n+

n∑
i=1

(
ti
2

)
)n,

where the last inequality follows from the geometric-arithmetic means inequality. Observe now that∑n
i=1

(
ti
2

)
= 1

2 · (
∑n

i=1 t
2
i −T ) < T (T −1)/2. From this we obtain that the probability of success ϵ is

strictly bounded by (T 2/2qn)n. This is a contradiction since (T 2/2qn)n ≥ ϵ by definition of T . �

Corollary A.7 Let ϵ > 0, n > 0, and q be a λ-bit prime number. Suppose fi : Zq → Si is the
exponentiation function over a generic multiplicative group Si. Then the set of functions {fi}i=1,...,n

is τ -IEP for τ(·) = (·)1/2.

Proof. By definition we need to show that for any subset S ⊆ [n] we have thatHfS ,ϵ ≥ τ(
∑

i∈S Hfi,ϵ).
Using Propositions A.5 and A.6 we have that

HfS ,ϵ ≥
√

|S| ·
√

2qϵ1/n ≥
√

|S| ·max
i∈S

Hfi,ϵ ≥ (
∑
i∈S

Hfi,ϵ)
1/2,

which completes the proof. �

A.3.3 Factoring

The complexity to factor an integer N with the best known algorithm. (the number field sieve [30])
takes time on the order of L[1/3, 1.9229], where
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L[α, β] = exp((β + o(1))(logN)α(log logN)1−α),

and was improved to L[1/3, 1.902] by Coppersmith [13]. Assuming that this result matches the com-
plexity of the factoring problem, this will provide bounds for the exact hardness of the multiplication
function. Specifically, if Pλ is the set of all λ-bit prime numbers, we have that if fmult : Pλ×Pλ → N
with fmult(p, q) = p · q, then for any ϵ,

ϵ · L(1/3, 1.902) ≤ Hf,ϵ ≤ ϵ · L(1/2,
√
2) (1)

According to the above statement, the exact hardness of factoring is a subexponential function
that is bounded from below by a time complexity that is derived from the running time of the
number field sieve algorithm. We note that a similar assumption was made in [5] when stating the
“exact security” of the RSA function. The upper bound in the statement is derived from Lenstra’s
elliptic curve factorization algorithm [31]. This algorithm is suitable for expressing an upper bound
in the form above since it is an algorithm that repetitively picks an elliptic curve and a point on it,
and then tests whether the group law holds by calculating a scalar of the point. The complexity of
the algorithm is determined by the fact that after picking around L(1/2,

√
2) curves, then with very

high probability a “bad” curve will be found. As a result, if we wish to succeed with probability ϵ,
we should sample about ϵ · L(1/2,

√
2) curves.

Regarding the IEP property, it was shown in [13] that it is possible to amortize cost when
factoring n integers and there exists an algorithm with expected time complexity L[1/3, 2.0068] +
n · L[1/3, 1.6386]. Under the assumption that Coppersmith’s algorithm (and small optimizations
thereof) is the best possible when trying to factor simultaneously a sequence of moduli, one might
be willing to assume that if f [n] is the function that multiplies n pairs of primes to the corresponding
moduli, the following lower bound would hold true:

Hf [n],ϵ ≥ ϵ · n · L[1/3,
√
2]. (2)

From the above two assumptions, the τ -IEP property for factoring is satisfied by letting τ(x) =

e(lnx)2/3 . This holds due to the fact that for any n, ϵ, we have that ϵ · n · L(1/3,
√
2) ≥ τ(ϵ · n ·

L(1/2,
√
2)).

B The Combinatorics of Hidden Diversity (cont’d)

B.1 Preliminaries

In this Appendix, we study the following “balls in buckets” problem. Suppose there is a sequence
B1, B2, . . . , Bn of buckets having integer sizes s1, s2, . . . , sn, respectively. For a given target fraction
α, 0 < α < 1, our goal is to sequentially place balls in buckets until at least ⌈αn⌉ buckets are full,
so as to minimize the number of balls used, which we shall denote by OPTα(I) for a given instance
I. The purpose of the combinatorial game is to capture the objective of an adversary trying to
corrupt an ⌈α · n⌉ number of players against the token-based corruption oracle that implements
the instance I. For conveniencein our exposition below we will write from the point of view of the
adversary.

If we knew the size of each bucket, we could obtain an optimal assignment, simply by filling the
buckets in order of increasing size until the desired number had been filled. Here we consider the
case where, although we know n and α, we do not know the specific bucket sizes si, and when we
place a ball in bucket Bj , we only learn whether or not the bucket Bj is now full. (If a bucket has
size 0, then it is full to begin with, and we know this before we start placing balls.)
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Here we study what can be done under four variants of incomplete information. In order of
increasing knowledge, these are:

1. We know nothing at all about the bucket sizes [No-Information].

2. We know the maximum bucket size [Max-Only].

3. We know the sizes s1 ≤ s2 ≤ · · · ≤ sm that occur in the instance [Sizes-Only].

4. We know the profile of the sizes: the size list as above, and, for each size, si, the number ki
of buckets that have that size [Known-Profile].

The terminology in this appendix differs from that in the body of the paper, in that here we
speak of an instance I having “profile” s = s1, s2, . . . , sn, rather than simply letting the vector
s itself be the instance. The blinded-token model in the body of the paper corresponds to the
Known-Profile situation here, when the buckets undergo an initial random permutation before the
algorithm (adversary) begins placing balls.

In the results that follow, we provide both algorithmic performance guarantees and lower bounds
on the best that any algorithm can achieve. The algorithmic results, although positive in the ball-
packing context, are actually negative when viewed in the context of our cryptographic application,
as they show the power of a would-be corrupter. Similarly, our lower bounds can be viewed as
positive results for our cryptographic application, corresponding to proofs of security.

We also note that all the algorithms we study apply in the No-Information, Max-Only, or
Sizes-Only situations, but match, to varying extents, our lower bounds, which all hold even in
the Known-Profile case. This suggests that the general algorithmic advantage to knowing the full
profile may not be substantial.

In what follows, we begin with the case where there are no restrictions on the input (and little
in the way of good algorithmic performance), and then consider the effects of placing reasonable
on the number of different item sizes, the number of buckets, and the maximum bucket size. We
shall then consider alternative objective functions, such as filling as many buckets as possible for
a given number of balls (in the presence of hidden diversity), and maximizing the number of balls
needed subject to a budget when increasing the size of a bin has a cost.

B.2 Unrestricted Instances

Our first observation is that, even when we know the full profile, no fixed multiple of the optimal
number of balls suffices to guarantee even a small probability of success if there are no restrictions
on the input.

Theorem B.1 For any α, 0 < α < 1, and constants B > 1 and ϵ > 0, there exists an instance I
such that, assuming we first use a random permutation to relabel the buckets, any algorithm that
knows nothing more than the profile of the instance, and has fewer than B · OPTα(I) balls, has
probability less than ϵ of filling ⌈αn⌉ buckets.

Proof. Our instance will have n =
⌈
((2B/ϵ) + 1) /(1 − α)

⌉
buckets. Of these buckets, the ⌈αn⌉

with smallest capacity will consist of ⌈αn⌉−1 buckets of size 1 and one bucket of size X = ⌈αn⌉+1.
An optimal solution will thus be simply to fill these ⌈αn⌉ buckets, requiring OPTα(I) = 2⌈αn⌉
balls. The remaining n− ⌈αn⌉ buckets will all have capacity M = 2B⌈αn⌉.

Now let A be any algorithm that has access to fewer than B ·OPTα(I) = 2B⌈αn⌉ balls. Clearly
the algorithm cannot fill any of our size-M buckets, so it will have to fill all the ⌈αn⌉ buckets of the
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optimal solution, and, in particular, it must fill the bucket of size X. Consider the buckets of size
X or greater, and let m be the number of such buckets. Given the hidden depth of the buckets,
the only way the algorithm can tell whether one of these buckets is the one that has size X is to
place X balls in it. So it can test at most 2B − 1 buckets. Given that the identities of the buckets
have been randomly permuted, the probability that the algorithm succeeds in finding the bucket
of size X, and hence has any chance of filling ⌈αn⌉ buckets, is no more than (2B − 1)/m, which
will be less than ϵ so long as m > (2B − 1)/ϵ. But now note that

m = n− ⌈αn⌉ ≥ n(1− α)− 1 =

⌈
2B
ϵ + 1

1− α

⌉
(1− α)− 1 ≥ 2B

ϵ

As desired. �
Using essentially the same examples, parameterized by n instead of ϵ, we get the following

alternative statement of the theorem.

Corollary 1 For any α, 0 < α < 1, and constant B > 1, there exists a sequence of instances In
such that, assuming we first use a random permutation to relabel the buckets, any algorithm that
knows nothing more than the profile of the instance, and has fewer than B · OPTα(In) balls, has
O(1/n) probability of filling ⌈αn⌉ buckets.

By setting ϵ = 1/2 and replacing “B” by “2B”in the proof of Theorem B.1, we obtain the
following.

Corollary 2 For any α, 0 < α < 1, and constant B > 0, there exists an instance I of our balls-
in-buckets problem such that, assuming we first use a random permutation to relabel the buckets,
the expected number of balls used by any algorithm that knows nothing more than the profile of the
instance is at least B ·OPT (I) balls.

The proof of Theorem B.1 also implies that, if we are willing to settle for small penalties and
non-minuscule ϵ, neither n nor the maximum bucketsize need be impractically large. For instance,
suppose α = 1/2 and we only want hidden diversity to cause us a factor-of-two ball penalty with
probability 1/3. Then the relevant instance is I2,1/3, for which n = ⌈(2 · 2 · 3 + 1)/(1/2)⌉ = 26 and
M = ⌈n/2⌉+ 1 = 14.

In the proof of Theorem B.1, our constructions only let us claim that, for fixed B and α, the
error probability is O(1/n). Ideally, we would like error probabilities that decline exponentially in
n. A modification of our constructions allows us to do this. (The theorem was already presented
in Section 3; here we repeat statement and proof for convenience.)

Theorem 3.2 For any α, 0 < α < 1, and constant B > 1, there exists a constant a < 1 and
instances In, n > 8B/(1 − α), such that, assuming we first use a random permutation to relabel
the buckets, any algorithm that knows nothing more than the profile of the instance, and has fewer
than B ·OPTα(I) balls, has probability less than an of filling ⌈αn⌉ buckets.

Proof. For a c, 0 < c ≤ α, to be specified later, instance In will have ⌈cn⌉ buckets of size
⌈αn⌉ + 1, ⌈αn⌉ − ⌈cn⌉ buckets of size 1, and n − ⌈αn⌉ buckets of size (⌈cn⌉ + 2)B⌈αn⌉. An
optimal solution will consist of the ⌈αn⌉ smallest buckets, and will have total size (⌈cn⌉+ 1)⌈αn⌉.
This implies that we cannot afford to fill any of the largest buckets if we are to use fewer than
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B ·OPT (In) = B(⌈cn⌉+ 1)⌈αn⌉ balls, and any algorithm that fills ⌈αn⌉ buckets must find and fill
all the buckets of size ⌈αn⌉+ 1.

But now note that the only way the algorithm can tell whether a bucket has this size or is one
of the larger ones is to place ⌈αn⌉+1 balls in the bucket. Thus, if our algorithm is to use no more
than B(⌈cn⌉+1)⌈αn⌉ balls, it can test no more than B(⌈cn⌉+1) buckets with size exceeding 1, of
which there are n− ⌈αn⌉+ ⌈cn⌉. The probability of finding all ⌈cn⌉ of the mid-size bucket is then
at most (

n− ⌈αn⌉
B(⌈cn⌉+ 1)− ⌈cn⌉

)/(
n− ⌈αn⌉+ ⌈cn⌉
B(⌈cn⌉+ 1)

)
Setting X = n− ⌈αn⌉ and Y = B(⌈cn⌉+ 1)− ⌈cn⌉, this is equal to

(
X
Y

)/(
X + ⌈cn⌉
Y + ⌈cn⌉

)
=

(Y + 1)(Y + 2) · · · (Y + ⌈cn⌉)
(X + 1)(X + 2) · · · (X + ⌈cn⌉)

,

which we will be able to argue is sufficiently small if we can chose c > 0 such that, say, Y + ⌈cn⌉ ≤
(X+⌈cn⌉)/2. This requires that B⌈cn⌉+B < (n−⌈αn⌉+⌈cn⌉)/2, or (2B−1)⌈cn⌉ ≤ n−⌈αn⌉−2B.
which will be true so long as (2B−1)(cn+1) ≤ n(1−α)−1−2B, or (2B−1)(cn) ≤ n(1−α)−4B,
or c ≤ (1 − α)/(2B − 1) − 4B/(n(2B − 1). By our assumption that n > 8B/(1 − α), this means
that all we need for Y + ⌈cn⌉ < (X + ⌈cn⌉)/2 is that c ≤ (1− α)/(4B − 2). By our construction,
we also need c ≤ α, so it suffices to set c = min{α, (1− α)/(4B − 2)}.

Given that Y + ⌈cn⌉ < (X + ⌈cn⌉)/2, we then have that (Y + i)/(X + i) ≤ 1/2 for 1 ≤ i⌈cn⌉,
and hence

(Y + 1)(Y + 2) · · · (Y + ⌈cn⌉)
(X + 1)(X + 2) · · · (X + ⌈cn⌉)

<

(
1

2

)⌈cn⌉
≤
(
1

2

)cn

which is less than an for a = (1/2)c < 1, as desired. �
From the above results, we know that, if we place no restrictions on our instances, then hidden

diversity imposes a penalty factor that is unbounded. Thus the only situations in which the
performance penalty for hidden diversity can be bounded will be ones in which we restrict the
instances, for example by bounding n or the maximum bucket size, or by limiting the number of
distinct bucket sizes. Note, however, that the proofs of Theorems B.1 and 3.2 imply that we cannot
avoid unbounded performance penalty as soon as there are three or more distinct sizes.

B.3 Restricted Instances and No-Information Algorithms

In what follows, we shall assume that the greatest common divisor ∆ of the bucket sizes in our
instances is 1 (as for instance will happen when there are buckets of size 1 themselves). It is easy
to see that if ∆ > 1, then any algorithm can be modified to place ∆ balls at once and will have the
same relative performance in comparison to an optimal algorithm (and that there is no advantage
to doing anything differently). We shall denote the maximum bucket size under this assumption as
M .

In what follows, we shall consider not only lower bounds on the performance penalties for all
algorithms, but also how well specific natural algorithms perform. When talking about specific
algorithms, we will be interested in two worst-case measurements. For a given α, an algorithm
A, and an n-bucket instance I, let Aα(I) be the number of balls used by algorithm A to fill ⌈αn⌉
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buckets in instance I. Suppose 0 < α < 1, M ≥ 1, and n > 0. If dA is a deterministic algorithm.
define

RdA
α,M,n = max

{
Aα(I)

OPTα(I)
: I is an instance with n buckets, target fraction α, and sm ≤ M

}
If rA is a randomized algorithm, define

RrA
α,M,n = max

{
E[Aα(I)]

OPTα(I)
: I is an instance with n buckets, target fraction α, and sm ≤ M

}
Then define

RA
α,∞,n = lim sup

M→∞
RA

α,M,n

RA
α,M,∞ = lim sup

n→∞
RA

α,M,n

In this section, we first discuss a sequence of algorithms and how they perform when either n or
M is bounded, including a hybrid of the two tailored to the case when neither is bounded, but we
are guaranteed that there are at most two distinct sizes. We begin with algorithms that operate in
the No-Information domain and, are building blocks for later, more effective algorithms that follow
and exploit the additional information available in our other cases. We present our lower bound
proofs immediately following the algorithmic results they match.

B.3.1 The Fill Algorithm

The algorithm “Fill” works by repeatedly choosing an empty bucket and adding balls to that
bucket until it is full. Let dF ill represent any version of the algorithm that chooses the next bucket
according to some deterministic policy, and rF ill be the version that chooses the next bucket
randomly from the set of currently empty buckets, with all choices equally likely. It is easy to see
that the following holds.

Theorem B.2

1. For all M > 0,

RdF ill
α,M,∞ =

{
M, 0 < α ≤ 1

2
1−α
α M + 2− 1

α ,
1
2 < α < 1

RrF ill
α,M,∞ = α+ (1− α)M, 0 < α < 1

2. For all α, 0 < α < 1, and all n > 1/(1− α),

RdF ill
α,∞,n = RrF ill

α,∞,n = ∞.

Note that for α = 1/2, claim (1) reduces to RdF ill
α,M,∞ = M and RrF ill

α,M,∞ = (M + 1)/2.

Proof. For the cases where M is bounded, it is easy to see that a worst-case example In for n
buckets consists of ⌈αn⌉ buckets of size 1 and the rest of the buckets having capacity M . The
bounded-M result for α ≤ 1/2 is trivial. For α > 1/2, OPTα(In) = ⌈αn⌉ and

dFillα(In) = (n− ⌈αn⌉)M + ⌈αn⌉ − (n− ⌈αn⌉) = (n− ⌈αn⌉)M + 2⌈αn⌉ − n.
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Dividing by OPTα(In) and taking the limit as n → ∞ gives the claimed bound. The result for rF ill
follows from the fact that the expected size of a randomly chosen bucket is ⌈αn⌉/n+(n−⌈αn⌉)M/n.

For the cases where n is bounded, we can use the same examples. The assumption that n >
1/(1 − α) implies that n > ⌈αn⌉, so there will be at least one bucket with size M . Thus we have
that in the worst-case, dF ill(I) ≥ M for these instances, and the expected value of the solution
generated by rF ill is at least M/n. Since OPTα(I) = ⌈αn⌉ < n and n is fixed, the claim follows.
�

Thus both dFill and rF ill can be unboundedly bad if M can be arbitrarily large, even if n is
bounded, but have bounded worst-case behavior if M is bounded, even if n is unbounded.

B.3.2 The Lowest Level Algorithm

A complementary algorithm is “Lowest Level” (LL), which has bounded worst-case behavior if
either M or n is bounded. In this algorithm, as long as we haven’t yet filled our quota of buckets,
we place the next ball in an unfilled bucket that currently contains the fewest balls. Here let dLL
denote any version of the algorithm where ties are broken in some deterministic fashion, and rLL
denote the version where ties are broken randomly, with all choices equally likely. We then have

Theorem B.3 For all α, 0 < α < 1,

1. For all M ≥ 2, RdLL
α,M,∞ = RrLL

α,M,∞ =
1− α

α
(M − 1) + 1.

2. For all n > 1/(1− α), RdLL
α,∞,n = RrLL

α,∞,n = n− ⌈αn⌉+ 1.

(Note that for α = 1/2, these claims reduce to RdLL
α,M,∞ = RdLL

α,M,∞ = M , the same as for rF ill and

dFill, and RdLL
α,∞,n = RrLL

α,∞,n = n/2 + 1 (for even n) and n/2 + 1/2 (for odd n).

Proof. We first show the upper bounds for (1) and (2). Let I be an instance with n > 1/(1− α)
buckets, and let sk be the size of the largest bucket filled in an optimal solution. Note that
sk/s1 ≤ M . We will have

OPTα(I) ≥ (⌈αn⌉)s1 + sk − s1 ≥ max(αn, sk).

As to the performance of our algorithms, and suppose there are y buckets of size sk in an optimal
placement. In this case, the algorithms will be finished as soon as they put the sk’th ball into the
y’th size-sk bucket, leaving n− ⌈αn⌉ buckets with just M − 1 balls. Thus

dLLα(I), rLLα(I) ≤ OPTα(I) + (n− ⌈αn⌉)(sk − 1)

and, hence, for LL ∈ {dLL, rLL}, we have

LLα(I)

OPTα(I)
≤ 1 + min

(
1− α

α
(sk − 1),

(
n− ⌈αn⌉

)sk − 1

sk

)
≤ 1 + min

(
1− α

α
(M − 1),

(
n− ⌈αn⌉

)M − 1

M

)
.

The overall limiting upper bounds follow.
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For the lower bounds, consider instances IM,n in which there are ⌈αn⌉− 1 buckets of size 1 and
all the remaining buckets have size M . Here

OPTα(IM,n) = ⌈αn⌉+M − 1 ≤ αn+M,

dLLα(I) = rLLα(I) = OPTα(IM,n) + (n− ⌈αn⌉)(M − 1).

Fixing M and letting n → ∞ yields the matching lower bound for (1), while fixing n and letting
M → ∞ yields the matching lower bound for (2). �

Note that, although LL dominates Fill in terms of worst-case behavior when M is unbounded,
the situation is different when M is fixed. Now Fill actually can have better worst-case behavior
in many situations. So long as M > 1 and α ≤ 1/2, we have

RdF ill
α,M,∞ = M ≤ ((1− α)/α)(M − 1) + 1 = RdLL

α,M,∞

with a strict inequality if α < 1/2. The advantage of RrF ill
α,M,∞ over RrLL

α,M,∞ in this situation is even
more substantial. Both these algorithms, however, are beaten for fixed M by a Size-Only algorithm
we shall be describing shortly.

In the meantime, we observe that the worst-case examples that we provided for both Fill and
LL only had two distinct bucket sizes. Interestingly, there is a No-Information algorithm that does
much better than either on instances of this type.

B.3.3 A Hybrid No-Information Algorithm for the 2-Size Case and Matching Lower
Bound

The algorithm, which we shall call “Hybrid1” (H1), works on the assumption that there are just
two sizes, and so can be about as bad as Fill when there are three sizes, in particular, having
RdH1

α,∞,n = RrH1
α,∞,n = ∞ for any deterministic and randomized implementations dH1 and rH1 of H1.

However such implementations do surprisingly well when there are just two sizes. The algorithm
proceeds as in LL until we fill a bucket. Let d be the number of balls in this bucket. We add balls
to all the remaining buckets to bring them up to level d. Then, while we have not yet filled more
than αn buckets, repeatedly pick an unfull bucket and add balls to it until it is full. Note that if
there are only two item sizes, all implementations of H1, randomized or deterministic, will require
the same number of balls.

Theorem B.4 Suppose 0 < α < 1. Let H represent any deterministic or randomized implementa-
tion of H1. Then for any instance I with at most two distinct bucket capacities, we are guaranteed
to have

Hα(I) ≤ (1/α)OPTα(I).

Proof. First note that if k = 1, then the claim holds trivially, since Hα(I) = OPTα(I). Thus we
may assume that k = 2. Suppose the two sizes are s1 < s2, and there are k1 buckets of size s1 and
k2 = n− k1 buckets of size s2. There are two cases.

(a) If k1 > αn, then OPTα(I) = ⌈αn⌉s1 > αns1 and Hα(I) ≤ ns1 < (1/α)OPTα(I), as desired.

(b) If k1 ≤ αn, then OPTα(I) = k1s1 + (⌈αn⌉ − k1)s2 = ⌈αn⌉s1 + (⌈αn⌉ − k1)(s2 − s1)
and Hα(I) = ns1 + (⌈αn⌉ − k1)(s2 − s1) < (1/α)OPTα(I), again as desired. �
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Matching this guarantee, we have the following lower bounds.

Theorem B.5 Suppose 0 < α < 1.

(A) For any deterministic algorithm dA, even one that knows the profile, there exist instances
In for each n > 1/(1− α), with maximum size bounded independently of n, such that

lim
n→∞

dAα(In)

OPTα(In)
=

1

α
.

(B) For any α, 0 < α < 1 and any δ, α < δ < 1, there is a constant a < 1 and a sequence of
instances In, such that the following holds for all sufficiently large n: Assume we first use a random
permutation to relabel the buckets. Then any algorithm A that knows nothing more than the profile
of the instance, and has no more than δ(1/α)OPTα(In) balls, has probability less than an of filling
⌈αn⌉ buckets.

Proof. For (A), let In be an instance with n buckets, ⌈αn⌉ of them with size 1, the remainder with
size ⌈1/α⌉. Note that this implies that OPTα(In) = ⌈αn⌉. Our adversary arranges things so that
the first n−⌈αn⌉ buckets into which the algorithm places balls all have size ⌈1/α⌉. If dA completes
the filling ⌈αn⌉ buckets before it has placed a ball in more than n−⌈αn⌉ buckets, then we will have
dAα(In) ≥ ⌈αn⌉ · ⌈1/α⌉ and hence dAα(In)/OPTα(In) ≥ 1/α, as desired. If, on the other hand,
dA places balls in n−⌈αn⌉ or more buckets, then every one of the required ⌈αn⌉ filled buckets will
entail the spending at least one ball in excess of the first balls into the n−⌈αn⌉ size-⌈1/α⌉ buckets,
for a total of at least n balls. This implies dAα(In)/OPTα(In) ≥ n/⌈αn⌉, with the desired limiting
ratio.

For (B), our desired instances In are constructed by increasing the size of the size-⌈1/α⌉ buckets
in the examples used for (B) to n. Note that the number of balls we are given is at most p =
(δ/α)⌈αn⌉. Although this is greater than ⌈αn⌉, since by assumption δ > α, it is less than γn for
γ = (δ + 1)/2 < 1, so long as n > 2δ

(1−δ)α . In what follows, we assume that n is at least this large.

Thus, our algorithm cannot afford to fill any of the size-n buckets and so must identify all ⌈αn⌉
size-1 buckets, which are in random locations.

First, suppose it makes its choices non-adaptively. In other words, it picks p buckets ahead of
time, and places one ball in each, succeeding if it manages to have chosen all ⌈αn⌉ size-1 buckets.
The probability of success will be

(
p

⌈αn⌉

)
(

n
⌈αn⌉

) =
p(p− 1) · · · (p− ⌈αn⌉+ 1)

n(n− 1) · · · (n− ⌈αn⌉+ 1)

But now, since (p− i)/(n− i) ≤ p/n ≤ γ for 1 ≤ i ≤ p, and ⌈αn⌉ < p, this is at most γ⌈αn⌉ ≤ γαn.
Thus the probability of success declines as an for a = γα < 1, as desired.

So (B) holds if our algorithm is non-adaptive. But note that adaptivity yields no advantage for
this particular task. At each step, all the as-yet-untouched buckets all have the same probability
of being size-1, given our initial random permutation of the buckets. �
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B.3.4 A Hybrid Max-Only Algorithm for the Bounded-M Case and Matching Lower
Bounds

We can do better than either Fill or SLL in the case when M is bounded. This involves a second
hybrid algorithm, which we shall call Hybrid2 (H2). The algorithm works in the Max-Only situation
and proceeds as follows. Suppose we are given an upper bound M on the maximum bucket size.

1. Let M ′ = ⌊
√
M⌋.

2. Apply LL until either ⌈αn⌉ buckets are full or all non-full buckets contain M ′ balls.

3. While less than ⌈αn⌉ buckets are full, pick an unfull bucket and add balls until it is filled to
capacity.

Recall that in the Max-Only situation, we may assume that M is the maximum bucket size;
the following result holds even if it is only an upper bound.

Theorem B.6 For 0 < α < 1, any deterministic implementation dH2 of H2, and any instance I
with maximum bucket size no greater than M , we have

dH2α(I)

OPTα(I)
≤ 1 +

√
M

α
,

and consequently RdH2
α,M,∞ obeys the same bound.

Proof. Let I be any instance, and suppose I contains n buckets. Let M ′′ be the largest capacity of
a bucket filled in an optimal solution, and let x be the number of buckets of this size in the optimal
solution. Then we have

OPTα(I) ≥ ⌈αn⌉+ x(M ′′ − 1) ≥ αn+ x(M ′′ − 1)

There are two cases to consider. First, suppose that M ′′ ≤ M ′. Then dH2 simply constructs an
LL packing and we have

dH2α(I) ≤ OPTα(I) + (n− ⌈αn⌉)M ′′ ≤ OPTα(I) + n(1− α)M ′′.

Consequently, since by assumption M ′′ ≤ M ′ ≤
√
M , we have

dH2α(I)

OPTα(I)
≤ 1 +

1− α

α
M ′′ < 1 +

√
M

α
,

as required.
Suppose, on the other hand, that M ′′ > M ′. Then, by the definition of M ′, we must have

M ′′ >
√
M . In this case, we will have

dH2α(I) ≤ OPTα(I) + x(M −M ′′) + n(1− α)M ′.

Consequently, given that M ′′ >
√
M ≥ M ′, we have

dH2α(I)

OPTα(I)
< 1 +

M −M ′′

M ′′ − 1
+

1− α

α
M ′ < 1 +

M

M ′′ +
1− α

α
M ′ < 1 +

√
M

α
,

again as required. �
We do not have precisely matching lower bound examples for Theorem B.6. However, the next

two theorems, to be proved below, show that no algorithm, deterministic or randomized, can do
qualitatively better, even if it knows the full profile.
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Theorem B.7 Suppose 0 < α ≤ 1. If dA is any deterministic algorithm that knows nothing more
than the profile of the instance, then for all M ≥ max{8, 1/α2},

RdA
α,M,∞ ≥ min(.79, 1− α)

1 + α

√
M

and

lim
M→∞

RdA
α,M,∞√
M

≥ 1− α

1 + α
.

Theorem B.8 Suppose we are given α, 0 < α < 1, and ϵ > 0, and let δ = (1 − α)/
(
1.25(1 +

α)max(6, log(1/ϵ)
)
. For any M ≥ 8, and n > max(2/(1 − α), 1/α2) that is divisible by ⌈

√
M⌉,

there is an instance In with n buckets and maximum bucket size M such that, assuming we first
use a random permutation to relabel the buckets, any algorithm that knows nothing more than the
profile of the instance, and has fewer than (δ

√
M)OPTα(In) balls, has probability less than ϵ of

filling ⌈αn⌉ buckets.

Note that Theorem B.8 does not provide as strong a lower bound as does Theorem B.5(C),
since δ is not independent of ϵ, and increasing n does not decrease the success probability. We do
not currently know whether there exist examples where this does happen – both n and M cancel
out in the analysis of our current proof. The theorem is, however, strong enough to imply this easy
corollary obtained by setting ϵ = 1/64.

Corollary 3 Suppose we are given α, 0 < α < 1. Then, for any randomized algorithm rA that
knows nothing more than the profile of the instance and any M ≥ 8,

RrA
α,M,∞ ≥ 1− α

7.5(1 + α)

√
M.

Proof of Theorem B.7. The proof is based on examples In with n buckets for n an integral
multiple of K = ⌈

√
M⌉. This will suffice since RdA

α,M,∞ is defined as a lim sup. Let us first consider

the bound that is claimed for M ≥ 8, in which case we have
√
M/⌈

√
M⌉ > 0.79.

Our instances have three sizes: 1, K + 1 and M . Noting that, since M ≥ 1/α2, we have
n/K ≤ ⌈αn⌉, we have ⌈αn⌉ − n/K ≥ 0 buckets with size 1, n/K buckets with size K + 1, and
n − ⌈αn⌉ buckets with size M . An optimal placement fills all the buckets of the first two types,
yielding

OPTα(In) = ⌈αn⌉+ n

K
(K) ≤ n(α+ 1) + 1.

Our deterministic algorithm dA will confront an adversary that arranges things so that no
bucket of size K + 1 receives its second ball until all buckets of size M have received K + 1 balls –
recall that we may assume that if our algorithm puts a second ball in a bucket, it will keep placing
balls there until it has reached K + 1, the next valid size. There are two cases to consider.

(a) Suppose our algorithm ends up filling at least one bucket of size K + 1. Then, by our
assumption about the adversary, we must place at least K + 1 balls in every bucket of size M .
Thus, since M − (⌈

√
M⌉ + 1) ≥ (⌈

√
M⌉ + 1) whenever M ≥ 8, we must in addition have enough

balls to fill up all the buckets with size 1 or K + 1, for a total of at least
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⌈αn⌉+ n+ (n− ⌈αn⌉)(K + 1) = 2n+ (n− ⌈αn⌉)⌈
√
M⌉

≥ 2n+ (n(1− α)− 1)
√
M

≥ n(1− α)
√
M,

the last inequality holding as soon as n ≥ ⌈
√
M⌉/2.

(b) Suppose our algorithm fills none of the size-K + 1 buckets. Then it must fill at least n/K
buckets of capacity M entirely, for a total number of balls at least

n⌈√
M
⌉M ≥ (.79)n

√
M.

Combining the conclusions of cases (a) and (b), we must use min(.79, (1− α))n
√
M balls, and

hence

lim sup
n→∞

dAα(In)

OPTα(In)
≥ min(.79, (1− α))n

√
M

n(α+ 1) + 1
=

min(.79, (1− α))
√
M

α+ 1
,

as claimed for the case of M ≥ 8.

For the second claimed bound, we note that it is already satisfied in case (a), while in case (b),
it follows since limM→∞(

√
M/⌈

√
M⌉) =

√
M . �

Proof of Theorem B.8. We will restrict attention to the instances In introduced in the previous
proof. Recall that, for these instances, we have OPTα(In) ≤ n(α + 1) + 1. Thus, by hypothesis,
our algorithm will be allowed(

δ
√
M
)
OPTα(In) ≤ δ(n(α+ 1) + 1)

√
M

balls for instance In. One implication of this is that our algorithm cannot fill more than δ(n(α +
1) + 1)/

√
M size-M buckets in such an instance. To understand the significance of this number,

recall that our hypothesis that M ≥ 8 implies
√
M/⌈

√
M⌉ > 0.79, and that we are also assuming

that n > 1/α2. Thus the maximum number of size-M buckets we can fill is

δ
(α+ 1)n+ 1√

M
=

(
1− α

1.25(1 + α)max(6, log(1/ϵ)

)(
(α+ 1)n+ 1√

M

)
≤

(
(1− α)

7.5(1 + α)

)(
(α+ 1)n+ 1√

M

)
≤ (α+ 1)n+ 1− α− α(α+ 1)/α2

7.2(1 + α)
√
M

=
(α+ 1)n− α− 1/α2

7.5(1 + α)
√
M

≤ (α+ 1)n

7.5(1 + α)
√
M

=
n

7.2
√
M

<
n

7.5(.79)⌈
√
M⌉

<
n

5⌈
√
M⌉

.

Thus, in order to fill our desired ⌈αn⌉ buckets, we will have to fill more than 4/5 of the n/⌈
√
M⌉

buckets of size ⌈
√
M⌉+ 1. In order to tell whether a bucket with size exceeding 1 has this size or

size M , we must place ⌈
√
M⌉ + 1 balls in the bucket. Therefore, the number of such buckets we

can test is at most
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δ((α+ 1)n+ 1)
√
M

⌈
√
M⌉+ 1

< δ((α+ 1)n+ 1).

Given our initial random permutation of the buckets, every bucket tested must be chosen
randomly from the as yet untested buckets with size exceeding 1. Thus the probability of us

finding at least 13/14 of the size-(⌈
√
M⌉+1) buckets, i.e,

⌈
13n/14⌈

√
M⌉
⌉
such buckets, is no more

than that of finding at least that many black balls when picking ⌊δ((α+ 1)n+ 1)⌋ balls, without
replacement, from an urn containing n/⌈

√
M⌉+ n− ⌈αn⌉ balls, only n/⌈

√
M⌉ of which are black.

Hoeffding [26] has shown that this probability is no more than that implied by Chernoff bounds
for the sum of ⌊δ((α+ 1)n+ 1)⌋ independent random 0-1 variables, which are 1 with probability
(n/⌈

√
M⌉)/(n/⌈

√
M⌉+ n− ⌈αn⌉).

The particular form of the Chernoff bound we use is from [34, p.64, Theorem 4.4(3)]:

Chernoff Bound Lemma. Suppose (X1, X2, . . . , Xq) is a sequence of independent Poisson trials
with probability of success p. Let X =

∑q
i=1Xi and µ = E[X]. Then, for all R ≥ 6µ,

Pr(X ≥ R) ≤ 2−R.

Now, in our case, we have

µ = qp∗ = ⌊δ((α+ 1)n+ 1)⌋

( n
⌈
√
M⌉

n
⌈
√
M⌉ + n− ⌈αn⌉

)
<
(
δ((α+ 1)n

)( n
⌈
√
M⌉

n(1− α)

)

=
1− α

1.25(1 + α)max(6, log(1/ϵ)

((
α+ 1

)
n

)( n
⌈
√
M⌉

n(1− α)

)
≤ n

1.25max(6, log(1/ϵ)⌈
√
M⌉

.

Thus the ratio of the number of size-(⌈
√
M⌉+ 1) buckets needed to the expected number found is

at least

R =

(
4n

5⌈
√
M⌉

)/(
n

1.25max(6, log(1/ϵ)⌈
√
M⌉

)
= max(6, log(1/ϵ).

Thus the Lemma applies for this R, and we can conclude that we fill the required number of buckets
with probability less than min(1/64, ϵ) ≤ ϵ, as desired. �

(Note that there is some numeric slack in the above proof, introduced to simplify the arguments.
We did not precisely optimize the value of δ, nor did we take into account the fact that if some
size-M buckets were filled, we would have fewer balls left for filling size-(⌈

√
M⌉ + 1) buckets.

Consequently, the bounds of Theorem B.8 and its corollary could be improved slightly at the cost
of a more complicated proof.)

B.3.5 Algorithms Exploiting the Sizes-Only Case

Knowing the possible bucket sizes s1, s2, . . . , sm occurring in our instance would seem to offer
significant advantages. First, note that we may now assume that our algorithm operates in stages,
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as follows. Let s0 = 0. At the beginning of each stage, every bucket contains si balls for some i,
0 ≤ i ≤ m. This trivially holds at the beginning of the first stage, when all buckets contain s0 = 0
balls. In each stage, we pick an unfull bucket and add si+1 − si balls to it, where si is the number
of balls the bucket contained at the beginning of the stage.

It is easy to see that any algorithm that does not operate in stages can be converted to one that
does and never uses more balls. Suppose not. Then the algorithm must contain ball placements
that have no possibility of providing us with new information. For example, suppose that buckets
are of size 2 and 5. We learn no new information by placing a single ball in an empty bucket, or
fewer than three additional balls in a bucket that contains 2 balls and is not full. Thus, given an
algorithm that makes such “informationless” placements, we can obtain a staged algorithm that
does no worse by omitting such placements if the algorithm never places enough balls into the
given bucket to reach the next allowed capacity, and otherwise postponing the placements until
just before the placement of the ball that filled the bucket to that next capacity.

Let “Staged Lowest Level” (SLL) be the algorithm that, when we have not yet filled our quota
of buckets, picks an unfilled bucket containing the fewest balls and adds to it enough balls to fill it
up to the next possible bucket size. By the argument of the previous paragraph, SLL will perform
no worse than LL, and it can clearly outperform LL in many situations. For example, in contrast
to the results for LL, SLL can match the behavior of H1 on instances with just two capacities.

Theorem B.9 Suppose 0 < α < 1. For any variant dSLL of SLL based on a deterministic tie-
breaking rule, and for any instance I with at most two distinct bucket capacities, we are guaranteed
to have

dSLLα(I) ≤ (1/α)OPTα(I).

(This result is proved in exactly the same way as Theorem B.4.)

Unfortunately, as soon as there are three or more sizes, knowing them no longer buys us much
under SLL, as we can essentially recreate the same lower bounds as for LL in Theorem B.3 by using
sizes 1, M − 1, and M in the lower bound examples, as the reader can easily verify.

SLL can outperform LL with respect to a different metric, however – the asymptotic ratio
RA

α,M,∞ holding when the number n of buckets is fixed but the maximum buckets size M is not.
For this metric, the best result we have seen so far is that of Theorem B.3 for the Lowest Level
algorithm, which says that RLL

α,∞,n = n− ⌈αn⌉+ 1.
Consider the randomized version rSLL of SLL that at each step chooses a bucket randomly

(and uniformly) from among the least filled unfull buckets, and adds balls to it to bring it up to
the next possible size.

Theorem B.10 For 0 < α < 1 and n > 1/(1− α), RrSLL
α,∞,n ≤ (n− ⌈αn⌉)/2 + 1.

Moreover, this bound is tight and no algorithm can do better, even if it knows the full profile.

Theorem B.11 Let A be any algorithm that knows the full profile, but only begins packing after
the buckets have been randomly permuted. Then, for 0 < α < 1 and n > 1/(1 − α), RA

α,∞,n ≥
(n− ⌈αn⌉)/2 + 1.

Proof of Theorem B.10. Suppose we are given an instance I with n > 1/(1 − α) and hence
n − ⌈αn⌉ > 0. The optimal solution for I consists of the ⌈αn⌉ smallest buckets, i.e., those with
sizes s1 ≤ s2 ≤ · · · ≤ s⌈αn⌉. Thus we know that OPTα(I) ≥ s⌈αn⌉. Let δ = OPTα(I)/⌈αn⌉ − 1, so
that OPTα(I) = (1 + δ)s⌈αn⌉.
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If δ ≥ 1 we are done. For note that rSLLα(I) ≤ OPTα(I) + (n− ⌈αn⌉)s⌈αn⌉, and so

rSLLα(I)

OPTα(I)
≤ 1 +

(n− ⌈αn⌉)s⌈αn⌉
2s⌈αn⌉

=
n− ⌈αn⌉

2
+ 1,

as claimed.
So assume δ < 1. Then we must have s⌈αn⌉−1 ≤ δs⌈αn⌉ < s⌈αn⌉, and so at some point the

algorithm will have reached a state in which each bucket contains a number of balls equal to the
minimum of its size and s⌈αn⌉−1, for a total of ⌈αn⌉ − 1 full buckets and OPTα(I) − s⌈αn⌉ +
(n − ⌈αn⌉ + 1)s⌈αn⌉−1 balls. Algorithm rSLL will then randomly choose buckets from among the
n−⌈αn⌉+1 currently unfull buckets containing s⌈αn⌉−1 balls, adding s⌈αn⌉− s⌈αn⌉−1 balls to each,
until it encounters one for which the result is a full bucket. At this point it will have filled ⌈αn⌉
buckets and will halt. Elementary calculations show that the expected number of buckets that will
have received these additional balls when that full bucket is obtained is (n − ⌈αn⌉ + 2)/2. Thus
the expected total number of balls used by rSLL is

OPTα(I) − s⌈αn⌉ + (n− ⌈αn⌉+ 1)s⌈αn⌉−1 +
(n− ⌈αn⌉+ 2)(s⌈αn⌉ − s⌈αn⌉−1)

2

= OPTα(I) +
(n− ⌈αn⌉)s⌈αn⌉−1

2
+

(n− ⌈αn⌉)(s⌈αn⌉)
2

≤ OPTα(I) +
(n− ⌈αn⌉)(1 + δ)s⌈αn⌉)

2
.

Then, since OPTα(I) = (1 + δ)s⌈αn⌉, we have

rSLLα(I)

OPTα(I)
≤ 1 +

(n− ⌈αn⌉)(1 + δ)s⌈αn⌉

2(1 + δ)s⌈αn⌉
=

n− ⌈αn⌉
2

+ 1,

as claimed. �
Proof of Theorem B.11. Our lower bound is based on n-bucket instances with OPTα(In) = n−
⌈αn⌉+X for a constantX to be determined later. The instance consists of ⌈αn⌉−1 buckets of size 1,
one bucket of sizeX+1, and n−⌈αn⌉, much larger, buckets having size OPTα(In)

(
(n−⌈αn⌉)/2+1

)
.

Filling any one of these latter buckets would use the number of balls claimed by our proposed lower
bound, so we can assume that the algorithm A does not fill any of them. Therefore, in order to fill
⌈αn⌉ buckets, it must fill the bucket of size X +1. The algorithm cannot, however, distinguish the
size-(X + 1) bucket from a bucket with the larger size without putting X + 1 balls in the bucket
in question. Given that the buckets were initially randomly permuted, the expected number of
buckets that must be so tested before the bucket of size X + 1 is found is again (n− ⌈αn⌉+ 2)/2,
of which one is filled and the remaining (n− ⌈αn⌉)/2 are not. Thus the expected number of balls
used is at least OPTα(In) + (n− ⌈αn⌉)(X + 1)/2. We thus have that

rSLLα(I)

OPTα(I)
≥ 1 +

(n− ⌈αn⌉)(X + 1)

2(X + ⌈αn⌉)

Taking the limit as X → ∞ gives the desired result. �
Note that this lower bound result, although tight, is weaker than our earlier ones, since it only

refers to expected values. The best probabilistic bound we can currently prove derives from Theorem
3.2, by fixing n in that result rather than B. We then obtain (roughly, and for large n), that there
is a constant a < 1 and instances I ′n such that, assuming we randomly permute the buckets at the
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beginning, any algorithm that only knows the profile and uses fewer than OPTα(I
′
n)(n − ⌈αn⌉)/8

balls has probably less than αn of success. This can probably be improved a bit, but it is not clear
that there is a similar result when the denominator 8 is replaced by something arbitrarily close to
the 2 of our lower bound on expected behavior.

As a final remark about sizes-only algorithm, we note that, analogously to our modifying LL
to the staged version SLL, we can also adapt the H2 algorithm of the previous section to a staged
version SH2 that might perform better in practice. Here, instead of setting M ′ = ⌊

√
M⌋, we can

let it be the maximum bucket size si that is less than
√
M . The proof of Theorem B.6 will still

apply.

B.3.6 Algorithms that Exploit the Known-Profile Case

In light of the lower bound Theorems B.1, B.5, B.8, and B.11, there would seem to be little oppor-
tunity to exploit the extra information available in a known profile to obtain a general qualitative
improvement. We ourselves have not yet found one, and leave this as an open problem for the
reader.

B.4 A Bucket-Based Metric

In this section we consider a metric based on bucket counts rather than ball counts, and in particular
how much hidden diversity reduces the number of buckets we can fill, given that we have enough
balls to fill our target number of buckets. As before, let us fix an α, 0 < α < 1. For an algorithm
A, an instance I with n buckets, and a number b of balls, let A(I, b) be the number of buckets filled
when A has placed b balls – we assume that the algorithm assumes it has an unbounded supply of
balls and does not know b in advance. Let OPTα(I) be the number of balls in an optimal placement
for filling ⌈αn⌉ buckets. For a deterministic algorithm dA, define

XdA
α,n = min

{
A(I,OPTα(I))

⌈αn⌉
: I is an instance with n buckets

}
.

For a randomized algorithm rA, define

XrA
α,n = min

{
E [A(I,OPTα(I))]

⌈αn⌉
: I is an instance with n buckets

}
.

In both cases, define
XA

α,∞ = lim inf
n→∞

XA
α,n.

Note that we are not parameterizing by the maximum bucket capacity M here. A maximum bucket
size of M automatically guarantees that XdF ill

α,∞ = 1/M , but getting exact results for sophisticated
algorithm when M is bounded is likely to be complicated. Consequently, we shall leave such
questions for later. The results for unbounded M are interesting in their own right.

With respect to this metric, best algorithm we currently know is a randomized one which we
shall called “d-Sampled Lowest Level” algorithm (d-Sample), where 0 < d < 1).

1. Randomly pick ⌊d⌈αn⌉⌋ buckets.

2. Perform LL on just these buckets until there are no more balls left.
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Theorem B.12 For all α, 0 < α < 1, and d, 0 < d ≤ (1−
√
1− α)/α,

d

(
1− d

1− dα

)
α ≤ Xd−Sample

α,∞ ≤ dα,

where the lower bound is always at least d2α and is maximized when d equals its upper bound, which
itself exceeds 1/2.

(Note that, as α → 1, the ratio between the upper bound and the best lower bound goes to 1, but,
as α → 0, the ratio goes to 1− d. Thus there is clearly still work to do in analyzing the algorithm.
For α = 1/2, the upper bound on d is approximately 0.58579 and, with d set to this value, we have
0.17157 < Xd−Sample

α,∞ < 0.2929.)

Proof. First, let us deal with the numerical claims. The upper bound will be greater than 1/2 so
long as

√
1− α < 1− α/2, which is equivalent to 1− α < 1− α+ α2/4, which is true since α > 0.

For future reference, also note that our upper bound (1 −
√
1− α)/α is always less than 1, since

α < 1, which implies 1− α <
√
1− α.

To see that (1 − d)/(1 − dα) ≥ d, we must show that 1 − d ≥ d(1 − dα) or d2α − 2d + 1 ≥ 0.
For the latter, we have equality when d =

(
1±

√
1− α

)
/α, with the negative option the only one

that yields a d in the allowed range. Note that because both d and α are less than 1, the function
d2α−2d+1 has a negative derivative and so is a decreasing function of d. Thus the claimed bound
(1− d)/(1− dα) ≥ d holds for all allowed values of d.

To see that the bound d ((1− d)/(1− dα))α is maximized when d attains its maximum allowed
value of (1−

√
1− α)/α, we take a derivative with respect to d, obtaining

(1− 2d)(1− dα)− (d− d2)(−α)

(1− dα)2
=

d2α− 2d+ 1

(1− dα)2
.

Our original function will be either minimized or maximized when the numerator equals 0, which
we already know happens when d = 1 −

√
1− α)/α. Since the derivative is positive for d = 1/2

and the smallest zero for the derivative is the one given above, this means that the function is
maximized at this value.

Now let us turn to the asymptotic bounds for the algorithm, starting with the upper bound,
which is straightforward. It is based on the following instances In, n > 1/(dα). In In, we have
⌈αn⌉ buckets of size 1, and the remaining buckets all have size K = ⌈αn⌉ + 1. Thus we have
OPTα(In) = ⌈αn⌉ and our algorithm has this many balls to play with. The expected number
of size-1 buckets in our sample is ⌊d⌈αn⌉⌋(⌈αn⌉/n) which approaches the desired upper bound
(dα)OPTα(In) on filled buckets as n → ∞. And note that we do not have enough balls to fill any
other buckets.

For the lower bound, let us warm up by fixing d = 1/2 and proving a weaker but easier bound
dα/2. Let B1, B2, . . . , Bn be an indexing of the buckets by increasing size, ties broken arbitrarily.

Recall that this means that OPTα(I) =
∑⌈αn⌉

i=1 si. Let t = ⌈⌈αn⌉/2⌉, and call all the buckets
with indices i ≤ t “good”. Note that we will have filled all good buckets by the time LL has
brought every bucket in the sample up to the minimum of its size and st, which will require at
most st⌊d⌈αn⌉⌋ balls. But now note that

OPTα(I) ≥
t∑

i=1

si + st(⌈αn⌉ − t) ≥
t∑

i=1

si + st⌈αn⌉/2 ≥ st ⌊d⌈αn⌉⌋ .
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Consequently we have enough balls to fill all the good buckets in our sample, of which the expected
number is d⌈αn⌉(t/n) = (d⌈αn⌉⌊⌈αn⌉/2⌋)/n, which approaches (dα/2)⌈αn⌉ as n → ∞, proving
our lower bound claim.

There is considerable slack in the above argument, even when d = 1/2. This is because we can
use the balls corresponding to the unused

∑t
i=1 si component of the lower bound on OPT to fill

the good buckets, so that the balls corresponding to the st(⌈αn⌉ − t) component only need to be
used to fill non-good buckets. This is what we exploit in the general lower bound of the Theorem,
which we now prove.

Let d∗ = (1 − d)/(1 − dα). For all ϵ > 0, we will show that Xd−Sample
α,∞ ≥ (1− ϵ)dd∗α, which

will imply the lower bound. We may assume without loss of generality that ϵ < 1. Suppose I is an
arbitrary instance with n buckets. Let t now equal ⌊(1− ϵ)d∗⌈αn⌉⌋, and call a bucket Bi “good” if
i ≤ t, and “bad” otherwise. Let r = ⌊d⌈αn⌉⌋, the number of buckets we sample. Then the expected
number g of good buckets in our sample of r buckets is

E[g] = r

(
t

n

)
∼ dαt ∼ (1− ϵ)dd∗α⌈αn⌉,

where we use “∼” to mean essentially equal as n → ∞. Note that this limiting value is just the
number of buckets we need to fill for the claimed lower bound on Xd−Sample

α,∞ to hold.
To complete the proof, we need to show that, in asymptotic expectation, our algorithm will be

guaranteed to fill all the good buckets in our sample as soon as it has placed a number of balls
that is no more than OPTα(I). Let b denote the number of bad buckets in our sample. All of the
good buckets in our sample are guaranteed to be filled as soon as LL has placed enough balls in the
buckets of the sample for each to contain the minimum of its size and st. This number is clearly
no more than

∑t
i=1 si + bst. On the other hand, the number of balls we will have available is at

least OPTα(I) ≥
∑t

i=1 si + st(⌈αn⌉ − t). Thus we will have enough balls so long as b ≤ ⌈αn⌉ − t.
Now note that

E[b] = d⌈αn⌉ − E[g] ∼ d⌈αn⌉ − dαt ∼ dαn
(
1− (1− ϵ)d∗α

)
and thus

(⌈αn⌉ − t)− E[b] = ⌈αn⌉ − ⌊(1− ϵ)d∗⌈αn⌉⌋ − E[b]

∼ αn
(
1− d− (1− ϵ)d∗(1− dα)

)
= αn

(
1− d− (1− ϵ)(1− d)

)
= (1− d)αnϵ.

Thus, we will fill all the good buckets in our sample unless we have

b− E[b] > (1− d)αnϵ ∼ (1− d)αnϵE[b]

dαn
(
1− (1− ϵ)d∗α)

) >

(
ϵ(1− d)

d(1− (1− ϵ)d∗α)

)
E[b].

This is a constant fraction β of E[b], and so another Chernoff bound theorem ([34, p.64, Theorem
4.4(2)], applicable again via the arguments of [26]) implies that the probability that this holds is
no more than e−(β2/3)E[b] = an for some constant a < 1 since E[b] is itself linear in n.

Let f be the number of good buckets actually filled after we have placed OPTα(I) balls (a lower
bound on the total number of buckets filled). Then we have

E[f ] ≥
d⌈αn⌉∑
i=1

(i · Pr[g = i] · Pr[all good buckets filled])
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Now, as observed above, all good buckets will be filled unless b > E[b]+(1−d)αnϵ or, equivalently,
g < E[g]−(1−d)αnϵ, and this happens with probability less than an. Thus, in the above expression
for E[f ], the only summands which can take on values less than the full count i are ones whose
cumulative probability is less than an, which drops exponentially in n, whereas the maximum value
for i is no more than d⌈αn⌉, which grows only linearly. Thus, as n → ∞, the contribution of these
terms to E[f ] goes to 0, and, in the limit, the expected number of buckets we fill is at least the
expected number of good buckets in our sample, which we have already seen is precisely what is
needed to prove our lower bound on Xd−Sample

α,∞ .
(The above argument, rendered informal by the use of “∼”, can be made rigorous by interpreting

A ∼ B to mean B ∈ [(1 − δ)A, (1 + δ)A] where δ > 0 is an arbitrarily small constant, and the
inclusion holds for all n > nδ, where nδ is a constant depending only on δ. All the statements
involving “∼” can then be restated in terms of such δ, with our claims holding by taking yet
another limit, this one for δ → 0.) �

In contrast, we have the following general upper bound theorems.

Theorem B.13 For all α, 0 < α < 1, if dA is any deterministic algorithm, even one that knows
the profile, we have

XdA
α,∞ = 0.

Theorem B.14 For any randomized algorithm rA,

XrA
α,∞ ≤ α.

Theorem B.15 Suppose we are given α, 0 < α < 1, and δ > 0. Then there is a constant a < 1
and a sequence of instances In such that the following holds for sufficiently large n: Assuming we
first use a random permutation to relabel the buckets, any algorithm that knows nothing more than
the profile of the instance, and has no more than OPTα(I) balls, has probability less than an of
filling (1 + δ)α⌈αn⌉ buckets.

Proof of Theorem B.13. Assume n is sufficiently large that ∆ = n − ⌈αn⌉ > 0. Given dA, we
will show how to construct an instance In with n buckets for which dA(In, OPTα(In)) = 0. The
theorem will follow. We start with n buckets of undetermined size, and apply dA for n

⌈
⌈αn⌉/∆

⌉
ball placements, each time informing the algorithm that the placement did not fill the chosen
bucket. Now declare each bucket to have size one more than the number of balls it currently
contains. Divide the buckets into two sets: C, the ⌈αn⌉ buckets containing the fewest balls (ties
broken arbitrarily), and D, the remaining ∆ buckets. Let T denote the number of balls in the
buckets of set C. Then OPTα(In) = T + ⌈αn⌉. Now note that the ∆ buckets in D contain at least
∆
⌈
⌈αn⌉/∆

⌉
≥ ⌈αn⌉ balls. Thus, when we stopped dA, it had already placed T balls in the buckets

of C and at least ⌈αn⌉ balls in the buckets of D, for a total of at least OPTα(In) balls, without
filling any bucket. So dA(In, OPTα(In)) = 0, as required. �
Proof of Theorem B.14. We exhibit a sequence of instances In that imply the upper bound
on XrA

α,∞ ≤ α for any randomized algorithm rA. These instances are quite simple: In contains
⌈αn⌉ buckets of size 1, and the remaining buckets all have capacity n + 1. This means that
OPTα(In) = ⌈αn⌉, and so, when restricted to OPTα(In) balls, algorithm rA can only place balls in
this many buckets. It can only fill a bucket when it chooses one with size 1, since all the others have
size exceeding OPTα(In). However, since it has no information about the identity of the buckets,
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the expected number of buckets of size 1 that it will choose is only
(
⌈αn⌉

)(
⌈αn⌉/n

)
. This means

that the ratio of this number to the target number is ⌈αn⌉/n, yielding the desired limit as n → ∞.
�
Proof of Theorem B.15. We use the same examples as in the proof of Theorem B.14. The
algorithm can only afford to fill buckets of size 1, and has ⌈αn⌉ balls with which to do so. Given
the random relabeling of the buckets, its success is thus simply the probability that, in making
⌈αn⌉ random bucket choices, it will find at least (1 + δ)α⌈αn⌉ size-1 buckets, where the expected
number of size-1 buckets it chooses goes to α⌈αn⌉ as n → ∞. The claim follows by an application
of the Chernoff bound used in the proof of Theorem B.12. �
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