
Plaintext Awareness in

Identity-Based Key Encapsulation∗

Mark Manulis1 Bertram Poettering2

Douglas Stebila3

1 Department of Computing, University of Surrey, Guildford, Surrey, United Kingdom

mark@manulis.eu
2 Information Security Group, Royal Holloway, University of London, Egham, Surrey, United Kingdom

bertram.poettering@rhul.ac.uk
3 School of Electrical Engineering and Computer Science, Queensland University of Technology,

Brisbane, Queensland, Australia

stebila@qut.edu.au

September 29, 2012

Abstract

The notion of plaintext awareness (PA) has many applications in public key cryptography:
it offers unique, stand-alone security guarantees for public key encryption schemes, has
been used as a sufficient condition for proving indistinguishability against adaptive chosen
ciphertext attacks (IND-CCA), and can be used to construct privacy-preserving protocols
such as deniable authentication. Unlike many other security notions, plaintext awareness is
very fragile when it comes to differences between the random oracle and standard models;
for example, many implications involving PA in the random oracle model are not valid in the
standard model and vice versa. Similarly, strategies for proving PA of schemes in one model
cannot be adapted to the other model. Existing research addresses PA in detail only in the
public key setting.

This paper gives the first formal exploration of plaintext awareness in the identity-based
setting and, as initial work, proceeds in the random oracle model. The focus is laid mainly
on identity-based key encapsulation mechanisms (IB-KEMs), for which the paper presents
the first definitions of plaintext awareness, highlights the role of PA in proof strategies of
IND-CCA security, and explores relationships between PA and other security properties.

On the practical side, our work offers the first, highly efficient, general approach for
building IB-KEMs that are simultaneously plaintext-aware and IND-CCA-secure. Our con-
struction is inspired by the Fujisaki-Okamoto (FO) transform, but demands weaker and more
natural properties of its building blocks. This result comes from a new look at the notion of
γ-uniformity that was inherent in the original FO transform. We show that for IB-KEMs
(and PK-KEMs) this assumption can be replaced with a weaker computational notion, which
is in fact implied by one-wayness. Finally, we give the first concrete IB-KEM scheme that is
PA and IND-CCA-secure by applying our construction to a popular IB-KEM and optimizing
it for better performance.

∗This research work is part of the bilateral research project between Germany and Australia, funded jointly by
the German Academic Exchange Service (DAAD) through grant Nr. 53361649 and by Australia’s Department of
Innovation, Industry, Science and Research (DIISR). Mark Manulis was also supported by the German Research
Foundation (DFG) through grant MA 4096. He and Bertram Poettering wish further to acknowledge support
from the Center of Advanced Security Research Darmstadt (CASED) and the European Center for Security and
Privacy by Design (EC SPRIDE).

1

mailto:mark@manulis.eu
mailto:bertram.poettering@rhul.ac.uk
mailto:stebila@qut.edu.au

Keywords: plaintext awareness; identity-based encryption; key encapsulation mechanism;
generic transformation

1 Introduction

A modern approach to hybrid encryption is given by the KEM/DEM paradigm [Sho00, CS02,
CS03, AGKS05, DGKS10], which gives a modular construction of public key encryption (PKE)
and identity-based encryption (IBE) schemes. The key encapsulation mechanism (KEM) is first
applied by the sender to compute the key and its encapsulation. The output key is used in the
data encapsulation mechanism (DEM) to encrypt the message. The recipient decapsulates the
key and then decrypts the message. This mechanism is especially valuable for secure transmission
of longer messages since the DEM part is usually based on fast, symmetric techniques.

Adaptive CCA Security and Transformations. The widely accepted security notion
for KEMs is indistinguishability against adaptive chosen ciphertext attacks (IND-CCA1) [CS03,
HHK10], and diverse KEM constructions satisfying this property have been proposed in the
public key (PK-KEM) [Sho00, CS02, CS03, Den03, BMW05, Kil06] and the identity-based (IB-
KEM) [BFMLS08, KG09] settings. Some [Sho00, Den03, BFMLS08] are secure in the random
oracle model; others [Sho00, CS02, CS03, BMW05, Kil06, KG09] in the standard model.

In general, IND-CCA-secure KEMs can trivially be obtained from any IND-CCA-secure
encryption scheme by encrypting (sufficiently many) randomly chosen messages that are then
used as the encapsulated key. In the random oracle model, Dent [Den03] demonstrated that
IND-CCA-secure PK-KEMs can further be obtained from PKE schemes that satisfy only a weaker
property of one-wayness (OW). These results were extended by Bentahar et al. [BFMLS08]
to the identity-based setting. This parallels prior work on IND-CCA-secure encryption: in the
random oracle model, transformations by Fujisaki and Okamoto [FO99a, FO99b] and by Okamoto
and Pointcheval [OP01] offer IND-CCA security for PKE schemes that are one-way and whose
ciphertexts are close to uniformly distributed (so-called γ-uniformity); similar transformations
were shown by Kitagawa et al. [KYH+06, YKH+06] to apply in the identity-based setting. In
the standard model, IND-CCA-secure PK-KEMs can be obtained using transformations originally
proposed for IND-CCA-secure PKE schemes, e.g., by adding a “proof of well-formedness” to an
IND-CPA-secure scheme [Sah99, DDN00, ES02, CS02, CS03], or by converting a weakly secure
IBE scheme [CHK04, BK05, BCHK07].

Plaintext Awareness and its Role. The notion of plaintext awareness (PA) was introduced
in the context of PKE by Bellare et al. [BR94, BDPR98, BP04], both in the random oracle
model [BR94, BDPR98] and the standard model [BP04], with two variants (weaker PA1 and
stronger PA2) in the standard model2. Roughly speaking, plaintext awareness demands that
no ciphertext can be created without explicit knowledge of the encrypted message. From a
technical perspective, this is represented by the existence of a plaintext extractor that, when run
on the same inputs as the ciphertext creator, can produce the plaintext behind the ciphertext.
Originally [BR94], PA was seen as a strategy for proving IND-CCA security of PKE schemes
(by using plaintext awareness to answer decryption queries). It is also useful in other contexts:
for example, deniable authentication and key exchange protocols [DGK06] can be built from
plaintext-aware KEMs.

1By CCA in this paper we mean adaptive chosen ciphertext attacks, often referred to CCA2.
2Alternative definitions of plaintext awareness in the standard model were earlier proposed by Herzog, Liskov,

and Micali [HLM03]. They consider a specialized PKE setting where both senders and receivers generate individual
secret/public key pairs and register their public keys with a trusted authority. In contrast, definitions from
[BR94, BDPR98, BP04] are more standard in that they do not rely on registration authorities and assume that
only recipients have public keys.

2

Bellare et al. [BDPR98] showed that, for PKE schemes in the random oracle model, combining
PA and IND-CPA implies IND-CCA (but PA is not implied by IND-CCA in general). In the standard
model, Teranishi and Ogata [TO06] proved that IND-CCA security of PKE schemes is implied
by one-wayness (OW) and PA2, and also that, surprisingly, in the random oracle model this
implication fails. This serves as a hint that not all standard model results on plaintext awareness
carry over to the random oracle-based setting and vice versa.

Birkett and Dent [BD08, BD11] observed that, while PA was a useful strategy for proving
IND-CCA security in the random oracle model, it was not always useful in the standard model,
where some PA2 proofs often assumed that the PKE schemes were already IND-CCA-secure. They
also developed a different proof strategy for PA2 security of PKE schemes (in the KEM/DEM
paradigm) by considering a weaker notion of plaintext awareness combined with a new property,
“simulatability”, and used this to prove that Cramer-Shoup PK-KEM [CS03] is PA and IND-CCA-
secure (see also Dent’s earlier proof [Den06]). Teranishi and Ogata [TO08] proved PA2 for
Cramer-Shoup PKE using a slightly weaker (but similar) property instead of simulatability.

With respect to plaintext awareness of hybrid PK-KEM/DEM constructions, Jiang and
Wang [JW10] proved that a PK-KEM that simultaneously satisfies a variant of IND-CCA security
and some weaker notion of plaintext awareness combined with a one-time unforgeable DEM
results in a hybrid construction that offers PA2 (for both the random oracle and standard
models).

Our Focus. Existing work on plaintext awareness and its relevance for proving IND-CCA
security has been carried out for PKE and PK-KEMs. Current knowledge on plaintext awareness
in the identity-based setting is very limited. To date, no definitions of plaintext awareness for IB-
KEMs exist, neither in the random oracle nor in standard models. Are the techniques developed
for relating plaintext awareness and IND-CCA security of public key schemes applicable to the
identity-based setting? Can existing transformations be applied to construct identity-based
schemes that are both plaintext-aware and IND-CCA-secure?

In fact, the standard model strategies [BD08, TO08, BD11] for proving plaintext awareness
of PK-KEMs, demonstrated successfully on the Cramer-Shoup scheme [CS03], do not seem
to apply to current standard model IB-KEMs. For example, the prominent IND-CCA-secure
standard model IB-KEM by Kiltz and Galindo [KG09], which can be seen as a pairing-based
variant of the Cramer-Shoup PK-KEM, does not have the simulatability property used by Birkett
and Dent [BD11] (nor the relaxation used by Teranishi and Ogata [TO08]). This is due to the
existence of public verification of the “well-formedness” of the ciphertext using a bilinear pairing
(bilinear groups are the most popular technique for constructing identity-based primitives). This
motivates a separate treatment of plaintext awareness in the identity-based setting, including its
connection to IND-CCA security and the construction of generic transformations.

1.1 Our Results and Techniques

Our Results. In this work we initiate the study of plaintext awareness for IB-KEMs, aiming
to draw parallels and indicate differences to the corresponding results for PK-KEMs. While it
is important to investigate plaintext awareness for IB-KEMs both with and without random
oracles, here we work in the random oracle model (which tends to result in very efficient, practical
constructions) and postpone standard model research to future work. We introduce definitions of
plaintext awareness for IB-KEMs, investigate its role and relationship to other IB-KEM security
notions (in particular, one-wayness and indistinguishability), and develop a method for obtaining
highly efficient IB-KEMs that are simultaneously plaintext-aware and IND-CCA-secure from
ones that satisfy only the basic notion of one-wayness.

Our results, which are summarized in Figure 1, are as follows:

3

– We provide (in Section 2) a formalization of plaintext awareness for IB-KEMs in the
random oracle model and explore the relationship of this notion to other security notions,
in particular observing that a scheme that is both PA and OW is also OW-CCA (Section 3).

– We introduce in Section 5 a generic transformation F on IB-KEMs, somewhat related to
the Fujisaki-Okamoto transformation [FO99b] for PKE, that transforms an OW-secure
IB-KEM into one that is both OW-CCA-secure and plaintext-aware. This construction
is quite efficient. Our construction has an advantage from the perspective of provable
security: whereas the proof of plaintext awareness of Fujisaki-Okamoto requires that the
KEM be both OW and uniform, our construction F eliminates the needs for uniformity.
Instead, our proof relies on a new intermediate security notion, computational uniformity,
introduced in Section 4, which we show is actually implied by OW; hence, OW suffices for
proving that our new construction yields PA.

– As a consequence of our F construction, we observe a difference between OW, IND, and
PA notions in the standard model versus the random oracle model. Teranishi and Ogata
[TO06] showed that, in the standard model, OW and PA of PKE schemes implies IND-CCA
security. For IB-KEMs in the random oracle model, we show that this does not hold.

– In Section 6, we describe a simple hash-based construction # that adds IND security to
our F transform (and preserves its plaintext awareness).

– Together, the F and # constructions efficiently transform an OW-secure IB-KEM into one
that provides plaintext awareness and IND-CCA security. As described in Section 7, some
additional optimizations can be applied when these two techniques are used together. We
show an application of this technique to the IB-KEMs that underlie the IBE schemes by
Boneh and Franklin [BF01] and Sakai and Kasahara [SK03], to construct highly efficient
IB-KEMs that are simultaneously PA and IND-CCA-secure.

Since IND-CCA security does not in general imply plaintext awareness (either in the PKE setting
[BDPR98] or for IB-KEMs, as we prove), our # ◦F constructions offers the only known provable
approach for constructing IB-KEMs that are simultaneously PA and IND-CCA-secure.

Finally, we show that (adaptions of) our transformations for OW-secure IB-KEMs can also be
applied to OW-secure PK-KEMs. This extends work of Dent [Den03] since PK-KEMs obtained
with our transformations are both plaintext-aware and IND-CCA-secure. More importantly,
PK-KEMs with PA and IND-CCA security readily admit construction of plaintext-aware hybrid
PKE schemes based on the results from [JW10] for the KEM/DEM approach.

New Techniques. Central to our results is a novel perspective on the notion of γ-uniformity,
which was originally defined in the public key setting [FO99b] and has been extended to
IBE schemes [TO08]. Existing random oracle-based transformations from OW to IND-CCA
[FO99a, FO99b, OP01, TO08] explicitly required γ-uniformity for the underlying encryption
scheme. We show this requirement is unnecessary for plaintext awareness (and IND-CCA security)
of KEMs.

Our proof technique uses a new, intermediate notion called computational uniformity. We
prove that, for IB-KEMs, computational uniformity is immediately implied by one-wayness. The
understanding of this implication helps to explain why generic constructions of IND-CCA-secure
IB-KEMs in [BFMLS08] do not require uniformity as a separate condition on the underlying
OW-secure IBE encryption scheme: in [BFMLS08], an IBE scheme is used to encrypt random
messages (from which encapsulation keys are derived) and can thus be seen as an OW-secure
IB-KEM. Our technique also applies to the public key setting: In Appendix A we extend our
results towards PK-KEMs showing that their computational uniformity is also implied by OW
security. This paves the way for using our transformations developed for IB-KEMs in the
construction of plaintext-aware and IND-CCA-secure PK-KEMs.

4

U cU

OW

IND

OW-CCA

IND-CCA

PA

Lem5

/
Lem6

F
Thm2

/
Lem3

Lem2
#
Lem12

Lem2
#
Lem12

Cor1

/
Lem9

Lem1

Lem1

+PA
Thm1

or F
Cor2

+OW
Thm1/

F
Lem11

#
Lem13

#◦F
Thm3

F
Lem10

/

Lem4

by definition

/ counterexample

X Z
F

if Π is X, then F (Π) is Z

X Z
+Y

if Π is X ∧ Y , then Π is also Z

Figure 1: Relationships between security notions and results of generic transformations for IB-KEMs.
Solid lines (→) denote an implication between notions (e.g., IND implies OW); solid lines with a cross
(6→) denote a separation between notions (e.g., IND-CCA does not imply PA); and dashed lines indicate
that one property can be obtained either by applying a transformation (e.g., F transforms an OW scheme
into an OW-CCA scheme) or by satisfying two properties (e.g., a scheme that is both OW and PA is also
OW-CCA).

1.2 Notation

Unless explicitly stated, all algorithms and adversaries throughout this paper are probabilistic
and polynomial time. Let A(x; r) denote the running of A on input x and random coins r. We

use the notation y
$← A(x) to denote setting y to the output of A run on input x with uniform

randomness, and y ∈ A(x) denotes that y is an element of the set of outputs of A when run on x
with any randomness. If algorithm A outputs tuples, i.e. (x, y, z)← A, then partial computation
of the output vector is denoted with wildcards, e.g. (·, y, ·)← A, if the first and third component
of the result, x and z, are neither computed nor assigned.

2 Secrecy notions and plaintext awareness of IB-KEMs

The modular concept of hybrid encryption, where asymmetric encryption schemes are constructed
from two building blocks — a key encapsulation mechanism (KEM) and a data encapsulation
mechanism (DEM) — was originated by [CS03] and is a popular design strategy for modern
cryptosystems [KG09, KD04, Den03]. Specifically, in this paper we are interested in the identity-
based variant of KEMs, although most of our results readily extend to the public key setting as
well (cf. Appendix A).

Definition 1 (IB-KEM). An identity-based key encapsulation mechanism (IB-KEM) is a tuple
Π = (Setup,Extract,Encap,Decap) of algorithms with, for each k ∈ N, associated finite sets
IDSp(k), CoinSp(k), CipherSp(k), and KeySp(k), where

– Setup(1k) is a master key generation algorithm which outputs a pair of strings (mpk,msk).
– Extract(msk, id) is a key extraction algorithm which, on input master secret key msk and

an identity id ∈ IDSp(k), outputs a string sk.
– Encapmpk(id; r) is a key encapsulation algorithm; it takes a master public key mpk, the

recipient’s identity id ∈ IDSp(k), and random coins r ∈ CoinSp(k), and outputs a cipher-
text c ∈ CipherSp(k) and a key K ∈ KeySp(k). We use the notation Encapmpk(id) as

5

Expt
OW[-CCA]
Π,A (k):

(a) H $← Hash(k)

(b) (mpk,msk)
$← SetupH(1k)

(c) (id∗, st)
$← AOH,OX [,OD]

1 (mpk)
– If A queries OH(H,m):

(a) x← H(H,m)
(b) Append (H,m, x) to HList.
(c) Answer A with x.

– If A queries OX(id):

(a) sk
$← ExtractH(msk, id)

(b) Append (id, sk) to XList.
(c) Answer A with sk.

– If A queries OD(id, c) (in CCA vari-
ant):

(a) sk
$← ExtractH(msk, id)

(b) K ← DecapHsk(c)
(c) Append (id, c) to DList.
(d) Answer A with K.

(d) (c∗,K∗)
$← EncapHmpk(id

∗)

(e) K ′
$← AOH,OX [,OD]

2 (st, c∗)
– Answer OH,OX ,OD queries as above.

(f) If (id∗, ·) ∈ XList return lose.
(g) If (id∗, c∗) ∈ DList return lose.
(h) If K ′ 6= K∗ return lose.
(i) Return win.

Expt
IND[-CCA],b
Π,A (k):

(a) H $← Hash(k)

(b) (mpk,msk)
$← SetupH(1k)

(c) (id∗, st)
$← AOH,OX [,OD]

1 (mpk)
– If A queries OH(H,m):

(a) x← H(H,m)
(b) Append (H,m, x) to HList.
(c) Answer A with x.

– If A queries OX(id):

(a) sk
$← ExtractH(msk, id)

(b) Append (id, sk) to XList.
(c) Answer A with sk.

– If A queries OD(id, c) (in CCA vari-
ant):

(a) sk
$← ExtractH(msk, id)

(b) K ← DecapHsk(c)
(c) Append (id, c) to DList.
(d) Answer A with K.

(d) (c∗,K∗0)
$← EncapHmpk(id

∗)

(e) K∗1
$← KeySp(k)

(f) d
$← AOH,OX [,OD]

2 (st, c∗,K∗b)
– Answer OH,OX ,OD queries as above.

(g) If (id∗, ·) ∈ XList return lose.
(h) If (id∗, c∗) ∈ DList return lose.
(i) Return d.

Figure 2: Experiments for one-way security (OW[-CCA]) and indistinguishability (IND[-CCA]) of IB-
KEMs

shortcut for Encapmpk(id; r) with freshly drawn r
$← CoinSp(k).

– Decapsk(c) is a key decapsulation algorithm which takes secret key sk and a ciphertext c ∈
CipherSp(k), and returns a key K ∈ KeySp(k) or the symbol ⊥.

IB-KEM Π is correct if for all k ∈ N, all (mpk,msk) ∈ Setup(1k), all id ∈ IDSp(k), all
sk ∈ Extract(msk, id), and all (c,K) ∈ Encapmpk(id), we have Decapsk(c) = K.

In the random oracle model, the four algorithms of an IB-KEM have access to a common
set of random oracles H = (H1, . . . ,Hh). This is explicitly indicated by the notation SetupH,
ExtractH, EncapH, and DecapH. The query to a specific oracle H in H on value m is denoted

by H(H,m). By H $← Hash(k) we denote the process of picking at random an instantiation of
random oracles H = (H1, . . . ,Hh).

2.1 One-way security and indistinguishability

The classical secrecy notions of IB-KEMs are one-way security and key indistinguishability
[BFMLS08], either with or without a decryption oracle: OW, OW-CCA, IND, and IND-CCA. The
adversary’s goal in OW[-CCA] is to (fully) compute the key that corresponds to a given ciphertext
c∗ ∈ CipherSp(k), while in IND[-CCA] it is sufficient to distinguish the real key from a random
one, again given a ciphertext c∗. This intuition is formalized in experiments ExptOW[-CCA] and
ExptIND[-CCA], in Figure 2. As most results established in this paper are proven in the random
oracle model, besides giving adversary A = (A1,A2) access to a key extraction oracle OX and —
in the CCA variants — a key decapsulation oracle OD, the security experiments for OW[-CCA]
and IND[-CCA] explicitly express the option of A to make queries to hash oracle OH.

Definition 2 (One-way security (OW[-CCA])). An IB-KEM Π is said to be OW- (resp. OW-CCA-
) secure if, for all adversaries A = (A1,A2), the corresponding success probability is negligible

6

in k, where we define

Succ
OW[-CCA]
Π,A (k) = Pr

[
Expt

OW[-CCA]
Π,A (k) = win

]
.

Definition 3 (Indistinguishability (IND[-CCA])). An IB-KEM Π is said to be IND- (resp.
IND-CCA-) secure if, for all adversaries A = (A1,A2), the corresponding advantage is negligible
in k, where we define

Advt
IND[-CCA]
Π,A (k) =

∣∣∣Pr
[
Expt

IND[-CCA],0
Π,A (k) = 1

]
− Pr

[
Expt

IND[-CCA],1
Π,A (k) = 1

]∣∣∣ .
Lemmas 1 and 2 follow immediately from the definitions:

Lemma 1 (OW-CCA ⇒ OW and IND-CCA ⇒ IND). Let Π be an IB-KEM. If Π is OW-CCA-
secure, then Π is OW-secure. If Π is IND-CCA-secure, then Π is IND-secure.

Lemma 2 (IND⇒ OW and IND-CCA⇒ OW-CCA). Let Π be an IB-KEM. If Π is IND-secure,
then Π is OW-secure. If Π is IND-CCA-secure, then Π is OW-CCA-secure.

2.2 Plaintext awareness

The notion of plaintext awareness, as established in the setting of public key encryption (PKE)
in [BDPR98, BP04], captures the intuition that no one can generate a (valid) ciphertext c∗

without knowing the message to which it will decrypt. This is a very strong notion of security,
generally implying IND-CCA security of PKE schemes [BDPR98, BP04]. In this section, we
define an analogous notion for KEMs, in the identity-based setting. In particular, we demand
that, given a plaintext-aware IB-KEM, it is impossible to come up with a ciphertext c∗ without
knowing the key to which it will decapsulate3.

In line with the PKE setting, we define plaintext awareness using two algorithms, the
ciphertext creator A and the plaintext extractor K. The ciphertext creator’s task is to output a
target identity id∗ and a ciphertext c∗. The candidate scheme is understood to be plaintext-aware
if any such algorithm A could additionally output the key encapsulated in c∗. This is formalized
via the plaintext extractor K, which receives as input the transcript of all of A’s interactions,
including A’s input, all oracle queries posed by A together with corresponding answers, and the
values output by A. That is, K is in the position to retrace the computations that A performed
to generate c∗ (see also Remark 4), and we expect from K to use this knowledge to output the
key encapsulated in c∗.

These ideas are formalized in Definition 4. As in [BDPR98], we explicitly regard plaintext
awareness in the random oracle model. In particular, although usually unnecessary outside the
secret key setting, we provide an encapsulation oracle OE that allows creation of encapsulated
keys, but without the adversary seeing random oracle queries asked from within corresponding
Encap invocations. Availability of this oracle will become an important prerequisite for proving
security against chosen-ciphertext attacks of plaintext-aware IB-KEMs.

Definition 4 (Plaintext awareness (PA)). Let Π be an IB-KEM and A and K be algorithms (the
“ciphertext creator” and “plaintext extractor”, respectively). Consider experiment ExptPAΠ,A,K from
Figure 3 and define the awareness of Π as

AwPA
Π,A,K(k) = Pr

[
ExptPAΠ,A,K(k) = lose

]
.

3Strictly speaking, naming a KEM’s property ‘plaintext awareness’ can be misleading: KEMs do not process
messages in the classical sense, but only keys. Although one could argue that key awareness would be a better
name for the intended property, in this paper we stick to ‘plaintext awareness’ that has been around in the context
of public key encryption for the last two decades.

7

ExptPAΠ,A,K(k):

(a) H $← Hash(k)

(b) (mpk,msk)
$← SetupH(1k)

(c) (id∗, c∗)
$← AOH,OX ,OE (mpk)

– Answer OH,OX queries as in Fig-
ure 2.

– If A queries OE(id):

(a) (c, ·) $← EncapHmpk(id)
(b) Append (id, c) to EList.
(c) Answer A with c.

(d) If (id∗, c∗) ∈ EList return lose.

(e) K∗
$← DecapH

ExtractH(msk,id∗)
(c∗)

(f) K ′
$← KH(id∗, c∗,mpk,HList,XList,EList)

(g) If K∗ = K ′ return lose.
(h) Return win.

Figure 3: Plaintext awareness experiment PA for IB-KEMs. See Figure 2 for the definitions of HList
and XList.

An algorithm K is called a λ(k)-extractor for Π if

AwPA
Π,A,K(k) ≥ λ(k) ,

for every adversary A. IB-KEM Π is plaintext aware if there exists a λ(k)-extractor K for Π
such that λ(k) is overwhelming, that is, 1− λ(k) is negligible (in k).

The following remarks discuss rationale and some interesting properties of Definition 4.

Remark 1 (Oracle access of plaintext extractor). We emphasize a subtle difference between
plaintext awareness of PKE according to [BDPR98], and our Definition 4. In [BDPR98], the
plaintext extractor K is not given access to the random oracle H. This limitation is not motivated
in [BDPR98], but instead back in [BR94, Section 5]: “Note we don’t give K oracle access to
H: it is required to find the plaintext corresponding to [the ciphertext] given only A’s view of
the oracle”. However, in the KEM setting, we disagree that this restriction is reasonable and
argue4 that K should be allowed to query the same random oracles that Decap is allowed to query,
namely H (compare lines (e) and (f) of experiment ExptPAΠ,A,K).

Remark 2 (Success probability of plaintext extractor). For an IB-KEM to achieve plaintext
awareness according to Definition 4, we demand plaintext extractor K to have overwhelming
success probability. At first sight, this seems to be a very conservative requirement, but we
argue that it is indispensable. Consider the case of a plaintext extractor K where AwPA

Π,A,K(k) is
growing fast, but not overwhelmingly fast, for all A. We construct an adversary A∗ that picks a

random identity id, runs polynomially many executions of (c,K)
$← Encap(id) independently of

each other in parallel, and applies K on each computed ciphertext c. If any such run of K fails
to correctly extract the key (and it will, according to our assumption), corresponding c is the
ciphertext c∗ output by A∗ (together with identity id). Clearly, when run on A∗, we expect K to
fail with high probability, in contradiction to assumed good performance of K. Following this
intuition, it can be shown that K cannot be a λ(k)-extractor for any λ(k) > 0.

4Consider, for a justification, the following example (see also Lemma 13 for a more detailed discussion). Given
an IB-KEM Π, derive from it IB-KEM Π′ such that Setup′ ≡ Setup, Extract′ ≡ Extract, Encap′mpk(id) ≡ [(c,K)←
Encapmpk(id),K′ ← H(c,K), return (c,K′)], Decap′sk(c) ≡ [K ← Decapsk(c), return H(c,K)], where H is an
independent random oracle. Intuitively, if Π is plaintext-aware then so is Π′, as a plaintext extractor K could
extract K from c and then derive K′ ← H(c,K). This reasoning, however, assumes that K has access to random
oracle H.

8

Remark 3 (Universality of plaintext extractor). Observe that plaintext extractor K, as defined
in Definition 4, is a universal extractor: it does not depend on specific ciphertext creator A, but
only on scheme Π. Although this is a very strong notion of plaintext awareness, in Section 5 we
see that it can be achieved even by rather efficient IB-KEMs. When leaving the random oracle
model, however, it seems that the concept of universal extractability is too strong. For instance, in
[BP04], the demand for a universal extractor is dropped. Instead, to achieve plaintext awareness,
it suffices to have a specific plaintext extractor KA for each ciphertext creator A. Note that, in
this paper, we exploit universality of plaintext extractors, e.g. in the proof of Theorem 1.

Remark 4 (Random tape of ciphertext creator). We will shortly discuss a variant of ExptPAΠ,A,K
where K gets as additional input the tape R[A] of random coins used by A to craft (id∗, c∗).
While this modification would be meaningful from a modeling point of view, it is already noticed
in [BR94] that the randomness used by A is usually not needed to prove schemes to be plaintext-
aware, at least in the random oracle model. As this observation holds for the IB-KEMs analyzed
in this paper, we decided to stay with (stronger) Definition 4. However, in standard model, K’s
knowledge of random tape R[A] is an unavoidable prerequisite for plaintext awareness, as pointed
out in [BP04].

3 Plaintext awareness and one-way security implies OW-CCA se-
curity

Although being defined independently of each other, the different notions of secrecy and plaintext
awareness considered in Section 2 are not unrelated to each other. In particular, we will establish
a strong result in Theorem 1: IB-KEMs that are both OW-secure and plaintext-aware are also
OW-CCA-secure, i.e. availability of a decapsulation oracle does not threaten OW security of
plaintext-aware IB-KEMs. The intuition behind this implication is simple: given a plaintext-
aware IB-KEM, an OW-CCA adversary A cannot gain advantage from its decapsulation oracle,
as A ‘knows’ the keys of all queried ciphertexts anyway. Nonetheless, the proof of Theorem 1 is
technically involved as it has to cope with the fact that OW-CCA adversary A may query its OD
oracle polynomially many times, while plaintext extractor K is applicable only to adversaries
that output exactly one ciphertext.

Taken together, the following results separate the security notions PA and IND[-CCA], and
illustrate once more the strength of the notion of plaintext awareness.

Theorem 1 (OW ∧ PA⇒ OW-CCA). Let Π be an IB-KEM. If Π is OW-secure and PA, then Π
is OW-CCA-secure.

Proof. Let K be a λ(k)-extractor for Π, for an overwhelming λ(k). Let A = (A1,A2) be any
adversary against OW-CCA of Π. We construct an adversary B = (B1,B2) against OW of Π such
that B1 and B2 run A1 and A2, respectively, as subroutines. While all queries to OH and OX
oracles posed by A will just be relayed by B to its own challenger, B will answer decapsulation
queries to OD itself, by applying plaintext extractor K on (partially) simulated A. The precise
specification of B1 and B2 is given in Figure 4 (left part).

Let qD be the total number of decapsulation queries that A will ask. For 1 ≤ j ≤ qD,
denote by (idj , cj) the arguments of the j-th OD query, and let Ej be the event that the
query is correctly answered by B, i.e. that corresponding execution of K succeeds in computing
the correct decapsulation Kj of (idj , cj). We will lowerbound the probability that Ej occurs.
Let τj = (idj , cj ,mpk, HLij , XLij , ELij) denote the parameters provided by B to K in its j-th
execution. Moreover, considering PA adversary Cj as defined in Figure 4 (right part), let τ ′j = (id′j ,
c′j ,mpk,HListj ,XListj ,EListj) be a parameter set that plaintext extractor K would receive when

run on Cj , i.e. in experiment ExptPAΠ,Cj ,K, initialized with the same mpk and instantiation of H
as B. Careful comparison of the specifications of B and Cj reveals that τj and τ ′j are equally

9

BO
′
H,O

′
X

1 (mpk):
(a) HLi← ∅, XLi← ∅
(b) Run AOH,OX ,OD

1 (mpk)
– If A1 queries OH(H,m):

(a) x← O′H(H,m)
(b) Append (H,m, x) to HLi.
(c) Answer A1 with x.

– If A1 queries OX(id):
(a) sk ← O′X(id)
(b) Append (id, sk) to XLi.
(c) Answer A1 with sk.

– If A1 queries OD(id, c):

(a) K
$←

KOH(id, c,mpk, HLi, XLi, ∅)
– If K queries OH(H,m):
(a) x← O′H(H,m)
(b) Append (H,m, x) to HLi.
(c) Answer K with x.

(b) Answer A1 with K.
(c) Finally A1 halts, outputting (id∗, st).
(d) st′ ← (st,mpk, HLi, XLi)
(e) Return (id∗, st′).

BO
′
H,O

′
X

2 (st′, c∗):
(a) Parse (st,mpk, HLi, XLi)← st′

(b) Run AOH,OX ,OD
2 (st, c∗)

– Answer OH,OX queries as above.
– If A2 queries OD(id, c):

(a) K
$←

KOH(id, c,mpk, HLi, XLi, (c∗))
– If K queries OH(H,m):
(a) x← O′H(H,m)
(b) Append (H,m, x) to HLi.
(c) Answer K with x.

(b) Answer A2 with K.
(c) Finally A2 halts, outputting K ′.
(d) Return K ′.

CO
′
H,O

′
X ,O

′
E

j (mpk):
(a) HLi← ∅, XLi← ∅, i← 1
(b) Run AOH,OX ,OD

1 (mpk)
– If A1 queries OH(H,m):

(a) x← O′H(H,m)
(b) Append (H,m, x) to HLi.
(c) Answer A1 with x.

– If A1 queries OX(id):
(a) sk ← O′X(id)
(b) Append (id, sk) to XLi.
(c) Answer A1 with sk.

– If A1 queries OD(id, c):
(a) If i = j return (id, c) else i ←

i+ 1.

(b) K
$←

KOH(id, c,mpk, HLi, XLi, ∅)
– If K queries OH(H,m):
(a) x← O′H(H,m)
(b) Append (H,m, x) to HLi.
(c) Answer K with x.

(c) Answer A1 with K.
(c) Finally A1 halts, outputting (id∗, st).
(d) c∗ ← O′E(id∗)

(e) Run AOH,OX ,OD
2 (st, c∗)

– Answer OH,OX queries as above.
– If A2 queries OD(id, c):

(a) If i = j return (id, c) else i ←
i+ 1.

(b) K
$←

KOH(id, c,mpk, HLi, XLi, (c∗))
– If K queries OH(H,m):
(a) x← O′H(H,m)
(b) Append (H,m, x) to HLi.
(c) Answer K with x.

(c) Answer A2 with K.

Figure 4: Left: Construction of OW adversary B = (B1,B2) from OW-CCA adversary A = (A1,A2)
and plaintext extractor K. Right: Specification of PA adversaries Cj whose transcripts match the
parameters provided by B to the j-th execution of K.

distributed (more precisely, if B and Cj are executed on the same random tape, then we have
τj = τ ′j). If K ′j denotes the decapsulation of (id′j , c

′
j), then also (τj ,Kj) and (τ ′j ,K

′
j) obey the

same distribution, and hence

Pr[Ej] = Pr
[
KH(τj) = Kj

]
= Pr

[
KH(τ ′j) = K ′j

]
= AwPA

Π,Cj ,K(k) ≥ λ(k) .

Setting E = E1 ∧ . . . ∧ EqD and applying Lemma 16 (Appendix B) gets us to

SuccOW
Π,B(k) ≥ Pr

[
ExptOW

Π,B(k) = win ∧ E
]

= Pr
[
ExptOW

Π,B(k) = win
∣∣∣E]Pr[E]

≥ Pr
[
ExptOW-CCA

Π,A (k) = win
]

· (1− qD(1− λ(k)))

= SuccOW-CCA
Π,A (k) · (1− qD(1− λ(k))) .

This concludes the proof, as 1− qD(1− λ(k)) is an overwhelming quantity.

10

Setup′(1k):

(a) (mpk,msk)
$← Setup(1k)

(b) (c′, ·) $← Encapmpk(id0)
(c) mpk′ ← (mpk, c′)
(d) Return (mpk′,msk).

Extract′(msk, id):
(a) Return Extract(msk, id).

Encap′mpk′(id; r):

(a) Parse (mpk, c′)← mpk′.
(b) Return Encapmpk(id; r).

Decap′sk(c):
(a) Return Decapsk(c).

Figure 5: Constructing Π′ from Π. We assume that id0 is a fixed identity in IDSp(k), and all queries to
H oracle are relayed without modification.

Remark 5 (On the proving technique used in Theorem 1). A substantial element in the proof
of Theorem 1 is the estimation of K’s ability to compute the correct answers to A’s OD queries.
Note that for arbitrary HLi, XLi, ELi lists we cannot expect K to correctly extract keys with
any reasonable probability. Indeed, in order to argue that the parameters τj provided by B are
sufficient for extraction of the desired keys, we had to specify auxiliary PA adversaries (Cj)1≤j≤qD ,
and had to show that these would give raise to the same parameter sets when run in ExptPAΠ,Cj ,K.
Interestingly enough, these adversaries Cj were not designed to be ever executed: it is their bare
existence that is necessary for the proof of Theorem 1 to go through.

Remark 6 (On IND∧PA⇒ IND-CCA). The techniques used to prove Theorem 1, that OW∧PA⇒
OW-CCA, cannot be applied to prove the IND analogue that IND security and PA imply IND-CCA
security. The reason for this is a subtle difference between the OW notion and the IND notion
that, in the IND case, renders inapplicable the proving technique we discuss in Remark 5: In
experiment ExptIND-CCA, the adversary obtains ciphertext c∗ and (possibly) corresponding key K∗

from the challenger, but this cannot be reflected in parameters HLi, XLi, ELi that are provided to
plaintext extractor K. Hence, in a proof constructed like in Figure 4, we cannot argue about K’s
success probability to answer decapsulation queries of A2 correctly. In experiment ExptOW-CCA,
however, adversary just obtains a random ciphertext c∗ encapsulated for identity id∗. This finds
its perfect correspondence in Cj calling the OE oracle on id∗ (cf. line (d) in Figure 4, right part).
Basically, this also explains why we have to set ELi = (c∗) when processing A2’s OD queries.

Observe that implication IND∧PA⇒ IND-CCA has been proven in the PKE setting [BDPR98].
The difference is that, in the IND-CCA experiment of public key encryption, the adversary has
partial knowledge about the message that is encrypted in c∗: it is either m0 or m1, so adversary
can query these to its encryption oracle OE.

Although IND-CCA security is considered the strongest confidentiality goal for IB-KEMs, the
following lemma shows that this property is to weak to imply plaintext awareness by itself.

Lemma 3 (IND-CCA 6⇒ PA). Not all IND-CCA-secure IB-KEMs are PA.

Proof. Let Π be an IND-CCA-secure IB-KEM. Consider IB-KEM Π′ that arises when modifying
Π’s Setup to include into master public key mpk an encapsulation to some fixed identity
id0 ∈ IDSp(k), as specified in Figure 5. We will show that Π′ is not plaintext-aware, but remains
to be IND-CCA-secure.

Observe that any adversary A′ against IND-CCA of Π′ can be trivially turned into an

adversary A against IND-CCA of Π, by letting A1 simulate the (c′, ·) $← Encapmpk(id0) step of
line (b) of Setup′, and, apart from that, letting A1 and A2 run A′1 and A′2, respectively, relaying
all oracle queries to the own challenger. As the IND-CCA advantages of A and A′ would be the
same, this proves IND-CCA security of Π′.

To see that Π′ is not plaintext-aware, we show that any corresponding plaintext extractor
would break OW security of Π. Assume towards contradiction the existence of a λ(k)-extractor
KΠ′ for Π′, where λ(k) is overwhelming. Define adversary B against OW of Π as follows:

11

B1(mpk) just outputs (id∗, st) = (id0,mpk), while B2(st, c∗) sets mpk′ ← (mpk, c∗), computes

K
$← KHΠ′(id0, c

∗,mpk′, ∅, ∅, ∅), and outputs K. We use the technique discussed in Remark 5
to justify that KΠ′ will succeed with high probability in revealing correct key K: consider the
simple ciphertext creator A′ for IB-KEM Π′ that, on input mpk′, parses (mpk, c∗)← mpk′ and
outputs (id0, c

∗). As A′ doesn’t ask any queries to its oracles, i.e. HList = XList = EList = ∅,
execution of KHΠ′(id0, c

∗,mpk′, ∅, ∅, ∅) will readily extract the key encapsulated in c∗ for identity
id0. More precisely, we have shown that SuccOW

Π,B(k) = AwPA
Π′,A′,KΠ′

(k) ≥ λ(k) ≥ 1 − negl(k),

in contradiction to IND-CCA security of Π (cf. Lemmas 1 and 2). This shows that Π′ is not
plaintext-aware.

At the same time, plaintext awareness does not imply the basic confidentiality goal of
one-wayness:

Lemma 4 (PA 6⇒ OW). Not all plaintext-aware IB-KEMs are OW-secure.

Proof. Consider the (correct, but insecure) IB-KEM in which Encapmpk(id; r) returns (c,K) =
(r, r), i.e. keys are equal to their encapsulation. The scheme is clearly not OW-secure. However,
it is plaintext aware: an appropriate plaintext extractor K would just output the ciphertext.

4 Computational uniformity of IB-KEMs and its relation to
one-wayness

We introduce two new security notions for IB-KEMs. The first one, uniformity (U), is defined
mainly for historical reasons: it is the analogue to the uniformity notion for PKE coined
in [FO99b]. We will see that its (strictly weaker) variant, computational uniformity (cU), is
a very natural notion of IB-KEMs, already being implied by the basic secrecy requirement of
one-way security (OW, Definition 2). In Section 5, it will find its application in the analysis
of our generic transformation that achieves plaintext awareness for any IB-KEM. We give a
treatment of the corresponding notions for PK-KEMs in Appendix A.

Definition 5 (Uniformity (U)). Let Π be an IB-KEM with associated spaces IDSp, CoinSp,
CipherSp, and KeySp. For k ∈ N, H ∈ Hash(k), (mpk,msk) ∈ SetupH(1k), id ∈ IDSp(k), and
c ∈ CipherSp(k) define

γHmpk(id, c) = Pr
[
r

$← CoinSp(k); (c, ·) = EncapHmpk(id; r)
]
.

We say that Π is γ-uniform for a function γ : N→ R≥0 if for (almost) all k ∈ N, H ∈ Hash(k),
(mpk,msk) ∈ SetupH(1k), id ∈ IDSp(k), and c ∈ CipherSp(k) we have γHmpk(id, c) ≤ γ(k).
IB-KEM Π is simply called uniform (U) if Π is γ-uniform for all non-negligible γ.

A weaker notion of uniformity is that of computational uniformity, where the adversary’s
aim is to explicitly spot pairs (id, c) with γHmpk(id, c) > γ(k). This is formalized in Definition 6.

Definition 6 (Computational uniformity (cU)). Let Π be an IB-KEM and A be an algorithm.

For a given function γ : N→ R≥0, consider experiment ExptcU,γΠ,A from Figure 6 and define the
success probability of A as

SucccU,γΠ,A (k) = Pr
[
ExptcU,γΠ,A (k) = win

]
.

IB-KEM Π is said to be computationally γ-uniform if SucccU,γΠ,A (k) is negligible in k, for all
adversaries A. IB-KEM Π is simply called computationally uniform (cU) if Π is computationally
γ-uniform for all non-negligible γ.

12

ExptcU,γΠ,A (k):

(a) H $← Hash(k)

(b) (mpk,msk)
$← SetupH(1k)

(c) (id, c)
$← AOH,OX (mpk)

– Answer OH,OX queries as
in Figure 2.

(d) If γHmpk(id, c) > γ(k) return win.

(e) Return lose.

Figure 6: Experiment for computational uniformity (cU) of IB-KEMs

Setup∗(1k):

(a) (mpk,msk)
$← Setup(1k)

(b) h∗ ← ow(id∗) for

id∗
$← IDSp(k)

(c) r∗
$← CoinSp(k)

(d) mpk∗ ← (mpk, h∗, r∗)
(e) Return (mpk∗,msk).

Extract∗(msk, id):
(a) Return Extract(msk, id).

Encap∗mpk∗(id; r):
(a) Parse (mpk, h∗, r∗)← mpk∗.
(b) If ow(id) = h∗

return Encapmpk(id; r∗).
(c) Return Encapmpk(id; r).

Decap∗sk(c):
(a) Return Decapsk(c).

Figure 7: Constructing Π∗ from Π. We assume that all queries to H oracle are relayed without
modification.

We note that line (d) of ExptcU,γΠ,A (k) in Figure 6 is not necessarily efficient, but the experiment
is still well-defined.

We now analyze the relation between uniformity and computational uniformity. While
Lemma 5 follows directly from the definitions, the proof of Lemma 6 is a bit more involved.

Lemma 5 (U⇒ cU). Let Π be an IB-KEM and γ : N→ R≥0 be a function. If Π is γ-uniform,
then Π is computationally γ-uniform. In particular, if Π is uniform, then Π is computationally
uniform.

Lemma 6 (cU 6⇒ U). Let γ be any function N→ [0, 1). Then not all computationally γ-uniform
IB-KEMs are γ-uniform, assuming the existence of a one-way function IDSp(k)→ {0, 1}k. In
particular, if Π is computationally uniform, then Π is not necessarily uniform.

Proof. Let Π be a γ-uniform IB-KEM and let ow : IDSp(k) → {0, 1}k be a one-way function.
Using Π and ow, construct IB-KEM Π∗ according to Figure 7. The new scheme is mostly
identical to Π, but for a very small set of identities the encapsulation algorithm is artificially
made deterministic. We will show that Π∗ is computationally γ-uniform, but not γ-uniform.

Consider identity id∗ that is randomly picked in Setup∗ and observe that encapsulation for
id∗ is deterministic (line (b) of Encap∗). More precisely, we have Encap∗mpk∗(id

∗; r) = (c, ·) for

all r ∈ CoinSp(k), where (c, ·) = Encap∗mpk∗(id
∗; r∗). It follows that γHmpk∗(id

∗, c) = 1 > γ(k), i.e.
Π∗ is not γ-uniform.

However, Π∗ is computationally γ-uniform: Note that for all identities id ∈ IDSp(k) with
ow(id) 6= h∗ = ow(id∗) we have γHmpk∗(id, c) = γHmpk(id, c) ≤ γ(k), for all c ∈ CipherSp(k). Hence,
a successful adversary against cU would have to provide id ∈ IDSp(k) such that ow(id) = h∗, i.e.
break one-wayness of ow. This is infeasible by assumption.

Surprisingly, computational uniformity is implied by OW security and can thus be assumed
for any reasonable IB-KEM. To prove this statement, we introduce a new intermediate security
notion, (computational) collision uniformity (cCU), and show in Lemmas 7 and 8 that OW
implies cCU and that cCU implies cU.

13

ExptcCU,ΓΠ,B (k):

(a) H $← Hash(k)

(b) (mpk,msk)
$← SetupH(1k)

(c) id
$← BOH,OX (mpk)

– Answer OH,OX queries as
in Figure 2.

(d) If ΓHmpk(id) > Γ(k) return win.
(e) Return lose.

Figure 8: Experiment for computational collision uniformity (cCU) of IB-KEMs

We start by establishing the notion of collision uniformity. We only regard the computational
variant, as its information-theoretical analogue is not needed in this paper. Intuitively, an IB-KEM
Π is collision-uniform if collisions of ciphertexts occur rarely, i.e. if (c1,K1)← Encapmpk(id; r1)
and (c2,K2) ← Encapmpk(id; r2) are run with independently drawn random coins r1, r2 ∈
CoinSp(k), then c1 = c2 happens only with negligible probability.

Definition 7 (Computational collision uniformity (cCU)). Let Π be an IB-KEM with associated
spaces IDSp, CoinSp, CipherSp, and KeySp. For k ∈ N, H ∈ Hash(k), (mpk,msk) ∈ SetupH(1k),
and id ∈ IDSp(k) define

ΓHmpk(id) = Pr
[
r1, r2

$← CoinSp(k);EncapHmpk(id; r1)

= EncapHmpk(id; r2)
]
.

For a given function Γ : N→ R≥0, consider experiment ExptcCU,ΓΠ,B from Figure 8. IB-KEM Π is
said to be computationally Γ-collision-uniform if, for all algorithms B, success probability

SucccCU,ΓΠ,B (k) = Pr
[
ExptcCU,ΓΠ,B (k) = win

]
is negligible in k. A scheme Π is simply called computationally collision-uniform (cCU) if Π is
computationally Γ-collision-uniform for all non-negligible Γ.

Similarly to what we pointed out in the context of Definition 6, line (d) of ExptcCU,ΓΠ,B (k) in
Figure 8 is not necessarily efficient, but the experiment is still well-defined.

The following lemma shows that computational collision uniformity is stronger than plain
computational uniformity:

Lemma 7 (cCU ⇒ cU). Let Π be an IB-KEM and γ,Γ : N → R≥0 be functions such that
Γ(k) = γ2(k) for all k. If Π is computationally Γ-collision-uniform, then Π is computationally
γ-uniform. In particular, if Π is computationally collision-uniform, then Π is computationally
uniform.

Proof. For any k ∈ N, H ∈ Hash(k), (mpk,msk) ∈ SetupH(1k), id ∈ IDSp(k), and c ∈
CipherSp(k) we have

ΓHmpk(id) ≥ Pr
[
r1, r2

$← CoinSp(k);EncapHmpk(id; r1)

= (c, ·) = EncapHmpk(id; r2)
]

= γHmpk(id, c)
2.

Now, if adversary A against computational γ-uniformity manages to output a pair (id, c) such
that γHmpk(id, c) > γ(k), then ΓHmpk(id) ≥ γHmpk(id, c)

2 > γ2(k) = Γ(k) holds as well. In other
words, an adversary B against computational Γ-collision-uniformity is given by a modified
adversary A that outputs only id but not c. Observe that B has at least the same success
probability as A.

14

AO
′
H,O

′
X

1 (mpk):
(a) id∗ ← BOH,OX (mpk)

– Relay OH,OX
queries to A1.

(b) st← (mpk, id∗)
(c) Return (id∗, st).

AO
′
H,O

′
X

2 (st, c∗):
(a) Parse (mpk, id∗)← st.

(b) (c′,K ′)
$← EncapHmpk(id

∗)
(c) If c′ 6= c∗ return ⊥.
(d) Return K ′.

Figure 9: Constructing OW adversary A from collision-uniformity adversary B

Remark 7 (Colliding ciphertexts imply matching keys). In the proof of Lemma 7, equality
“EncapHmpk(id; r1) = (c, ·) = EncapHmpk(id; r2)” expresses that the ciphertexts output by Encap shall
collide, but a requirement on the corresponding keys K is not explicitly given. Observe that it
follows from correctness of IB-KEM that in case of colliding ciphertexts also keys K will match.

Remark 8 (Equivalent variants of Definitions 6 and 7). When coining the notion of computa-
tional uniformity in Definition 6, we allowed adversary A to query its OX oracle on any identity,
including on the identity id output by A. In the next paragraph, we justify that this definition
is equivalent to one where A is forbidden to query OX on id (but continues to be allowed to
query OX on all other identities in IDSp(k)). The same observation applies to the notion of
computational collision-uniformity in Definition 7.

Let A be a cU adversary in accordance with Definition 6. Without loss of generality we may
assume that A queries id to its OX oracle. Let qX denote the total number of (distinct) OX
queries that A poses. We construct cU adversary A′ from A as follows: In a first step, A′ picks
a number 1 ≤ t ≤ qX at random, basically guessing the number of the OX query which A will
pose to ask OX(id). Then A′ simulates A until reaching the t-th OX query, relaying the first
t− 1 queries to its own OX oracle. Let idt be the identity revealed in the t-th query. Adversary
A′ outputs idt and stops. The tightness factor appearing in the analysis of this reduction is qX .
Nevertheless, this shows that the notions are asymptotically equivalent.

We prove next that one-wayness implies collision uniformity. Intuitively, if cCU security of

an IB-KEM Π is not given, then an OW adversary A could simply run (c′,K ′)
$← Encapmpk(id∗)

and would hit the challenge ciphertext with non-negligible probability, i.e. c′ = c∗. As matching
ciphertexts imply matching keys (cf. Remark 7), A can break OW security by just outputting K ′.
We formalize this idea as follows:

Lemma 8 (OW⇒ cCU). Let Π be an IB-KEM. If Π is OW-secure, then Π is computationally
collision-uniform.

Proof. Assume that Π is not computationally collision-uniform, i.e. there exists a non-negligible Γ
and a successful adversary B against Γ-collision-uniformity. Given B, we construct an adversary
A = (A1,A2) against OW of Π, as shown in Figure 9. Observe that A1 is well-defined due to
Remark 8.

Consider line (c) of the specification of adversary A2 and denote by E the event that c′ = c∗.
Remark 7 shows that occurrence of E implies K ′ = K∗, i.e. correct decapsulation of c∗ by A2.
Careful comparison of Definition 7 with line (d) of ExptOW (Figure 2) and line (b) of A2 reveals
that the probability for event E to occur is exactly ΓHmpk(id

∗). Moreover, denoting by B the

event that ΓHmpk(id∗) > Γ(k) occurs, we know that B happens with probability SucccCU,ΓΠ,B (k) (cf.
line (a) of A1 and Definition 7). That is, we constructed an adversary A against OW of Π with

SuccOW
Π,A(k) = Pr[E] ≥ Pr[E ∧B] = Pr[E|B] Pr[B]

> Γ(k) · SucccCU,ΓΠ,B (k) > negl(k) .

In particular, Π is not OW-secure.

15

Setup∗(1k):
(a) Return Setup(1k).

Encap∗mpk(id; r) for r ∈ KeySp(k):
(a) r1 ← H(id, r)
(b) (c1,K)← Encapmpk(id; r1)
(c) c2 ← r +K
(d) c← (c1, c2)
(e) Return (c,K).

Extract∗(msk, id):
(a) Return Extract(msk, id).

Decap∗sk(c):
(a) Parse (c1, c2)← c.
(b) K̂ ← Decapsk(c1)
(c) If K̂ = ⊥ return ⊥.
(d) r̂ ← c2 − K̂
(e) r̂1 ← H(id, r̂)
(f) If (c1, ·) 6= Encapmpk(id; r̂1)

return ⊥.
(g) Return K̂.

Figure 10: Constructing F(Π) from Π. Queries to hash functions other than H are relayed without
modification.

Taken together, Lemmas 7 and 8 establish the following corollary:

Corollary 1 (OW⇒ cU). Let Π be an IB-KEM. If Π is OW-secure, then Π is computationally
uniform.

For completeness we show that the notions OW and cU are not equivalent, i.e. that OW is
strictly stronger than cU.

Lemma 9 (cU 6⇒ OW). Not all computationally uniform IB-KEMs are OW-secure.

Proof. Consider the (correct, but insecure) IB-KEM in which Encapmpk(id; r) returns (c,K) =
(r, r), i.e. keys are equal to their encapsulation. The scheme is clearly not OW-secure. However,
it is computationally uniform, provided that CoinSp(k) is super-polynomially large.

5 Obtaining plaintext awareness for IB-KEMs

After seeing in Sections 1 and 3 that plaintext awareness is a valuable property of (IB-)KEMs, the
question arises on how this property can be achieved. For this purpose, we introduce a generic
transformation F that (a) converts a computationally uniform IB-KEM into a plaintext-aware
scheme, and (b) strengthens its security from OW to OW-CCA. Our transformation F is inspired
by the Fujisaki-Okamoto (FO) approach [FO99b] for PKE schemes, but with some differences in
structure and properties. Unlike [FO99b], our transformation does not achieve the highest level
of security, IND-CCA, directly, but when combined with the hash transformation # in Section 6,
we obtain IND-CCA security and plaintext awareness simultaneously.

Definition 8 (Transformation F). Let Π = (Setup,Extract,Encap,Decap) be an IB-KEM with
random oracles H and associated spaces IDSp, CoinSp, CipherSp, and KeySp, where (KeySp,+)
forms a group. Let H : IDSp × KeySp → CoinSp be a new hash function (independent of H),
modeled as a random oracle in the security analysis. Then IB-KEM F(Π) = (Setup∗,Extract∗,
Encap∗,Decap∗) is specified in Figure 10, with random oracles H′ = H ∪ {H} and associated
spaces IDSp∗ = IDSp, CoinSp∗ = KeySp, CipherSp∗ = CipherSp× KeySp, KeySp∗ = KeySp.

It is easy to verify that, if Π is a correct IB-KEM, then so is F(Π). Observe that Definition 8
views KeySp as a group. This is quite common in practice, as fixed-length bit strings with the
XOR operation form a group. Alternatively, as detailed in Section 7.1, one can simply hash the
key to a fixed-length bit string.

We will see in Section 7.1 that even if KeySp is already a group, hashing to a bit string may
provide a performance optimization which is attractive for the design of practical schemes.

Compared to the original FO [FO99b], our transformation F has many similarities, but a few
differences as well. Considering that KEMs are not fully-fledged encryption schemes and thus

16

need not process arbitrary-length messages but rather keys from a finite key set, our construction
eschews symmetric encryption (which is used for messages in hybrid encryption schemes) for a
simple one-time pad of the key K, with randomness r taking the role of the pad. The latter is
necessary for verifying the decapsulation. These changes lead to a proof of security for F , as we
will see, under weaker and more natural assumptions as those used in [FO99b].

We can now move to our main technical result regarding the F transformation: it results in
an IB-KEM that is plaintext-aware, assuming the original scheme was computationally uniform.
The plaintext awareness comes from the query to the new random oracle H, i.e. the ciphertext
will not decapsulate unless the intermediate value r was queried to H, in which case that same
value r can be used to derive the key.

Theorem 2 (F : cU 7→ PA). Let Π be an IB-KEM. If Π is computationally uniform, then F(Π)
is plaintext-aware.

Proof. We use notation from Figure 10: Π = (Setup,Extract,Encap,Decap) and F(Π) = (Setup∗,
Extract∗,Encap∗,Decap∗). Our goal is to specify a plaintext extractor K for F(Π) with awareness
AwPA
F(Π),A,K overwhelming for all ciphertext creators A. This is the case if, in ExptPAF(Π),A,K, the

output of K matches the output of Decap∗sk∗(c
∗) except for some negligible probability, where

sk∗ denotes the secret key corresponding to identity id∗ and (id∗, c∗) was output by ciphertext
creator A. Consider the following plaintext extractor:
KH(id∗, c∗,mpk,HList,XList,EList):

(a) Parse (c∗1, c
∗
2)← c∗.

(b) R ← {(r, r1) : (H, (id∗, r), r1) ∈ HList}
(c) For each (r, r1) ∈ R:

(a) (c,K)← Encapmpk(id
∗; r1)

(b) If (c∗1 = c) ∧ (r = c∗2 −K), return K.
(d) Return ⊥.

Let r∗ and r∗1 = H(id∗, r∗) be the values (r̂, r̂1) that occur in lines (d) and (e) of algorithm
Decap∗ when executing Decap∗sk∗(c

∗). By close inspection of Decap∗ we observe that Decap∗sk∗
on input c∗ = (c∗1, c

∗
2) outputs a key K∗ (6= ⊥) if and only if(

(c∗1,K
∗) = Encapmpk(id

∗; r∗1)
)
∧ (r∗ = c∗2 −K∗) . (1)

Given that it exists, this key K∗ is unique and can be readily computed given r∗1. To analyze
the effectiveness of K, we distinguish three cases:

(1) r∗ is queried to H(id∗, ·) by A, i.e. (r∗, r∗1) ∈ R (cf. line (b) of K).
Plaintext extractor K has access to R and can, using equation (1), easily decide whether
Decap∗sk∗ will output a key or not. If it will, then K computes and outputs the same key.
This is handled in line (c) of K.

(2) r∗ is queried to H(id∗, ·) from within an OE(id∗) query.
In this case, there exists some (id∗, ĉ) ∈ EList where (ĉ, K̂) ← Encap∗mpk(id

∗; r∗). Let
ĉ = (ĉ1, ĉ2). Clearly, by line (f) of Decap∗, if ĉ1 6= c∗1 then Decap∗sk∗(c

∗) will output ⊥.
Case ĉ1 = c∗1 will not occur as it would imply ĉ2 = c∗2 (cf. line (d) in Decap∗ and recall that
K̂ and r∗ are already fixed), but ĉ = c∗ is prohibited by line (d) of ExptPAF(Π),A,K.

(3) r∗ is not queried to H(id∗, ·) before reaching line (e) of ExptPAF(Π),A,K(k).

In this case, r∗1 is randomly assigned when executing Decap∗sk∗(c
∗). Therefore (c∗1, ·) =

Encapmpk(id
∗, r∗1) (cf. line (f) of Decap∗) occurs only with negligible probability, due to

our assumption that Π is computationally uniform. (Otherwise, this experiment combined
with A would constitute an efficient algorithm for finding, with non-negligible probability,
an identity id∗ for which γHmpk(id∗, c∗) is non-negligible.) Thus, Decap∗sk∗(c

∗) will return ⊥
with overwhelming probability.

17

We see that there is a perfect match of the decapsulation capabilities of Decap∗sk∗ and K in
cases (1) and (2). In case (3), K correctly simulates the behavior of Decap∗sk∗ with overwhelming
probability. This shows that F(Π) is plaintext-aware.

Having shown that F introduces plaintext awareness, we now examine its secrecy properties,
aiming to prove that F transforms any OW-secure IB-KEM into an OW-CCA-secure scheme.
First we will show that F preserves OW security.

Lemma 10 (F : OW 7→ OW). Let Π be an IB-KEM. If Π is OW-secure, then F(Π) is OW-secure.

Proof. The proof in general proceeds as a sequence of games in which related values are gradually
decoupled. Although the concept is straightforward, the proof requires some care.

We define a sequence of games. Game G1 will be the original OW experiment ExptOW
F(Π),A(k)

for F(Π). In subsequent games, we will modify how the challenger generates the challenge
ciphertext to allow it to, at various stages, insert a challenge from an OW challenger for Π. This
will allow us to show that an adversary that can break OW of F(Π) can be used to break OW of
Π. In Figure 11, we specify precisely how the challenge ciphertext is generated in each game.
This corresponds to line (d) in the original ExptOW

F(Π),A(k) experiment defined in Figure 2. For
each game Gi, we define Si to be the probability that game Gi returns win; our goal is to bound
S1. The first several games are simple rewriting steps.

Game G2. We replace random oracle H : IDSp(k)× KeySp(k)→ CoinSp(k) with the compo-
sition of a random function H ′ : IDSp(k)× KeySp(k)→ CoinSp(k) and a random permutation
P : KeySp(k) → KeySp(k), and give A oracle access to H ′ ◦ P which on queries of the form
(id, r) ∈ IDSp(k)× KeySp(k) returns H ′(id, P (r)). Since H ′ ◦ P has the same distribution as H,
S1 = S2.

Game G3. We rewrite the generation of the input to the hash function in terms of a separate
variable r′. This is a bridging step, so S2 = S3.

Game G4. We simplify the generation of the variable r′. Since P is a permutation, this does
not change the distribution, and hence S3 = S4.

Game G5. The hop from game G4 to game G5 contains the essential step of generating r1

independently from r′. This serves to decouple ciphertext components c1 and c2. We will show
that this change cannot be detected unless Π is not OW.

Let A be an algorithm that can distinguish G4 from G5. To distinguish the two games,
A needs to induce an (id∗, r′) query to H ′. Since A only has access to H ′ ◦ P , and since P
is a permutation, the only way A can induce such a query to H ′ is if A queries (id∗, P−1(r′))
to H ′ ◦ P . Observe that P−1(r′) = c2 − Decapsk(c1) in both G4 and G5. Hence, given (c1, c2),
distributed either as in G4 or as in G5, A queries (id∗, c2 − Decapsk(c1)) to H ′ ◦ P . Observe in
addition that c1 and c2 are statistically independent in G5.

We now use such an A to break the OW security of Π. Let ĉ∗ be an OW challenge for Π.

Choose ĉ∗2
$← KeySp(k). This pair (ĉ∗, ĉ∗2) is distributed as in G5. Hence, when A is run on

(ĉ∗, ĉ∗2), A will query its oracle H ′ ◦ P on (id∗, ĉ∗2 − Decapsk(ĉ∗)). From the list of queries to the
oracle H ′ ◦ P , pick a query (id, z) at random, constraint to id = id∗. Return ĉ∗2 − z as the guess
for the key that corresponds to the challenge ciphertext ĉ∗.

We have shown how to use a distinguisher A for G4 and G5 to construct an algorithm B for
breaking the OW security of Π. Hence, |S4 − S5| ≤ qH · SuccOW

Π,B(k), where qH denotes the total
number of queries to H ′ ◦ P . This difference is negligible, assuming that Π is OW-secure.

Game G6. We replace c2 with a random value. In G5, r′ is independent of c1 so c2 is
independent of c1, and moreover r′ is uniformly random, so P−1(r′) is uniform and hence c2 is
uniform. In G6, c2 is clearly independent of c1 and is clearly uniform. Thus, the distributions of
(c1, c2) in G5 and G6 are identical, so S5 = S6.

Finally, we need to bound S6. Suppose A wins in game G6. We run A on the same
environment as G6 but this time we replace ciphertext component c1 in G6 with the challenge

18

G1 = ExptOW
F(Π),A(k)

. . .
(c) (id∗, st)

$← AH,OX
1 (mpk)

(d).1 r
$← KeySp(k)

(d).2 r1 ← H(id∗, r)
(d).3 (c1,K

∗)← Encap(id∗; r1)
(d).4 c2 ← r +K∗

(d).5 c∗ ← (c1, c2)

(e) K ′
$← AH,OX

2 (st, c∗)
. . .

G2

. . .
(c) (id∗, st)

$← AH′◦P ,OX
1 (mpk)

(d).1 r
$← KeySp(k)

(d).2 r1 ← H ′(id∗, P (r))
(d).3 (c1,K

∗)← Encap(id∗; r1)
(d).4 c2 ← r +K∗

(d).5 c∗ ← (c1, c2)

(e) K ′
$← AH′◦P ,OX

2 (st, c∗)
. . .

G3

. . .
(c) (id∗, st)

$← AH
′◦P,OX

1 (mpk)

(d).1 r
$← KeySp(k)

(d).2 r′ ← P (r)
(d).3 r1 ← H ′(id∗, r′)
(d).4 (c1,K

∗)← Encap(id∗; r1)
(d).5 c2 ← P−1(r′) +K∗

(d).6 c∗ ← (c1, c2)

(e) K ′
$← AH

′◦P,OX
2 (st, c∗)

. . .

G4

. . .
(c) (id∗, st)

$← AH
′◦P,OX

1 (mpk)

(d).1 r′
$← KeySp(k)

(d).2 r1 ← H ′(id∗, r′)
(d).3 (c1,K

∗)← Encap(id∗; r1)
(d).4 c2 ← P−1(r′) +K∗

(d).5 c∗ ← (c1, c2)

(e) K ′
$← AH

′◦P,OX
2 (st, c∗)

. . .

G5

. . .
(c) (id∗, st)

$← AH
′◦P,OX

1 (mpk)

(d).1 r′
$← KeySp(k)

(d).2 r1
$← CoinSp(k)

(d).3 (c1,K
∗)← Encap(id∗; r1)

(d).4 c2 ← P−1(r′) +K∗

(d).5 c∗ ← (c1, c2)

(e) K ′
$← AH

′◦P,OX
2 (st, c∗)

. . .

G6

. . .
(c) (id∗, st)

$← AH
′◦P,OX

1 (mpk)

(d).1 r1
$← CoinSp(k)

(d).2 (c1,K
∗)← Encap(id∗; r1)

(d).3 c2
$← KeySp(k)

(d).4 c∗ ← (c1, c2)

(e) K ′
$← AH

′◦P,OX
2 (st, c∗)

. . .

Figure 11: Sequence of games for the proof of Lemma 10, showing lines changed from ExptOW
F(Π),A(k) in

Figure 2. Changes between games are marked. H ′ is a random function and P is a random permutation.

19

from an OW challenger for Π. This exactly matches the distribution in G6. Thus, A can be used
to break OW security of Π, and thus we have an algorithm B such that S6 = SuccOW

Π,B(k) which
is negligible, assuming Π is OW-secure.

Combining the intermediate results demonstrates that S1 = SuccOW
F(Π),A(k) is negligible,

assuming Π is OW-secure.

Remark 9 (Better tightness in proof of Lemma 10). In Lemma 10, we saw that the F construc-
tion preserves one-way-ness. The proof introduces a gap in tightness due to the random choice
of z from the qH queries to H ′ ◦ P in the analysis of the hop from G4 to G5. However, if Π is
in fact IND-secure, then we can achieve a tight reduction: in the IND experiment, B2 is given a
potential key K and can check whether that K is equal to the one output by A2, or whether K is
consistent with one of the queries to H ′ ◦ P . If one of these is the case, then B2 answers that K
is a real key, otherwise B2 answers that K is a random value.

We can now combine the results of this section with some previous results to show that the
F transformation results in an IB-KEM which is both plaintext-aware and OW-CCA-secure.

Corollary 2 (F : OW 7→ PA ∧OW-CCA). Let Π be an IB-KEM. If Π is OW-secure, then F(Π)
is plaintext-aware and OW-CCA-secure.

Proof. Since Π is OW, then by Corollary 1 it is also computationally uniform. By Theorem 2,
F converts a computationally uniform scheme into a PA scheme. By Lemma 10, F preserves
OW. Thus we have that F(Π) is OW and PA, by Theorem 1 it is also OW-CCA.

Corollary 2 stands in contrast to the original FO transformation [FO99b], which required
uniformity as a separate precondition in addition to OW; we have identified a (strictly) weaker
precondition, computational uniformity, which follows from OW security.

Given an identity id, a ciphertext c = (c1, c2), and a potential corresponding key K, anyone
can check if K does in fact correspond to c: compute r̂ ← c2 −K, r̂1 ← H(id, r̂), and check
if (c1,K) is equal to Encap∗mpk(id; r̂1). In other words, there is a public consistency check of
ciphertexts and keys. As a result, F(Π) can never be secure in the sense of an indistinguishability
experiment such as IND or IND-CCA, which proves the following lemma:

Lemma 11 (F(Π) never IND). For any IB-KEM Π, F(Π) is not IND-secure.

This result leads to an important observation contrasting random oracle model results from
standard model results. Teranishi and Ogata [TO06] showed that, for public key encryption in
the standard model, OW ∧ PA2⇒ IND-CCA. Corollary 2 and Lemma 11 show that this is not
the case for IB-KEMs in the random oracle model: assuming Π is OW, we have that F(Π) is PA
and OW, but F(Π) is not IND.

Remark 10 (On the implication OW ∧ PA⇒ IND-CCA from [TO06]). We briefly discuss the
intuition behind the surprising implication OW ∧ PA⇒ IND[-CCA], discovered in [TO06] in the
context of public key encryption and plaintext awareness defined in the standard model [BP04].
In the proof, assuming towards contradiction that the encryption scheme is not IND-secure, the
authors construct a (stateful) plaintext creator P that encrypts a random message and transmits
resulting ciphertext c to PA adversary A via a series of OE queries. This ciphertext is output
by A, and obviously no plaintext extractor K can recover the encrypted message. Regarding a
standard model definition of plaintext awareness for KEMs, we doubt that above implication
would hold as well. The key argument is that there would be no plaintext creator P, which plays
the central role in the attack scenario described above.

20

Setup#(1k):
(a) Return Setup(1k).

Encap#
mpk(id; r):

(a) (c, K̂)← Encapmpk(id; r)

(b) K ← H#(K̂)
(c) Return (c,K).

Extract#(msk, id):
(a) Return Extract(msk, id).

Decap#
sk(c):

(a) K̂ ← Decapsk(c)
(b) If K̂ = ⊥ return ⊥.
(c) K ← H#(K̂)
(d) Return K.

Figure 12: Constructing #(Π) from Π. Queries to hash functions other than H# are relayed without
modification.

6 From one-way security to indistinguishability

We present now a simple transformation — hashing an IB-KEM’s key — that allows us to
provably jump from OW to IND security, and from OW-CCA to IND-CCA. Bear in mind that
our F transform does not achieve IND(-CCA) security and so # will play an important role
in achieving this property. We admit that this technique has been used earlier for the same
purpose [BFMLS08, Den03]; however, we additionally prove that it preserves plaintext awareness.

Definition 9 (Transformation #). Let Π = (Setup,Extract,Encap,Decap) be an IB-KEM with
random oracles H and associated spaces IDSp, CoinSp, CipherSp, and KeySp. Let H# : KeySp→
KeySp be a new hash function (independent of H), modeled as random oracle in the security
analysis. Then (hashed) IB-KEM #(Π) = (Setup#,Extract#,Encap#,Decap#) is specified
in Figure 12, with random oracles H′ = H ∪ {H#} and associated spaces IDSp# = IDSp,
CoinSp# = CoinSp, CipherSp# = CipherSp, and KeySp# = KeySp.

It is easy to verify that, if Π is a correct IB-KEM, then so is #(Π). The following Lemmas 12
and 13 show that # converts arbitrary OW-secure schemes into IND-secure schemes and preserves
plaintext awareness.

Lemma 12 (# : OW[-CCA] 7→ IND[-CCA]). Let Π be an IB-KEM. If Π is OW-secure, then
#(Π) is IND-secure. Analogously, if Π is OW-CCA-secure, then #(Π) is IND-CCA-secure.

Proof. Let A# = (A#
1 ,A

#
2) be an IND[-CCA] adversary against #(Π). We can construct an

OW[-CCA] adversary A = (A1,A2) against Π as follows: A1 executes A#
1 , recording and

answering all queries to random oracle H#, and relaying all oracle queries to OX , OD (in the
CCA case), and OH(H, ·), for H 6= H#, to its own challenger. A1 outputs the same (id∗, st) as

is output by A#
1 . On receiving challenge ciphertext c∗, A2 picks a random key K∗∗ and runs

A#
2 on input (st, c∗,K∗∗), recording and answering all queries to H# as A1 did. Eventually A#

2

stops. A2 ignores A#
2 ’s output and returns a randomly chosen entry from HLi as its guess for

the key corresponding to c∗, where HLi denotes the list of all answers given to H# queries made
by A#

1 and A#
2 .

Let K∗ be the (real) key corresponding to c∗. Let E be the event that K∗ is queried to the H#

oracle by A#. We have Pr
[
Expt

IND[-CCA],0

#(Π),A# (k) = win
∣∣∣¬E] = Pr

[
Expt

IND[-CCA],1

#(Π),A# (k) = win
∣∣∣¬E],

and thus Pr[E] ≥ Advt
IND[-CCA]

#(Π),A# (k) (cf. Lemma 17). If E occurs, then K∗ is contained in HLi and

A2 returns it with probability (at least) 1/q, where q = |HLi| is polynomially bounded. Hence

Succ
OW[-CCA]
Π,A (k) ≥ Pr

[
Expt

OW[-CCA]
Π,A (k) = win

∣∣∣E]Pr[E]

≥ Advt
IND[-CCA]

#(Π),A# (k)/q .

This proves the lemma.

21

Lemma 13 (# : PA 7→ PA). Let Π be an IB-KEM. If Π is plaintext-aware, then #(Π) is
plaintext-aware.

Proof. Let K be a plaintext extractor for Π and let A# be a PA adversary (ciphertext creator)
for #(Π). Observe that, syntactically, it is possible to run K on transcripts from A#. Let
(id∗, c∗,mpk,HList,XList,EList) be a transcript of A# and K be the key output by K on that
input. Since K is a plaintext extractor for Π, we have that K = DecapHExtract(msk,id∗)(c

∗) with
high probability and hence

Decap#,H′
Extract#(msk,id∗)

(c∗) = H#(DecapHExtract(msk,id∗)(c
∗))

= H#(K) .

That is, the plaintext extractor K# = H# ◦ K, obtained by combining K with H#, is a valid
extractor for #(Π). In particular, K# has the same success probability as K.

Observe that, in the above proof of Lemma 13, we didn’t exploit the fact that H# is a
hash function (or even a random oracle). Indeed, the proof would have worked as well if the
construction in Definition 9 had applied on the key any other kind of deterministic function (for
example, the truncation of a fixed number of bits). However, the use of a random oracle in the
construction is an essential prerequisite of the proof of Lemma 12.

We are now ready to state the central result of this paper: by combining transformation
with transformation F , we can convert any OW-secure IB-KEM into an IB-KEM that is
simultaneously plaintext-aware and IND-CCA-secure.

Theorem 3 (Main result: # ◦ F : OW 7→ PA ∧ IND-CCA). Let Π be an IB-KEM. If Π is
OW-secure, then #(F(Π)) is plaintext-aware and IND-CCA-secure.

Proof. By Corollary 2, F(Π) is PA and OW-CCA-secure. By Lemma 13, #(F(Π)) is PA and by
Lemma 12 it is further IND-CCA-secure.

This overall generic construction is powerful yet extremely efficient: encapsulation has just
two additional random oracle queries, and decapsulation requires two random oracle queries and
a partial encapsulation. We do not require any additional randomness or public parameters. In
Section 7.1 we show how to further optimize the overall transformation.

7 Plaintext-aware IB-KEMs in practice: applications and opti-
mizations

We apply our generic transformations from Sections 5 and 6 to two popular IB-KEMs5, namely to
BF-IB-KEM by Boneh and Franklin [BF01], and to SK-IB-KEM by Sakai and Kasahara [SK03].
Both schemes are defined in the pairing-based setting and proven (OW-)secure in the random
oracle model. In order to obtain plaintext-aware IB-KEMs of maximum efficiency, we additionally
develop a simple yet general and highly effective optimization of our transformation F from
Definition 8.

We start by providing background on the cryptographic setting in which BF-IB-KEM and SK-
IB-KEM are defined. Let G1 = 〈g1〉, G2 = 〈g2〉, and GT = 〈gT 〉 be cyclic groups of prime order q.
Let e : G1 ×G2 → GT be an efficient bilinear map (pairing) such that a, b ∈ Zq ⇒ e(g1

a, g2
b) =

gT
ab. Moreover, let ψ : G2 → G1 be an efficient homomorphism such that ψ(g2) = g1. This

setting, for which efficient instantiations are known [AKL+10, BSSC05, GPS08], is usually called
a Type II setting [GPS08], and hardness of BDH and t-BDHI problems [CCMLS06] are widely
assumed:

5More precisely, the schemes presented in [BF01, SK03] are not IB-KEMs, but rather IBE schemes. In this
paper we consider the IB-KEMs that underlie their (hybrid) constructions.

22

– BDH: Given g2
x, g2

y, g2
z for x, y, z

$← Zq, it is infeasible to compute gT
xyz.

– t-BDHI: Given g2
x, . . . , g2

xt for x
$← Zq, it is infeasible to compute gT

1/x.

7.1 Improving efficiency of transformation F

Although the F transformation from Section 5 is already reasonably efficient, we identify a way
to further optimize its performance in practice. For a motivation of our optimization consider
the schemes BF-IB-KEM and SK-IB-KEM, as specified in Definitions 11 and 13, respectively. In
both schemes we have KeySp(k) = GT . This set is a group, i.e. the corresponding requirement
on KeySp(k) from Definition 8 is naturally fulfilled and F transformation can be directly applied
to both IB-KEMs. However, sampling randomness r uniformly from GT , as needed in Encap∗

algorithm (cf. Figure 10), is a relatively costly operation. Indeed, in practice it will require an

additional exponentiation: pick random exponent h
$← Zq and compute r via r ← gT

h. We
propose a general optimization to the F transformation which does not require sampling from
KeySp(k), and potentially notably increases obtained scheme’s performance.

To derive the new conversion, consider Encap∗ algorithm from F transformation, but replace
line (b) by (c1,K)← Encapmpk(id; r1) followed by K ← H ′(K), where H ′ : KeySp(k)→ {0, 1}k
is an auxiliary hash function. The range {0, 1}k of H ′ forms an (Abelian) group with respect to
the bitwise XOR operation, so that we can apply the F and # transformations using this new
key space KeySp(k) = {0, 1}k. Observe that sampling from {0, 1}k is a highly efficient operation,
and that binary representation of its elements is (a) computationally trivial, and (b) usually
more compact than the representation of elements of GT , i.e. IB-KEMs obtained through the
modified transformation have shorter ciphertexts.

A precise specification of the adapted # ◦ F transformation is given in Definition 10 and
Figure 13. For reasons of efficiency, we conflate H# ◦H ′ into a single hash function H# (see
lines (f) and (g) of Encap+ and Decap+ algorithms, respectively) and assume that H# maps
to {0, 1}k. As a further optimization, as H ′ and H# are evaluated solely on K (respectively,
on K̂), one could compute H ′(K), H#(K) via a single call to a double-length hash function, i.e.
H ′ ‖H# : KeySp(k)→ {0, 1}k × {0, 1}k. This trick reduces the total number of required hash
functions to just two.

Definition 10 (Optimized transformation # ◦ F). Let Π = (Setup,Extract,Encap,Decap) be
an IB-KEM with random oracles H and associated spaces IDSp, CoinSp, CipherSp, and KeySp.
Let H : IDSp×{0, 1}k → CoinSp, H ′, H# : KeySp→ {0, 1}k be new hash functions (independent
of H), modeled as a random oracles in the security analysis. Then IB-KEM Π+ = (Setup+,
Extract+,Encap+,Decap+) is specified in Figure 13, with random oracles H′ = H∪ {H,H ′, H#}
and associated spaces IDSp+ = IDSp, CoinSp+ = {0, 1}k, CipherSp+ = CipherSp×{0, 1}k, and
KeySp+ = {0, 1}k.

Technically speaking, the proposed transformation involves twice the application of the #
transformation from Section 6 to the respective IB-KEM. Lemmas 12 and 2 show that its first
application preserves OW security (it even yields an IND-secure IB-KEM), and hence, together
with Theorem 3, establish soundness of the overall transformation6:

Theorem 4 (Def. 10 : OW 7→ PA ∧ IND-CCA). Let Π be an IB-KEM and Π+ its conversion. If
Π is OW-secure, then IB-KEM Π+ is plaintext-aware and IND-CCA-secure.

6On first sight it seems that by applying the H ′ hash function to intermediate key K we lose a factor of qH′

in the security reduction. However, Remark 9 shows that this is not true: as H ′(K) is an IND-secure key, we
correspondingly get tighter security for the F construction.

23

Setup+(1k):
(a) Return Setup(1k).

Encap+
mpk(id; r) for r ∈ {0, 1}k:

(a) r1 ← H(id, r)
(b) (c1,K)← Encapmpk(id; r1)

(c) c2 ← r ⊕H ′(K)
(d) c← (c1, c2)
(e) K ← H#(K)
(f) Return (c,K).

Extract+(msk, id):
(a) Return Extract(msk, id).

Decap+
sk(c):

(a) Parse (c1, c2)← c.
(b) K̂ ← Decapsk(c1)
(c) If K̂ = ⊥ return ⊥.
(d) r̂1 ← H(id, c2 ⊕H ′(K̂))
(e) If (c1, ·) 6= Encapmpk(id; r̂1)

return ⊥.
(f) K ← H#(K̂)
(g) Return K.

Figure 13: Optimized combination of F and # transformations from Figures 10 and 12. Queries to
hash functions other than H,H ′, H# are relayed without modification.

Setup(1k):

(a) msk
$← Zq

(b) mpk ← g2
msk

(c) Return (mpk,msk).

Extract(msk, id):
(a) sk ← H1(id)msk

(b) Return sk.

Encapmpk(id; r) for r ∈ Zq:
(a) c← g2

r

(b) K ← e(H1(id),mpk)r

(c) Return (c,K).

Decapsk(c):
(a) K ← e(sk, c)
(b) Return K.

Setup+(1k):
(a) Return Setup(1k).

Extract+(msk, id):
(a) Return Extract(msk, id).

Encap+
mpk(id; r) for r ∈ {0, 1}k:

(a) r1 ← H(id, r)
(b) K ← e(H1(id),mpk)r1

(c) c← (g2
r1 , r ⊕H ′(K))

(d) K ← H#(K)
(e) Return (c,K).

Decap+
sk(c):

(a) Parse (c1, c2)← c.
(b) K̂ ← e(sk, c1)
(c) r̂1 ← H(id, c2 ⊕H ′(K̂))
(d) If c1 6= g2

r̂1 return ⊥.
(e) K ← H#(K̂)
(f) Return K.

Figure 14: Specification of Π = BF-IB-KEM and Π+ = BF-IB-KEM+. Observe that Π+ is constructed
from Π following the stencil from Figure 13.

7.2 Plaintext-aware and IND-CCA-secure BF-IB-KEM

BF-IB-KEM is the underlying primitive to the Boneh-Franklin IBE scheme [BF01]. More precisely,
the BasicIdent scheme from [BF01] is the canonical transformation of BF-IB-KEM into an IBE
scheme, using a KEM/DEM construction where one-time pad encryption is used for the DEM
part. BF-IB-KEM is OW-secure under Bilinear Diffie-Hellman (BDH) assumption [CCMLS06].

Definition 11 (BF-IB-KEM). The Boneh-Franklin identity-based key encapsulation mechanism
is specified in Figure 14 (left part), where H1 : {0, 1}∗ → G1 denotes a hash function. We have
IDSp(k) = {0, 1}∗, CoinSp(k) = Zq, CipherSp(k) = G2, and KeySp(k) = GT .

Correctness of BF-IB-KEM follows from equality

e(H1(id),mpk)r = e(H1(id)msk, g2
r) = e(sk, c).

Note that encapsulation requires one pairing evaluation and two exponentiations, while decapsu-
lation takes a single pairing operation. By applying to BF-IB-KEM the transformation from
Definition 10 we obtain BF-IB-KEM+:

Definition 12 (BF-IB-KEM+). BF-IB-KEM+ is specified in Figure 14 (right part), where
H1 : {0, 1}∗ → G1, H : {0, 1}∗ × {0, 1}k → Zq, and H ′, H# : GT → {0, 1}k are hash functions,

24

Setup(1k):

(a) msk
$← Zq

(b) mpk ← g1
msk

(c) Return (mpk,msk).

Extract(msk, id):
(a) sk ← g2

1/(msk+H1(id))

(b) Return sk.

Encapmpk(id; r) for r ∈ Zq:
(a) c←

(
mpk · g1

H1(id)
)r

(b) K ← gT
r

(c) Return (c,K).

Decapsk(c):
(a) K ← e(c, sk)
(b) Return K.

Setup+(1k):
(a) Return Setup(1k).

Extract+(msk, id):
(a) Return Extract(msk, id).

Encap+
mpk(id; r) for r ∈ {0, 1}k:

(a) r1 ← H(id, r)
(b) K ← gT

r1

(c) c1 ←
(
mpk · g1

H1(id)
)r1

(d) c2 ← r ⊕H ′(K)
(e) c← (c1, c2)
(f) K ← H#(K)
(g) Return (c,K).

Decap+
sk(c):

(a) Parse (c1, c2)← c.
(b) K̂ ← e(c1, sk)
(c) r̂1 ← H(id, c2 ⊕H ′(K̂))

(d) If c1 6=
(
mpk · g1

H1(id)
)r̂1

return ⊥.
(e) K ← H#(K̂)
(f) Return K.

Figure 15: Specification of Π = SK-IB-KEM and Π+ = SK-IB-KEM+. Observe that Π+ is constructed
from Π following the stencil from Figure 13.

and IDSp+(k) = {0, 1}∗, CoinSp+(k) = {0, 1}k, CipherSp+(k) = G2×{0, 1}k, and KeySp+(k) =
{0, 1}k.

The security properties of BF-IB-KEM+ are implied by Theorem 4:

Theorem 5. BF-IB-KEM+ is plaintext-aware (PA) and IND-CCA-secure, under the BDH
assumption in the random oracle model.

Our transformation almost preserves the efficiency of the original scheme: the only substantial
difference between BF-IB-KEM and BF-IB-KEM+ is the additional exponentiation in line (d) of
Decap+, which can be considered marginal in comparison to the pairing evaluation in line (b).
Observe that the length of ciphertexts is increased by only k bits and that all newly introduced
hash functions H,H ′, H# are straight-forward to instantiate.

7.3 Plaintext-aware and IND-CCA-secure SK-IB-KEM

The second IB-KEM that we analyze in this section was proposed by Sakai and Kasahara
in [SK03]. Its main advantage over BF-IB-KEM is its efficiency: encapsulation operations do
not require any pairing evaluation. Moreover, there is no need to efficiently hash into G1 or G2,
but only into Zq.

Definition 13 (SK-IB-KEM). The Sakai-Kasahara identity-based key encapsulation mechanism
is specified in Figure 15 (left part), where H1 : {0, 1}∗ → Zq denotes a hash function. We have
IDSp(k) = {0, 1}∗, CoinSp(k) = Zq, CipherSp(k) = G1, and KeySp(k) = GT .

SK-IB-KEM is proven OW-secure in [CC05, CCMLS06], assuming hardness of t-BDHI
problem. Observe that secret keys cannot be extracted if H1(id) = −msk, but this occurs only
with negligible probability. In all other cases correctness is established by

e(c, sk) = e
((
mpk · g1

H1(id)
)r
, g2

1/(msk+H1(id))
)

= e
(
g1
msk+H1(id), g2

1/(msk+H1(id))
)r

= gT
r .

25

Encapsulation requires two exponentiations but no pairing operation. Efficiency of decapsulation
is the same as in BF-IB-KEM, namely one pairing evaluation. We apply the transformation
from Definition 10 to SK-IB-KEM and obtain SK-IB-KEM+:

Definition 14 (SK-IB-KEM+). SK-IB-KEM+ is specified in Figure 15 (right part), where
H1 : {0, 1}∗ → Zq, H : {0, 1}∗ × {0, 1}k → Zq and H ′, H# : GT → {0, 1}k are hash functions,
and IDSp+(k) = {0, 1}∗, CoinSp+(k) = {0, 1}k, CipherSp+(k) = G1×{0, 1}k, and KeySp+(k) =
{0, 1}k.

We let Theorem 4 establish the security properties of SK-IB-KEM+:

Theorem 6. SK-IB-KEM+ is plaintext-aware (PA) and IND-CCA-secure, under the t-BDHI
assumption in the random oracle model.

SK-IB-KEM+ is slightly less efficient than SK-IB-KEM. This difference is caused by two
additional exponentiations in Decap+, in line (d). Note that one of them, namely g1

H1(id), can
be precomputed. Observe that the length of ciphertexts is increased by only k bits and that all
newly introduced hash functions H,H ′, H# are straight-forward to instantiate.

8 Conclusion

We have defined and analyzed the notion of plaintext awareness for key encapsulation mechanisms
in the identity-based setting and the public key setting in the random oracle model. We have
explored the relationships between plaintext awareness and other security notions, noting
that a scheme that is both PA and OW is also OW-CCA. We have also introduced a generic
transformation F , somewhat related to the Fujisaki-Okamoto transformation for public key
encryption, that can be used to construct a plaintext-aware KEM from an OW-secure KEM.
Notably, our F construction uses a weaker security notion which we call computational uniformity
(and which is in fact implied by OW) than the distinct notion of uniformity required by Fujisaki-
Okamoto; this security notion may be of independent interest. We further propose a simple
hash-based construction # that, combined with our F construction, converts a weak (OW-secure)
KEM into a strong (plaintext-aware and IND-CCA-secure) KEM. We apply this construction to
several existing IB-KEMs, resulting in the first provably plaintext-aware secure IB-KEMs. This
transformation can also be applied in the public key KEM setting.

Our techniques and results apply in the random oracle model. Existing proof strategies
for plaintext awareness in the standard model, such as the simulatability approach of Birkett
and Dent [BD11], do not seem to apply current standard model IB-KEMs, and we identify the
development of proof strategies for plaintext awareness of identity-based constructions in the
standard model as open question.

References

[AGKS05] Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor Shoup. Tag-KEM/DEM: A
new framework for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In
Ronald Cramer, editor, EUROCRYPT 2005, LNCS, volume 3494, pp. 128–146. Springer,
2005. doi:10.1007/b136415.

[AKL+10] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López. Faster Explicit Formulas
for Computing Pairings over Ordinary Curves. In K. Paterson, editor, 30th International
Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT
2011), LNCS, volume 6632, pp. 48–68. Springer, 2010.

[BCHK07] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-Ciphertext Security
from Identity-Based Encryption. SIAM Journal on Computing, 36(5):1301–1328, 2007.

26

http://dx.doi.org/10.1007/b136415

[BD08] James Birkett and Alexander W. Dent. Relations Among Notions of Plaintext Awareness.
In Ronald Cramer, editor, PKC 2008, LNCS, volume 4939, pp. 47–64. Springer, 2008.

[BD11] James Birkett and Alexander W. Dent. Security Models and Proof Strategies for Plaintext-
Aware Encryption. Manuscript, http://www.isg.rhul.ac.uk/~alex/papers/plaintext_
journal.pdf, 2011.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among
notions of security for public-key encryption schemes. In Hugo Krawczyk, editor, CRYPTO
’98, LNCS, volume 1462, pp. 26–45. Springer-Verlag, 1998. doi:10.1007/BFb0055718.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian,
editor, CRYPTO 2001, LNCS, volume 2139, pp. 213–229. Springer, 2001. doi:10.1007/3-
540-44647-8 13.

[BFMLS08] Kamel Bentahar, Pooya Farshim, John Malone-Lee, and Nigel P. Smart. Generic Construc-
tions of Identity-Based and Certificateless KEMs. J. Cryptology, 21(2):178–199, 2008.

[BK05] Dan Boneh and Jonathan Katz. Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity-Based Encryption. In Alfred J. Menezes, editor, CT-RSA 2005, LNCS, volume
3376, pp. 87–103. Springer, 2005.

[BMW05] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct Chosen Ciphertext Security from
Identity-Based Techniques. In ACM CCS 2005, pp. 320–329. ACM, 2005.

[BP04] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption without
random oracles. In Pil Joong Lee, editor, ASIACRYPT 2004, LNCS, volume 3329, pp.
37–52. Springer, 2004. doi:10.1007/978-3-540-30539-2 4. Full version available as http:

//cseweb.ucsd.edu/users/mihir/papers/pa.pdf.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De San-
tis, editor, EUROCRYPT ’94, LNCS, volume 950, pp. 92–111. Springer-Verlag, 1994.
doi:10.1007/BFb0053428. Full version available as http://www-cse.ucsd.edu/~mihir/

papers/oaep.html.

[BSSC05] I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels. Advances in Elliptic Curve Cryptography
(London Mathematical Society Lecture Note Series). Cambridge University Press, New York,
NY, USA, 2005.

[CC05] Liqun Chen and Zhaohui Cheng. Security proof of Sakai-Kasahara’s identity-based encryption
scheme. In Nigel P. Smart, editor, Cryptography and Coding – 10th IMA International
Conference, LNCS, volume 3796, pp. 442–459. Springer, 2005. doi:10.1007/11586821.

[CCMLS06] Liqun Chen, Zhaohui Cheng, John Malone-Lee, and Nigel P. Smart. Efficient ID-KEM based
on the Sakai-Kasahara key construction. Information Security, IEE Proceedings, 153(1):19–
26, March 2006. url http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

1613725&isnumber=33872.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-Ciphertext Security from Identity-
Based Encryption. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
LNCS, volume 3027, pp. 207–222. Springer, 2004.

[CS02] Ronald Cramer and Victor Shoup. Universal Hash Proofs and a Paradigm for Adaptive
Chosen Ciphertext Secure Public-Key Encryption. In Lars Knudsen, editor, EUROCRYPT
2002, LNCS, volume 2332, pp. 45–64. Springer, 2002.

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing,
33(1):167–226, 2003.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable Cryptography. SIAM Journal
on Computing, 30(2):391–437, 2000.

[Den03] Alexander W. Dent. A Designer’s Guide to KEMs. In Kenneth G. Paterson, editor,
Cryptography and Coding, LNCS, volume 2898, pp. 133–151. Springer, 2003. Updated version
available at http://eprint.iacr.org/2002/174.

27

http://www.isg.rhul.ac.uk/~alex/papers/plaintext_journal.pdf
http://www.isg.rhul.ac.uk/~alex/papers/plaintext_journal.pdf
http://dx.doi.org/10.1007/BFb0055718
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-540-30539-2_4
http://cseweb.ucsd.edu/users/mihir/papers/pa.pdf
http://cseweb.ucsd.edu/users/mihir/papers/pa.pdf
http://dx.doi.org/10.1007/BFb0053428
http://www-cse.ucsd.edu/~mihir/papers/oaep.html
http://www-cse.ucsd.edu/~mihir/papers/oaep.html
http://dx.doi.org/10.1007/11586821
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1613725&isnumber=33872
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1613725&isnumber=33872
http://eprint.iacr.org/2002/174

[Den06] Alexander W. Dent. The Cramer-Shoup Encryption Scheme Is Plaintext Aware in the
Standard Model. In Serge Vaudenay, editor, EUROCRYPT 2006, LNCS, volume 4004, pp.
289–307. Springer, 2006.

[DGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable authentication and
key exchange. In Rebecca Wright, Sabrina De Capitani de Vimercati, and Vitaly Shmatikov,
editors, ACM CCS 2006, pp. 400–409. ACM, 2006. doi:10.1145/1180405.1180454. Full
version available as http://eprint.iacr.org/2006/280.

[DGKS10] Yvo Desmedt, Rosario Gennaro, Kaoru Kurosawa, and Victor Shoup. A New and Improved
Paradigm for Hybrid Encryption Secure Against Chosen-Ciphertext Attack. J. Cryptology,
23(1):91–120, 2010.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and David Chaum, editors, CRYPTO, Lecture Notes in
Computer Science, volume 196, pp. 10–18. Springer, 1984.

[ES02] Edith Elkind and Amit Sahai. A Unified Methodology For Constructing Public-Key En-
cryption Schemes Secure Against Adaptive Chosen-Ciphertext Attack. Cryptology ePrint
Archive, Report 2002/042, 2002. http://eprint.iacr.org/.

[FO99a] Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of public-key encryption
at minimum cost. In Hideki Imai and Yuliang Zheng, editors, PKC 1999, LNCS, volume
1560, pp. 53–68. Springer, 1999. doi:10.1007/3-540-49162-7 5.

[FO99b] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael Wiener, editor, CRYPTO ’99, LNCS, volume 1666, pp.
537–554. Springer, 1999. doi:10.1007/3-540-48405-1 34.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for
cryptographers. Discrete Applied Mathematics, 156(16):3113–3121, September 2008.
doi:10.1016/j.dam.2007.12.010.

[HHK10] Javier Herranz, Dennis Hofheinz, and Eike Kiltz. Some (In)Sufficient Conditions for Secure
Hybrid Encryption. Information and Computation, 208(11):1243–1257, 2010.

[HLM03] Jonathan Herzog, Moses Liskov, and Silvio Micali. Plaintext awareness via key registration.
In Dan Boneh, editor, CRYPTO 2003, LNCS, volume 2729, pp. 548–564. Springer, 2003.
doi:10.1007/978-3-540-45146-4 32.

[JW10] Shaoquan Jiang and Huaxiong Wang. Plaintext-awareness of hybrid encryption. In
Josef Pieprzyk, editor, CT-RSA 2010, LNCS, volume 5985, pp. 57–72. Springer, 2010.
doi:10.1007/978-3-642-11925-5 5. Full version available at http://sites.google.com/

site/shaoquan0825/DHIES-8.pdf.

[KD04] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme. In Matt
Franklin, editor, CRYPTO, LNCS, volume 3152, pp. 426–442. Springer, 2004.

[KG09] Eike Kiltz and David Galindo. Direct Chosen-Ciphertext Secure Identity-Based Key Encap-
sulation without Random Oracles. Theoretical Computer Science, 410(47-49):5093–5111,
2009.

[Kil06] Eike Kiltz. Chosen-Ciphertext Security from Tag-Based Encryption. In Shai Halevi and Tal
Rabin, editors, TCC 2006, LNCS, volume 3876, pp. 581–600. Springer, 2006.

[KYH+06] Takashi Kitagawa, Peng Yang, Goichiro Hanaoka, Rui Zhang, Hajime Watanabe, Kanta
Matsuura, and Hideki Imai. Generic transforms to acquire CCA-security for identity
based encryption: The cases of FOpkc and REACT. In Lynn Margaret Batten and Rei-
haneh Safavi-Naini, editors, ACISP 2006, LNCS, volume 4058, pp. 348–359. Springer, 2006.
doi:10.1007/11780656 29.

[OP01] Tatsuaki Okamoto and David Pointcheval. REACT: Rapid Enhanced-Security Asymmetric
Cryptosystem Transform. In David Naccache, editor, CT-RSA 2001, LNCS, volume 2020,
pp. 159–175. Springer, 2001.

[Sah99] Amit Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext
Security. In FOCS 1999, pp. 543–553. IEEE, 1999.

28

http://dx.doi.org/10.1145/1180405.1180454
http://eprint.iacr.org/2006/280
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-49162-7_5
http://dx.doi.org/10.1007/3-540-48405-1_34
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1007/978-3-540-45146-4_32
http://dx.doi.org/10.1007/978-3-642-11925-5_5
http://sites.google.com/site/shaoquan0825/DHIES-8.pdf
http://sites.google.com/site/shaoquan0825/DHIES-8.pdf
http://dx.doi.org/10.1007/11780656_29

[Sho00] Victor Shoup. Using Hash Functions as a Hedge against Chosen Ciphertext Attack. In Bart
Preneel, editor, EUROCRYPT 2000, LNCS, volume 1807, pp. 275–288. Springer, 2000.

[SK03] Ryuichi Sakai and Masao Kasahara. ID based cryptosystems with pairing on elliptic curve.
Cryptology ePrint Archive, Report 2003/054, 2003. http://eprint.iacr.org/.

[TO06] Isamu Teranishi and Wakaha Ogata. Relationship between standard model plaintext aware-
ness and message hiding. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, LNCS,
volume 4284, pp. 226–240. Springer, 2006. doi:10.1007/11935230 15.

[TO08] Isamu Teranishi and Wakaha Ogata. Cramer-shoup satisfies a stronger plaintext awareness
under a weaker assumption. In Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti,
editors, SCN 2008, LNCS, volume 5229, pp. 109–125. Springer, 2008. doi:10.1007/978-3-
540-85855-3 8.

[YKH+06] Peng Yang, Takashi Kitagawa, Goichiro Hanaoka, Rui Zhang, Kanta Matsuura, and Hideki
Imai. Applying Fujisaki-Okamoto to identity-based encryption. In Marc P.C. Fossorier,
Hideki Imai, Shu Lin, and Alain Poli, editors, AAECC-16 2006, LNCS, volume 3857, pp.
183–192, 2006. doi:10.1007/11617983 18.

A Extending our results to PK-KEMs

We explore the applicability of our IB-KEM-related results from Sections 3–7 to the setting of
public key KEMs. A PK-KEM is generally given by a set of three algorithms: KeyGen, Encap,
and Decap. We observe that IB-KEM-related definitions of syntax, secrecy (OW[-CCA] and
IND[-CCA]), computational uniformity (cU), and plaintext awareness (PA) can readily be adapted

to the PK-KEM setting by replacing in the security experiments (mpk,msk)
$← Setup(1k) by

(pk, sk)
$← KeyGen(1k), and by further leaving out identities and availability of OX oracles.

We prove in Section A.1 that for these adapted definitions the implication OW⇒ cU still
holds (cf. Corollary 1 in Section 4). Under this premise, a close inspection of our lemmas
and proofs from Sections 3 and 5–7 shows that their statements remain valid in the PK-KEM
world. In particular, we have correspondence for Theorem 1 (OW∧PA⇒ OW-CCA), Corollary 2
(F : OW 7→ PA∧OW-CCA) and Theorem 3 (#◦F : OW 7→ PA∧ IND-CCA), with slightly adapted
F and # transformations. We refrain here from giving corresponding proofs as it would suffice
to marginally adjust those from named sections to fit the public key setting.

In Section A.2 we adapt the optimized # ◦ F transformation from Section 7 to the PK-KEM
setting, and, for concreteness, apply this transformation to ElGamal-KEM, in Section A.3.

A.1 Computational uniformity of PK-KEMs and its relation to one-wayness

We define the notion of computational uniformity (cU) for PK-KEMs and show that it is implied
by one-way security. As we did for IB-KEMs in Section 4, we prove this implication via an
intermediate notion (CU), i.e. we prove OW⇒ CU and CU⇒ cU separately. Observe that CU is
an information-theoretic notion, while the intermediate notion cCU in the identity-based setting
was computational (cf. Definition 7). This difference comes from the fact that cCU is based on an
adversary B that outputs an identity for which collisions among ciphertexts become noticeable.
In the public key setting, however, this step becomes obsolete and we are only interested in
collisions among ciphertexts generated for one specific (randomly generated) public key. As
the notion of OW security is readily derived from Definition 2 by “stripping off” all parameters
and oracles related to the identity-based setting, we start by defining the notion of collision
uniformity (CU).

Definition 15 (Collision uniformity (CU)). Let Π be a PK-KEM with associated spaces CoinSp,
CipherSp, and KeySp. For k ∈ N, H ∈ Hash(k), and (pk, sk) ∈ KeyGenH(1k) define

ΓHpk = Pr
[
r1, r2

$← CoinSp(k);EncapHpk(r1) = EncapHpk(r2)
]
.

29

http://eprint.iacr.org/
http://dx.doi.org/10.1007/11935230_15
http://dx.doi.org/10.1007/978-3-540-85855-3_8
http://dx.doi.org/10.1007/978-3-540-85855-3_8
http://dx.doi.org/10.1007/11617983_18

AOH(pk, c∗):

(a) (c′,K ′)
$← EncapHpk()

(b) If c′ 6= c∗ return ⊥.
(c) Return K ′.

Figure 16: Construction of OW adversary A against Π

We say that Π is Γ-collision-uniform for a given function Γ : N→ R≥0 if the following probability
is negligible in k:

Pr
H $← Hash(k)

(pk,sk)
$← KeyGenH(1k)

[
ΓHpk > Γ(k)

]
.

Π is called collision-uniform (CU) if Π is Γ-collision-uniform for all non-negligible Γ.

Lemma 14 (OW⇒ CU). Let Π be a PK-KEM. If Π is OW-secure, then Π is collision-uniform.

Proof. Assume that Π is not collision-uniform, i.e. there exists a non-negligible Γ such that Π is
not Γ-collision-uniform. Consider adversary A against OW of Π from Figure 16.

Denote by E the event that c′ = c∗ in line (b) of adversary A. Clearly, if E occurs then also
K ′ = K∗ by correctness of Π, and hence SuccOW

Π,A(k) = Pr[E]. On the other hand, inspection

of adversary A and OW experiment reveals that Pr[E] = ΓHpk. Let B denote the event that

ΓHpk > Γ(k) in the execution of OW experiment. By assumption we have Pr[B] > negl(k). We
thus obtain

SuccOW
Π,A(k) = Pr[E] ≥ Pr[E ∧B] = Pr[E|B] Pr[B]

> Γ(k) · Pr[B] > negl(k)

and conclude that Π is not OW-secure.

We next adapt the notion of computational uniformity (cU, Definition 6) from the identity-
based to the public key setting. Note that it is a (strictly weaker) variant of the uniformity
notion for public key encryption schemes, as put forward by Fujisaki and Okamoto in [FO99b].

Definition 16 (Computational uniformity (cU)). Let Π be a PK-KEM with associated spaces
CoinSp, CipherSp, and KeySp. For k ∈ N, H ∈ Hash(k), (pk, sk) ∈ KeyGenH(1k), and c ∈
CipherSp(k) define

γHpk(c) = Pr
[
r

$← CoinSp(k); (c, ·) = EncapHpk(r)
]
.

For any algorithm A and function γ : N→ R≥0, consider experiment ExptcU,γΠ,A from Figure 17
and define the success probability of A as

SucccU,γΠ,A (k) = Pr
[
ExptcU,γΠ,A (k) = win

]
.

PK-KEM Π is computationally γ-uniform if SucccU,γΠ,A (k) is negligible in k, for all adversaries A.
PK-KEM Π is simply called computationally uniform (cU) if Π is computationally γ-uniform
for all non-negligible γ.

Analogously to what we show in the identity-based setting (cf. Lemma 7), collision uniformity
of PK-KEMs implies computational uniformity:

Lemma 15 (CU ⇒ cU). Let Π be a PK-KEM and γ,Γ : N → R≥0 be functions such that
Γ(k) = γ2(k) for all k. If Π is Γ-collision-uniform, then Π is computationally γ-uniform. In
particular, if Π is collision-uniform, then Π is computationally uniform.

30

ExptcU,γΠ,A (k):

(a) H $← Hash(k)

(b) (pk, sk)
$← KeyGenH(1k)

(c) c
$← AOH(pk)
– Answer OH queries as in

Figure 2.
(d) If γHpk(c) > γ(k) return win.
(e) Return lose.

Figure 17: Experiment for computational uniformity (cU) of PK-KEMs

Proof. For any k ∈ N, H ∈ Hash(k), (pk, sk) ∈ KeyGenH(1k), and c ∈ CipherSp(k) we have

ΓHpk ≥ Pr
[
r1, r2

$← CoinSp(k);EncapHpk(r1) = (c, ·)

= EncapHpk(r2)
]

= γHpk(c)
2 .

Now, if an adversary A against computational γ-uniformity of Π manages to output a ciphertext c
such that γHpk(c) > γ(k), then ΓHpk ≥ γHpk(c)2 > γ2(k) = Γ(k) holds as well. Hence we have

SucccU,γΠ,A (k) ≤ Pr
H $← Hash(k)

(pk,sk)
$← KeyGenH(1k)

[
ΓHpk > Γ(k)

]
.

If Π is Γ-collision-uniform then the right term is negligible, i.e. Π is computationally γ-uniform.

Taken together, Lemmas 14 and 15 imply the following corollary:

Corollary 3 (OW⇒ cU). Let Π be a PK-KEM. If Π is OW-secure, then Π is computationally
uniform.

A.2 Obtaining plaintext awareness for PK-KEMs

In Sections 5 and 6 we developed techniques that convert any OW-secure IB-KEM into a plaintext-
aware IND-CCA-secure one. This conversion was further optimized (in regards to efficiency) in
Section 7. In the PK-KEM setting, we directly propose an optimized transformation that turns
any OW-secure PK-KEM into one that offers plaintext awareness and IND-CCA security.

Definition 17 (Optimized transformation for PK-KEMs). Let Π = (KeyGen,Encap,Decap) be
a PK-KEM with random oracles H and associated spaces CoinSp, CipherSp, and KeySp. Let
H : {0, 1}k → CoinSp, H ′, H# : KeySp → {0, 1}k be three hash functions (independent of H),
modeled as random oracles in the security analysis. Then PK-KEM Π+ = (KeyGen+,Encap+,
Decap+) is specified in Figure 18, with random oracles H′ = H ∪ {H,H ′, H#} and associated
spaces CoinSp+ = {0, 1}k, CipherSp+ = CipherSp× {0, 1}k, and KeySp+ = {0, 1}k.

As, in Figure 18, hash functions H ′ and H# are evaluated solely on K (respectively, on K̂),
computing them via a single call to a double-length hash function H ′ ‖ H# : KeySp(k) →
{0, 1}k × {0, 1}k is possible and reduces the total number of required hash functions to just two.
The security of the transformation is established as in Theorem 4:

Theorem 7 (Def. 17 : OW 7→ PA ∧ IND-CCA). Let Π be a PK-KEM and Π+ its conversion. If
Π is OW-secure, then PK-KEM Π+ is plaintext-aware and IND-CCA-secure.

31

KeyGen+(1k):
(a) Return KeyGen(1k).

Encap+
pk(r) for r ∈ {0, 1}k:

(a) r1 ← H(r)
(b) (c1,K)← Encappk(r1)

(c) c2 ← r ⊕H ′(K)
(d) c← (c1, c2)
(e) K ← H#(K)
(f) Return (c,K).

Decap+
sk(c):

(a) Parse (c1, c2)← c.
(b) K̂ ← Decapsk(c1)
(c) If K̂ = ⊥ return ⊥.
(d) r̂1 ← H(c2 ⊕H ′(K̂))
(e) If (c1, ·) 6= Encappk(r̂1)

return ⊥.
(f) K ← H#(K̂)
(g) Return K.

Figure 18: Adaption of the optimized transformation for IB-KEMs from Figure 13 to the PK-KEM
setting. Queries to hash functions other than H,H ′, H# are relayed without modification.

KeyGen(1k):

(a) sk
$← Zq

(b) pk ← gsk

(c) Return (pk, sk).

Encappk(r) for r ∈ Zq:
(a) c← gr

(b) K ← (pk)r

(c) Return (c,K).

Decapsk(c):
(a) K ← csk

(b) Return K.

KeyGen+(1k):
(a) Return KeyGen(1k).

Encap+
pk(r) for r ∈ {0, 1}k:

(a) r1 ← H(r)
(b) K ← (pk)r1

(c) c1 ← gr1

(d) c2 ← r ⊕H ′(K)
(e) c← (c1, c2)
(f) K ← H#(K)
(g) Return (c,K).

Decap+
sk(c):

(a) Parse (c1, c2)← c.
(b) K̂ ← c1

sk

(c) r̂1 ← H(c2 ⊕H ′(K̂))
(d) If c1 6= gr̂1 return ⊥.
(e) K ← H#(K̂)
(f) Return K.

Figure 19: Specification of Π = ElGamal-PK-KEM and Π+ = ElGamal-PK-KEM+. Observe that Π+

is constructed from Π following the stencil from Figure 18.

A.3 Plaintext-aware and IND-CCA-secure ElGamal-PK-KEM

We apply the transformation from Definition 17 to ElGamal’s PK-KEM [ElG84]. The latter
scheme is OW-secure under the CDH assumption.

Definition 18 (ElGamal-PK-KEM). Let G = 〈g〉 denote a cyclic group of prime order q. The
ElGamal key encapsulation mechanism Π = (KeyGen,Encap,Decap) is specified in Figure 19
(left part). We have CoinSp(k) = Zq, CipherSp(k) = G, and KeySp(k) = G.

Our transformation turns ElGamal-PK-KEM into ElGamal-PK-KEM+:

Definition 19 (ElGamal-PK-KEM+). Let G = 〈g〉 denote a cyclic group of prime order q.
ElGamal-PK-KEM+ is specified in Figure 19 (right part), where H : {0, 1}k → Zq and H ′, H# :
G → {0, 1}k denote hash functions, CoinSp+(k) = {0, 1}k, CipherSp+(k) = G × {0, 1}k, and
KeySp+(k) = {0, 1}k.

Security of ElGamal-PK-KEM+ is established by Theorem 7:

Theorem 8. ElGamal-PK-KEM+ is plaintext-aware (PA) and IND-CCA-secure under the CDH
assumption in the random oracle model.

Decapsulation in ElGamal-PK-KEM+ takes one more exponentiation than decapsulation in
the original scheme, i.e. the overhead introduced by the transformation is small. The length of
ciphertexts is increased by only k bits and all newly introduced hash functions H,H ′, H# are
straight-forward to instantiate.

32

B Auxiliary lemmas

Lemma 16. Let 0 ≤ p ≤ 1 be a real number. Let E1, . . . , En be a set of events that occur with
at least probability p, i.e. Pr[Ei] ≥ p for all 1 ≤ i ≤ n. Then event E = E1 ∧ . . . ∧ En occurs
with probability at least 1− n(1− p).

Proof. We have Pr[E] = 1−Pr[¬E] = 1−Pr[¬E1 ∨ . . .∨¬En] ≥ 1−
∑n

i=1 Pr[¬Ei] ≥ 1− n(1−
p).

Lemma 17. Let S0, S1, E be events that satisfy Pr[S0|¬E] = Pr[S1|¬E]. Then we have Pr[E] ≥
|Pr[S0]− Pr[S1]|.

Proof. We have

|Pr[S0]− Pr[S1]| = |Pr[S0|E] Pr[E] + Pr[S0|¬E] Pr[¬E]

−Pr[S1|E] Pr[E]− Pr[S1|¬E] Pr[¬E]|
= |Pr[S0|E] Pr[E]− Pr[S1|E] Pr[E]|
= |Pr[S0|E]− Pr[S1|E]| · Pr[E]

≤ Pr[E] .

33

	Introduction
	Our Results and Techniques
	Notation

	Secrecy notions and plaintext awareness of IB-KEMs
	One-way security and indistinguishability
	Plaintext awareness

	Plaintext awareness and one-way security implies OW-CCA security
	Computational uniformity of IB-KEMs and its relation to one-wayness
	Obtaining plaintext awareness for IB-KEMs
	From one-way security to indistinguishability
	Plaintext-aware IB-KEMs in practice: applications and optimizations
	Improving efficiency of transformation F
	Plaintext-aware and IND-CCA-secure BF-IB-KEM
	Plaintext-aware and IND-CCA-secure SK-IB-KEM

	Conclusion
	Extending our results to PK-KEMs
	Computational uniformity of PK-KEMs and its relation to one-wayness
	Obtaining plaintext awareness for PK-KEMs
	Plaintext-aware and IND-CCA-secure ElGamal-PK-KEM

	Auxiliary lemmas

