
Aggregating CL-Signatures Revisited:
Extended Functionality and Better Efficiency

Kwangsu Lee∗ Dong Hoon Lee† Moti Yung‡

Abstract
Aggregate signature is public-key signature that allows anyone to aggregate different signatures

generated by different signers on different messages into a short (called aggregate) signature. The
notion has many applications where compressing the signature space is important: in infrastructure:
secure routing protocols, in security: compressed certificate chain signature, in signing incremen-
tally changed data: such as software module authentications, and in transaction systems: like in
secure high-scale repositories and logs, typical in financial transactions. In spite of its importance,
the state of the art of the primitive is such that it has not been easy to devise a suitable aggregate
signature scheme that satisfies the conditions of real applications, with reasonable parameters: short
public key size, short aggregate signatures size, and efficient aggregate signing/verification.

In this paper, we propose two aggregate signature schemes based on the Camenisch-Lysyanskaya
(CL) signature scheme whose security is reduced to that of CL-signature (i.e., secure under the
LRSW assumption) which substantially improve efficiency conditions for real applications. The
first scheme is an “efficient sequential aggregate signature” scheme with the shortest size public
key, to date, and very efficient aggregate verification requiring only a constant number of pairing
operations and l number of exponentiations (l being the number of signers). The second scheme is
an “efficient synchronized aggregate signature” scheme with a very short public key size, and with
the shortest (to date) size of aggregate signatures among synchronized aggregate signature schemes.
Signing and aggregate verification are very efficient: they take constant number of pairing opera-
tions and l number of exponentiations, as well. The security of the schemes is proved by reducing
from the CL-signature in the standard (first scheme) and random oracle (second scheme) models.

Furthermore, our schemes are compatible: a signer of our aggregate signature schemes can
dynamically use two modes of aggregation “sequential” and “synchronized,” employing the same
private/public key. This multi-modal scheme allows for application flexibility depending on real
world scenario: For example, it can be used sequentially to sign incrementally generated legal
documents, and synchronously to aggregate the end-of-day logs of all branches of an institute into
a single location with a single aggregate signature.

Keywords: Public-key signature, Aggregate information applications, Aggregate signature, CL
signature, Bilinear pairing.

1 Introduction

Public-key signature (PKS) is a central cryptographic primitive with numerous applications. However,
constructing a PKS scheme that is efficient, secure, and flexible enough for a range of possible appli-
∗Columbia University, NY, USA. kwangsu@cs.columbia.edu
†Korea University, Korea. donghlee@korea.ac.kr
‡Google Inc. and Columbia University, NY, USA. moti@cs.columbia.edu

1

cations is not easy. Among such schemes, CL signature, proposed by Camenisch and Lysyanskaya
[16], is one of the pairing-based signature schemes [13, 11, 16, 28] that satisfies these conditions. It
was widely used as a basic component in various cryptosystems such as anonymous credential systems,
group signature, RFID encryption, batch verification signature, ring signature [16, 3, 2, 15, 7], as well
as in aggregate signature [26].

Pubic-key aggregate signature (PKAS), introduced by Boneh, Gentry, Lynn, and Shacham, is a
special type of PKS that enables anyone to aggregate different signatures generated by different signers
on different messages into a short aggregate signature [12]. Boneh et al. proposed the first full aggregate
signature scheme in bilinear groups and proved its security under the CDH assumption in the random
oracle model. After the introduction of aggregate signatures, various types of aggregate signatures
such as sequential aggregate signatures and synchronized aggregate signatures were proposed [23, 19,
22, 5, 8, 25, 9, 1, 14, 18, 20, 21]. PKAS has numerous applications. In network and infrastructure:
secure routing protocols, public-key infrastructure systems (signing certificate chains), sensor network
systems, proxy signatures, as well as in applications: dynamically changing document composition
(in particular, secure updating of software modules), secure transaction signing, secure work flow, and
secure logs and repositories [12, 9, 1, 10]. In all these applications, compressing the space consumed
by signatures is the major advantage. Note that in the area of financial transactions, in particular, logs
and repositories are very large due to regulatory requirements to hold records for long time periods. The
effect of compressing signatures by aggregation increases with the number of data items; thus it is quite
plausible that the financial sector may find variations of aggregate signature most useful.

Though PKAS can reduce the size of signers’ signatures by using the aggregation technique, it can-
not reduce the size of signers’ public keys since the public keys are not aggregated. Thus, the total
information the verifier needs to access is still proportional to the number of signers in the aggregate
signature, since the verifier should retrieve all public keys of signers from a certificate storage. There-
fore, it is very important to reduce the size of public keys. Note that an ideal solution for this problem is
to use identity-based aggregate signature (IBAS) that represents the public key of a signer as an identity
string. However, IBAS requires a trust structure different from public key infrastructure, namely, the ex-
istence of an additional trusted authority, (the current IBAS schemes are in [19, 9, 20] and are all secure
in the random oracle model.) To construct a PKAS scheme with short public keys, Schröder proposed a
sequential aggregate signature scheme with short public keys based on the CL signature scheme [26]. In
the scheme of Schröder, the public key consists of two group elements and the aggregate signature con-
sists of four group elements, but the aggregate verification algorithm requires l pairing operations and l
exponentiations where l is the number of signers in the aggregate signature. Therefore, this work, while
nicely pointing at the CL signature as a source of efficiency for the context of aggregate signatures, still
leaves out desired properties to build upon while exploiting the flexibility of the CL-signature: can we
make the public key shorter? can we require substantially less work in verification? and, can we build
other modes of aggregate signatures? While asking such questions, we revisit the subject of aggregate
signature based on CL-signatures.

1.1 Our Contributions

In this paper, we indeed solve the problem of constructing a PKAS scheme that has short public keys,
short aggregate signatures, and an efficient aggregate verification algorithm. We first propose an efficient
sequential aggregate signature scheme based on the CL signature scheme and prove its security based
on that of CL signature (i.e., the LRSW assumption) in the standard model. A sequential aggregate sig-

2

nature assumes that the aggregation mode is done in linear order: signed message after signed message.
In this scheme, the public key consists of just one group element and the aggregate signature consists
of just three group element. The size of the public key is the shortest among all sequential aggregate
schemes to date (except IBAS schemes). The aggregate verification algorithm of our scheme is quite
efficient since it just requires five pairing operations and l exponentiations (or multi-exponentiations).
Therefore our scheme simultaneously satisfies the conditions of short public keys, short aggregate sig-
natures, and efficient aggregate verification.

Next, we propose an efficient synchronized aggregate signature scheme based on the CL signature
scheme and prove its security based on the CL-signature security in the random oracle model (the
random oracle can be removed if the number of messages is restricted to be polynomial). Synchronized
aggregate signature is a mode where the signers of messages to be aggregated are synchronized, but
aggregation can take any order. In this scheme, the public key consists of just one group element
and the aggregate signature consists of one group element and one integer. The size of the aggregate
signature is the shortest among all synchronized aggregate signature schemes to date. The aggregate
verification algorithm of this scheme is also quite efficient since it just requires three pairing operations
and l exponentiations (or multi-exponentiations).

Additionally, our two aggregate signature schemes can be combined to give a new notion of ag-
gregate “multi-modal” signature scheme: A scheme which supports, both, sequential aggregation or
synchronized aggregation, since the public key and the private key of two schemes are the same. This
property can increase the utility and flexibility of the suggested scheme(s).

Technically speaking, in order to construct our schemes from the CL signature scheme, we employ
two techniques: the first one is an adaptation of the “randomness re-use” technique of Lu et al. [22], and
the second one is a newly devised “public key sharing” technique. Our “public key sharing” technique
distributes the element Y of the public key among all signers by placing the public key element Y of the
CL signature into the public parameters. In this case, the private key and the public key of a signer are x
and X = gx instead of x,y and X = gx,Y = gy respectively. The signer can then generate the original CL
signature as σ = (A = gr,B = Y r,C = AxBxM). Furthermore, the signer can also generate a sequential
aggregate signature as σΣ = (A = gr,B = Y r,C = A∑xiB∑xiMi) since he only needs to aggregate the
elements related to the public keys {Xi} by using the “randomness re-use” technique. To construct a
synchronized aggregate signature scheme from the sequential aggregate signature scheme, we force all
signers to use the same elements A and B by using the synchronized time period information. That is, a
signer first sets A = H(0||w) and B = H(1||w) where H is a hash function and w is a time period, and
he generates a synchronized aggregate signature as σΣ = (C = A∑xiB∑xiMi ,w).

1.2 Related Works

Given the importance of aggregation to saving signature space, much work has been invested in the
various notions allowing aggregation.

Full Aggregation. The notion of public-key aggregate signature (PKAS) was introduced by Boneh,
Gentry, Lynn, and Shacham [12]. They proposed the first PKAS scheme in bilinear groups that supports
full aggregation such that anyone can freely aggregate different signatures signed by different signers
on different messages into a short aggregate signature [12]. The PKAS scheme of Boneh et al. requires
l number of pairing operations in the aggregate verification algorithm where l is the number of signers
in the aggregate signature. Bellare et al. modified the PKAS scheme of Boneh et al. to remove the
restriction such that the message should be different by hashing a message with the public key of a

3

signer [5].

Sequential Aggregation. The concept of sequential aggregate signature was introduced by Lysyan-
skaya, Micali, Reyzin, and Shacham [23]. In sequential aggregate signature, a signer can generate an
aggregate signature by adding his signature to the previous aggregate signature that was received from
a previous signer. Lysyanskaya et al. proposed a sequential PKAS scheme using certified trapdoor
permutations, and they proved its security in random oracle models [23]. Neven proposed a sequential
PKAS scheme that reduces not only the size of signatures but also the size of total information that is
transmitted [25]. Boldyreva et al. proposed an identity-based sequential aggregate signature (IBSAS)
scheme (in the trust model of identity-based schemes with a trusted private keys authority), in bilinear
groups and proved its security under an interactive assumption in the random oracle model [9]. Re-
cently, Gerbush et al. showed that a modified IBSAS scheme of Boldyreva et al. in composite order
bilinear groups can be proven under static assumptions in the random oracle model [20].

The first sequential PKAS scheme without random oracles was proposed by Lu et al. [22]. They
constructed a sequential PKAS scheme based on the PKS scheme of Waters and proved its security
under the CDH assumption without random oracles. However, this sequential PKAS scheme has a
disadvantage such that the size of public keys is very long. To reduce the size of pubic keys in PKAS
schemes, Schröder proposed the CL signature based scheme discussed above [26]. Recently, Lee et al.
proposed efficient sequential PKAS scheme with short public keys and proved its security under static
assumptions without random oracles [21].

In sequential PKAS schemes, a signer generally should verify the validity of the previous aggregate
signature (the aggregate-so-far) handed to him from a previous signer before he adds his signature into
the aggregate signature. To verify the previous aggregate signature, the signer should retrieve all public
keys of previous signers and should run the aggregate verification algorithm. Thus verifying the previous
aggregate signature is the most expensive operation in the aggregate signing algorithm. To solve this
problem, sequential PKAS schemes that do not require to verify the previous aggregate signature were
proposed [14, 18].

Synchronized Aggregation. The concept of synchronized aggregate signature was introduced by Gen-
try and Ramzan [19]. In synchronized aggregate signature, all signers have synchronized time infor-
mation and individual signatures generated by different signers within the same time period can be
aggregated into a short aggregate signature. They proposed an identity-based synchronized aggregate
signature scheme in bilinear groups and proved its security under the CDH assumption in the random
oracle model [19]. Ahn et al. proposed an efficient synchronized PKAS scheme based on the PKS
scheme of Hohenberger and Waters and proved its security under the CDH assumption without random
oracles [1].

Interactive Aggregation. Interactive aggregate signature is aggregate signature such that a signer
generates an aggregate signature after having interactive communications with other signers through
a broadcast channel. Bellare and Neven proposed an identity-based multi-signature scheme under the
RSA assumption in the random oracle model [6], and Bagherzandi and Jareki proposed an identity-
based aggregate signature scheme and proved its security under the RSA assumption in the random
oracle model [4]. However, the interactive communications between signers are expensive (signing be-
comes a protocol among parties), and the heavy message transmission between signers may eliminate
some of the advantage of signature aggregation.

4

2 Preliminaries

In this section, we first define the public key signature and its security model. Next, we define bilinear
groups, and introduce the LRSW assumption which is associated with the security of the CL signature
scheme, which is, then, presented as well.

2.1 Public Key Signature

A public key signature (PKS) scheme consists of three PPT algorithms KeyGen, Sign, and Verify,
which are defined as follows: The key generation algorithm KeyGen(1λ) takes as input a security
parameter 1λ , and outputs a public key PK and a private key SK. The signing algorithm Sign(M,SK)
takes as input a message M and a private key SK, and outputs a signature σ . The verification algorithm
Verify(σ ,M,PK) takes as input a signature σ , a message M, and a public key PK, and outputs either 1
or 0 depending on the validity of the signature.

The correctness requirement is that for any (PK,SK) output by KeyGen and any M ∈M, we have
that Verify(Sign(M,SK),M,PK) = 1. We can relax this notion to require that the verification is correct
with overwhelming probability over all the randomness of the experiment.

The security notion of existential unforgeability under a chosen message attack is defined in terms
of the following experiment between a challenger C and a PPT adversary A: C first generates a key
pair (PK,SK) by running KeyGen, and gives PK to A. Then A, adaptively and polynomially many
times, requests a signature query on a message M under the challenge public key PK, and receives a
signature σ . Finally, A outputs a forged signature σ∗ on a message M∗. C then outputs 1 if the forged
signature satisfies the following two conditions, or outputs 0 otherwise: 1) Verify(σ∗,M∗,PK) = 1 and
2) M∗ was not queried byA to the signing oracle. The advantage ofA is defined as AdvPKS

A = Pr[C = 1]
where the probability is taken over all the randomness of the experiment. A PKS scheme is existentially
unforgeable under a chosen message attack if all PPT adversaries have at most a negligible advantage
in the above experiment (for large enough security parameter).

2.2 Bilinear Groups

Let G and GT be multiplicative cyclic groups of prime order p. Let g be a generator of G. The bilinear
map e : G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zp, e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order p, that is, e(g,g) is a generator of GT .

We say that G,GT are bilinear groups if the group operations in G and GT as well as the bilinear map e
are all efficiently computable.

2.3 Complexity Assumption

The security of our aggregate signature schemes is based on the following LRSW assumption. The
LRSW assumption was introduced by Lysyanskaya, et al. [24] and it is secure under the generic group
model defined by Shoup [27] (and adapted to bilinear groups in [16]).

Assumption 2.1 (LRSW). Let G be an algorithm that on input the security parameter 1λ , outputs the
parameters for a bilinear group as (p,G,GT ,e,g). Let X ,Y ∈ G such that X = gx,Y = gy for some

5

x,y ∈ Zp. Let OX ,Y (·) be an oracle that on input a value M ∈ Zp outputs a triple (a,ay,ax+Mxy) for a
randomly chosen a ∈G. Then for all probabilistic polynomial time adversaries A,

Pr[(p,G,GT ,e,g)←G(1λ),x← Zp,y← Zp,X = gx,Y = gy,

(M,a,b,c)←AOX ,Y (·)(p,G,GT ,e,g,X ,Y) :

M /∈ Q∧M ∈ Z∗p∧a ∈G∧b = ay∧ c = ax+Mxy]< 1/poly(λ)

where Q is the set of queries that A made to OX ,Y (·).

2.4 The CL Signature Scheme

The CL signature scheme is a public-key signature scheme that was proposed by Camenisch and
Lysyanskaya and the security was proven under the LRSW assumption without random oracles [16].
Although the security of the CL signature scheme is based on this interactive assumption, it is flexible
and widely used for the constructions of various cryptosystems such as anonymous credentials, group
signatures, ring signatures, batch verification, and aggregate signatures [24, 16, 7, 15, 26] (this is so,
perhaps due to its relatively elegant and simple algebraic structure).

PKS.KeyGen(1λ): The key generation algorithm first generates the bilinear groups G,GT of prime
order p of bit size Θ(λ). Let g be the generator of G. It selects two random exponents x,y ∈
Zp and sets X = gx,Y = gy. It outputs a private key as SK = (x,y) and a public key as PK =
(p,G,GT ,e,g,X ,Y).

PKS.Sign(M,SK): The signing algorithm takes as input a message M ∈ Z∗p and a private key SK =
(x,y). It selects a random element A∈G and computes B = Ay, C = AxBxM. It outputs a signature
as σ = (A,B,C).

PKS.Verify(σ ,M,PK): The verification algorithm takes as input a signature σ =(A,B,C) on a message
M ∈ Z∗p under a public key PK = (p,G,GT ,e,g,X ,Y). It verifies that e(A,Y) ?

= e(B,g) and

e(C,g) ?
= e(A,X) · e(B,X)M. If these equations hold, then it outputs 1. Otherwise, it outputs 0.

Theorem 2.2 ([16]). The CL signature scheme is existentially unforgeable under a chosen message
attack if the LRSW assumption holds.

3 Sequential Aggregate Signature

In this section, we first define the sequential aggregate signature and its security model. After that,
we propose an efficient sequential aggregate signature scheme based on the CL signature scheme, and
prove its security under the LRSW assumption.

3.1 Definitions

Sequential aggregate signature (SeqAS) is a special type of public-key aggregate signature (PKAS) that
allows each signer to sequentially add his signature on a different message to the aggregate signature
[23]. That is, a signer with an index i receives an aggregate signature σ ′

Σ
from the signer of an index

i− 1, and he generates a new aggregate signature σΣ by aggregating his signature on a message M to

6

the received aggregate signature. The resulting aggregate signature has the same size of the previous
aggregate signature.

Formally, a SeqAS scheme consists of four PPT algorithms Setup, KeyGen, AggSign, and Ag-
gVerify, which are defined as follows:

• Setup(1λ). The setup algorithm takes as input a security parameter 1λ and outputs public param-
eters PP.

• KeyGen(PP). The key generation algorithm takes as input the public parameters PP, and outputs
a public key PK and a private key SK.

• AggSign(σ ′
Σ
,M,PK,M,SK,PP). The aggregate signing algorithm takes as input an aggregate-

so-far σ ′
Σ

on messages M = (M1, . . . ,Mk) under public keys PK = (PK1, . . . ,PKk), a message M,
and a private key SK with PP, and outputs a new aggregate signature σΣ.

• AggVerify(σΣ,M,PK,PP). The aggregate verification algorithm takes as input an aggregate sig-
nature σΣ on messages M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . ,PKl) and the public
parameters PP, and outputs either 1 or 0 depending on the validity of the aggregate signature.

The correctness requirement is that for each PP output by Setup, for all (PK,SK) output by KeyGen,
any M, we have that AggVerify(AggSign(σ ′

Σ
,M′,PK′,M,SK,PK,PP),M′||M,PK′||PK,PP)= 1 where

σ ′
Σ

is a valid aggregate-so-far signature on messages M′ under public keys PK′.

The security model of SeqAS was introduced by Lysyanskaya et al. [23]. In this paper, we follow
the security model that was proposed by Lu et al. [22]. The security model of Lu et al. is a more
restricted model that requires the adversary to correctly generate other signers’ public keys and private
keys except the challenge signer’s key. To ensure the correct generation of public keys and private
keys, the adversary should submit the corresponding private keys of the public keys to the challenger
before using the public keys. A realistic solution of this is for the signer to prove that he knows the
corresponding private key of the public key by using zero-knowledge proofs when he requests the
certification of his public key.

In the security model of SeqAS, the public parameters and the challenge public key PK∗ are given
to the adversary. The adversary can request the certification of a public key through a certification query
by providing a public key and a private key. It also can request a sequential aggregate signature on a
message under the challenge public key by providing an aggregate-so-far that was generated from the
certified public keys. Finally, it outputs a forged aggregate signature σ∗

Σ
. The adversary breaks the

SeqAS scheme if the forged sequential aggregate signature is valid and non-trivial.
Formally, the security notion of existential unforgeability under a chosen message attack is defined

in terms of the following experiment between a challenger C and a PPT adversary A:

Setup: C first initializes a key-pair list KeyList as empty. Next, it runs Setup to obtain public parame-
ters PP and KeyGen to obtain a key pair (PK,SK), and gives PK to A.

Certification Query: A adaptively requests the certification of a public key by providing a key pair
(PK,SK). Then C adds the key pair (PK,SK) to KeyList if the key pair is a valid one.

Signature Query: A adaptively requests a sequential aggregate signature (by providing an aggregate-
so-far σ ′

Σ
on messages M′ under public keys PK′), on a message M to sign under the challenge

public key PK, and receives a sequential aggregate signature σΣ.

7

Output: Finally (after a sequence of the above queries), A outputs a forged sequential aggregate
signature σ∗

Σ
on messages M∗ under public keys PK∗. C outputs 1 if the forged signature satisfies

the following three conditions, or outputs 0 otherwise: 1) AggVerify(σ∗
Σ
,M∗,PK∗,PP) = 1, 2)

The challenge public key PK must exists in PK∗ and each public key in PK∗ except the challenge
public key must be in KeyList, and 3) The corresponding message M in M∗ of the challenge
public key PK must not have been queried by A to the sequential aggregate signing oracle.

The advantage of A is defined as AdvSeqAS
A = Pr[C = 1] where the probability is taken over all the

randomness of the experiment. A SeqAS scheme is existentially unforgeable under a chosen message
attack if all PPT adversaries have at most a negligible advantage (for large enough security parameter)
in the above experiment.

3.2 Construction

We first describe the design idea of our SeqAS scheme. To construct a SeqAS scheme, we use the
“public key sharing” technique such that the element Y in the public key of the original CL signature
scheme can be shared with all signers. The modified CL signature scheme that shares the element Y of
the public key is described as follows: The setup algorithm publishes the public parameters that contain
the description of bilinear groups and an element Y . Each signer generates a private key x ∈ Zp and a
public key X = gx. A signer who has the private key x of the public key X can generates an original CL
signature σ = (A,B,C) on a message M just using the private key x and a random r as A = gr,B = Y r,
and C = AxBxM since the element Y is given in the public parameters. This modified CL signature
scheme is still secure under the LRSW assumption.

We construct a SeqAS scheme based on the modified CL signature scheme that supports “public
key sharing” by using the “randomness re-use” technique of Lu et al. [22]. It is easy to sequentially
aggregate signatures if the element Y is shared with all signers since we only need to consider the
aggregation of the {Xi} values of signers instead of the {Xi,Yi} values of signers. For instance, the
first signer who has a private key x1 generates a signature σ1 = (A1,B1,C1) on a message M1 as A1 =
gr1 ,B1 = Y r1 , and C1 = (gr1)x1(Y r1)x1M1 . The second signer with a private key x2 generates a sequential
aggregate signature σ2 = (A2,B2,C2) on a message M2 as A2 = A1,B2 = B1, and C2 =C1(A1)

x2(B1)
x2M2

by using the “randomness re-use” technique. Therefore a sequential aggregate signature of signers is
formed as σΣ = (A = gr,B = Y r,C = A∑xiB∑xiMi). Additionally, each signer should re-randomize the
aggregate signature to prevent a simple attack.

Our SeqAS scheme is described as follows:

SeqAS.Setup(1λ): The setup algorithm first generates the bilinear groups G,GT of prime order p of
bit size Θ(λ). Let g be the generator of G. It chooses a random element Y ∈G and outputs public
parameters as PP = (p,G,GT ,e,g,Y).

SeqAS.KeyGen(PP): The key generation algorithm takes as input the public parameters PP. It selects
a random exponent x ∈ Zp and sets X = gx. Then it outputs a private key as SK = x and a public
key as PK = X .

SeqAS.AggSign(σ ′
Σ
,M′,PK′,M,SK,PP): The aggregate signing algorithm takes as input an aggregate-

so-far σ ′
Σ
= (A′,B′,C′) on messages M′ = (M1, . . . ,Mk) under public keys PK′ = (PK1, . . . ,PKk)

where PKi = Xi, a message M ∈ Z∗p, and a private key SK = x with PP. It first checks the validity
of σ ′

Σ
by calling AggVerify(σ ′

Σ
,M′,PK′,PP). If σ ′

Σ
is not valid, then it halts. It checks that the

8

public key PK of SK does not already exist in PK′. If the public key already exists, then it halts.
Note that if k = 0, then σ ′

Σ
= (1,Y,1). It selects a random exponent r ∈ Zp and computes

A = (A′)r, B = (B′)r, C =
(
C′ · (A′)x · (B′)xM)r

.

It outputs an aggregate signature as σΣ = (A,B,C).

SeqAS.AggVerify(σΣ,M,PK,PP): The aggregate verification algorithm takes as input an aggregate
signature σΣ = (A,B,C) on messages M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . ,PKl)
where PKi = Xi. It first checks that any Mi is in Z∗p, any public key does not appear twice in PK,
and any public key in PK has been certified. If these checks fail, then it outputs 0. If l = 0, then
it outputs 1 if σΣ = (1,Y,1), 0 otherwise. Next, it verifies that

e(A,Y) ?
= e(B,g) and e(C,g) ?

= e(A,
l

∏
i=1

Xi) · e(B,
l

∏
i=1

XMi
i).

If these equations hold, then it outputs 1. Otherwise, it outputs 0.

A sequential aggregate signature σΣ = (A,B,C) on messages M = (M1, . . . ,Ml) under public keys
PK = (PK1, . . . ,PKl) has the following form

A = gr, B = Y r, C =
(
gr)∑

l
i=1 xi

(
Y r)∑

l
i=1 xiMi

where PKi = Xi = gxi .

3.3 Security Analysis

We prove the security of our SeqAS scheme based on the security of the CL signature scheme in the
standard model. Therefore, our SeqAS scheme is existentially unforgeable under a chosen message
attack under the LRSW assumption since the security of the CL signature scheme is proven under the
LRSW assumption.

Theorem 3.1. The above SeqAS scheme is existentially unforgeable under a chosen message attack if
the CL signature scheme is existentially unforgeable under a chosen message attack. That is, for any
PPT adversary A for the above SeqAS scheme, there exists a PPT algorithm B for the CL signature
scheme such that AdvSeqAS

A (λ)≤ AdvCL
B (λ).

Proof. The main idea of the security proof is that the aggregated signature of our SeqAS scheme is
independent of the order of aggregation, and the simulator of the SeqAS scheme possesses the private
keys of all signers except the private key of the challenge public key. That is, if the adversary requests a
sequential aggregate signature, then the simulator first obtains a CL signature from the target scheme’s
signing oracle and runs the aggregate signing algorithm to generate a sequential aggregate signature. If
the adversary finally outputs a forged sequential aggregate signature that is non-trivial, then the simula-
tor extracts the CL signature of the challenge public key from the forged aggregate signature by using
the private keys of other signers.

Suppose there exists an adversary A that forges the above SeqAS scheme with a non-negligible
advantage ε . A simulator B that forges the CL signature scheme is first given: a challenge public key
PKCL = (p,G,GT ,e,g,X ,Y). Then B that interacts with A is described as follows:

9

Setup: B first constructs PP = (p,G,GT ,e,g,Y) and PK∗ = X from PKCL. Next, it initializes a key-
pair list KeyList as an empty one and gives PP and PK∗ to A.

Certification Query: A adaptively requests the certification of a public key by providing a public key
PKi = Xi and its private key SKi = xi. B checks the private key and adds the key pair (PKi,SKi)
to KeyList.

Signature Query: A adaptively requests a sequential aggregate signature query by providing an
aggregate-so-far σ ′

Σ
on messages M′ = (M1, . . . ,Mk) under public keys PK′ = (PK1, . . . ,PKk),

and a message M to sign under the challenge private key of PK∗. B proceeds the aggregate
signature query as follows:

1. It first checks that the signature σ ′
Σ

is valid by calling SeqAS.AggVerify and that each public
key in PK′ exits in KeyList.

2. It queries its signing oracle that simulates PKS.Sign on the message M for the challenge
public key PK∗ and obtains a signature σ .

3. For each 1≤ i≤ k, it constructs an aggregate signature on message Mi using SeqAS.AggSign
since it knows the private key that corresponds to PKi. The resulting signature is an aggre-
gate signature for messages M′||M under public keys PK′||PK∗ since this scheme does not
check the order of aggregation. It gives the result signature σΣ to A.

Output: A outputs a forged aggregate signature σ∗
Σ
= (A∗,B∗,C∗) on messages M∗ = (M1, . . . ,Ml)

under public keys PK∗ = (PK1, . . . ,PKl) for some l. Without loss of generality, we assume that
PK1 = PK∗. B proceeds as follows:

1. B first checks the validity of σ∗
Σ

by calling SeqAS.AggVerify. Additionally, the forged
signature should not be trivial: the challenge public key PK∗ must be in PK∗, and the
message M1 must not be queried by A to the signature query oracle.

2. For each 2≤ i≤ l, it parses PKi = Xi from PK∗, and it retrieves the private key SKi = xi of
PKi from KeyList. It then computes

A = A∗, B = B∗, C =C∗ ·
((

A∗
)

∑
l
i=2 xi

(
B∗

)
∑

l
i=2 xiMi

)−1
.

3. It outputs σ∗ = (A,B,C) on a message M∗ = M1 as a non-trivial forgery of the CL signature
scheme since it did not make a signing query on M1.

To finish the proof, we first show that the distribution of the simulation is correct. It is obvious that
the public parameters and the public key are correctly distributed. The distribution of the sequential
aggregate signatures is correct since this scheme does not check the order of aggregation. Finally, we
can show that the resulting signature σ∗ = (A,B,C) of the simulator is a valid signature for the CL
signature scheme on the message M1 under the public key PK∗ since it satisfies the following equation:

e(C,g) = e(C∗ ·
(
(A∗)∑

l
i=2 xi(B∗)∑

l
i=2 xiMi

)−1
,g)

= e((A∗)∑
l
i=1 xi(B∗)∑

l
i=1 xiMi · (A∗)−∑

l
i=2 xi(B∗)−∑

l
i=2 xiMi ,g)

= e((A∗)x1(B∗)x1M1 ,g) = e(A∗,gx1) · e(B∗,gx1M1)

= e(A,X) · e(B,XM∗).

This completes our proof.

10

3.4 Discussions

Efficiency. The public key of our SeqAS scheme consists of just one group element and the aggregate
signature consists of three group elements, since the public key element Y of the CL signature scheme is
moved to the public parameters of our scheme. The aggregate signing algorithm requires one aggregate
verification and five exponentiations, and the aggregate verification algorithm requires five pairing op-
erations and l exponentiations where l is the number of signers in the aggregate signature. In the SeqAS
scheme of Schröder [26], the public key consists of two group elements, the aggregate signature con-
sists of four group elements, and the aggregate verification algorithm requires l pairing operations and l
exponentiations. Therefore, our SeqAS scheme is more efficient than the SeqAS scheme of Schröder.

Asymmetric Bilinear Groups. We can use asymmetric bilinear groups instead of symmetric bilinear
groups to reduce the size of aggregate signatures. Let G,Ĝ,GT be the cyclic groups of prime order p.
We say that G,Ĝ,GT are asymmetric bilinear groups if there exists the bilinear map e : G× Ĝ→ GT

that has bilinearity and non-degeneracy properties. The SeqAS scheme in asymmetric bilinear groups
is described as follows: the public parameters is PP = (p,G,Ĝ,GT ,e,g, ĝ,Y,Ŷ), the private key and the
public key are SK = x and PK = X̂ ∈ Ĝ respectively, and the aggregate signature is σΣ = (A = gr,B =
Y r,C = A∑xiB∑xiMi) ∈G3. For instance, if we instantiate the asymmetric bilinear groups using the 175-
bit MNT curve with embedding degree 6 to guarantee 80-bit security level, the size of public key is 525
bit and the size of aggregate signature is 525 bit. In the 175-bit MNT curve, the SeqAS scheme of Lu
et al. [22] has 113 kilo-bits size of the public key and 350 bit size of the aggregate signature, and the
SeqAS scheme of Schröder [26] has 1050 bit size of the public key and 700 bit size of the aggregate
signature.

Public-Key Signature. We can easily derive a new PKS scheme from our SeqAS scheme. Compared
to the CL signature scheme, the new PKS scheme has an advantage such that the public key just consists
of one group element X instead of two group elements X ,Y since the element Y is moved to the public
parameters. A signer who has a private key x can generate a signature σ = (A,B,C) as A = gr,B = Y r,
and C = AxBxM. A verifier can verify the signature by checking that e(A,Y) = e(B,g) and e(C,g) =
e(A,X) · e(B,XM). This new PKS scheme is also secure under the LRSW assumption.

4 Synchronized Aggregate Signature

In this section, we first define the synchronized aggregate signature and its security model. Next, we
propose an efficient synchronized aggregate signature scheme based on the CL signature scheme, and
prove its security in the random oracle model under the LRSW assumption.

4.1 Definitions

Synchronized aggregate signature (SyncAS) is a special type of public-key aggregate signature (PKAS)
that allows anyone to aggregate signer’s signatures on different messages with a same time period into
a short aggregate signature if all signers have the synchronized time period information like a clock
[19, 1]. In SyncAS scheme, each signer has a synchronized time period or has an access to public
time information. Each signer can generate an individual signature on a message M and a time period
w. Note that the signer can generate just one signature per one time period. After that, anyone can
aggregate individual signatures of other signers into a short aggregate signature σΣ if the individual

11

signatures are generated on the same time period w. The resulting aggregate signature has the same size
of the individual signature.

Formally, a SyncAS scheme consists of six PPT algorithms Setup, KeyGen, Sign, Verify, Aggre-
gate, and AggVerify, which are defined as follows:

• Setup(1λ). The setup algorithm takes as input a security parameter 1λ and outputs public param-
eters PP.

• KeyGen(PP). The key generation algorithm takes as input the public parameters PP, and outputs
a public key PK and a private key SK.

• Sign(M,w,SK,PP). The signing algorithm takes as input a message M, a time period w, and a
private key SK with PP, and outputs an individual signature σ .

• Verify(σ ,M,PK,PP). The verification algorithm takes as input a signature σ on a message M
under a public key PK, and outputs either 1 or 0 depending on the validity of the signature.

• Aggregate(S,M,PK). The aggregation algorithm takes as input individual signatures S=(σ1, . . . ,σl)
on messages M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . ,PKl), and outputs an aggregate
signature σΣ.

• AggVerify(σΣ,M,PK,PP). The aggregate verification algorithm takes as input an aggregate
signature σΣ on messages M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . ,PKl), and outputs
either 1 or 0 depending on the validity of the aggregate signature.

The correctness requirement is that for each PP output by Setup, for all (PK,SK) output by KeyGen,
any M, we have that AggVerify(Aggregate(S,M,PK),M,PK,PP) = 1 where S is individual signatures
on messages M under public keys PK.

The security model of SyncAS was introduced by Gentry and Ramzan [19]. In this paper, we follow
the security model that was proposed by Ahn et al. [1]. The security model of Ahn et al. is a more
restricted model that requires the adversary to correctly generate other signers’ public keys and private
keys except the challenge signer’s key. To ensure the correct generation of public keys and private keys,
the adversary should submit the private key of the public key, or he should prove that he knows the
corresponding private key by using zero-knowledge proofs.

In the security model of SyncAS, the public parameters and the challenge public key PK∗ are given
to the adversary at first. The adversary can request the certification of a public key through a certification
query by providing the public key and the corresponding private key. It also can request a signature on
a message M and a time period w that was not used before under the challenge public key. Finally, it
outputs a forged synchronized aggregate signature σ∗

Σ
. The adversary breaks the SyncAS scheme if the

forged synchronized aggregate signature of the adversary is valid and non-trivial.
Formally, the security notion of existential unforgeability under a chosen message attack is defined

in terms of the following experiment between a challenger C and a PPT adversary A:

Setup: C first initializes a key-pair list KeyList as empty. Next, it runs Setup to obtain public parame-
ters PP and KeyGen to obtain a key pair (PK,SK), and gives PK to A.

Certification Query: A adaptively requests the certification of a public key by providing a key pair
(PK,SK). Then C adds the key pair (PK,SK) to KeyList if the key pair is a valid one.

12

Hash Query: A adaptively requests a hash on a string for various hash functions, and receives a hash
value.

Signature Query: A adaptively requests a signature on a message M and a time period w that was not
used before to sign under the challenge public key PK, and receives an individual signature σ .

Output: Finally (after a sequence of the above queries), A outputs a forged synchronized aggregate
signature σ∗

Σ
on messages M∗ under public keys PK∗. C outputs 1 if the forged signature satisfies

the following three conditions, or outputs 0 otherwise: 1) AggVerify(σ∗
Σ
,M∗,PK∗,PP) = 1, 2)

The challenge public key PK must exists in PK∗ and each public key in PK∗ except the challenge
public key must be in KeyList, and 3) The corresponding message M in M∗ of the challenge
public key PK must not have been queried by A to the signing oracle.

The advantage of A is defined as AdvSyncAS
A = Pr[C = 1] where the probability is taken over all the

randomness of the experiment. A SyncAS scheme is existentially unforgeable under a chosen message
attack if all PPT adversaries have at most a negligible advantage (for large enough security parameter)
in the above experiment.

4.2 Construction

We first describe the design idea of our SyncAS scheme. In the previous section, we proposed a modified
CL signature scheme that shares the element Y in the public parameters. The signature of this modified
CL signature scheme is formed as σ = (A = gr,B = Y r,C = AxBxM). If we can force signers to use the
same A = gr and B =Y r in signatures, then we easily obtain an aggregate signature as σΣ = (A = gr,B =
Y r,C = A∑xiB∑xiMi) by just multiplying individual signatures of signers. In synchronized aggregate
signatures, it is possible to force signers to use the same A and B since all signers have the same time
period w. Therefore, each signer first sets A = H(0||w) and B = H(1||w) using the hash function H and
the time period w, and then he generates an individual signature σ = (C = AxBxM,w). We need to hash
a message for the proof of security.

LetW be a set of positive integers such as {0,1}32. Our SyncAS scheme is described as follows:

SyncAS.Setup(1λ): The setup algorithm first generates the bilinear groups G,GT of prime order p of
bit size Θ(λ). Let g be the generator of G. It chooses two hash functions H1 : {0,1}×W → G
and H2 : {0,1}∗×W → Z∗p. It outputs public parameters as PP = (p,G,GT ,e,g,H1,H2).

SyncAS.KeyGen(PP): The key generation algorithm takes as input the public parameters PP. It selects
a random exponent x ∈ Zp and sets X = gx. Then it outputs a private key as SK = x and a public
key as PK = X .

SyncAS.Sign(M,w,SK,PP): The signing algorithm takes as input a message M ∈ {0,1}∗, a time period
w ∈W , and a private key SK = x with PP. It first sets A = H1(0||w),B = H1(1||w),h = H2(M||w)
and computes C = AxBxh. It outputs a signature as σ = (C,w).

SyncAS.Verify(σ ,M,PK,PP): The verification algorithm takes as input a signature σ = (C,w) on a
message M under a public key PK = X . It first checks that the public key has been certified. If
these checks fail, then it outputs 0. Next, it sets A = H1(0||w),B = H1(1||w),h = H2(M||w) and
verifies that e(C,g) ?

= e(ABh,X). If this equation holds, then it outputs 1. Otherwise, it outputs 0.

13

SyncAS.Aggregate(S,M,PK,PP): The aggregation algorithm takes as input signatures S=(σ1, . . . ,σl)
on messages M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . ,PKl) where σi = (C′i ,w

′
i) and

PKi = Xi. It first checks that that w′1 is equal to w′i for i = 2 to l. If it fails, it halts. Next, it sets
w = w′1 and computes C = ∏

l
i=1C′i . It outputs an aggregate signature as σΣ = (C,w).

SyncAS.AggVerify(σΣ,M,PK,PP): The aggregate verification algorithm takes as input an aggregate
signature σΣ = (C,w) on messages M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . ,PKl)
where PKi = Xi. It first checks that any public key does not appear twice in PK and that any
public key in PK has been certified. If these checks fail, then it outputs 0. Next, it sets A =
H1(0||w),B = H1(1||w), hi = H2(Mi||w) for all 1≤ i≤ l and verifies that

e(C,g) ?
= e(A,

l

∏
i=1

Xi) · e(B,
l

∏
i=1

Xhi
i).

If this equation holds, then it outputs 1. Otherwise, it outputs 0.

A synchronized aggregate signature σΣ = (C,w) on messages M = (M1, . . . ,Ml) under public keys
PK = (PK1, . . . ,PKl) has the following form

C = H1(0||w)∑
l
i=1 xiH1(1||w)∑

l
i=1 xiH2(Mi||w)

where PKi = Xi = gxi .

4.3 Security Analysis

We prove the security of our SyncAS scheme based on the security of the CL signature scheme in the
random oracle model. Therefore, our SyncAS scheme is existentially unforgeable under a chosen mes-
sage attack under the LRSW assumption since the CL signature is proven under the LRSW assumption.

Theorem 4.1. The above SyncAS scheme is existentially unforgeable under a chosen message attack if
the CL signature scheme is existentially unforgeable under a chosen message attack. That is, for any
PPT adversary A for the above SyncAS scheme, there exists a PPT algorithm B for the CL signature
scheme such that AdvSyncAS

A (λ) ≤ qH1qH2 ·AdvCL
B (λ) where qH1 and qH2 are the maximum number of

hash queries.

Proof. The main idea of the security proof is that the random oracle model supports the programmability
of hash functions, the adversary can request just one signature per one time period in this security model,
and the simulator possesses the private keys of all signers except the private key of the challenge public
key. In the proof, the simulator first guesses the time period w′ of the forged synchronized aggregate
signature and selects a random query index k of the hash function H2. After that, if the adversary
requests a signature on a message M and a time period w such that w 6= w′, then he can easily generate
the signature by using the programmability of the random oracle model. If the adversary requests a
signature for the time period w = w′, then he can generate the signature if the query index i is equal
to the index k. Otherwise, the simulator should abort the simulation. Finally, if the adversary outputs
a forged synchronized aggregate signature that is non-trivial on the time period w′, then the simulator
extracts the CL signature of the challenge public key from the forged aggregate signature by using the
private keys of other signers.

14

Suppose there exists an adversary A that forges the above SyncAS scheme with a non-negligible
advantage ε . A simulator B that forges the CL signature scheme is first given: a challenge public key
PKCL = (p,G,GT ,e,g,X ,Y). Then B that interacts with A is described as follows:

Setup: B first constructs PP = (p,G,GT ,e,g,H1,H2) and PK∗ = X from PKCL. It chooses a random
value h′ ∈ Z∗p and queries its signing oracle PKS.Sign to obtain σ ′ = (A′,B′,C′). Let qH1 and qH2

be the maximum number of H1 and H2 hash queries respectively. It chooses a random index k
such that 1 ≤ k ≤ qH2 and guesses a random time period w′ ∈W of the forged signature. Next,
it initializes a key-pair list KeyList, hash lists H1-List,H2-List as an empty one and gives PP and
PK∗ to A.

Certification Query: A adaptively requests the certification of a public key by providing a public key
PKi = Xi and its private key SKi = xi. B checks the private key and adds the key-pair (PKi,SKi)
to KeyList.

Hash Query: A adaptively requests a hash value for H1 and H2 respectively. If this is a H1 hash query
on a bit b and a time period wi, then B treats the query as follows:

• If b = 0 and wi 6= w′, then it selects a random exponent ri ∈ Zp and sets H1(0||wi) = gri .

• If b = 0 and wi = w′, then it sets H1(0||wi) = A′.

• If b = 1 and wi 6= w′, then it selects a random exponent si ∈ Zp and sets H1(1||wi) = gsi .

• If b = 1 and wi = w′, then it sets H1(1||wi) = B′.

If this is a H2 hash query on a message Mi and a time period w j, then B treats the query as follows:

• If i 6= k or w j 6= w′, then it selects a random value hi, j ∈ Zp and sets H2(Mi||w j) = hi, j.

• If i = k and w j = w′, then it sets H2(Mi||w j) = h′.

Note that the simulator keeps the tuple (bi,wi,ri,H1(bi||wi)) in H1-List and the tuple (Mi,w j,hi, j)
in H2-List.

Signature Query: A adaptively requests a signature by providing a message Mi and a time period w j

to sign under the challenge private key of PK∗. B proceeds the signature query as follows:

• If wi 6= w′, then it responses σi, j = (X riX sihi, j ,w j) where ri,si, and hi, j are retrieved from the
H1-List and H2-List.

• If wi = w′ and i = k, then it responses σi, j = (C′,w j).

• If wi = w′ and i 6= k, it aborts the simulation.

Output: A outputs a forged aggregate signature σ∗
Σ
= (C∗,w∗) on messages M∗ = (M1, . . . ,Ml) under

public keys PK∗ = (PK1, . . . ,PKl) for some l. Without loss of generality, we assume that PK1 =
PK∗. B proceeds as follows:

1. It checks the validity of σ∗
Σ

by calling SyncAS.AggVerify. Additionally, the forged signa-
ture should not be trivial: the challenge public key PK∗ must be in PK∗, and the message
M1 must not be queried by A to the signature query oracle.

2. If w∗ 6= w′, then it aborts the simulation since it fails to guess the forged time period.

15

3. For each 2 ≤ i ≤ l, it retrieves the private key SKi = xi of PKi from KeyList and sets hi,∗ =
H2(Mi||w∗). Next, it computes

A = A∗, B = B∗, C =C∗ ·
((

A∗
)

∑
l
i=2 xi

(
B∗

)
∑

l
i=2 xihi,∗

)−1
.

4. If H2(M1||w∗) = h′, then it also aborts the simulation.

5. It outputs σ∗ = (A,B,C) on a message h1,∗ as a non-trivial forgery of the CL signature
scheme since h1,∗ 6= h′ where h1,∗ = H2(M1||w∗).

To finish the proof, we first show that the distribution of the simulation is correct. It is obvious that
the public parameters and the public key are correctly distributed. The distribution of the signatures
is also correct. Next, we show that the resulting signature σ∗ = (A,B,C) of the simulator is a valid
signature for the CL signature scheme on the message h1,∗ 6= h′ under the public key PK∗ since it
satisfies the following equation:

e(C,g) = e(C∗ ·
(
(A∗)∑

l
i=2 xi(B∗)∑

l
i=2 xiH2(Mi||w∗)

)−1
,g)

= e((A∗)∑
l
i=1 xi(B∗)∑

l
i=1 xihi,∗ · (A∗)−∑

l
i=2 xi(B∗)−∑

l
i=2 xihi,∗ ,g)

= e((A∗)x1(B∗)x1h1,∗ ,g) = e(A∗,gx1) · e(B∗,gx1h1,∗)

= e(A′,X) · e(B′,Xh1,∗).

We now analyze the success probability of the simulator B. At first, B succeeds the simulation if
he does not abort in the simulation of signature queries and he correctly guesses the time period w∗

such that w∗ = w′ in the forged aggregate signature from the adversary A. B aborts the simulation of
signature queries if the time period w′ is given from A and he incorrectly guessed the index k since
he cannot generate a signature. Thus B succeeds the simulation of signature queries at least 1/qH2

probability since the outputs of H2 are independently random. Next, B can correctly guess the time
period w∗ of the forged aggregate signature with at least 1/qH1 probability since he randomly chooses a
random w′. Note that the probability H2(M2||w∗) = h′ is negligible. Therefore, the success probability
of B is at least 1/qH1qH2 ·AdvSyncAS

A where AdvSyncAS
A is the success probability ofA. This completes our

proof.

4.4 Discussions

Efficiency. The public key of our SyncAS scheme consists of just one group element since our SyncAS
scheme is derived from the SeqAS scheme of the previous section, and the synchronized aggregate
signature consists of one group element and one integer since anyone can compute A,B using the hash
functions. The signing algorithm requires two group hash operations and two exponentiations, and
the aggregate verification algorithm requires two group hash operations, three pairing operations, and
l exponentiations where l is the number of signers in the aggregate signature. Our SyncAS scheme
provides the shortest aggregate signature size compared to the previous SyncAS schemes [19, 1] since
the aggregate signature of previous SyncAS schemes consists of two group elements and one integer.
Additionally the signing and verification algorithms of our scheme are efficient compared to the previous
SyncAS schemes.

Asymmetric Bilinear Groups. To reduce the size of aggregate signatures, we can use asymmetric
bilinear groups instead of symmetric bilinear groups. The SyncAS scheme in asymmetric bilinear

16

groups is described as follows: the public parameters is PP = (p,G,Ĝ,GT ,e,g, ĝ,H1,H2), the pri-
vate key and the public key are SK = x and PK = X̂ respectively, the individual signature is σ = (C =
H1(0||w)xH1(1||w)xH2(M||w),w), and the aggregate signature is σΣ =(C =H1(0||w)∑xiH1(1||w)∑xiH2(Mi||wi),w).
For instance, if we instantiate the asymmetric bilinear groups using the 175-bit MNT curve with em-
bedding degree 6 to guarantee 80-bit security level, the size of aggregate signature is 207 bit since the
size of a time period can be 32 bit.

Combined (Multi-Modal) Aggregate Signature. We can construct a combined aggregate signature
scheme that supports sequential aggregation and synchronized aggregation at the same time by com-
bining our SeqAS scheme and our SyncAS scheme since the private key and the public key of our
two schemes are the same. In the combined aggregate signature scheme, the public parameters is
PP = (p,G,GT ,e,g,Y,H1,H2), the private key and the public key are SK = x and PK = X respectively.
A signer with a private key can generate a sequential aggregate signature or a synchronized aggregate
signature. The security model of the combined aggregate signatures can be defined by combining the
security models of SeqAS schemes and SyncAS schemes. In this security model, the adversary is given
sequential aggregate signatures and synchronized aggregate signatures, and it finally outputs a forged
(sequential or synchronized) aggregate signature. The security proof of the combined aggregate signa-
ture scheme easily follows from the security proof of SeqAS schemes and the security proof of SyncAS
schemes since the simulator’s simulations of SeqAS signatures and SyncAS signatures can be done
without interference.

Public-Key Signature. We can also derive another PKS scheme from our SyncAS scheme. The derived
PKS scheme has a restriction such that a signer should use a random value w that was not used before.
This derived PKS scheme is the same as the CL* signature scheme that was proposed by Camenisch
et al. [15]. The CL* signature scheme supports batch verification that enables a verifier to quickly
check the validity of many signatures on different messages and different signers. Compared to the CL
signature scheme, the signature of the CL* signature scheme consists of one group element and one
integer instead of three group elements, and the signature verification algorithm of the CL* signature
scheme just requires two pairing operations instead of five pairing operations.

Removing Random Oracles. If the number of messages is restricted to be polynomial, then Camenisch
et al. showed that random oracles can be removed in the CL* signature scheme by using the universal
one-way hash function of Canetti et al. [17, 15]. We also can use the universal one-way hash function
in our SyncAS scheme if the number of messages is restricted to be polynomial. However, the SeqAS
scheme using the universal one-way hash function of Canetti et al. is inefficient since it requires large
number of exponentiations.

5 Conclusion

In this paper we concentrated on the notion of aggregate signatures which applications are in reducing
space of signatures for large repositories (such as in the legal, financial, and infrastructure areas). We
proposed a new sequential aggregate signature scheme and a new synchronized aggregate signature
scheme using a newly devised “public key sharing” technique, and we proved their security under the
LRSW assumption. Our two aggregate signature schemes in this paper sufficiently satisfy the efficiency
properties of aggregate signatures such that the size of public keys should be short, the size of aggregate
signatures should be short, and the aggregate verification should be efficient.

An interesting problem is to prove the security of our schemes under static assumptions instead of

17

the interactive LRSW assumption. Recently, Gerbush et al. proposed a modified CL signature scheme in
composite order bilinear groups and proved its security under static assumptions [20]. One may consider
to use the modified CL signature scheme of Gerbush et al. for aggregate signature schemes, but it is not
easy to apply our techniques to the modified CL signature scheme in composite order bilinear groups.

References

[1] Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. Synchronized aggregate signatures: new
definitions, constructions and applications. In ACM Conference on Computer and Communica-
tions Security, pages 473–484, 2010.

[2] Giuseppe Ateniese, Jan Camenisch, and Breno de Medeiros. Untraceable rfid tags via insubvertible
encryption. In Vijay Atluri, Catherine Meadows, and Ari Juels, editors, ACM Conference on
Computer and Communications Security, pages 92–101. ACM, 2005.

[3] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros. Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385, 2005. http:

//eprint.iacr.org/2005/385.

[4] Ali Bagherzandi and Stanislaw Jarecki. Identity-based aggregate and multi-signature schemes
based on rsa. In Phong Q. Nguyen and David Pointcheval, editors, Public Key Cryptography,
volume 6056 of Lecture Notes in Computer Science, pages 480–498. Springer, 2010.

[5] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures.
In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP, volume
4596 of Lecture Notes in Computer Science, pages 411–422. Springer, 2007.

[6] Mihir Bellare and Gregory Neven. Identity-based multi-signatures from rsa. In Masayuki Abe,
editor, CT-RSA, volume 4377 of Lecture Notes in Computer Science, pages 145–162. Springer,
2007.

[7] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. J. Cryptology, 22(1):114–138, 2009.

[8] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisigna-
tures and identity-based sequential aggregate signatures, with applications to secure routing. In
Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM Conference on
Computer and Communications Security, pages 276–285. ACM, 2007.

[9] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisignatures
and identity-based sequential aggregate signatures, with applications to secure routing. Cryptology
ePrint Archive, Report 2007/438, 2010. http://eprint.iacr.org/2007/438.

[10] Alexandra Boldyreva, Adriana Palacio, and Bogdan Warinschi. Secure proxy signature schemes
for delegation of signing rights. J. Cryptology, 25(1):57–115, 2012.

[11] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and
Jan Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes in Computer Science, pages
56–73. Springer, 2004.

18

http://eprint.iacr.org/2005/385
http://eprint.iacr.org/2005/385
http://eprint.iacr.org/2007/438

[12] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes
in Computer Science, pages 416–432. Springer, 2003.

[13] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In Colin
Boyd, editor, ASIACRYPT, volume 2248 of Lecture Notes in Computer Science, pages 514–532.
Springer, 2001.

[14] Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. Sequential aggregate signatures with lazy
verification from trapdoor permutations. Cryptology ePrint Archive, Report 2011/222, 2011.
http://eprint.iacr.org/2011/222.

[15] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen. Batch verification of short
signatures. In Moni Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in Computer
Science, pages 246–263. Springer, 2007.

[16] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilin-
ear maps. In Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer
Science, pages 56–72. Springer, 2004.

[17] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages
255–271. Springer, 2003.

[18] Marc Fischlin, Anja Lehmann, and Dominique Schröder. History-free sequential aggregate sig-
natures. In Ivan Visconti and Roberto De Prisco, editors, SCN, volume 7485 of Lecture Notes in
Computer Science, pages 113–130. Springer, 2012.

[19] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Moti Yung, Yev-
geniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography, volume 3958 of
Lecture Notes in Computer Science, pages 257–273. Springer, 2006.

[20] Michael Gerbush, Allison B. Lewko, Adam O’Neill, and Brent Waters. Dual form signatures:
An approach for proving security from static assumptions. Cryptology ePrint Archive, Report
2012/261, 2012. http://eprint.iacr.org/2012/261.

[21] Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Sequential aggregate signatures with short public
keys: Design, analysis, and implementation studies. Cryptology ePrint Archive, Report 2012/518,
2012. http://eprint.iacr.org/2012/518.

[22] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate
signatures and multisignatures without random oracles. In Serge Vaudenay, editor, EUROCRYPT,
volume 4004 of Lecture Notes in Computer Science, pages 465–485. Springer, 2006.

[23] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate
signatures from trapdoor permutations. In Christian Cachin and Jan Camenisch, editors, EURO-
CRYPT, volume 3027 of Lecture Notes in Computer Science, pages 74–90. Springer, 2004.

[24] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In
Howard M. Heys and Carlisle M. Adams, editors, Selected Areas in Cryptography, volume 1758
of Lecture Notes in Computer Science, pages 184–199. Springer, 1999.

19

http://eprint.iacr.org/2011/222
http://eprint.iacr.org/2012/261
http://eprint.iacr.org/2012/518

[25] Gregory Neven. Efficient sequential aggregate signed data. In Nigel P. Smart, editor, EURO-
CRYPT, volume 4965 of Lecture Notes in Computer Science, pages 52–69. Springer, 2008.

[26] Dominique Schröder. How to aggregate the cl signature scheme. In Vijay Atluri and Claudia Dı́az,
editors, ESORICS, volume 6879 of Lecture Notes in Computer Science, pages 298–314. Springer,
2011.

[27] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor,
EUROCRYPT, volume 1233 of Lecture Notes in Computer Science, pages 256–266. Springer,
1997.

[28] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, edi-
tor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 114–127. Springer,
2005.

20

	Introduction
	Our Contributions
	Related Works

	Preliminaries
	Public Key Signature
	Bilinear Groups
	Complexity Assumption
	The CL Signature Scheme

	Sequential Aggregate Signature
	Definitions
	Construction
	Security Analysis
	Discussions

	Synchronized Aggregate Signature
	Definitions
	Construction
	Security Analysis
	Discussions

	Conclusion

