
Adaptively Secure Garbling with Applications to
One-Time Programs and Secure Outsourcing

Mihir Bellare1 Viet Tung Hoang2 Phillip Rogaway2

1 Dept. of Computer Science and Engineering,University of California, San Diego, USA
2 Dept. of Computer Science, University of California, Davis, USA

August 2012

The proceedings version of this paper appears in Asiacrypt 2012 [3]. This is the full paper.

Abstract. Standard constructions of garbled circuits provide only static security, meaning the input x
is not allowed to depend on the garbled circuit F . But some applications—notably one-time programs
(Goldwasser, Kalai, and Rothblum 2008) and secure outsourcing (Gennaro, Gentry, Parno 2010)—
need adaptive security, where x may depend on F . We identify gaps in proofs from these papers with
regard to adaptive security and suggest the need of a better abstraction boundary. To this end we
investigate the adaptive security of garbling schemes, an abstraction of Yao’s garbled-circuit technique
that we recently introduced (Bellare, Hoang, Rogaway 2012). Building on that framework, we give
definitions encompassing privacy, authenticity, and obliviousness, with either coarse-grained or fine-
grained adaptivity. We show how adaptively secure garbling schemes support simple solutions for one-
time programs and secure outsourcing, with privacy being the goal in the first case and obliviousness
and authenticity the goal in the second. We give transforms that promote static-secure garbling schemes
to adaptive-secure ones. Our work advances the thesis that conceptualizing garbling schemes as a first-
class cryptographic primitive can simplify, unify, or improve treatments for higher-level protocols.

Keywords: adaptive adversaries, adaptive security, garbled circuits, garbling schemes, one-time pro-
grams, secure outsourcing, verifiable computing, Yao’s protocol.

Table of Contents

1 Introduction . 1
2 Framework . 5
3 Adaptive Privacy and One-Time Programs . 6

3.1 Definitions for adaptive privacy . 6
3.2 The OMSS transform . 7
3.3 Achieving prv1 security . 10
3.4 Achieving prv2 security . 11
3.5 Efficient ROM transforms . 12
3.6 “Standard” schemes are not prv2 secure . 13
3.7 One-time programs . 15

4 Obliviousness, Authenticity and Secure Outsourcing . 18
4.1 Definitions for adaptive obliviousness and authenticity . 18
4.2 Achieving obv1 and aut1 security . 19
4.3 Achieving obv2 and aut2 security . 20
4.4 Efficient ROM transforms . 20
4.5 Application to secure outsourcing . 21

References . 24

Appendices . 24
A Preliminaries . 24

A.1 Notation and conventions . 24
A.2 Code-based games . 25
A.3 Circuits . 25

B Indistinguishability-Based Definitions . 26
C Separations . 32
D Postponed proofs . 37

D.1 Proof of Theorem 2 . 37
D.2 Proof of Theorem 3 . 38
D.3 Proof of Theorem 4 . 39
D.4 Proof of Theorem 5 . 39
D.5 Proof of Theorem 8 . 41
D.6 Proof of Theorem 9 . 44
D.7 Proof of Theorem 10 . 44
D.8 Proof of Theorem 11 . 46
D.9 Proof of Theorem 7 . 47
D.10Proof of Theorem 12 . 47

Adaptively Secure Garbling 1

1 Introduction

Overview. Yao’s garbled-circuit technique [12, 14, 21, 23, 24] has been extremely influential, en-
gendering an enormous number of applications. Yet, at least in its conventional form, the technique
provides only static security.3 Some applications, notably one-time programs [16] and secure out-
sourcing [11], require adaptive security.4 In such cases Yao’s technique can be enhanced in ad hoc
ways, the resulting protocol then incorporated into the higher-level application.

This paper provides a different approach. We create an abstraction for the goal of adaptively
secure garbling. Via a single abstraction, we support a variety of applications in a simple and
modular way. Let’s look at two of the applications that motivate our work.

Two applications. One-time programs are due to Goldwasser, Kalai, and Rothblum (GKR) [16].
The authors aim to compile a program into one that can be executed just once, on an input of
the user’s choice. Unachievable in any “standard” model of computation, GKR assume a model
providing what they call one-time memory. Their solution makes crucial use of Yao’s garbled-circuit
technique. Recognizing that this does not support adaptive queries, GKR embellish the method by
a technique involving output-masking and n-out-of-n secret sharing.

In a different direction, secure outsourcing was formalized and investigated by Gennaro, Gentry,
and Parno (GGP) [11]. Here a client transforms a function f into a function F that is handed to a
worker. When, later, the client would like to evaluate f at x (and various such inputs may arise),
he should be able to quickly map x to a garbled input X and give this to the worker, who will
compute and return Y = F (X). The client must be able to quickly reconstruct from this y = f(x).
He should be sure that the correct value was computed—the computation is verifiable—while the
server shouldn’t learn anything significant about x, including f(x).5 GGP again make use of circuit
garbling, and they again realize that they need something from it—its authenticity—that is a novum
for this domain.

Issues. Assuming the existence of a one-way function, GKR [16] claim that their construction
turns a (statically-secure) garbled circuit into a secure one-time program. We point to a gap in
their proof, namely, the absence of a reduction showing that their simulator works based on the
one-way function assumption. By presenting an example of a statically-secure garbled circuit that,
under their transform, yields a program that is not one-time, we also show that the gap cannot be
filled without changing either the construction or the assumption. The problem is that the GKR
transform fails to ensure adaptive security of garbled circuits under the stated assumption.

Lindell and Pinkas (LP) [20] prove static security of a version of Yao’s protocol assuming a
semantically secure encryption scheme satisfying some extra properties (an elusive and efficiently
verifiable range). GGP [11] build a one-time outsourcing scheme from the LP protocol, claiming to
prove its security based on the same assumption as used in LP. Again, there is a gap in this proof
arising from an implicit assumption of adaptive security of the LP construction.

3 Of course conventional garbled circuits certainly can be used to build schemes, say for multiparty computation,
meeting adaptive security notion; we are only asserting that the standard and well-known methods fail, by them-
selves, to provably achieve adaptive definitions of garbling-scheme security.

4 In speaking of adversaries or security, non-adaptive and dynamic are common synonyms for what we are here
calling static and adaptive.

5 This is input privacy. One could go further and ask that the server not learn anything it shouldn’t about f itself.
Our definitions and constructions will encompass this stronger goal.

2 Bellare, Hoang, and Rogaway

We do not believe these are major problems for either work. In both cases, alternative ways
to establish the the authors’ main results already existed. Goyal, Ishai, Sahai, Venkatesan and
Wadia [17] present an unconditional one-time compiler (no complexity-theoretic assumption is
used at all), while Chung, Kalai and Vadhan [9] present secure outsourcing schemes based solely
on FHE (garbled circuits are not employed). Our interpretation of the stated gaps is that they are
symptoms of something else—a missing abstraction boundary. As recently argued by Bellare, Hoang
and Rogaway (BHR) [4], it is useful and simplifying to see garbling not just as a technique, but as
a first-class primitive. To do so, our earlier work defines syntax and security notions for garbling
schemes, provides proven-correct solutions, then solves some example higher-level problems by
employing a garbling scheme that satisfies the appropriate definition. But the security notions of
BHR do not go far enough to handle what GKR or GGP need, since BHR deals only with static
notions of security. The applications we point to motivate the study of adaptive security for garbling
schemes, while the gaps indicate that the issues may be more subtle than recognized.

Of course we communicated our findings to the GKR and GGP authors. GKR responded after
a few weeks with an updated manuscript [15]. It modifies the claim from their original paper [16] to
now claim that their transform works under the stronger assumption of a sub-exponentially hard
one-way function. (This allows “complexity-leveraging,” where a static adversary can guess the
input that will be used by an adaptive adversary with a probability that, although exponentially-
small, is enough under the stronger assumption.) GGP responded to acknowledge the gap and
suggest that they would address it by assuming the LP construction, or some related realization of
Yao’s idea, already provides adaptive security.

Definitions. We now discuss our contributions in more depth. We start from the abstraction of
a garbling scheme—the raw syntax—introduced by BHR [4]. That work gave multiple definitions
sitting on top of this syntax, but all were for static adversaries, in the sense that the function f to
garble and its input x are selected at the same time. We extend the definitions to adaptive ones,
considering two flavors of adaptive security. With coarse-grained adaptive security the input x can
depend on the garbled function F but x itself is atomic, provided all at once. With fine-grained
adaptive security not only may x depend on the garbled function F , but individual bits of x can
depend on the “tokens” the adversary has so-far learned.6 We will see that coarse-grained adaptive
security is what’s needed for GGP’s approach to secure outsourcing, while fine-grained adaptive
security is what’s needed for GKR’s approach to one-time programs.

Orthogonal to adaptive security’s granularity are the security aims themselves. Following BHR,
we consider three different notions: privacy, obliviousness, and authenticity. This gives rise to nine
different security notions: {prv, obv, aut} × {static, coarse, fine}. We compactly denote these prv,
prv1, prv2, obv, obv1, obv2, aut, aut1, aut2. Informally, when a function f gets transformed into a
garbled function F , an encoding function e, and a decoding function d, privacy ensures that F , d,
and X = e(x) don’t reveal anything beyond y = f(x) that shouldn’t be revealed; obliviousness
ensures that F and X don’t reveal even y; and authenticity ensures that F and X don’t enable
the computation of a valid Y ̸= F (X). Privacy is the classical requirement, while obliviousness and
authenticity are motivated by the application to secure outsourcing.

6 Fine-grained adaptive security requires the garbling scheme be projective: the garbled version of each x = x1 · · ·xn ∈
{0, 1}n must be (Xx1

1 , . . . , Xxn
n) for some vector of 2n strings (X0

1 , X
1
1 , . . . , X

0
n, X

1
n). Typical garbling schemes have

this structure.

Adaptively Secure Garbling 3

Our primary definitions for adaptive secrecy (prv1, prv2, obv1, obv2) are simulation-based. In
Appendix B we give indistinguishability-based counterparts as well. For static security this was
already done by BHR, but it was not clear how to lift those definitions to the adaptive setting.

Relations. We explore the provable-security relationships among our definitions. As expected,
the simulation-based definitions imply indistinguishability-based ones (namely, prv1 ⇒ prv1.ind,
prv2 ⇒ prv2.ind, obv1 ⇒ obv1.ind, and obv2 ⇒ obv2.ind). But none of the converse statements
hold. BHR had earlier shown that, for the static setting, the converse statements do hold as
long as the associated side-information function7 is efficiently invertible.8 In contrast, we show
that, for adaptive privacy, this condition still won’t guarantee equivalence of simulation-based
and indistinguishability-based notions. (For obliviousness, it is true that obv1.ind ⇒ obv1 and
obv2.ind⇒ obv2 if Φ is efficiently invertible.) The results are our main reason to focus on simulation-
based definitions for adaptive privacy. Appendix C paints a complete picture of the relations among
our basic definitions. Apart from the trivial relations (prv2 ⇒ prv1 ⇒ prv, obv2 ⇒ obv1 ⇒ obv,
and aut2⇒ aut1 ⇒ aut) nothing implies anything else.

Achieving adaptive security. Basic garbling-scheme constructions [4, 12, 14, 21] either do not
achieve adaptive security or present difficulties in proving adaptive security that we do not know
how to overcome. One could give new constructions and directly prove them xxx1 or xxx2 secure,
for xxx ∈ {prv, obv, aut}. An alternative is to provide generic ways to transform statically secure
garbling schemes to adaptively secure ones. Combined with results in BHR [4], this would yield
adaptively-secure garbling schemes.

The aim of the GKR construction was to add adaptive security to statically-secure garbled cir-
cuit constructions. We reformulate it as a transform, OMSS (Output Masking and Secret Sharing),
aiming to turn a prv secure garbling scheme to a prv2 secure one. We show, by counterexample,
that OMSS does not achieve this goal.

To give transforms that work we make two steps, first passing from static security to coarse-
grained adaptive security, and thence to fine-grained adaptive security. We design these transfor-
mations first for privacy (prv-to-prv1, prv1-to-prv2) and then for simultaneously achieving all three
goals (all-to-all1 and all1-to-all2). Our prv-to-prv1 transform uses a one-time-padding technique
from [17], while our prv1-to-prv2 transform uses the secret-sharing component of OMSS.

Applications. We treat the two applications that motivated this work, one-time programs and
secure outsourcing. We show that adaptive garbling schemes yield these applications easily and
directly. Specifically, we show that a prv2 projective garbling scheme can be turned into a secure
one-time program by simply putting the garbled inputs into the one-time memory. We also show
how to easily turn an obv1+aut1 secure garbling scheme into a secure one-time outsourcing scheme.
(GGP [11] show how to lift one-time outsourcing schemes to many-time ones using FHE.) The
simplicity of these transformations underscores our tenet that abstracting garbling schemes and
treating adaptive security for them enables modular and rigorous applications of the garbled-

7 The side-information function Φ captures that about f one allows to be revealed in its garbled counterpart F .
When f encodes a circuit, the side-information might be its size (gate count), input length, and output length.

8 Side-information function Φ is efficiently invertible if there is a PT algorithm M that, on input ϕ = Φ(f) for some f ,
outputs f ′ such that Φ(f ′) = ϕ. If Φ is efficiently invertible then obv and obv.ind are equivalent. Each garbling
scheme has a procedure ev that describes how to interpret a string f as a function ev(f, ·) : {0, 1}n → {0, 1}m. The
pair (Φ, ev) is efficiently invertible if there is a PT algorithm M that, on input ϕ = Φ(f) and y = f(x) for some f
and some x, outputs an f ′ and x′ such that Φ(f ′) = ϕ and f ′(x′) = y. If (Φ, ev) is efficiently invertible then prv
and prv.ind are equivalent.

4 Bellare, Hoang, and Rogaway

Transform Model Cost See

prv-to-prv1 standard model |F |+ |d|+ |X| Theorem 2

prv1-to-prv2 standard model (n+ 1) |X| Theorem 3

all-to-all1 standard model |F |+ |d|+ |X|+ k Theorem 8

all1-to-all2 standard model (n+ 1) |X| Theorem 9

rom-prv-to-prv1 random-oracle model |X|+ k Theorem 4

rom-prv1-to-prv2 random-oracle model |X|+ nk Theorem 5

rom-all-to-all1 random-oracle model |X|+ 2k Theorem 10

rom-all1-to-all2 random-oracle model |X|+ nk Theorem 11

Fig. 1. Achieving adaptive security. The name of each transform specifies its relevant property. The word all
means that prv, obv, and aut are all upgraded. Column “Cost” specifies the length of the garbled input in the
constructed scheme in terms of the lengths of the input scheme’s garbled function F , decoding function d, garbled
input X, the number of input bits n, and security parameter k.

circuit technique. Basing the applications on garbling schemes also allows instantiations to inherit
efficiency features of future schemes.

Applying our prv-to-prv1 and then prv1-to-prv2 transforms to the prv-secure garbling scheme of
BHR [4] yields a prv2-secure scheme based on any one-way function. Combining this with the above
yields one-time programs based on one-way functions, recovering the claim of GKR [16]. Similarly,
applying our all-to-all1 transform to the obv+aut secure scheme of BHR yields an obv1+aut1 secure
garbling scheme based on a one-way function, and combining this with the above yields a secure
one-time outsourcing scheme based on one-way functions.

Efficiency. Let us say a garbling scheme has short garbled inputs if their length depends only
on the security parameter k, the length n of f ’s input, and the length m of f ’s output. It does not
depend on the length of f . The statically-secure schemes of BHR, as with all classical garbled-circuit
constructions, have short garbled inputs. But our prv-to-prv1 and all-to-all1 transforms result in
long garbled inputs. In the ROM (random-oracle model) we are able to provide schemes producing
short garbled inputs, as illustrated in Fig. 1. Constructing an adaptively secure garbling scheme
with short garbled inputs under standard assumptions remains open.9

Short garbled inputs are particularly important for the application to secure outsourcing, for
in their absence the outsourcing scheme may fail to be non-trivial. (Non-trivial means that the
client effort is less than the effort needed to directly compute the function [11].) In particular, the
one-time outsourcing scheme we noted above, derived by applying all-to-all1 to BHR, fails to be
non-trivial. ROM schemes do not fill the gap because of the use of FHE in upgrading one-time
schemes to many-time ones [11]. Thus, a secure and non-trivial instantiation of the GGP method
is still lacking. (However, as we have noted before, non-trivial secure outsourcing may be achieved
by entirely different means [9].)

Further related work. Applebaum, Ishai, and Kushilevitz [1] investigate ideas similar to
obliviousness and authenticity. Their approach to obtaining these ends from privacy can be lifted
and formalized in our settings; one could specify transforms prv1-to-all1 and prv2-to-all2, effectively
handling the constructive story “horizontally” instead of “vertically.” The line of work on random-

9 Intuitively, the underlying encryption appears to need some kind of security against selective-opening attacks that
reveal decryption keys (SOA-K), and this is hard without long keys [2]. However, there is some hope because
full-fledged SOA-K security does not seem to be needed.

Adaptively Secure Garbling 5

ized encodings that the same authors have been at the center of provides an alternative to garbling
schemes [18] but lacks the granularity to speak of adaptive security.

Concurrent work by Kamara and Wei (KW) investigates the garbling what they call structured
circuits [19] and, in the process, give definitions somewhat resembling prv1, obv1, and aut1, although
circuit-based, not function-hiding, and not allowing the adversary to specify the initial function.
KW likewise draw motivation from GKR and GGP, indicating that, in these two settings, the
adversary can choose the inputs to the computation as a function of the garbled circuit, motivating
adaptive notions of privacy and unforgeability.

2 Framework

We now review the syntactic framework of garbling schemes from our earlier work [4]. See Ap-
pendix A for basic notation, including conventions for randomized algorithms, code-based games,
and circuits.

Garbling schemes. A garbling scheme [4] is a five-tuple of algorithms G = (Gb,En,De,Ev, ev).
The first of these is probabilistic; the rest are deterministic. A string f , the original function,
describes the function ev(f, ·) : {0, 1}n → {0, 1}m that we want to garble. The values n = f.n
and m = f.m are efficiently computable from f . On input f and a security parameter k ∈ N,
algorithm Gb returns a triple of strings (F, e, d)← Gb(1k, f). String e describes an encoding function,
En(e, ·), that maps an initial input x ∈ {0, 1}n to a garbled input X = En(e, x). String F describes a
garbled function, Ev(F, ·), that maps a garbled input X to a garbled output Y = Ev(F,X). String d
describes a decoding function, De(d, ·), that maps a garbled output Y to a final output y = De(d, Y).
The correctness requirement is that if f ∈ {0, 1}∗, k ∈ N, x ∈ {0, 1}f.n, and (F, e, d) ∈ [Gb(1k, f)],
then De(d,Ev(F,En(e, x))) = ev(f, x). We also require that e and d depend only on k, f.n, f.m,
|f | and the random coins r of Gb. This non-degeneracy requirement excludes trivial solutions.

A common design in existing garbling schemes is for e to encode a list of tokens, one pair
for each bit in x ∈ {0, 1}n. Encoding function En(e, ·) then uses the bits of x = x1 · · ·xn to
select from e = (X0

1 , X
1
1 , . . . , X

0
n, X

1
n) the subvector X = (Xx1

1 , . . . , Xxn
n). Formally, we say that

garbling scheme G = (Gb,En,De,Ev, ev) is projective if for all f , x, x′ ∈ {0, 1}f.n, k ∈ N, and
i ∈ [1..n], when (F, e, d) ∈ [Gb(1k, f)], X = En(e, x) and X ′ = En(e, x′), then X = (X1, . . . , Xn)
and X ′ = (X ′

1, . . . , X
′
n) are n vectors, |Xi| = |X ′

i|, and Xi = X ′
i if x and x′ have the same ith

bit. Let GS(proj) denote the set of all projective garbling schemes, and let GS(ev) be the set of all
garbling schemes whose evaluation function is ev.

Boolean circuits arise often in this work. We recall in Appendix A.3 a formalization for them
following [4], including the definition of the canonical circuit-evaluation function. We say that
G = (Gb,En,De,Ev, ev) is a circuit-garbling scheme if ev is the canonical circuit-evaluation function.

Side-information functions. A garbled circuit might reveal the size of the circuit that is being
garbled, its topology, the original circuit itself, or something else. The information that we allow to
be revealed is captured by a side-information function, Φ, which deterministically maps f to a string
ϕ = Φ(f). We parameterize our advantage notions by Φ. We require that f.n, f.m and |f | be easily
determined from ϕ = Φ(f). Side-information function Φsize maps a circuit f = (n,m, q,A,B,G)
to (n,m, q), while Φtopo maps f to f− = Topo(f) = (n,m, q,A,B) and Φcirc is the identity,
Φcirc(f) = f .

6 Bellare, Hoang, and Rogaway

proc Garble(f, x) PrvG,Φ,S

b� {0, 1}
if x ̸∈ {0, 1}f.n then return ⊥
if b = 1 then

(F, e, d)← Gb(1k, f)
X ← En(e, x)

else
y ← ev(f, x)

(F,X, d)← S(1k, y, Φ(f))
return (F,X, d)

proc Garble(f) Prv1G,Φ,S

b� {0, 1}
if b = 1 then

(F, e, d)← Gb(1k, f)
else

(F, d)← S(1k, Φ(f), 0)
return (F, d)

proc Input(x)

if x ̸∈ {0, 1}f.n then return ⊥
if b = 1 then X ← En(e, x)
else

y ← ev(f, x), X ← S(y, 1)
return X

proc Garble(f) Prv2G,Φ,S

b� {0, 1}; n← f.n; Q← ∅; τ ← ε
if b = 1 then

(F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, f)

else

(F, d)← S(1k, Φ(f), 0)
return (F, d)

proc Input(i, c)
if i ̸∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}
if |Q|=n then

x← x1 · · ·xn; y←ev(f, x); τ ← y
if b = 1 then Xi ← Xxi

i

else Xi ← S(τ, i, |Q|)
return Xi

Fig. 2. Three kinds of privacy: prv, prv1, prv2. Games to define the static, coarse-grained, and fine-grained
privacy of G = (Gb,En,De,Ev, ev). Finalize(b′) returns the predicate (b = b′). Notation s�S denotes uniform
sampling from a finite set.

Sizes. A cost metric of interest is the length of the garbled input. We say that garbling scheme
G = (Gb,En,De,Ev, ev) has short garbled inputs if there is a polynomial s such that |En(e, x)| ≤
s(k, f.n, f.m) for all k ∈ N, f ∈ {0, 1}∗, (F, e, d) ∈ [Gb(1k, f)], and x ∈ {0, 1}f.n. Let T be a
transform that maps a garbling scheme G to a garbling scheme T[G]. We say that T preserves short
garbled inputs if T[G] has short garbled inputs when G does.

Typical Yao-style constructions, including Garble1 and Garble2 [4], have short garbled inputs.
But they are only statically-secure. Keeping garbled inputs short seems challenging for adaptive
security in the standard model.

3 Adaptive Privacy and One-Time Programs

In this section we define coarse and fine-grained adaptive privacy for garbling schemes. We show
that some natural approaches to achieve these aims fail. We provide alternatives that work, and
more efficient ones in the ROM. We apply this to get secure one-time programs.

3.1 Definitions for adaptive privacy

On the left-hand panel of Fig. 2 we review the defining game for the privacy notion from BHR [4].
The adversary is static, in the sense it must commit to its initial function f and its input x at the
same time. Thus the latter is independent of the garbled function F (and the decoding function d)
derived from f . It is natural to consider stronger privacy notions, ones where the adversary obtains F
and then selects x. Two formulations for this are specified in Fig. 2. We call these adaptive security.
The notion in the middle panel, denoted by prv1, this paper, is coarse-grained adaptive security.
The notion in the right panel, denoted by prv2, is fine-grained adaptive security. This notion is
only applicable for projective garbling schemes.

In detail, let G = (Gb,En,De,Ev, ev) be a garbling scheme and let Φ be a side-information
function. We define three simulation-based notions of privacy via the games PrvG,Φ,S , Prv1G,Φ,S ,

Adaptively Secure Garbling 7

and Prv2G,Φ,S of Fig. 2. Here S, the simulator, is an always-terminating algorithm that maintains
state across invocations. An adversary A interacting with any of these games must make exactly
one Garble query. For game Prv1 it is followed by a single Input query. For game Prv2 it is
followed by multiple Input queries. There, the garbling scheme must be projective. The advantage
the adversary gets is defined by

Advprv, Φ,S
G (A, k) = 2Pr[PrvAG,Φ,S(k)]− 1

Advprv1, Φ,S
G (A, k) = 2Pr[Prv1AG,Φ,S(k)]− 1

Advprv2, Φ,S
G (A, k) = 2Pr[Prv2AG,Φ,S(k)]− 1 .

For xxx ∈ {prv, prv1, prv2} we say that G is xxx secure with respect to (or over) Φ if for every
PT adversary A there exists a PT simulator S such that Advxxx, Φ,S

G (A, ·) is negligible. We let
GS(xxx, Φ) be the set of all garbling schemes that are xxx secure over Φ.

Let us now explain the three games, beginning with static privacy. Here we let the adversary
select f and x and we do one of two things: garble f to make (F, e, d) and encode x to make X,
giving the adversary (F,X, d); or, alternatively, we ask the simulator produce a “fake” (F,X, d)
based only on the security parameter k, the partial information Φ(f) about f , and the output
y = ev(f, x). The adversary will have to guess if the garbling was real or fake.

For coarse-grained adaptive privacy, we begin by letting the adversary pick f . Either we garble
it to (F, e, d) ← Gb(1k, f) and give the adversary (F, d); or else we ask the simulator to devise a
fake (F, d) based solely on k and ϕ = Φ(f). Only after the adversary has received (F, d) do we ask
it to provide an input x. Corresponding to the two choices we either encode x to X = En(e, x) or
ask the simulator to produce a fake X, assisting it only by providing ev(f, x).

Coarse-grained adaptive privacy is arguably not all that adaptive, as the adversary specifies
its input x all in one shot. This is unavoidable as long as the encoding function e operates on x
atomically, using (all of) x to generate (all of) X. But if the encoding function e is projective, then
we can dole out the garbled input component-by-component. In a garbling scheme that enjoys fine-
grained adaptive privacy, the adversary may, for example, specify the second bit x2 of the input x,
receive the corresponding token Xx2

2 , then specify the first bit x1 of x, and so on. Only after the
adversary specifies all n bits, one by one, is the input fully determined. At that point the simulator
is handed y, which might be needed for constructing the final token Xxi

i .

3.2 The OMSS transform

In the process of constructing one-time programs from garbled circuits, GKR [16] recognize the
need for adaptive privacy of the garbled circuits. Their construction incorporates a technique to
provide it. This technique is easily abstracted to provide, in our terminology, a transform that
aims to convert a projective, prv garbling scheme into a projective, prv2 garbling scheme. Instead
of garbling f we pick r� {0, 1}m and garble the circuit g defined by g(x) = f(x) ⊕ r for every
x ∈ {0, 1}n where n = f.n and m = f.m. Then we secret share r as r = r1⊕ · · · ⊕ rn and include ri
in the i-th token, so that evaluation reconstructs r and it can be xored back at decoding time to
recover ev(f, x) as ev(g, x) ⊕ r. Intuitively, this should work because the simulator can garble a
dummy constant function with random output s and does not have to commit to r until it gets the
target output value y of f and needs to provide the last token, at which point it can pick r = s⊕ y
so that the final output is y as desired [16]. Just the same, we show by counterexample that the

8 Bellare, Hoang, and Rogaway

proc Gb2(1
k, f)

n← f.n, r1, . . . , rn � {0, 1}f.m
r ← r1 ⊕ · · · ⊕ rn, g(·)← f(·)⊕ r

(G, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), ε)�Gb(1k, g)

for i ∈ {1, . . . , n} do T 0
i ← (X0

i , ri), T
1
i ← (X1

i , ri)

return (G, (T 0
1 , T

1
1 , . . . , T

0
n , T

1
n), ε)

proc En2((T
0
1 , T

1
1 , . . . , T

0
n , T

1
n), x)

x1 · · ·xn ← x

return (T x1
1 , . . . , T xn

n)

proc Ev2(G, (T1, . . . , Tn))

for i ∈ {1, . . . , n} do (Xi, ri)← Ti

Y ← Ev(G, (X1, . . . , Xn)), r ← r1 ⊕ · · · ⊕ rn
return (Y, r)

proc De2(ε, (Y, r))

return De(ε, Y)⊕ r

proc Gb(1k, g)

(n,m)← (g.n, g.m), (G′, (Z0
1 , Z

1
1 , . . . , Z

0
n, Z

1
n), ε)�Gb′(1k, g)

for i ∈ {1, . . . , n} do V 0
i , V

1
i � {0, 1}m

v1 · · · vn ← v� {0, 1}n, V � {0, 1}m
if n ≥ k then V ← ev(g, v)⊕ V v1

1 ⊕ · · · ⊕ V vn
n

for i ∈ {1, . . . , n} do
X0

i ← (Z0
i , V

0
i), X1

i ← (Z1
i , V

1
i)

G← (G′, v, V)

return (G, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), ε)

proc Ev(G, (X1, . . . , Xn))

for i ∈ {1, . . . , n} do (Zi, Vi)← Xi

(G′, v, V)← G

return Ev′(G′, (Z1, . . . , Zn))

proc En((X0
1 ,X

1
1 , . . . , X

0
n,X

1
n), x)

x1 · · ·xn ← x

return (Xx1
1 , . . . , Xxn

n)

Fig. 3. OMSS definition (top). Scheme OMSS[G] = (Gb2,En2,De2,Ev2, ev) where G = (Gb,En,De,Ev, ev). OMSS

counterexample (bottom). The garbling scheme G = (Gb,En,De,Ev, ev) obtained from G ′ = (Gb′,En′,De,Ev′, ev)

is prv secure when G ′ is, but OMSS[G] is not prv2 secure. We assume the decoding rule of G ′ is vacuous, a feature

inherited by G. We are letting v denote the bitwise complement of a string v.

OMSS does not work, in general, to convert a prv secure scheme to a prv2 secure one: we present
a prv secure G such that OMSS[G] is not prv2 secure.10

Now proceeding formally, we associate to circuit-garbling scheme G = (Gb,En,De,Ev, ev) ∈
GS(proj) the circuit-garbling scheme OMSS[G] = (Gb2,En2,De2,Ev2, ev) ∈ GS(proj) defined at the
top of Fig. 3. For simplicity we are assuming that the decoding rule d in G is always vacuous,
meaning d = ε. (We do not need non-trivial d to achieve privacy [4], and this lets us stay closer to
GKR [16], whose garbled circuits have no analogue of our decoding rule.) In the code, g(·)← f(·)⊕r
means that we construct from f, r a circuit g such that ev(g, x) = ev(f, x)⊕ r for all x ∈ {0, 1}f.n.
(Note we can do this in such a way that Φtopo(g) = Φtopo(f).)

The claim under consideration is that if G is prv secure relative to Φ = Φtopo then G2 is prv2
secure relative to Φ = Φtopo. To prove this, we would need to let A2 be an arbitrary PT adversary

and build a PT simulator S2 such that Advprv2, Φ,S2

G2
(A2, ·) is negligible. GKR suggest a plausible

strategy for the simulator that, in particular, explains the intuition for the transform. We present
here our understanding of this strategy adapted to our setting. In its first phase the simulator S2
has input 1k, ϕ, 0 where ϕ = Φ(f), with f being the query made by the adversary to Garble.
Simulator S2 picks s� {0, 1}n and lets fs be the circuit that has output s on all inputs and
Φtopo(fs) = ϕ. It also picks random m-bit strings s1, . . . , sn and a random input w� {0, 1}n. It
lets (G, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), ε)�Gb(1k, fs) and returns G to the adversary. In the second phase,

10 In Section 3.7 we extend this to show that the OMSS-based one-time compiler of GKR [16] is not secure. The
underlying technical issues, are, however in our view easier understood in terms of garbling, divorced from the
application to one-time programs.

Adaptively Secure Garbling 9

when given input τ, i, j, for j ≤ n − 1, the simulator lets Ti ← (Xwi
i , si) and returns Ti to the

adversary as the token for bit i of the input. In the case that j = n, the simulator obtains (from τ
as per our game) the output y = ev(f, x) of the function on input x, the latter defined by the
adversary’s queries to Input. It now resets si = y ⊕ s⊕ si ⊕ s1 ⊕ · · · ⊕ sn and returns (Xwi

i , si), so
that evaluation of the garbled function indeed results in output y.

This simulation strategy is intuitive, but trying to prove it correct runs into problems. We have
to show that Advprv2, Φ,S2

G2
(A2, ·) is negligible. We must utilize the assumption of prv security to

do this, which means we must perform a reduction. The only plausible path towards this is to
construct from A2 an adversary A against the prv security of G and then exploit the existence of a
simulator S such that Advprv, Φ,S

G (A, ·) is negligible. However, it is not clear how to construct A,
let alone how its simulator comes into play.

The problem turns out to be more than technical, for we will see that the transform itself
does not work in general. By this we mean that we can exhibit a (projective) circuit-garbling
scheme G = (Gb,En,De,Ev, ev) that is prv secure relative to Φ = Φtopo but the transformed scheme
G2 = OMSS[G] is subject to an attack showing that it is not prv2 secure. This means, in particular,
that the above simulation strategy does not in general work.

To carry this out, we start with an arbitrary projective circuit-garbling scheme G ′ = (Gb′,En′,
De,Ev′, ev) assumed to be prv secure relative to Φ = Φtopo. We then transform it into the projective
circuit-garbling scheme G = (Gb,En,De,Ev, ev) shown at the bottom of Fig. 3. The idea is as follows.
We choose m-bit random shares V 0

i , V
1
i for every i ≤ n, and distribute them to the tokens. Next,

choose a “poisoned” point v = v1 · · · vn at random, and append it to the garbled function, making
it trivial for an adaptive adversary to query x = v. Since v is random, a static adversary can guess v
with probability only 2−n. To make sure this probability is negligible in terms of k, we only do the
following trick if n ≥ k. Let V be the encryption of ev(g, v) by using the one-time pad constructed
from the shares corresponding to v, namely, the pad is the checksum of V v1

1 , . . . , V vn
n . Append V to

the garble function as well. So if the adversary queries x = v then it will learn ev(g, v) in addition
to ev(g, v); while if x ̸= v then the shares the adversary receives won’t allow it to decrypt V . The
following proposition says that G continues to be prv secure but an attack shows that OMSS[G] is
not prv2 secure. (The proof shows it is in fact not even prv1 secure.)

Proposition 1 Let ev be the canonical circuit-evaluation function. Assume G ′ = (Gb′,En′,De,
Ev′, ev) ∈ GS(prv, Φtopo) ∩ GS(proj) and let G = (Gb,En,De,Ev, ev) ∈ GS(proj) be the garbling
scheme shown at the bottom of Fig. 3. Then (1) G ∈ GS(prv, Φtopo)∩GS(proj), but (2) OMSS[G] ̸∈
GS(prv2, Φtopo).

Proof (Proposition 1). First let us justify (1). Consider an adversary A that attacks G. Assume
that the circuit f in A’s query satisfies f.n ≥ k; otherwise G will inherit the prv security from G′,
as it only appends to garbled function and each token a random string independent of anything
else. Let the garbled function be (G′, v, V). Unless A manages to query x = v, the same argument
applies and G will again inherit the prv security of G′. Since v� {0, 1}n, the chance that x = v
is 2−n ≤ 2−k.

Now, we justify (2) via the following attack. Adversary A2(1
k) picks R0, R1� {0, 1}, and lets

fR0,R1 denote a circuit such that fR0,R1 .n = k, fR0,R1 .m = 1 and ev(fR0,R1 , x) = Rx1 where x1
is the first bit of x. (We note that we construct the circuit in such a way that the topology is
independent of R0, R1 and depends only on k.) It queries fR0,R1 to Garble to get back (G, ε).
It parses (G′, v, V) ← G and v1 · · · vn ← v. Next for i = 1, . . . , n it queries (i, vi) to Input to

10 Bellare, Hoang, and Rogaway

proc Gb1(1
k, f)

(F, e, d)← Gb(1k, f), F ′ � {0, 1}|F |, d′ � {0, 1}|d|

F1 ← F ⊕ F ′, d1 ← d⊕ d′, e1 ← (e, d′, F ′)

return (F1, e1, d1)

proc En1(e1, x)

(e, d′, F ′)← e1, X ← En(e, x)

return (X, d′, F ′)

proc Ev1(F1, X1)

(X, d′, F ′)← X1, F ← F1 ⊕ F ′, Y ← Ev(F,X)

return (Y, d′)

proc De1(d1, Y1)

(Y, d′)← Y1, d← d1 ⊕ d′

return De(d, Y)

proc Gb2(1
k, f)

(F, e, d)← Gb1(1
k, f)

(X0
1 , X

1
1 , . . . , X

0
n, X

1
n)← e, N ← |En1(e, 0n)|

for i ∈ {1, . . . , n} do Zi � {0, 1}|X
0
i |, Si � {0, 1}N

Z ← (Z1, . . . , Zn), Sn ← Z ⊕ S1 ⊕ · · · ⊕ Sn−1

for i ∈ {1, . . . , n} do
T 0
i ← (X0

i ⊕ Zi, Si), T 1
i ← (X1

i ⊕ Zi, Si)

return (F, (T 0
1 , T

1
1 , . . . , T

0
n , T

1
n), d)

proc Ev2(F,X2)(
(U1, S1), . . . , (Un, Sn)

)
← X2, Z ← S1 ⊕ · · · ⊕ Sn

(Z1, . . . , Zn)← Z, X ← (U1 ⊕ Z1, . . . , Un ⊕ Zn)

return Ev1(F,X)

proc En2(e2, x)

(T 0
1 , X

1
1 , . . . , T

0
n ,X

1
n)← e2, x1 · · ·xn ← x

return (T x1
1 , . . . , T xn

n)

Fig. 4. Transform prv-to-prv1 (top): Scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈ GS(prv1, Φ) obtained by applying

the prv-to-prv1 transform to G = (Gb,En,De,Ev, ev) ∈ GS(prv, Φ). Transform prv1-to-prv2 (bottom): Projective

garbling scheme G2 = (Gb2,En2,De1,Ev2, ev) ∈ GS(prv2, Φ) obtained by applying the prv1-to-prv2 transform to

projective garbling scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈ GS(prv1, Φ).

get back Ti and lets (Xi, ri) ← Ti and (Zi, Vi) ← Xi. It lets y ← De2
(
ε,Ev2(G, (T1, . . . , Tn))

)
and

y′ ← V ⊕ V1 ⊕ · · · ⊕ Vn and r ← r1 ⊕ · · · ⊕ rn. If y ⊕ y′ ⊕ r = R0 ⊕ R1 then it returns 1 else it
returns 0.

Let S2 be any PT simulator and consider game Prv2G2,Φ,S2 . We claim that A2(1
k) returns 1

with probability 1 if the challenge bit b in the game is 1. This is because in this case we have
y = ev(fR0,R1 , v) and y′ = r⊕ ev(fR0,R1 , v) so by definition of fR0,R1 we have y⊕ y′⊕ r = R0⊕R1.
Next we claim that A2(1

k) returns 1 with probability at most 1/2 if the challenge bit b is 0. (We
emphasize that this claim is made regardless of the strategy of the simulator, showing that no
simulator could possibly do well.) In the first phase, the simulator S2 is given 1k, Φtopo(f), 0 as
input and can obtain no information on R0 or R1 beyond their length because the topology of
fR0,R1 is by construction independent of R0, R1. In the second phase, the only useful information
that the sender gets is y = ev(fR0,R1 , v). It thus learns Rv1 but it has no information about R1−v1

and thus the probability that the y′ ⊕ r computed by the adversary equals y ⊕ R0 ⊕ R1 is at
most 1/2. ⊓⊔

GKR had stated their transform only for circuits with boolean output, meaning f.m = 1. We have
accordingly presented our counter-example above for this case.

3.3 Achieving prv1 security

We now describe a transform prv-to-prv1 that successfully turns a prv secure circuit garbling scheme
into a prv1 secure one. Combined with established results [4], this yields prv1 secure schemes based
on standard assumptions. The idea (cf. [17]) is to use one-time pads to mask F and d, and then
append the pads toX. This will ensure that the adversary learns nothing about F and d until it fully

Adaptively Secure Garbling 11

specifies function f and x. Given a (not necessarily projective) garbling scheme G = (Gb,En,De,Ev,
ev), the prv-to-prv1 transform returns the garbling scheme prv-to-prv1[G] = (Gb1,En1,De1,Ev1, ev)
at the top of Fig. 4. We claim:

Theorem 2. For any Φ, if G ∈ GS(prv, Φ) then prv-to-prv1[G] ∈ GS(prv1, Φ).

The proof sketch is as follows. Given any PT adversary A1 against the prv1 security of G1, we build
a PT adversary A against the prv security of G. Now the assumption of prv security yields a PT
simulator S for A such that Advprv, Φ,S

G (A, ·) is negligible. Now we build from S a PT simulator S1
such that for all k ∈ N we have Advprv1, Φ,S1

G1
(A1, k) ≤ Advprv, Φ,S

G (A, k). This yields the theorem.
In Appendix D.1 we provide a full proof that shows how to build A and S1. The idea for the latter
is that in its first stage, S1, given (1k, ϕ, 0), returns random F1 and d1. In the second phase, given y,
it lets (F,X, d)�S(1k, ϕ, y), F ′ ← F1⊕F, and d′ ← d1⊕d. It returns (X, d′, F ′). The formal proof
must attend to some pesky issues connected with the need for the simulator to know what length
it must pick for F1 and d1.

Transform prv-to-prv1 does not require the starting scheme G to be projective. However, it is
important that if G is projective, so is prv-to-prv1[G]. Seeing this requires a slight re-interpretation
of certain quantities in the algorithms at the top of Fig. 4. Specifically, e will now have the form
(X0

1 , X
1
1 , . . . , X

0
n, X

1
n) and Gb1 will let e1 = ((X0

1 , d
′, F ′), (X1

1 , d
′, F ′), X0

2 , X
1
2 , . . . , X

0
n, X

1
n). Also X

in En1 will have the form (X1, . . . , Xn) and En1 will return ((X1, d
′, F ′), X2, . . . , Xn).

A potentially simpler transform of a prv secure garbling scheme G = (Gb,En,De,Ev, ev) into
a prv1 secure garbling scheme G1 = (Gb1,En1,De1,Ev1, ev) is as follows. Algorithm Gb1(1

k, f)
lets (F, e, d)�Gb(1k, f) and returns (ε, (e, F, d), ε). Let En1((e, F, d), x) = (En(e, x), F, d). Let
Ev1(ε, (X,F, d)) = (Ev(F,X), d). Let De1(ε, (Y, d)) = De(d, Y). This works, but the scheme does
not meet the non-degeneracy requirement we have imposed in Section 2. The prv-to-prv1 transform
can be seen as a way to effectively implement this trivial transform while avoiding degeneracy.

3.4 Achieving prv2 security

Next we show how to transform a prv1 scheme into a prv2 one. Formally, given a projective garbling
scheme G = (Gb1,En1,De1,Ev1, ev) ∈ GS(prv1, Φ), the prv1-to-prv2 transform returns the projective
garbling scheme prv1-to-prv2[G] = (Gb2,En2,De1,Ev2, ev) shown at the bottom of Fig. 4. The idea
is to mask the garbled input and then use the second part of GKR’s idea as represented by OMSS,
namely secret-share the mask, putting a piece in each token, so that unless one has all tokens, one
learns nothing about the garbled input. The formal proof of the following is in Appendix D.2.

Theorem 3. For any Φ, if G1 ∈ GS(prv1, Φ) ∩ GS(proj) then prv1-to-prv2[G1] ∈ GS(prv2, Φ) ∩
GS(proj).

The proof sketch is as follows. We first build, from a given prv2 adversary A2, a prv1 adversary A1,
and then, from the simulator S1 for the latter, a simulator S2 for A2. The prv2 simulator S2 can
return random tokens for the first n − 1 bits of the input. Just before it must provide a token for
the very last input bit, it gets the final output y. Now, it can run the prv1 simulator on y to get
the real tokens and create the last piece of the secret mask and thence its last token so that the
shares unmask the real tokens.

12 Bellare, Hoang, and Rogaway

proc Gb1(1
k, f)

(F, e, d)← Gb(1k, f), R� {0, 1}k

F1 ← F ⊕Hash(|F |, 0 ∥ R), d1 ← d⊕Hash(|d|, 1 ∥ R)

return (F1, (e,R), d1)

proc En1(e1, x)

(e,R)← e1
return (En(e, x), R)

proc Ev1(F1, X1)

(X,R)← X1, F ← F1 ⊕Hash(|F1|, 0 ∥ R), Y ← Ev(F,X)

return (Y,R)

proc De1(d1, Y1)

(Y,R)← Y1, d← d1 ⊕Hash(|d1|, 1 ∥ R)

return De(d, Y)

proc Gb2(1
k, f)

(F, e, d)← Gb1(1
k, f)

for i ∈ {1, . . . , n} do Si � {0, 1}k
(X0

1 , X
1
1 , . . . , X

0
n, X

1
n)← e, S ← S1 ⊕ · · · ⊕ Sn

for i ∈ {1, . . . , n} do
T 0
i ← (X0

i ⊕Hash(|X0
i |, 1 ∥ i ∥ S), Si)

T 1
i ← (X1

i ⊕Hash(|X1
i |, 1 ∥ i ∥ S), Si)

return (F, (T 0
1 , T

1
1 , . . . , T

0
n , T

1
n), d)

proc Ev2(F, T)

((U1, S1), . . . , (Un, Sn))← T

S ← S1 ⊕ · · · ⊕ Sn

for i ∈ {1, . . . , n} do
Xi ← Ui ⊕Hash(|Ui|, 1 ∥ i ∥ S)

return Ev1(F, (X1, . . . , Xn))

proc En2(e2, x)

(T 0
1 , T

1
1 , . . . , T

0
n , T

1
n)← e2, x1 · · ·xn ← x

return (T x1
1 , . . . , T xn

n)

Fig. 5. Transform rom-prv-to-prv1 (top): Garbling scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈ GSrom(prv1, Φ) ob-

tained by applying the ROM rom-prv-to-prv1 transform to garbling scheme G = (Gb,En,De,Ev, ev) ∈ GS(prv, Φ).

Transform rom-prv1-to-prv2 (bottom): Projective garbling scheme G2 = (Gb2,En2,De1,Ev2, ev) ∈ GSrom(prv2, Φ)

obtained by applying the ROM rom-prv1-to-prv2 transform to projective garbling scheme G1 = (Gb1,En1,De1,Ev1,

ev) ∈ GS(prv1, Φ). The advantage of these transforms over the ones of Fig. 4 is that they preserve short garbled

inputs.

3.5 Efficient ROM transforms

The prv-to-prv1 transform does not preserve short garbled inputs, meaning even if G has short
garbled inputs, prv-to-prv1[G] may not. The prv1-to-prv2 transform preserves short garbled inputs,
but we usually want to apply the two transforms in sequence. We do not know how to fill this gap
in the standard model under standard assumptions. We will now provide a simple way to do it in
the ROM (random-oracle model).

To extend our definitions of garbling-scheme privacy to ROM [5], we follow BHR’s treatment [4].
An ROM garbling scheme is a garbling scheme whose first four algorithms have access to an oracle
Hash called the random oracle (RO). The model is obtained by adding the following procedure
Hash to the games of Fig. 2.

proc Hash(ℓ, w)

if H[ℓ, w] = ⊥ then
if b = 1 then H[ℓ, w]� {0, 1}ℓ
else H[ℓ, w]�S(ℓ, w, ro)

return H[ℓ, w]

The Hash procedure can be called by a garbling scheme’s algorithms (Gb,En,De,Ev, ev), or by the
adversary. If the challenge bit b is 0 then the simulator will itself answer queries made to Hash
by the adversary. In the code, ro is a formal symbol indicating to the simulator that it is being
asked to answer a query to Hash. For xxx ∈ {prv,prv1, prv2} we let GSrom(xxx, Φ) be the set of
all garbling schemes that are xxx secure over Φ in the ROM.

Adaptively Secure Garbling 13

The rom-prv-to-prv1 transform at the top of Fig. 5 generates the mask of the prv-to-prv1 trans-
form by applying the RO to a random k-bit seed R, and includes R in the encoding function and
garbled input and output in place of the full mask, thereby saving space. As a consequence, it
preserves short garbled inputs. We claim:

Theorem 4. For any Φ, if G ∈ GS(prv, Φ) then rom-prv-to-prv1[G] ∈ GSrom(prv1, Φ).

The proof is in Appendix D.3. The idea is standard. The simulator can pick F1, d1 at random just
as in the proof of Theorem 2. Then, once it has F, d, it will pick R at random and program the
RO so that F1 = F ⊕Hash(|F |, 0∥R) and d1 = d⊕Hash(|d|, 1∥R). Security relies on the fact that
the probability that the adversary queries (ℓ, w) to Hash, with R being the suffix of w, prior to
receiving R in the garbled input, is negligible.

As with prv-to-prv1, we note that the starting scheme is not assumed projective, but a suitable
re-interpretation of the notation is enough to ensure that if the starting scheme is projective, so is
the constructed one.

Our prv1-to-prv2 already preserves short garbled inputs, but the size of a token in the constructed
scheme is n times the size of a token in the original scheme. The rom-prv-to-prv1 transform at the
bottom of Fig. 5 does a little better, increasing the size of each token by an additive nk bits
regardless of the length of the tokens of the starting scheme. The idea is again to generate the
masks of the prv1-to-prv2 transform by applying the RO to a seed and then secret-sharing the
latter instead of the entire mask. The proof of the following, in Appendix D.4, is again standard:

Theorem 5. For any Φ, if G1 ∈ GS(prv1, Φ)∩GS(proj) then rom-prv1-to-prv2[G1] ∈ GSrom(prv2, Φ)∩
GS(proj).

As the statements of Theorems 4 and 5 indicate, we are assuming in both cases that the starting
scheme is a standard-model one. This is for simplicity. One can apply the transform to a ROM
scheme. (And, in the case of rom-prv1-to-prv2, are likely to, since the starting scheme is likely
an output of rom-prv-to-prv1.) This can be handled by suitable “domain separation” of all ROs
involved.

For conceptual simplicity we have presented two separate transforms but we note that one can
gain efficiency by going directly from prv to prv2. We would not pick S as in rom-prv1-to-prv2 but
instead apply the secret-sharing directly to the R chosen by rom-prv-to-prv1.

3.6 “Standard” schemes are not prv2 secure

It is easy to see that prv security does not in general imply prv1 or prv2 security, meaning that
there exist prv secure schemes that are not prv1 (and thus not prv2) secure (cf. Proposition 18).
A more interesting question concerns the adaptive security of “standard” constructions of garbled
circuits, meaning garbling schemes in the Yao style such as the Garble1 and Garble2 schemes [4] or
the scheme of Lindell and Pinkas [20]. These are prv secure. But are they prv1 or prv2 secure? Here
we show that they are not prv2 secure. This is for a fundamental reason, namely that they permit
what we call partial evaluation: if certain output bits depend only on certain input bits, having
the tokens for these input bits (and having the decoding rule, but not the tokens, for other input
bits) allows one to compute the corresponding output bits. We will show that any scheme with this
property is prv2 insecure. But the partial-evaluation property is possessed by all schemes that use
the token-based, gate-encryption paradigm of Yao, in particular the ones mentioned above, and

14 Bellare, Hoang, and Rogaway

thus our results will imply that these schemes are not prv2 secure. We now proceed to formalize
and prove this claim, defining what it means for a garbling scheme to permit partial evaluation and
then showing that any scheme with this property fails to be prv2 secure.

Let G = (Gb,En,De,Ev, ev) be a projective circuit-garbling scheme, so that ev is the canonical
circuit-evaluation algorithm, taking as input a circuit f = (n,m, q,A,B,G) and x ∈ {0, 1}f.n to
return ev(f, x) ∈ {0, 1}f.m. We extend ev to a partial circuit evaluation algorithm ev that takes f
and x ∈ {0, 1,⊥}f.n and returns ev(f, x) ∈ {0, 1,⊥}f.m as follows:

proc ev(f, x)
(n,m, q,A,B,G)← f
for g ← n+ 1 to n+ q do

a← A(g), b← B(g)
if (xa = ⊥ or xb = ⊥) then xg ← ⊥
else xg ← Gg(xa, xb)

return xn+q−m+1 · · ·xn+q

Note that ev(f, x) = ev(f, x) if x ∈ {0, 1}f.n. Partial evaluation captures an inherent property of
circuit evaluation, namely the ability to compute a part of the output given only the inputs on
which it depends. For example if the first bit of ev(f, x) depends only on the first two bits of x,
then this first output bit can be computed as the first bit of ev(f, x1x2⊥ · · ·⊥).

We say that G permits partial evaluation of the garbled function if the above property is inherited
by the garbled-evaluation process. Thus if, as in the above example, the first bit of ev(f, x) depends
only on the first two bits of x, then this first output bit can be computed given the garbled
function F , the tokens Xx1

1 , Xx2
2 and the decoding rule d, meaning tokens corresponding to the

other bits of the input are not necessary. Formally we say that Ev is a partial garbled-evaluation
algorithm for G if for any f ∈ {0, 1}∗, any (F, (X0

1 , X
1
1 , . . . , X

0
f.n, X

1
f.n), d) ∈ [Gb(1k, f)], and any

x ∈ {0, 1,⊥}f.n, if we let X⊥
i = ⊥ for 1 ≤ i ≤ f.n, then

De
(
d,Ev(F, (Xx1

1 , . . . , Xxn
n))

)
= ev(f, x) .

In other words, tokens may now take value ⊥, and evaluation of the garbled circuit is still possible,
the result being the corresponding partial evaluation of the circuit. We say that G permits partial
evaluation if it has a PT partial garbled-evaluation algorithm. The following says this condition
implies that G is not prv2 secure:

Proposition 6 Let G = (Gb,En,De,Ev, ev) be a projective circuit-garbling scheme that permits
partial evaluation. Then G ̸∈ GS(prv2, Φ) for all Φ.

The result is quite strong with regard to side-information, saying the scheme is insecure for all
side-information functions. As we indicated above, standard garbling schemes based on the Yao
paradigm of encrypted gate entries and token propagation do permit partial evaluation, so this
result rules out their prv2 security.

Proof (Proposition 6). For k ∈ N let IDk : {0, 1}k+1 → {0, 1}k+1 denote the identity function and let
idk denote a circuit such that idk.n = k+1, ev(idk, ·) = IDk(·), and ev(idk, x1 · · ·xk⊥) = x1 · · ·xk⊥
for every x1, . . . , xk ∈ {0, 1}. Let Ev be the partial garbled-evaluation algorithm associated to G.
Consider the following adversary:

Adaptively Secure Garbling 15

adversary A2(1
k)

(F, d)← Garble(idk)
x� {0, 1}k+1, x1 · · ·xk+1 ← x
for i ∈ {1, . . . , k} do Xi ← Input(i, xi)

z ← De(d,Ev(F, (X1, . . . , Xk,⊥)))
if z=x1 · · ·xk⊥ then return 1 else return 0

Let S2 be any (even computationally unbounded) simulator. Then for every k ∈ N, letting b be the
challenge bit in game Prv2G2,Φ,S2 , we have

Pr
[
Prv2A2

G,Φ,S2
(k) | b = 1

]
= 1 and Pr

[
¬Prv2A2

G,Φ,S2
(k) | b = 0

]
≤ 2−k .

The first equation uses the assumption that Ev is a partial garbled-evaluation algorithm. The
second equation is true because S has no information about the input x until the very last token
is requested, and the adversary stops just short of that. Subtracting we have

Advprv2, Φ,S2

G (A2, k) ≥ 1− 2−k ,

which proves the theorem. ⊓⊔

3.7 One-time programs

Security definition for a one-time compiler. The notion of a one-time program was put
forward by Goldwasser, Kalai, and Rothblum (GKR [16]). The intent is that possession of a one-
time program P for a function f should enable one to evaluate f at any single value x; but,
beyond that, the one-time program should be useless. Unachievable in any standard model of
computation (where possession of P would enable its repeated evaluation at multiple point), GKR
suggest achieving one-time programs in a model of computation that provides one-time memory—
tamper-resistant hardware whose read-once i-th location returns, on query (i, b) ∈ N × {0, 1}, the
string T b

i , immediately thereafter expunging T 1−b
i . A one-time compiler probabilistically transforms

the description of a function f into a one-time program P and its associated one-time memory T .

For a formal treatment, we begin by specifying two stateful oracles; see Fig. 6. The first, OTPf ,
formalizes the desired behavior of a one-time program for f . Here f will now be regarded as a
string, not a function, but this string represents a circuit computing a function ev(f) : {0, 1}f.n →
{0, 1}f.m; we write ev for the canonical circuit-evaluation function [4]. The agent calling out to
OTPf provides x and, on the first query, it gets ev(f, x). Subsequent queries return nothing. On
the right-hand side of Fig. 6 we similarly define an oracle OTMT , this to model possession of a
one-time-memory system. Given a list of ℓ pairs of strings (establish some convention so that every
string T is regarded as denoting a list of ℓ pairs of strings, for some ℓ ∈ N), the oracle returns at
most one string from each pair satisfying each request.

Elaborating on GKR, we now define a one-time compiler as a pair of probabilistic algorithms
Π = (Co,Ex) (for compile and execute). Algorithm Co, on input 1k and a string f , produces a
pair (P, T)← Co(1k, f) where P (the one-time program) is a string and T (the one-time-memory)
encodes a list of 2ℓ strings, for some ℓ. Algorithm Ex, on input of strings P and x, and given access
to an oracle O, returns a string y ← ExO(P, x). We require the following correctness condition of
Π = (Co,Ex): if (P, T)← Co(1k, f) and x ∈ {0, 1}f.n then ExOTMT (·,·)(P, x) = ev(f, x).

16 Bellare, Hoang, and Rogaway

proc OTPf (x) proc OTMT (i, b)

if x ̸∈ {0, 1}f.n then return ⊥ (T 0
1 , T

1
1 , . . . , T

0
ℓ , T

1
ℓ)← T

if called then return ⊥ if i ̸∈ [1..ℓ] or usedi or b ̸∈ {0, 1} then return ⊥
called ← true usedi ← true
return ev(f, x) return T b

i

Fig. 6. Oracles model one-time programs and one-time memory. Oracle OTP depends on a string f repre-
senting a boolean circuit. Oracle OTM depends on a list of strings T .

The security of Π = (Co,Ex) will be relative to a side-information function Φ; the value
ϕ = Φ(f) captures the information about f that P is allowed to reveal.11 So fix a one-time com-
piler Π = (Co,Ex), an adversary A, a security parameter k, and a string f . (1) Consider the
distribution RealΠ,A,f (k) determined by the following experiment: first, sample (P, T)← Co(1k, f);
then, run AOTMT (·)(1k, P) and output whatever A outputs. (2) Alternatively, fix a one-time com-
piler Π = (Co,Ex), a side-information function Φ, a simulator S, a security parameter k, and
a string f . Consider the distribution FakeΠ,Φ,S,f (k) determined by the following experiment: run
SOTPf (·)(1k, Φ(f)) and output whatever S outputs. For D an algorithm and Π, Φ, A, S, and k as
above, let

Advotc
Π,Φ,A,S,D(k) = Pr[(f, σ)← D(1k); v ← RealΠ,A,f (k) : D(σ, v)⇒ 1]−

Pr[(f, σ)← D(1k); v ← FakeΠ,Φ,S,f (k) : D(σ, v)⇒ 1]

One-time compiler Π is said to be (OTC-) secure with respect to side-information function Φ if for
any PPT adversary A there is a PPT simulator S such that for all PPT distinguishers D, function
Advotc

Π,Φ,A,S,D(k) is negligible.

Discussion. Let us briefly talk through the definition. The distinguisher D selects f and is
presented with a string drawn from one of two worlds. In the first world, the distinguisher is given
the output (equivalently, the view) of an adversary A who has the garbled program P for f and
its associated one-time memory. Using the execution procedure Ex the adversary could compute
ev(f, x), if it so wishes, but it is not compelled to do so. In the second world, the distinguisher is
given output produced by a simulator S. That simulator has no one-time memory; it has only the
side-information Φ(f) about f and an ideal one-time program for f . In a protocol we deem secure,
no matter what the adversary does, there will be a simulator such that the two views described
will be computationally close.

To arrive at an achievable notion of security, one must allow that information beyond the
function’s value at x to be leaked; minimally, information on the size of the circuit will be revealed.
Indeed the construction of GKR leaks more—it divulges the topology of a circuit computing f . We
follow BHR’s approach for handling side-information, one where Φ acts as a “knob” controlling just
what may be learned of f .

Constructing an OTC from a garbling scheme. A projective circuit-garbling scheme G =
(Gb,En,De,Ev, ev) can be turned into a one-time compiler Π = (Co,Ex) in a natural way: let
OTC[G] = (Co,Ex) be defined as follows. (1) Co(1k, f): let (F, e, d) ← Gb(f) and return (P, T)

11 For example, we might have Φ(f) = Φsize(f) = (f.n, f.m, f.q), the number of inputs, outputs, and gates; or
Φ(f) = Φtopo(f) = f−, the topology of f ; or Φ(f) = (f.n, f.m, u(f.q)) for some monotonic u like u(q) = 106⌈10−6q⌉.

Adaptively Secure Garbling 17

where P = (F, d) and T = e. (2) ExO(P, x): Let (F, d) ← P , let x1 · · ·xn ← x, query oracle O on
(1, x1), . . . , (n, xn) to obtain X1, . . . , Xn, respectively, and return De(d,Ev(F,X)) with X = (X1,
. . . , Xn). The proof of the following is in Appendix D.9. The straightforwardness of the construction
and its trivial proof are, we believe, points in our favor, evidence of our claim that the garbling-
scheme abstraction and appropriate security notions for it engender applications in direct, simple
and less error-prone ways.

Theorem 7. If G is a prv2-secure projective garbling scheme over side-information function Φ then
OTC[G] is OTC-secure with respect to side-information Φ.

A concrete one-time compiler may be obtained from any prv-secure (projective) garbling scheme
by (1) using our prv-to-prv1 transform to go from the prv garbling scheme to a prv1 one (2) using
our prv1-to-prv2 transform to go from the prv1 scheme to a prv2 one, and (3) applying Theorem 7.
BHR [4] provide prv-secure garbling schemes based on PRFs and thence on one-way functions,
yielding a one-way function based one-time compiler to recover the original claim of GKR [16].

Analysis of OTC[OMSS[G]]. The claim of GKR [16], in our language, is that if G is a prv-
secure (projective) garbling scheme then OTC[OMSS[G]] is otc-secure. Proposition 1, showing that
OMSS[G] need not be prv2-secure, does not refute this claim, for the prv2 security of OMSS[G],
while sufficient to establish the claim, may not be necessary. Here we accordingly refute the claim
by extending the counter-example of Proposition 1 to give a projective, prv-secure garbling scheme
G for which OTC[OMSS[G]] is shown by attack to not be otc-secure. (That is, we show that this
transform will yield programs that are not one-time.)

This example does not contradict the updated claim of [15], made in response to our work, of a
OTC based on exponentially-hard one-way functions. The latter would correspond, in our language,
to the claim that OTC[OMSS[G]] is a secure OTC if G has exponential prv-security.

Proceeding to the counter-example, recall that in the proof of Proposition 1, we gave a garbling
scheme G = (Gb,En,De,Ev, ev) such that G ∈ GS(prv, Φtopo) but G2 = OMSS[G] ̸∈ GS(prv2, Φtopo).
Now we show that OTC[G2] is otc-insecure, by demonstrating an attack. Distinguisher D(1k)
picks R0, R1� {0, 1}, and lets fR0,R1 denote a circuit such that fR0,R1 .n = k, fR0,R1 .m = 1 and
ev(fR0,R1 , x) = Rx1 where x1 is the first bit of x. (We construct the circuit in such a way that the
topology is independent of R0, R1 and depends only on k.) It queries fR0,R1 , and then outputs 1
only if the oracle’s answer is R0 ⊕R1.

The adversary A(1k) is given (G, ε), and parses (G′, v, V) ← G and v1 · · · vn ← v. Next for
every i ≤ n, it queries (i, vi) to Input to get back Ti and lets (Xi, ri) ← Ti and (Zi, Vi) ← Xi. It
lets y ← De2(ε,Ev2(G, (T1, . . . , Tn))) and y′ ← V ⊕ V1 ⊕ · · · ⊕ Vn and r ← r1 ⊕ · · · ⊕ rn. It then
returns y ⊕ y′ ⊕ r. Note that y = ev(fR0,R1 , v) and y′ = r ⊕ ev(fR0,R1 , v) so by definition of fR0,R1

we have y ⊕ y′ ⊕ r = R0 ⊕R1. Hence given RealΠ,A,f (k), the distinguisher always outputs 1.

Let S be any (even computationally unbounded) simulator. It is given only 1k, Φtopo(f) as
input and can obtain no information on R0 or R1 beyond their length because the topology of
fR0,R1 is by construction independent of R0, R1. The simulator is given oracle access to OTPfR0,R1

and can obtain either R0 or R1 but not both. Since R0 is independent of R0 ⊕ R1, and so is R1,
the probability that the simulator can output R0 ⊕ R1 is 1/2. Hence, given FakeΠ,Φ,S,f (k), the
distinguisher outputs 1 with probability 1/2.

18 Bellare, Hoang, and Rogaway

proc Garble(f, x) ObvG,Φ,S

b� {0, 1}
if x ̸∈ {0, 1}f.n then return ⊥
if b = 1 then

(F, e, d)← Gb(1k, f)
X ← En(e, x)

else

(F,X)← S(1k, Φ(f))
return (F,X)

proc Garble(f) Obv1G,Φ,S

b� {0, 1}
if b = 1 then

(F, e, d)← Gb(1k, f)
else

F ← S(1k, Φ(f), 0)
return F

proc Input(x)

if x ̸∈ {0, 1}f.n then return ⊥
if b = 1 then X ← En(e, x)
else X ← S(1)
return X

proc Garble(f) Obv2G,Φ,S

b� {0, 1}; n← f.n; Q← ∅; σ ← ε
if b = 1 then

(F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, f)

else

F ← S(1k, Φ(f), 0)
return F

proc Input(i, c)
if i ̸∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}
if b = 1 then Xi ← Xxi

i

else Xi ← S(i, |Q|)
return Xi

proc Garble(f, x) AutG

if x ̸∈ {0, 1}f.n then return ⊥
(F, e, d)← Gb(1k, f)
X ← En(e, x)
return (F,X)

proc Garble(f) Aut1G

(F, e, d)← Gb(1k, f)
return F

proc Input(x)

if x ̸∈ {0, 1}f.n then return ⊥
X ← En(e, x)
return X

proc Garble(f) Aut2G

n← f.n; Q← ∅; σ ← ε

(F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, f)

return F

proc Input(i, c)
if i ̸∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}, Xi ← Xxi

i

if |Q| = n then X ← (X1, . . . , Xn)
return Xi

Fig. 7. Obliviousness (top). Games for defining the obv, obv1, and obv2 security of G = (Gb,En,De,Ev, ev). For
each game, Finalize(b′) returns (b = b′). Authenticity (bottom). Games for defining the aut, aut1, and aut2
security of G = (Gb,En,De,Ev, ev). Procedure Finalize(Y) of each game returns (De(d, Y) ̸= ⊥ and Y ̸= Ev(F,X)).

4 Obliviousness, Authenticity and Secure Outsourcing

We define obliviousness and authenticity, both with either the coarse-grained or fine-grained adap-
tivity. We show how to achieve these goals, in combination with adaptive privacy, via generic
transforms and in the standard model. We then give more efficient transforms for the ROM model.
Finally we apply this to obtain extremely simple and modular designs, and security proofs, for
verifiable outsourcing schemes based on the paradigm of GGP [11].

4.1 Definitions for adaptive obliviousness and authenticity

Intuitively, a garbling scheme is oblivious if garbled function F and garbled input X, these corre-
sponding to f and x, reveal nothing of f or x beyond side-information Φ(f). In particular, possession
of F and X will not allow the calculation of y = ev(f, x).

The formal definition for static obliviousness is from BHR [4]. See the top-left panel of Fig. 7.
We add to this two new definitions, to incorporate either coarse-grained or fine-grained adaptive
security. See the top-middle and top-right panels of Fig. 7. Fine-grained adaptive security continues
to require that G be projective. The games used for defining obliviousness closely mirror their
privacy counterparts. The first important difference is that the adversary does not get the decoding

Adaptively Secure Garbling 19

function d. The second important difference is that the simulator must do without y = ev(f, x). For
a garbling scheme G, side-information Φ, simulator S, adversary A, and security parameter k ∈ N,
we let Advobv, Φ,S

G (A, k) = 2Pr[ObvAG,Φ,S(k)]− 1, Advobv1, Φ,S
G (A, k) = 2Pr[Obv1AG,Φ,S(k)]− 1, and

finally Advobv2, Φ,S
G (A, k) = 2Pr[Obv2AG,Φ,S(k)] − 1. Garbling scheme G is obv secure with respect

to Φ if for every PPT A there exists a simulator S such that Advobv, Φ,S
G (A, k) is negligible. We

similarly define obv1 and obv2 security. For xxx ∈ {obv, obv1, obv2} we let GS(xxx, Φ) denote the
set of all garbling schemes that are xxx secure over Φ.

Authenticity. Fig. 7 also formalizes the games underlying three definitions of authenticity, captur-
ing an adversary’s inability to create from F andX a garbled output Y ̸= F (X) that will be deemed
authentic. The static definition of BHR [4] is strengthened either to allow the adversary to specify x
subsequent to obtaining F , or, stronger, the bits of x are provided one-by-one, each corresponding
token then issued. For the second case, game Aut2, the garbling scheme must once again be projec-
tive. For a garbling scheme G, adversary A, and security parameter k ∈ N, we let Advaut

G (A, k) =
2Pr[AutAG (k)]− 1, Advaut1

G (A, k) = 2Pr[Aut1AG (k)]− 1, and Advaut2
G (A, k) = 2Pr[Aut2AG (k)]− 1.

Garbling scheme G is aut secure with respect to Φ if for every PPT A Advaut
G (A, k) is negligible.

We similarly define aut1 and aut2 security. For xxx ∈ {aut, aut1, aut2} we let GS(xxx) denote the
set of all garbling schemes that are xxx secure.

4.2 Achieving obv1 and aut1 security

It is tempting to think that the prv-to-prv1 operator in Fig. 4 will also promote xxx security,
with xxx ∈ {obv, aut}, to xxx1 security. However, a second glance reveals that prv-to-prv1 does
not promote aut to aut1, as the following counter-example illustrates. Let G = (Gb,En,De,Ev,
ev) be a garbling scheme that is aut secure. Consider G′ = (Gb′,En,De′,Ev, ev) defined as follows.
On input (1k, f), the algorithm Gb′ creates (F, e, d) ← Gb(1k, f), and then returns (F, e, 1 ∥ d).
On input (d ′, Y), the algorithm De′ parses d ′ = b ∥ d, and outputs De(d, Y) if b = 1, and out-
puts 1 otherwise. The scheme G′ inherits aut security from G. The scheme G1 = prv-to-prv1[G′] =
(Gb1,En1,De1,Ev1, ev) is not even aut secure. An adversary can attack G1 as follows. First, query an
arbitrary circuit f and input x ∈ {0, 1}f.n to receive (F1, X1). Let X1 = (X, d′, F ′). Then, output
Y = (1, d′). Let d1 be the decoding function used to authenticate Y . Then d1 ⊕ d′ = 1 ∥ d, and
d1 ⊕ d′ = 0 ∥ d. Hence De1(d1, Y) = 1, and the adversary wins with advantage 1.

We now show how to change prv-to-prv1 to an operator all-to-all1 that promotes any xxx ∈
{prv, obv, aut} to being xxx1 secure. The insecurity of the prv-to-prv1 operator arises because the
adversary can forge a fake d′, where d′ is the one-time pad masking the decoding function d.
To prevent this, we choose K� {0, 1}k, and append FK(d′) to the garbled input X, where F :
{0, 1}k × {0, 1}∗ → {0, 1}k is a PRF. The decoding function will be (d′ ⊕ d,K). See Fig. 8. The
proof of the following is in Appendix D.5.

Theorem 8. (1) For any Φ and any xxx ∈ {prv, obv}, if G ∈ GS(xxx, Φ) then all-to-all1[G] ∈
GS(xxx1, Φ) (2) If G ∈ GS(aut) then all-to-all1[G] ∈ GS(aut1) (3) If G ∈ GS(proj) then all-to-all1[G] ∈
GS(proj).

20 Bellare, Hoang, and Rogaway

proc Gb1(1
k, f)

(F, e, d)← Gb(1k, f), F ′ � {0, 1}|F |, d′ � {0, 1}|d|

F1 ← F ⊕ F ′, K� {0, 1}k, d1 ← (d⊕ d′,K)

tag← FK(d′), e1 ← (e, d′, F ′, tag)

return (F1, e1, d1)

proc En1(e1, x)

(e, d′, F ′, tag)← e1
return (En(e, x), d′, F ′, tag)

proc Ev1(F1, X1)

(X, d′, F ′, tag)← X1, F ← F1 ⊕ F ′, Y ← Ev(F,X)

return (Y, d′, tag)

proc De1(d1, Y1)

(Y, d′, tag)← Y1, (D,K)← d1, d← D ⊕ d′

if tag ̸= FK(d′) then return ⊥
return De(d, Y)

proc Gb1(1
k, f)

(F, e, d)← Gb(1k, f), R� {0, 1}k, K� {0, 1}k

F1 ← F ⊕Hash(|F |, 0 ∥ R), D ← d⊕Hash(|d|, 1 ∥ R)

tag← Hash(k,K ∥ R), d1 ← (D,K)

return (F1, (e,R, tag), d1)

proc En1(e1, x)

(e,R, tag)← e1
return (En(e, x), R, tag)

proc Ev1(F1, X1)

(X,R, tag)← X1, F ← F1 ⊕Hash(|F1|, 0 ∥ R)

Y ← Ev(F,X)

return (Y,R, tag)

proc De1(d1, Y1)

(Y,R, tag)← Y1, (D,K)← d1
d← D ⊕Hash(|D|, 1 ∥ R)

if Hash(|K|,K ∥ R) ̸= tag then return ⊥
return De(d, Y)

Fig. 8. Transform all-to-all1 (top): Scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈ GS(prv1, Φ) ∩ GS(obv1, Φ) ∩ GS(aut1)

obtained from scheme G = (Gb,En,De,Ev, ev) ∈ GS(prv, Φ) ∩ GS(obv, Φ) ∩ GS(aut). The transform uses a PRF

F : {0, 1}k×{0, 1}∗ → {0, 1}k.Transform rom-all-to-all1 (bottom):Garbling scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈
GSrom(prv1, Φ) obtained by applying the ROM rom-all-to-all1 transform to garbling scheme G = (Gb,En,De,Ev,

ev) ∈ GS(prv, Φ). It makes use of an RO-modeled Hash. The advantage of the bottom transform over the top one is

that it preserves short garbled inputs.

4.3 Achieving obv2 and aut2 security

The transform to promote coarse-grained to fine-grained security is unchanged; we let all1-to-all2 =
prv1-to-prv2 be the transform at the bottom of Fig. 4. We claim it has additional features captured
by the following, whose proof is in Appendix D.6.

Theorem 9. (1) For any Φ and any xxx ∈ {prv, obv}, if G1 ∈ GS(xxx1, Φ) ∩ GS(proj) then
all1-to-all2[G1] ∈ GS(xxx2, Φ) ∩ GS(proj) (2) If G1 ∈ GS(aut1) ∩ GS(proj) then all1-to-all2[G1] ∈
GS(aut2) ∩ GS(proj).

4.4 Efficient ROM transforms

Again, the all-to-all1 transform does not preserve short garbled inputs. We give the transform
rom-all-to-all1 in the ROM to fill the gap. The same attack to break the aut1 security of all-to-all1 can
be used to show that rom-prv-to-prv1 is inadequate to handle authenticity as well. The rom-all-to-all1
transform at the bottom of Fig. 8 generates the mask of the all-to-all1 transform by applying the RO
to a random k-bit seed R, and includes R in the encoding rule and garbled input and output in place
of the full mask, thereby saving space. As a consequence, it preserves short garbled inputs. Instead
of using a PRF FK : {0, 1}∗ → {0, 1}k, we call Hash(k,K ∥ ·). For each xxx ∈ {obv, obv1, obv2}, let
GSrom(xxx, Φ) be the set of all garbling schemes that are xxx secure over Φ in the ROM. Likewise,

Adaptively Secure Garbling 21

for each xxx ∈ {aut, aut1, aut2}, let GSrom(xxx) be the set of all garbling schemes that are xxx
secure in the ROM. We claim:

Theorem 10. (1) For any Φ and any xxx ∈ {prv, obv}, if G ∈ GS(xxx, Φ) then rom-all-to-all1[G] ∈
GSrom(xxx1, Φ). (2) If G ∈ GS(aut) then rom-all-to-all1[G] ∈ GSrom(aut).

The proof is in Appendix D.7. We note that the starting scheme is not assumed projective, but a
suitable re-interpretation of the notation is enough to ensure that if the starting scheme is projective,
so is the constructed one.

The ROM transform to promote coarse-grained to to fine-grained security is unchanged; we let
rom-all1-to-all2 = rom-prv1-to-prv2 be the transform at the bottom of Fig. 5. We claim the following
theorem; the proof is in Appendix D.8

Theorem 11. (1) For any Φ and any xxx ∈ {prv, obv}: If G1 ∈ GS(xxx1, Φ)∩GS(proj) then scheme
rom-all1-to-all2[G1] ∈ GSrom(xxx2, Φ)∩GS(proj), and (2) If G1 ∈ GSrom(aut1)∩GS(proj) then scheme
rom-all1-to-all2[G1] ∈ GSrom(aut2) ∩ GS(proj).

4.5 Application to secure outsourcing

Definitions. An outsourcing scheme Π = (Gen, Inp,Out,Comp, ev) is a tuple of PT algorithms
that, intuitively, will be run partly on a client and partly on a server. Generation algorithm Gen
is run by the client on input of the unary encoding 1k and a string f describing the function
ev(f, ·) : {0, 1}f.n → {0, 1}f.m to be evaluated (so that ev, like in a garbling scheme, is a deterministic
evaluation algorithm) to get back a public key pk that is sent to the server and a secret key sk
that is kept by the client. Algorithm Inp is run by the client on input pk , sk and x ∈ {0, 1}f.n to
return a garbled input X that is sent to the server. Associated state information St is preserved
by the client. Algorithm Comp is run by the server on input pk , X to get a garbled output Y that
is returned to the client. The latter runs deterministic algorithm Out on pk , sk , Y,St to get back
y ∈ {0, 1}f.n ∪ {⊥}. Correctness requires that for all k ∈ N, all f ∈ {0, 1}∗, and all x ∈ {0, 1}f.n,
if (pk , sk) ← Gen(1k, f), (X,St) ← Inp(pk , sk , x), Y ← Comp(pk , X), and y ← Out(pk , sk , Y,St),
then y = ev(f, x). Our syntax is the same as that of GGP [11] except for distinguishing between
functions and their descriptions, as represented the addition of ev to the list.

The games OSVFΠ and OSPRΠ,Φ,Sos of Fig. 9 are used to define verifiability and privacy of an
outsourcing scheme Π = (Gen, Inp,Out,Comp, ev), where Φ is a side-information function and Sos
is a simulator. In both games, the adversary is allowed only one GetPK query, and this must be
its first oracle query. For adversaries Aos and Bos, we let

Advosvf
Π (Aos, k) = Pr[OSVFAos

Π (k)] and Advospr,Φ,Sos

Π (Bos, k) = 2Pr[OSPRBos
Π,Φ,Sos

(k)]− 1 .

We say that Π is verifiable if Advosvf
Π (Aos, ·) is negligible for all PT adversaries Aos. We say that Π

is private over Φ if for all PT adversaries Bos there is a PT simulator Sos (that maintains state across
invocations) such that Advospr,Φ,Sos

Π (Aos, ·) is negligible. An adversary is said to be one-time if it
makes only one Input query. We say that Π is one-time verifiable if Advosvf

Π (Aos, ·) is negligible
for all PT one-time adversaries Aos. We say that Π is one-time private over Φ if for all PT one-time
adversaries Bos there is a PT simulator Sos such that Advospr,Φ,Sos

Π (Aos, ·) is negligible.
Our verifiability definition coincides with that of GGP [11] but our privacy definition is stronger:

it requires not just “input privacy” (concealing each input x) but, also, privacy of the function f
(relative to Φ). (As in our garbling definitions this is subject to Φ(f) being revealed). Also, while

22 Bellare, Hoang, and Rogaway

proc GetPK(f) OSVFΠ

(pk , sk)← Gen(1k, f), i← 0
return pk

proc Input(x)

if x ̸∈ {0, 1}f.n then return ⊥
i← i+ 1, xi ← x
(Xi,St i)← Inp(pk , sk , x)
return Xi

proc Finalize(Y, j)
if j ̸∈ {1, . . . , i} then return false
y ← Out(pk , sk , Y,Stj)
return (y ̸∈ {ev(f, xj),⊥})

proc GetPK(f) OSPRΠ,Φ,Sos

c� {0, 1}
if c = 1 then (pk , sk)← Gen(1k, f)
else pk ← Sos(1k, Φ(f), 0)
return pk

proc Input(x)

if x ̸∈ {0, 1}f.n then return ⊥
if c = 1 then (X,St)← Inp(pk , sk , x)
else X ← Sos(1)
return X

proc Finalize(c′)
return (c = c′)

Gen(1k, f)
(F, e, d)← Gb(1k, f)
return (F, (e, d))

Inp(F, (e, d), x)
X ← En(e, x)
return (X, ε)

Comp(F,X)
Y ← Ev(F,X)
return Y

Out(F, (e, d), Y,St)
y ← De(d, Y)
return y

Fig. 9. Games to define the verifiability (OSVF) (top left) and privacy (OSPR) (top right) of outsourcing scheme
Π = (Gen, Inp,Out,Comp, ev), and the outsourcing scheme Π[G] = (Gen, Inp,Out,Comp, ev) (bottom) constructed
from garbling scheme G = (Gb,En,De,Ev, ev) .

GGP use an indistinguishability-style formalization, we use a simulation-style one, as this is stronger
for some side-information functions.

To be “interesting” the work of the client in an outsourcing scheme should be less than the
work required to compute the function directly, for otherwise outsourcing is not buying anything.
An outsourcing scheme is said to be non-trivial if this condition is met.

Achieving one-time security. GGP show how to use FHE to turn any one-time verifiable
and private outsourcing scheme into a fully verifiable and private one. This allows us to focus
on designing the former. We show how a garbling scheme that is both aut1 and obv1 secure
immediately implies a one-time verifiable and private outsourcing scheme. The construction, given
in Fig. 9, is very direct, and the proof of the following, given in Appendix D.10, is trivial. These
points reinforce our claim that the garbling scheme abstraction and adaptive security may be easily
used in applications.

Theorem 12. If G ∈ GS(obv1, Φ) ∩ GS(aut1) then outsourcing scheme Π[G] is one-time verifiable
and also one-time private over Φ.

A benefit of our modular approach is that we may use any obv1+aut1 garbling scheme as a starting
point while GGP were tied to the scheme of [20]. However, the latter scheme is not adaptively secure,
which brings us to our next point.

Discussion. GGP give a proof that their outsourcing scheme is one-time verifiable assuming the
encryption scheme underlying the garbled-circuit construction of Lindell and Pinkas (LP) [20] has
semantic security, and elusive and verifiable range. However, their proof has a gap. Quoting [11,
p. 12 of Aug 2010 ePrint version]: “For any two values x, x′ with f(x) = f(x′), the security of Yao’s
protocol implies that no efficient player P2 can distinguish if x or x′ was used.” This claim is correct
if both x and x′ are chosen independently of the randomness in the garbled circuit. But in their

Adaptively Secure Garbling 23

setting, the string x is chosen after the adversary sees the garbled circuit, and the security proof
given by LP no longer applies.

GGP’s proof effectively only shows that the garbled circuit construction of LP is (in our lan-
guage, if cast as a garbling scheme) aut secure. But we show in Proposition 22 that aut security
does not always imply aut1 security. One may try to give a new proof that the LP garbling scheme
satisfies aut1 security. However, this seems to be difficult. Intuitively, an adaptive attack on the
garbling scheme allows the adversary to mount a key-revealing selective-opening (SOA-K) attack on
the underlying encryption scheme. But SOA-K secure encryption is notoriously hard to achieve [2]
and not achieved by standard encryption schemes. The only known way to achieve it is via non-
committing encryption [7, 8, 10], which is only possible with keys as long as the total number of
bits of message ever encrypted [22], making the outsourcing scheme fail to be non-trivial.

This brings us to another discussion of non-triviality. The obv1 + aut1 secure scheme obtained
via our all-to-all1 transform has long garbled inputs, so the one-time verifiable outsourcing scheme
yielded by Theorem 12, while secure, is not non-trivial. Our ROM transforms yield an ROM
obv1 + aut1 secure scheme with short garbled inputs and thence a non-trivial one-time outsourcing
scheme but the FHE-based method of GGP of lifting it to a many-time scheme does not work in
the ROM. Finding a obv1+ aut1 secure garbling scheme with short garbled inputs in the standard
model under standard assumptions is an open problem. This means that right now we know of no
correct way to instantiate GPP’s construction to get a non-trivial and proven secure outsourcing
scheme in the standard model, based on standard assumptions. We think Theorem 12 is still useful
because it can be used at any point such a scheme emerges. All this again is an indication of the
subtleties and hidden challenges underlying adaptive security of garbled circuits that seem to have
been overlooked in the literature.

Acknowledgments

Thanks to the ASIACRYPT reviewers for their helpful comments, and thanks to the NSF for their
continuing support: Bellare was supported in part by NSF grants CNS-1116800, CNS 0904380 and
CCF-0915675, while Hoang and Rogaway were supported in part by NSF grant CNS 0904380.

References

1. B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification via secure compu-
tation. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, and P. G. Spirakis, editors, ICALP
2010, Part I, volume 6198 of LNCS, pages 152–163. Springer, July 2010.

2. M. Bellare, R. Dowsley, B. Waters, and S. Yilek. Standard security does not imply security against selective-
opening. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 645–662.
Springer, Apr. 2012.

3. M. Bellare, V. Hoang, and P. Rogaway. Adaptively secure garbling with applications to one-time programs and
secure outsourcing. In K. Sako and X. Wang, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages ?–?
Springer, Dec. 2012. Full version as ePrint Archive, Report 2012/???, October, 2012.

4. M. Bellare, V. Hoang, and P. Rogaway. Foundations of garbled circuits. In ACM Computer and Communications
Security (CCS’12). ACM, 2012. Full version as ePrint Archive, Report 2012/265, May, 2012.

5. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993.

6. M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, May / June
2006.

24 Bellare, Hoang, and Rogaway

7. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation. In 28th ACM
STOC, pages 639–648. ACM Press, May 1996.

8. S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Improved non-committing encryption with applications
to adaptively secure protocols. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 287–302.
Springer, Dec. 2009.

9. K.-M. Chung, Y. Kalai, and S. P. Vadhan. Improved delegation of computation using fully homomorphic en-
cryption. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 483–501. Springer, Aug. 2010.

10. I. Damg̊ard and J. B. Nielsen. Improved non-committing encryption schemes based on a general complexity
assumption. In M. Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 432–450. Springer, Aug. 2000.

11. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to un-
trusted workers. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 465–482. Springer, Aug.
2010.

12. O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge University Press, Cam-
bridge, UK, 2004.

13. O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In 21st ACM STOC, pages 25–32.
ACM Press, May 1989.

14. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols
with honest majority. In A. V. Aho, editor, STOC, pages 218–229. ACM, 1987.

15. S. Goldwasser, Y. Kalai, and G. Rothblum. One-time programs. Manuscript, full version of [16], July 2012.
16. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs. In D. Wagner, editor, CRYPTO 2008,

volume 5157 of LNCS, pages 39–56. Springer, Aug. 2008.
17. V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding cryptography on tamper-proof hardware

tokens. In D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 308–326. Springer, Feb. 2010.
18. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applications to round-efficient

secure computation. In 41st FOCS, pages 294–304. IEEE Computer Society Press, Nov. 2000.
19. S. Kamara and L. Wei. Special-purpose garbled circuits. Manuscript, 2012.
20. Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party computation. Journal of Cryptology,

22(2):161–188, Apr. 2009.
21. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In Proceedings of the

1st ACM conference on Electronic commerce, pages 129–139. ACM, 1999.
22. J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption

case. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 111–126. Springer, Aug. 2002.
23. A. Yao. Protocols for secure computations (extended abstract). In FOCS, pages 160–164. IEEE Computer

Society, 1982.
24. A. Yao. How to generate and exchange secrets. In Foundations of Computer Science, 1986., 27th Annual

Symposium on, pages 162–167. IEEE, 1986.

A Preliminaries

We review basic definitions and notation.

A.1 Notation and conventions

We let N be the set of positive integers. A string is a finite sequence of bits and ⊥ is a formal symbol
that is not a string. If A is a finite set then y�A denotes selecting an element of A uniformly
at random and assigning it to y. If A is an algorithm then A(x1, . . . ; r) denotes the output of A
on inputs x1, . . . and coins r, while y ← A(x1, . . .) means we pick r uniformly at random and
let y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of y that have positive probability of being
output by A(x1, . . .). We write Func(a, b) for {f:{0, 1}a → {0, 1}b}. Polynomial time (PT) is always
measured in the length of all inputs, not just the first. (But random coins, when singled out as an
argument to an algorithm, are never regarded as an input.) As usual, a function ε : N → R+ is
negligible if for every c > 0 there is a K such that ε(k) < k−c for all k > K.

Adaptively Secure Garbling 25

A.2 Code-based games

Our definitions and proofs are expressed via code-based games [6] so we recall here the language and
specify the particular conventions we use. A code-based game—see Fig. 2 for an example—consists
of an Initialize procedure, procedures that respond to adversary oracle queries, and a Finalize
procedure. All procedures are optional. In an execution of game Gm with an adversary A, the
latter is given input 1k where k is the security parameter, and the security parameter k used in the
game is presumed to be the same. Procedure Initialize, if present, executes first, and its output
is input to the adversary, who may now invoke other procedures. Each time it makes a query, the
corresponding game procedure executes, and what it returns, if anything, is the response to A’s
query. The adversary’s output is the input to Finalize, and the output of the latter, denoted
GmA(k), is called the output of the game. Finalize may be absent in which case it is understood
to be the identity function, so that the output of the game is the output of the adversary. We
let “GmA(k) ⇒ c” denote the event that this game output takes value c and let “GmA(k)” be
shorthand for “GmA(k) ⇒ true.” Boolean flags are assumed initialized to false, sets to ∅ and
integers to 0. BAD(GmA(k)) is the event that the execution of game Gm with adversary A sets flag
bad to true.

A.3 Circuits

Circuits. For completeness, it is necessary to formalize boolean circuits. We do so, directly quoting
BHR [4, p. 5–7].

A circuit is a 6-tuple f = (n,m, q,A,B,G). Here n ≥ 2 is the number of inputs, m ≥ 1 is the
number of outputs and q ≥ 1 is the number of gates. We let r = n + q be the number of wires.
We let Inputs = {1, . . . , n}, Wires = {1, . . . , n + q}, OutputWires = {n + q −m + 1, . . . , n + q},
and Gates = {n + 1, . . . , n + q}. Then A : Gates → Wires\OutputWires is a function to identify
each gate’s first incoming wire and B : Gates→Wires\OutputWires is a function to identify each
gate’s second incoming wire. Finally G : Gates×{0, 1}2 → {0, 1} is a function that determines the
functionality of each gate. We require A(g) < B(g) < g for all g ∈ Gates.

The conventions above embody all of the following. Gates have two inputs, arbitrary functional-
ity, and arbitrary fan-out. The wires are numbered 1 to n+ q. Every non-input wire is the outgoing
wire of some gate. The ith bit of input is presented along wire i. The ith bit of output is collected
off wire n+ q−m+ i. The outgoing wire of each gate serves as the name of that gate. Output wires
may not be input wires and may not be incoming wires to gates. No output wire may be twice used
in the output. Requiring A(g) < B(g) < g ensures that the directed graph corresponding to f is
acyclic, and that no wire twice feeds a gate; the numbering of gates comprises a topological sort.

It is common to ignore the distinction between a circuit f = (n,m, q,A,B,G) as a 6-tuple and
the encoding of such a 6-tuple as a string; formally, one assumes a fixed and reasonable encoding,
one where |f | is O(r log r) for r = n+ q.

Circuit evaluation. We define a canonical evaluation function evcirc. It takes a string f and a
string x = x1x2 · · ·xn:

26 Bellare, Hoang, and Rogaway

01 proc evcirc(f, x)
02 (n,m, q,A,B,G)← f
03 for g ← n+ 1 to n+ q do a← A(g), b← B(g), xg ← Gg(xa, xb)
04 return xn+q−m+1 · · ·xn+q

At line 03, xa and xb will always be well defined because of A(g) < B(g) < g. Circuit evaluation
takes linear time. At line 02 we adopt the convention that any string f can be parsed as a circuit.
(If f does not encode a circuit, we view it as some fixed, default circuit.) This ensures that evcirc is
well-defined for all string inputs f .

Topological circuits. We say f− is a topological circuit if f− = (n,m, q,A,B) for some
circuit f = (n,m, q,A,B,G). Thus a topological circuit is like a conventional circuit except the
functionality of the gates is unspecified. Let Topo be the function that expunges the final component
of its circuit-valued argument, so f− = Topo(f) is the topological circuit underlying conventional
circuit f .

B Indistinguishability-Based Definitions

We define the indistinguishability-based counterparts of our prv1, prv2, obv1, and obv2 definitions
in Fig. 10; the prv2.ind and obv2.ind again require garbling schemes to be projective. The top
boxes of Fig. 10 are BHR’s ind-based notions prv.ind and obv.ind. Let G = (Gb,En,De,Ev, ev) be a
garbling scheme and let Φ be a side-information function. The prv.ind advantage of an adversary A
is defined by Advprv.ind,Φ

G (A, k) = 2Pr[PrvIndAG,Φ(k)]− 1. Define Advxxx,Φ
G (A, k) similarly, for any

xxx ∈ {prv.ind, prv1.ind, prv2.ind, obv.ind, obv1.ind, obv2.ind}. We say that G is xxx secure over Φ
if Advxxx,Φ

G (A, k) is negligible, for every PT adversary A. Let GS(xxx, Φ) be the set of all garbling
schemes that are xxx secure over Φ. Below, we will explore the relations between ind-based and
sim-based notions, as illustrated in Fig. 11. It is obvious that prv2.ind ⇒ prv1.ind ⇒ prv.ind and
obv2.ind⇒ obv1.ind⇒ obv.ind.

Discussion. While most of our ind-based notions directly follow BHR, defining prv2.ind requires
care, and merits some discussion. Consider a natural variant prv2.ind.bad in which procedure
Finalize(b′) of game Prv2IndG,Φ returns (b = b′) ∧ (|Q| = n) ∧ (ev(f0, x0) = ev(f1, x1)), requiring
the adversary to fully specify its input strings x0 and x1 and get no credit if it only gives, say, the
first bits of x0 and x1, and makes its guess. Doing so would severely limit the adversary’s choice
of querying (i, c0, c1) to the Input oracle, because it needs to make sure that the bits c0 and c1
can end up making strings x0 and x1 satisfying ev(f0, x0) = ev(f1, x1). In contrast, for prv2.ind
security, if the adversary does not fully specify x0 and x1 then the bits c0 and c1 can be arbitrary,
and the adversary will not be “giving up” on the game.

We now show that in fact, prv2.ind.bad is “wrong”, insofar as it doesn’t imply prv1.ind. Fix
a length-preserving permutation P : {0, 1}∗ → {0, 1}∗ that is one-way : for every PT adversary A,
the advantage

Advow
P (A, k) = Pr[x← {0, 1}k; x′ ← A(P (x)) : x′ = x]

is negligible. For every f, x ∈ {0, 1}∗, let Φ(f) = (f.n, f.m, |f |), and let evP (f, x) = P (b ∥ x), where b
is the last bit of f . Consider the following projective garbling scheme G = (Gb,En,De,Ev, evP). Let
Gb(1k, f) = (b, e, ε), where b is the last bit of f , n = f.n, and e is the 2n-bit vector (0, 1, . . . , 0, 1). Let

Adaptively Secure Garbling 27

proc Garble(f0, f1, x0, x1) PrvIndG,Φ

if Φ(f0) ̸= Φ(f1) then return ⊥
if {x0, x1} ̸⊆ {0, 1}f0.n then return ⊥
if ev(f0, x0) ̸= ev(f1, x1) then return ⊥
b� {0, 1}, (F, e, d)← Gb(1k, fb), X ← En(e, xb)
return (F,X, d)

proc Garble(f0, f1) Prv1IndG,Φ

if Φ(f0) ̸= Φ(f1) then return ⊥
b� {0, 1}, (F, e, d)← Gb(1k, fb)
return (F, d)

proc Input(x0, x1)

if {x0, x1} ̸⊆ {0, 1}f0.n then return ⊥
if ev(f0, x0) ̸= ev(f1, x1) then return ⊥
return En(e, xb)

proc Garble(f0, f1) Prv2IndG,Φ

if Φ(f0) ̸= Φ(f1) then return ⊥
b� {0, 1}, n← f.n, Q← ∅
(F, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, fb)

return (F, d)

proc Input(i, c0, c1)
if i ̸∈ {1, . . . , n} \Q then return ⊥
x0,i ← c0, x1,i ← c1, Q← Q ∪ {i}
if |Q|=n then x0 ← x0,1 · · ·x0,n, x1 ← x1,1 · · ·x1,n

return X
xb,i

i

proc Finalize(b′)

if |Q| = n then
return

(
(b = b′) ∧ (ev(f0, x0) = ev(f1, x1))

)
else return (b = b′)

proc Garble(f0, f1, x0, x1) ObvIndG,Φ

if Φ(f0) ̸= Φ(f1) then return ⊥
if {x0, x1} ̸⊆ {0, 1}f0.n then return ⊥
b� {0, 1}, (F, e, d)← Gb(1k, fb), X ← En(e, xb)
return (F,X)

proc Garble(f0, f1) Obv1IndG,Φ

if Φ(f0) ̸= Φ(f1) then return ⊥
b� {0, 1}, (F, e, d)← Gb(1k, fb)
return F

proc Input(x0, x1)

if {x0, x1} ̸⊆ {0, 1}f0.n then return ⊥
return En(e, xb)

proc Garble(f0, f1) Obv2IndG,Φ

if Φ(f0) ̸= Φ(f1) then return ⊥
b� {0, 1}, n← f.n, Q← ∅
(F, (X0

1 ,X
1
1 , . . . , X

0
n,X

1
n), d)←Gb(1k, fb)

return F

proc Input(i, c0, c1)
if i ̸∈ {1, . . . , n} \Q then return ⊥
x0,i ← c0, x1,i ← c1, Q← Q ∪ {i}
return X

xb,i

i

Fig. 10. Indistinguishability-based privacy notions. Games to define the ind-based static, adaptive, and pro-
jective security of G = (Gb,En,De,Ev, ev). When Finalize(b′) is unspecified, it returns (b = b′).

En(e, x) = x, Ev(b, x) = P (b ∥ x), and De(ε, y) = y. Let an (even computationally-unbounded) ad-
versary A attack the prv2.ind.bad security of G. Assume that A eventually produces (f0, f1, x0, x1)
satisfying Φ(f0) = Φ(f1) and evP (f0, x0) = evP (f1, x1); otherwise A’s advantage is 0. Since P is a
permutation, evP (f0, x0) = evP (f1, x1) implies that x0 = x1 and the last bits of f0 and f1 are equal,
and consequently, A’s advantage is still 0. On the other hand, consider the following adversary B
attacking the prv1.ind security of G. It queries (0, 1) to the Garble oracle to receive the answer b.
It then outputs b without querying the Input oracle, and wins with advantage 1.

Relations among privacy notions. The following says that, as expected, prv1 security always
implies prv1.ind security.

Proposition 13 GS(prv1, Φ) ⊆ GS(prv1.ind, Φ) for any PT Φ.

Proof (Proposition 13). Let G = (Gb,En,De,Ev, ev) ∈ GS(prv1, Φ). We want to show that G ∈
GS(prv1.ind, Φ). Let A be an adversary attacking the prv1.ind security of G over Φ. We construct

28 Bellare, Hoang, and Rogaway

prv
prv.indif (φ, ev) EI

prv2

prv1
prv1.ind

prv2.ind

obv
obv.indif φ EI

obv2

obv1
obv1.ind

obv2.ind

if φ EI

if φ EI

aut

aut2

aut1

Fig. 11. Relations among security notions. A solid arrow is an implication; an if-labeled arrow, a conditional
implication. Besides the implications given by the arrows and those inferred from them, any two notions are separated.

a PT prv1-adversary B as follows. Let B(1k) runs A(1k). When the latter makes its query f0, f1
to Garble, adversary B returns ⊥ to A if Φ(f0) ̸= Φ(f1). Else it picks a bit a at random and
queries fa to its own Garble oracle to get back (F, d) and returns this to A. For the next query
(x0, x1) of A, the adversary B returns ⊥ to A if ev(f0, x0) ̸= ev(f1, x1). Else it queries xa to its own
Input oracle to get X and returns this to A. The latter now returns a bit b′.

Adversary B returns 1 only if b′ = a and ev(f0, x0) = ev(f1, x1) and Φ(f0) = Φ(f1). Then for
any S we have

Pr
[
Prv1BG,Φ,S | b = 1

]
=

1

2
+

1

2
Advprv1.ind, Φ

G (A, k)

Pr
[
¬Prv1BG,Φ,S | b = 0

]
≤ 1

2

where b denotes the challenge bit in game Prv1G,Φ,S . The second claim is true because (i) if
ev(f0, x0) = ev(f1, x1) and Φ(f0) = Φ(f1) then S has the same input regardless of a, and (ii)
if ev(f0, x0) ̸= ev(f1, x1) or Φ(f0) ̸= Φ(f1) then B always answers 0, which is the correct answer in
this case. Subtracting, we see that

Advprv1.ind, Φ
G (A, k) ≤ 2 ·Advprv1, Φ,S

G (B, k) .

By assumption there is a PT simulator S such that the RHS is negligible. Hence the LHS is
negligible as well. ⊓⊔

The following says that prv2 security always implies prv2.ind security.

Proposition 14 GS(prv2, Φ) ⊆ GS(prv2.ind, Φ) for any PT Φ.

Proof (Proposition 14). Let G = (Gb,En,De,Ev, ev) ∈ GS(prv2, Φ). We want to show that G ∈
GS(prv2.ind, Φ). Let A be an adversary attacking the prv2.ind security of G over Φ. We construct
a PT prv2-adversary B as follows. Let B(1k) runs A(1k). When the latter makes its query f0, f1
to Garble, adversary B returns ⊥ to A if Φ(f0) ̸= Φ(f1). Else it picks a bit a at random and
queries fa to its own Garble oracle to get back (F, d) and returns this to A. Then, for each query
(i, c0, c1) of A, the adversary B queries (i, ca) to its own Input oracle and returns the resulting
token Xi to A. The latter now returns a bit b′. Let x0 and x1 be the input strings resulting from
the Input queries of A. If A makes its guess without fully specifying x0 and x1, then B returns 1

Adaptively Secure Garbling 29

only if b′ = a and Φ(f0) = Φ(f1). Otherwise, B returns 1 only if b′ = a and ev(f0, x0) = ev(f1, x1)
and Φ(f0) = Φ(f1). Then for any S we have

Pr
[
Prv2BG,Φ,S | b = 1

]
=

1

2
+

1

2
Advprv2.ind, Φ

G (A, k)

Pr
[
¬Prv2BG,Φ,S | b = 0

]
≤ 1

2

where b denotes the challenge bit in game Prv2G,Φ,S . The second claim is true if A does not fully
specify x0 and x1, since B stops before requesting the very last token, and the simulator S therefore
has no information of the bit a, and consequently b′ is independent of a. So suppose that A fully
specifies x0 and x1. Then, the second claim is still true because (i) if ev(f0, x0) = ev(f1, x1) and
Φ(f0) = Φ(f1) then S has the same input regardless of a, and (ii) if ev(f0, x0) ̸= ev(f1, x1) or
Φ(f0) ̸= Φ(f1) then B always answers 0, which is the correct answer in this case. Subtracting, we
see that

Advprv2.ind, Φ
G (A, k) ≤ 2 ·Advprv2, Φ,S

G (B, k) .

By assumption there is a PT simulator S such that the RHS is negligible. Hence the LHS is
negligible as well. ⊓⊔

BHR [4] show that for garbling schemes (Gb,En,De,Ev, ev) with (Φ, ev) efficiently invertible,
prv.ind security over Φ implies prv security over Φ. But analogous claims do not hold for adaptive
privacy. Below, we will show that, prv2.ind security does not imply prv1 security even when (Φ, ev)
is efficiently invertible.

Let P : {0, 1}∗ → {0, 1}∗ be a length-preserving permutation. Recall that P has a hard-core
predicate h : {0, 1}∗ → {0, 1} if advantage

2Pr[x� {0, 1}k; b← A(P (x)) : b = h(x)]− 1

is negligible for every PPT adversary A. Starting from any one-way permutation, one can construct
another one-way permutation with a hard-core predicate, by the Goldreich-Levin construction [13].

In Proposition 15, for any string f ∈ {0, 1}∗, we let f.n = f.m = |f |, and let ev∗(f, x) = f ,
for any x ∈ {0, 1}|f |. Define Φ∗(f) = |f | for all f ∈ {0, 1}∗. We note that (Φ∗, ev∗) is efficiently
invertible.

Proposition 15 GS(prv2.ind, Φ∗) ∩ GS(ev∗) ̸⊆ GS(prv1, Φ∗), assuming the existence of a one-way,
length-preserving permutation P : {0, 1}∗ → {0, 1}∗.

Proof. We build a projective scheme G = (Gb,En,De,Ev, ev∗) so that G ∈ GS(prv2.ind, Φ∗)∩GS(ev∗)
but G ̸∈ GS(prv1, Φ∗). Let h : {0, 1}∗ → {0, 1} be a hard-core predicate of P . On input (1k, f),
algorithm Gb samples r1, . . . , rn� {0, 1}k, and creates F = (P (r1), P (r2), . . . , P (rn), S ⊕ f), where
n = |f | and S = h(r1)∥ · · · ∥h(rn). It then picks S1, . . . , Sn� {0, 1}kn, lets e = (S1, S1, . . . , Sn, Sn)
and d = (r1∥ · · · ∥rn)⊕S1⊕· · ·⊕Sn, and returns (F, e, d). Algorithm En is defined, as the scheme G
is projective. Let Ev be the identity. Finally, on input d and Y = (F,X), algorithm De parses
X = (S1, . . . , Sn) and F = (s1, . . . , sn, U). It then computes r1∥ · · · ∥rn = d⊕ S1 ⊕ · · · ⊕ Sn, where
k = |s1| and each string ri has length k. If P (ri) = si for all i ≤ n then it returns f = U ⊕S, where
S = h(r1)∥ · · · ∥h(rn), otherwise it returns ⊥.

30 Bellare, Hoang, and Rogaway

Consider an adversary A attacking the prv2.ind security of G. Without loss of generality, assume
that A queries (f0, f1) such that Φ∗(f0) = Φ∗(f1). If f0 = f1 then the advantage of A will be 0, no
matter how it queries oracle Input, so assume that f0 ̸= f1. If A fully specifies its input strings x0
and x1 then ev∗(f0, x0) ̸= ev∗(f1, x1), and A’s advantage is again 0. Otherwise, if A does not fully
specify its input strings, then the strings Si it obtains from oracle Input are independent random
strings, so A gains nothing from querying Input. Then, A’s advantage is negligible, since h is a
hard-core predicate of P .

Next, consider the following adversary B(1k) attacking the prv1 security of G. It chooses
f � {0, 1} and queries f to its Garble oracle to get answer (F, d). It then queries 0 to oracle
Input to receive answer X. It returns 1 only if De(d,Ev(F,X)) = f and F = (s, U), with |s| = k
and |U | = 1. If the challenge bit is 1 then B’s guess is always correct. Suppose that the chal-
lenge bit is 0. Fix a computationally unbounded simulator S. The simulator does not know if f
is 0 or 1 until the last query, and thus f is independent of F and d. Let F = (s, U). Since P
is permutation, r = P−1(s) is uniquely defined, and thus h(r) is also independent of f . Then
f ̸= De(d,Ev(F,X)) = U ⊕ h(r) with probability 1/2, no matter how the simulator chooses X.

Thus, B’s guess is correct with probability at least 1/2. Hence Advprv1, Φ∗,S
G (B, k) ≥ 1/2. ⊓⊔

Relations among obliviousness notions. Next we consider relations for obliviousness notions.
The following says that obv1 security always implies obv1.ind security, and conversely if Φ is
efficiently invertible.

Proposition 16 For any PT Φ: (1) GS(obv1, Φ) ⊆ GS(obv1.ind, Φ), and (2) If Φ is efficiently
invertible then GS(obv1.ind, Φ) ⊆ GS(obv1, Φ).

Proof (Proposition 16). For part (1), let G = (Gb,En,De,Ev, ev) ∈ GS(obv1, Φ). We want to show
that G ∈ GS(obv1.ind, Φ). Let A be an adversary attacking the obv1.ind security of G over Φ. We
construct a PT obv1-adversary B as follows. Let B(1k) runs A(1k). When the latter makes its query
f0, f1 to Garble, adversary B returns ⊥ to A if Φ(f0) ̸= Φ(f1). Else it picks a bit a at random
and queries fa to its own Garble oracle to get back F and returns this to A. For the next query
(x0, x1) of A, the adversary B queries xa to its own Input oracle to get X and returns this to A.
The latter now returns a bit b′. Adversary B returns 1 only if b′ = a and Φ(f0) ̸= Φ(f1). Then for
any S we have

Pr
[
Obv1BG,Φ,S | b = 1

]
=

1

2
+

1

2
Advobv1.ind, Φ

G (A, k)

Pr
[
Obv1BG,Φ,S | b = 0

]
≤ 1

2

where b denotes the challenge bit in game Obv1G,Φ,S . The second claim is true because (i) if
Φ(f0) = Φ(f1) then S has the same input regardless of a, and (ii) if Φ(f0) ̸= Φ(f1) then B always
answers 0, which is the correct answer in this case. Subtracting, we see that

Advobv1.ind, Φ
G (A, k) ≤ 2 ·Advobv1, Φ,S

G (B, k) .

By assumption there is a PT simulator S such that the RHS is negligible. Hence the LHS is
negligible as well.

For part (2), let G = (Gb,En,De,Ev, ev) ∈ GS(obv1.ind, Φ) and let M be a Φ-inverter. We
want to show that G ∈ GS(obv1, Φ). Let B be a PT adversary attacking the obv1-security of G

Adaptively Secure Garbling 31

over Φ. We define a simulator S that on input (1k, ϕ, 0), lets f ←M(ϕ) then (F, e, d)← Gb(1k, f),
and returns F . For the next query, the simulator chooses x� {0, 1}f.n and then answers X =
En(e, x). We define adversary A(1k) to run B(1k). When the latter makes its query f1 to Garble,
adversary A lets f0 ← M(Φ(f1)) and then queries f0, f1 to its own Garble oracle to get back F ,
which it returns to B. When receiving x1 on the next query, the adversary A chooses x0� {0, 1}f0.n,
queries (x0, x1) to its Input oracle, and returns the answer X to B. When the latter outputs a
bit b′ and halts, so does A. Then

Pr
[
Obv1IndAG,Φ | b = 1

]
= Pr

[
Obv1BG,Φ,S | c = 1

]
Pr

[
¬Obv1IndAG,Φ | b = 0

]
= Pr

[
¬Obv1BG,Φ,S | c = 0

]
where b and c denote the challenge bit in game ObvIndG,Φ and Obv1G,Φ,S respectively. Subtracting,
we get

Advobv1, Φ,S
G (B, k) ≤ Advobv1.ind, Φ

G (A, k) .

But the RHS is negligible by assumption, hence the LHS is as well. ⊓⊔

The following says that obv2 security always implies obv2.ind security, and conversely if Φ is
efficiently invertible.

Proposition 17 For any PT Φ: (1) GS(obv2, Φ) ⊆ GS(obv2.ind, Φ), and (2) If Φ is efficiently
invertible then GS(obv2.ind, Φ) ⊆ GS(obv2, Φ).

Proof (Proposition 17). For part (1), let G = (Gb,En,De,Ev, ev) ∈ GS(obv2, Φ). We want to show
that G ∈ GS(obv2.ind, Φ). Let A be an adversary attacking the obv2.ind security of G over Φ.
We construct a PT obv2-adversary B as follows. Let B(1k) runs A(1k). When the latter makes its
query f0, f1 to Garble, adversary B returns ⊥ to A if Φ(f0) ̸= Φ(f1). Else it picks a bit a at
random and queries fa to its own Garble oracle to get back F and returns this to A. Then, for
each query (i, c0, c1) of A, the adversary B queries (i, ca) to its own Input oracle and returns the
resulting token Xi to A. The latter now returns a bit b′. Adversary B returns 1 only if b′ = a and
Φ(f0) = Φ(f1). Then for any S we have

Pr
[
Obv2BG,Φ,S | b = 1

]
=

1

2
+

1

2
Advobv2.ind, Φ

G (A, k)

Pr
[
¬Obv2BG,Φ,S | b = 0

]
≤ 1

2

where b denotes the challenge bit in game Obv2G,Φ,S . The second claim is true because (i) if
Φ(f0) = Φ(f1) then S has the same input regardless of a, and (ii) if Φ(f0) ̸= Φ(f1) then B always
answers 0, which is the correct answer in this case. Subtracting, we get

Advobv2.ind, Φ
G (A, k) ≤ 2 ·Advobv2, Φ,S

G (B, k) .

By assumption there is a PT simulator S such that the RHS is negligible. Hence the LHS is
negligible as well.

For part (2), let G = (Gb,En,De,Ev, ev) ∈ GS(obv2.ind, Φ) and let M be a Φ-inverter. We
want to show that G ∈ GS(obv2, Φ). Let B be a PT adversary attacking the obv2 security of G
over Φ. We define a simulator S that, on input (1k, ϕ, 0), lets f ←M(ϕ) then (F, e, d)← Gb(1k, f),

32 Bellare, Hoang, and Rogaway

where M is a Φ-inverter, and returns F . For each subsequent query (i, j), the simulator lets e =
(X0

1 , X
1
1 , . . . , X

0
n, X

1
n), chooses xi� {0, 1}, and answers Xxi

i . We define adversary A(1k) to run
B(1k). When the latter makes its query f1 to Garble, adversary A lets f0 ←M(Φ(f1)) and then
queries f0, f1 to its own Garble oracle to get back F , which it returns to B. Then, for each query
(i, c1) of B, the adversary A chooses c0� {0, 1} and queries (i, c0, c1) to its Input oracle, and
returns the resulting token Xi to B. When the latter outputs a bit b′ and halts, so does A. Then

Pr
[
Obv2IndAG,Φ | b = 1

]
= Pr

[
Obv2BG,Φ,S | c = 1

]
Pr

[
¬Obv2IndAG,Φ | b = 0

]
= Pr

[
¬Obv2BG,Φ,S | c = 0

]
where b and c denote the challenge bit in game Obv2IndG,Φ and Obv2G,Φ,S respectively. Subtracting,
we get

Advobv2, Φ,S
G (B, k) ≤ Advobv2.ind, Φ

G (A, k) .

But the RHS is negligible by assumption, hence the LHS is as well. ⊓⊔

C Separations

For each xxx ∈ {prv, obv, aut}, it is obvious that xxx2 security implies xxx1 security and that xxx1
security implies xxx security. We want to prove that the converse directions are not true, even for
projective schemes. Moreover, there are separations among our notions of privacy, obliviousness,
and authenticity. The relations among notions are illustrated in Fig. 11. Recall that evcirc names
the canonical circuit-evaluation procedure defined in Appendix A.3.

We will use the scheme described by the top box of Fig. 12 to separate xxx and xxx1 notions.
The idea is as follows. We append 0k to the garbled input (which is harmless), except for the case
that x is a “poisoned” point s. There, we instead append a k-bit random string t (which is unlikely
to be 0k). We choose s at random so that a static adversary is unlikely to query x = s, but then
include s to the garbled function, making it is trivial for an adaptive adversary to choose x = s.
To make sure that the probability to query x = s (that is 2−n) is negligible in terms of k, we only
perform this trick if n ≥ k. To deal with authenticity, we append the same string t above to d.
Procedure De′(d′, Y ′) parses d′ as (d, t) and Y ′ as (Y, u); it returns 1 if u = t, and returns De(d, Y)
otherwise. This creates a loophole for an adversary to win, if it can query (Y, t) for some string Y .
However, an aut adversary is unlikely to know t, because t is disclosed only if it queries the poisoned
point x = s.

To separate xxx1 and xxx2 notions, we will use the scheme described by the bottom box of
Fig. 12. The idea is as follows. We choose a random (n− 1)-bit string V = v1 · · · vn−1, and want to
“poison” points x ∈ {V ∥ 0, V ∥ 1}. In order to do this, we choose (n − 1)-bit strings V 0

i , V
1
i for

every i ≤ n, and append V b
i to token Xb

i . We let V 0
n = V , making it trivial for a projective adaptive

adversary to choose a poisoned point, by querying (n, 0) to its Input oracle. Since V is random,
an xxx1 adversary on the other hand may know V only after it already specifies its x, which is too
late to query x ∈ {V ∥0, V ∥1}. Of course it can try to guess V , but then its chance of success is
only 21−n. To make sure that the probability above is negligible in terms of k, we only perform this
trick if n > k. The other strings V b

i are independently random (so it’s harmless to append to the
tokens), except that the checksum of V v1

1 , . . . , V
vn−1

n−1 (the shares corresponding to a poisoned point)
is a random string t whose last bit is 0. To deal with authenticity, we append the same string t
above to d. Procedure De′(d′, Y ′) parses d′ as (d, t) and Y ′ as (Y, u); it returns 1 if u = t, and

Adaptively Secure Garbling 33

proc Gb′(1k, f)

(F, e, d)← Gb(1k, f)

t� {0, 1}k, s� {0, 1}f.n
return

(
(F, s), (e, s, t), (d, t)

)
proc Ev′(F ′,X ′)

(F, s)← F ′, (X,u)← X ′

return
(
Ev(F,X), ε

) proc En′(e′, x)

(e, s, t)← e′, n← |s|, k ← |t|, X ← En(e, x)

if x = s and n ≥ k then return (X, t)

return (X, 0k)

proc Gb′(1k, f)

n← f.n, (F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)← Gb(1k, f)

for i ∈ {1, . . . , n} do V 0
i , V

1
i � {0, 1}n−1

v1 · · · vn−1 ← V 0
n , t� {0, 1}n−20

if n > k then V v1
1 ← t⊕ V v2

2 ⊕ · · · ⊕ V
vn−1
n−1

else t� {0, 1}k−1

e′ ←
(
(X0

1 , V
0
1), (X

1
1 , V

1
1), . . . , (X

0
n, V

0
n), (X

1
n, V

1
n)

)
return (F, e′, (d, t))

proc En′(e′, x)

(T 1
0 , T

1
1 , . . . , T

0
n , T

1
n)← e′, x1 · · ·xn ← x

return (T x1
1 , . . . , T xn

n)

proc Ev′(F,X ′)(
(X1, V1), . . . , (Xn, Vn)

)
← X ′

(X1, . . . , Xn)← X

return
(
Ev(F,X), ε

)
Fig. 12. In both schemes (top and bottom), procedure De′(d′, Y ′) parses d′ as (d, t) and Y ′ as (Y, u). It returns 1

if u = t, and returns De(d, Y) otherwise. Separation between xxx and xxx1 notions (top): Garbling scheme

G ′ = (Gb′,En′,De′,Ev′, evcirc) that separates prv and prv1 (and, later, separates obv from obv1 , and aut from aut1).

It is built from a circuit-garbling scheme G = (Gb,En,De,Ev, evcirc). Separation between xxx1 and xxx2 notions

(bottom): Garbling scheme G ′ = (Gb′,En′,De′,Ev′, evcirc) that separates prv1 from prv2 (and later separates obv1

from obv2, and aut1 from aut2 too). It is built from a projective circuit-garbling scheme G = (Gb,En,De,Ev, evcirc).

returns De(d, Y) otherwise. This creates a loophole for an adversary to win, if it can query (Y, t)
for some string Y . However, an aut1 adversary is unlikely to know t, because t is disclosed only if
it queries a poisoned point x ∈ {V ∥0, V ∥1}.

Separations among privacy notions. The following says that prv security does not imply
prv1 security, even for circuit-garbling schemes.

Proposition 18 GS(prv, Φtopo) ∩ GS(evcirc) ̸⊆ GS(prv1, Φtopo), assuming that LHS is nonempty.

Proof (Proposition 18). By assumption, GS(prv, Φtopo) ∩ GS(evcirc) ̸= ∅, so we let G = (Gb,En,
De,Ev, evcirc) be a member of this set. Consider the garbling scheme G′ = (Gb′,En′,De′,Ev′, evcirc)
described by the top box of Fig. 12. We claim that G′ ∈ GS(prv, Φtopo) ∩ GS(evcirc) but G′ ̸∈
GS(prv1, Φtopo).

Let us justify the first claim. Consider an adversary A that attacks G′. Assume that the circuit f
in A’s query satisfies n = f.n ≥ k; otherwise G′ will inherit the prv security from G, as it only
appends the garbled function and decoding function with independent random strings, and the
garbled input with 0k. Unless A can query x = s, where s is the random string appended to the
garbled function, the same argument applies and G′ will again inherit the prv security from G.
However, since s� {0, 1}n, the chance that x = s is 2−n ≤ 2−k.

We justify the second claim by constructing an adversary A that breaks the prv1 security of G′.
Choose two circuits f0, f1 of the same topology such that f0.n = k and f0(x) = f1(x) for every
x ∈ {0, 1}k. Pick b� {0, 1} and query f = fb to the oracle Garble. When receiving answer (F, s),
query x = xb to Input to receive (X,u), where x0 = s and x1 = s. Return 1 only if the last bit
of u coincides with b. If the challenge bit is 1 then the adversary answers 0 only if b = 1 and the
last bit of t is 0, which happens with probability 1/4. Otherwise, since the simulator’s inputs are
independent of b, the chance that the last bit of u is b is exactly 1/2. Hence the adversary wins
with advantage 1/4. ⊓⊔

34 Bellare, Hoang, and Rogaway

Similarly, the following proposition says that, even for projective circuit-garbling schemes, prv1
security doesn’t imply prv2 security.

Proposition 19 GS(prv1, Φtopo) ∩ GS(proj) ∩ GS(evcirc) ̸⊆ GS(prv2, Φtopo), assuming that LHS is
nonempty.

Proof (Proposition 19). By assumption, GS(prv1, Φtopo) ∩ GS(proj) ∩ GS(evcirc) ̸= ∅, so we let G =
(Gb,En,De,Ev, evcirc) be a member of this set. Consider the scheme G′ = (Gb′,En′,De′,Ev′, evcirc)
described by the bottom box of Fig. 12. We claim that G′ ∈ GS(prv1, Φtopo)∩GS(proj)∩GS(evcirc)
but G′ ̸∈ GS(prv2, Φtopo).

Let us justify the first claim. Consider an adversary A that attacks G′. Assume that the circuit f
in A’s query satisfies n = f.n > k; otherwise G′ will inherit the prv1 security from G, as it only
appends tokens and decoding function with independent random strings. Let V = V 0

n be the random
string appended into token X0

n. Unless the adversary queries x ∈ {V ∥0, V ∥1}, the same argument
applies and G′ will again inherit the prv1 security from G. However, as V � {0, 1}n−1, the chance
that x ∈ {V ∥0, V ∥1} is 21−n ≤ 2−k.

We justify the second claim by constructing an adversary A that breaks the prv2 security of G′.
Choose two circuits f0, f1 of the same topology such that f0.n = k+ 1 and f0(x) = f1(x⊕ 1k0) for
every x ∈ {0, 1}k+1. Pick b� {0, 1} and query f = fb to the oracle Garble. Then query (k+ 1, 0)
to Input to get answer (Xk+1, Vk+1). Let Vk+1 = v1 · · · vk. If b = 1 then query (1, v1), . . . , (k, vk)
to Input. Else query (1, v1), . . . , (k, vk). Let the answers be (X1, V1), . . . , (Xk, Vk), and let t =
V1⊕ · · · ⊕ Vk. Answer 1 only if the last bit of t is b. If the challenge bit is 1 then the chance that A
answers 1 is 3/4. If the challenge bit is 0, since the simulator’s inputs are independent of b, the
chance that the adversary answers 1 is 1/2. Hence A wins with advantage 1/4. ⊓⊔

Separations among obliviousness notions. The following says that obv security does not
imply obv1 security, even for circuit-garbling schemes.

Proposition 20 GS(obv, Φtopo) ∩ GS(evcirc) ̸⊆ GS(obv1, Φtopo), assuming that LHS is nonempty.

Proof (Proposition 20). By assumption, GS(obv, Φtopo) ∩ GS(evcirc) ̸= ∅, so we let G = (Gb,En,De,
Ev, evcirc) be a member of this set. Consider the scheme G′ = (Gb′,En′,De′,Ev′, evcirc) described
by the top box of Fig. 12. Following exactly the same security proof and attack in the proof of
Proposition 18, we have G′ ∈ GS(obv, Φtopo) ∩ GS(evcirc) but G′ ̸∈ GS(obv1, Φtopo). ⊓⊔

Similarly, the following proposition says that, for projective circuit-garbling schemes, obv1 security
doesn’t imply obv2 security.

Proposition 21 GS(obv1, Φtopo) ∩ GS(proj) ∩ GS(evcirc) ̸⊆ GS(obv2, Φtopo), assuming that LHS is
nonempty.

Proof (Proposition 21). By assumption, GS(obv1, Φtopo) ∩ GS(proj) ∩ GS(evcirc) ̸= ∅, so we let G =
(Gb,En,De,Ev, evcirc) be a member of this set. Consider the scheme G′ = (Gb′,En′,De′,Ev′, evcirc)
described by the bottom box of Fig. 12. Following exactly the same security proof and attack
in the proof of Proposition 19, we have G′ ∈ GS(obv1, Φtopo) ∩ GS(proj) ∩ GS(evcirc) but G′ ̸∈
GS(obv2, Φtopo). ⊓⊔

Adaptively Secure Garbling 35

Separations among authenticity notions. The following says that aut security does not
imply aut1 security, even for circuit-garbling schemes.

Proposition 22 GS(aut) ∩ GS(evcirc) ̸⊆ GS(aut1), assuming that LHS is nonempty.

Proof (Proposition 22). By assumption, GS(aut) ∩ GS(evcirc) ̸= ∅, so we let G = (Gb,En,De,Ev,
evcirc) be a member of this set. Consider the garbling scheme G′ = (Gb′,En′,De′,Ev′, evcirc) described
by the top box of Fig. 12. We claim that G′ ∈ GS(aut) ∩ GS(evcirc) but G′ ̸∈ GS(aut1).

Let us justify the first claim. Consider an adversary A that attacks G′. Let t be the random
string that is appended to the decoding function. Assume that the circuit f in A’s query satisfies
n = f.n ≥ k; otherwise G′ will inherit the aut security from G, as it only appends the garbled
function with an independent random string, and the garbled input with 0k, and the chance that
adversary can output Y ′ = (Y, t) is at most 2−k. Unless A can query x = s, where s is the random
string appended to the garbled function, the same argument applies and G′ will again inherit the
aut security from G. However, since s� {0, 1}n, the chance that x = s is 2−n ≤ 2−k.

We justify the second claim by constructing an adversary A that breaks the aut1 security of G′.
Query an arbitrary circuit f , such that f.n = k, to Garble to receive (F, s). Then, query x = s
to Input to receive (X, t). Then, output (1, t) and win with advantage 1. ⊓⊔

Similarly, the following proposition says that, for projective circuit-garbling schemes, aut1 security
does not imply aut2 security.

Proposition 23 GS(aut1) ∩ GS(proj) ∩ GS(evcirc) ̸⊆ GS(aut2), assuming that LHS is nonempty.

Proof (Proposition 23). By assumption, GS(aut1)∩GS(proj)∩GS(evcirc) ̸= ∅, so we let G = (Gb,En,
De,Ev, evcirc) be a member of this set. Consider the garbling scheme G′ = (Gb′,En′,De′,Ev′, evcirc)
described by the bottom box of Fig. 12. We claim that G′ ∈ GS(aut1) ∩ GS(proj) ∩ GS(evcirc) but
G′ ̸∈ GS(aut2).

Let us justify the first claim. Consider an adversary A that attacks G′. Let t be the random
string that is appended to the decoding function. Assume that the circuit f in A’s query satisfies
n = f.n > k; otherwise G′ will inherit the aut1 security from G, as it only appends each token
with an independent random string, and the chance that the adversary can output Y ′ = (Y, t)
is 21−k. Let V = V 0

n be the random string appended into token X0
n. Unless the adversary queries

x ∈ {V ∥0, V ∥1}, the same argument applies and G′ will again inherit the aut1 security from G.
However, as V � {0, 1}n−1, the chance that x ∈ {V ∥0, V ∥1} is 21−n ≤ 2−k.

We justify the second claim by constructing an adversary A that breaks the aut2 security
of G′. Query an arbitrary circuit f , such that f.n = k + 1, to Garble. Then, query (k + 1, 0) to
Input to receive (Xk+1, Vk+1). Let Vk+1 = v1 · · · vk. Then, query (1, v1), . . . , (k, vk) to Input to
receive (X1, V1), . . . , (Xk, Vk) respectively. Let t = V1 ⊕ · · · ⊕ Vk. Then, output (1, t) and win with
advantage 1. ⊓⊔

Separations among privacy, obliviousness, and authenticity. The following says that
privacy does not imply obliviousness, even when we take the strongest form of privacy (projective
adaptive) and the weakest form of obliviousness (static).

Proposition 24 GS(prv2, Φ) ∩ GS(evcirc) ̸⊆ GS(obv, Φ) for all Φ, assuming that LHS is nonempty.

36 Bellare, Hoang, and Rogaway

Proof (Proposition 24). By assumption, GS(prv2, Φ)∩GS(evcirc) ̸= ∅, so we let G = (Gb,En,De,Ev,
evcirc) be a member of this set. We construct a garbling scheme G′ = (Gb′,En,De,Ev′, evcirc) such
that G′ ∈ GS(prv2, Φ)∩GS(evcirc) but G′ ̸∈ GS(obv, Φ). The construction is as follows. Let Gb′(1k, f)
create (F, e, d) ← Gb(1k, f) and return ((F, d), e, d). Let Ev′((F, d), X) = Ev(F,X). Including d
in the description of the garbled function does not harm prv2 security because an adversary is
always given the descriptions of the garbled function and the decoding function simultaneously,
so G ′ inherits the prv2 security of G. On the other hand, scheme G ′ fails to achieve obv. Let
f0 = f1 = OR, x0 = 00 and x1 = 11. An adversary simply picks b� {0, 1} and queries (fb, xb).
On receiving reply ((F, d), X, d), it outputs 1 if De(d,Ev(F,X)) = b and outputs 0 otherwise. If
the challenge bit is 1 then the adversary always answer 1. Otherwise, since the simulator’s input is
independent of b, the chance that the adversary answers 1 is 1/2. Hence the adversary wins with
advantage 1/2. ⊓⊔

The following says that obliviousness does not imply privacy, even when we take the strongest form
of obliviousness (projective adaptive) and the weakest form of privacy (static).

Proposition 25 GS(obv2, Φtopo) ∩ GS(evcirc) ̸⊆ GS(prv, Φtopo), assuming that LHS is nonempty.

Proof (Proposition 25). By assumption, GS(obv2, Φtopo) ∩ GS(evcirc) ̸= ∅, so we let G = (Gb,En,
De,Ev, evcirc) be a member of this set. We construct a garbling scheme G ′ = (Gb′,En,De′,Ev, evcirc)
such that G′ ∈ GS(obv2, Φtopo) ∩ GS(evcirc) but G′ ̸∈ GS(prv, Φtopo). The construction is as follows.
Let Gb′(1k, f) create (F, e, d) ← Gb(1k, f) and return (F, e, (d, e)). Let De′((d, e), Y) = De(d, Y).
Including e in the description of the decoding function does not harm obv2 security because an
adversary is never given the description of the decoding function, so G ′ inherits the obv2 security
of G. On the other hand, G ′ fails to achieve prv. Let f0 = AND, f1 = OR, and x0 = x1 = 11.
An adversary simply chooses b� {0, 1} and queries (fb, xb). On receiving reply (F,X, (d, e)), it
outputs 0 if De(d,Ev(F,En(e, 01))) = 0 and outputs 1 otherwise. If the challenge bit is 1 then the
adversary always answer 1. Otherwise, since the simulator’s input is independent of b, the chance
that the adversary answers 1 is 1/2. Hence the adversary wins with advantage 1/2. ⊓⊔

The following says that privacy and obliviousness, even in conjunction and in their strongest forms
(projective adaptive), do not imply authenticity, even in its weakest form (static).

Proposition 26 GS(prv2, Φ) ∩ GS(obv2, Φ) ∩ GS(evcirc) ̸⊆ GS(aut), for all Φ, assuming that LHS
is nonempty.

Proof (Proposition 26). By assumption, GS(prv2, Φ) ∩ GS(obv2, Φ) ∩ GS(evcirc) ̸= ∅, so we let G =
(Gb,En,De,Ev, evcirc) be a member of this set. We construct G′ = (Gb,En,De′,Ev′, evcirc) such that
G′ ∈ GS(prv2, Φ) ∩ GS(obv2, Φ) ∩ GS(evcirc) but G′ ̸∈ GS(aut). The construction is as follows. Let
Ev′(F,X) = Ev(F,X)∥0, and let De′(d, Y ∥b) be De(d, Y) if b = 0, and be 1 otherwise, where
b ∈ {0, 1}. Appending a constant bit to the garbled output does not harm prv2 security or obv2
security. On the other hand, G ′ fails to achieve aut. An adversary simply makes query (OR, 00)
and outputs 1∥1 to have advantage 1. ⊓⊔

The following says that authenticity, even in its strongest forms (projective adaptive), implies
neither privacy nor obliviousness, even in their weakest form (static).

Adaptively Secure Garbling 37

Proposition 27 GS(aut2) ∩ GS(evcirc) ̸⊆ GS(prv, Φtopo) ∪ GS(obv, Φtopo), assuming that LHS is
nonempty.

Proof (Proposition 27). By assumption, GS(aut2) ∩ GS(evcirc) ̸= ∅, so we let G = (Gb,En,De,Ev,
evcirc) be a member of this set. We construct G = (Gb′,En,De,Ev′, evcirc) such that G′ ∈ GS(aut2)∩
GS(evcirc) but G′ ̸∈ GS(prv, Φtopo)∪GS(obv, Φtopo). The construction is as follows. On input (1k, f),
algorithm Gb′ creates (F, e, d) ← Gb(1k, f), and then outputs ((F, f), e, d). On input ((F, f), X),
algorithm Ev′ returns Ev(F,X). Appending f to F does no harm to authenticity of G ′, as the
adversary always knows f in its attack. On the other hand, the garbled function leaks f , so both
privacy and obliviousness fail over Φtopo. ⊓⊔

D Postponed proofs

The variables specified in simulator code in these proofs are global ones, part of the state that it
maintains and updates across its different invocations.

D.1 Proof of Theorem 2

Given any PT adversary A1 against the prv1 security of G1 we build a PT adversary A against
the prv security of G. The assumption of prv security yields a PT simulator S for A such that
Advprv, Φ,S

G (A, ·) is negligible. Now we build from S a PT simulator S1 such that for all k ∈ N,

Advprv1, Φ,S1

G1
(A1, k) ≤ Advprv, Φ,S

G (A, k) . (1)

This yields the theorem.

The constructions have to deal with some pesky issues related to the fact that the simulator
needs to know the lengths of the pads, so let us settle these first. We know that algorithm Gb runs in
polynomial time. This means there are polynomials L′

1, L
′
2 such that if (F, e, d) ∈ [Gb(1k, f)] then |F |

is at most L′
1(k, |f |) and |d| is at most L′

2(k, |f |). By suitable padding, we assume wlog these lengths
are exactly, rather than at most, L′

1(k, |f |) and L′
2(k, |f |), respectively. (Formally, G would have to

be first transformed to ensure this condition via the suitable padding.) A convention we have made
in Section 2 is that the side-information Φ(f) always reveals f.n, f.m and |f |. This means there are
PT functions L1, L2 such that L1(1

k, Φ(f)) = L′
1(k, |f |) and L2(1

k, Φ(f)) = L′
2(k, |f |).

Proceeding now to the constructions, we define A and S1 as in the top of Fig. 13. There,
adversaryA runsA1, simulating the latter’sGarble and Input oracles via proceduresGarbleSim
and InputSim, respectively. The last of these invokes the Garble oracle from A’s own Prv G,Φ,S
game. (The f in the Garble call is the one that was earlier queried to GarbleSim.) The two
phases of the simulator are specified separately. Letting b, b1 be the challenge bits in games PrvG,Φ,S
and Prv1G1,Φ,S1 , respectively, we observe that

Pr
[
PrvAG,Φ,S(k) | b = 1

]
= Pr

[
Prv1A1

G1,Φ,S1
(k) | b1 = 1

]
Pr

[
¬PrvAG,Φ,S(k) | b = 0

]
= Pr

[
¬Prv1A1

G1,Φ,S1
(k) | b1 = 0

]
.

Subtracting yields Eq. (1).

38 Bellare, Hoang, and Rogaway

adversary A(1k)
b′ ← AGarbleSim,InputSim

1 (1k)

return b′

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f)), d1 � {0, 1}L2(1

k,Φ(f))

return (F1, d1)

proc InputSim(x)

(F,X, d)← Garble(f, x)

F ′ ← F1 ⊕ F , d′ ← d1 ⊕ d

return (X, d′, F ′)

simulator S1(1k, ϕ, 0)
F1 � {0, 1}L1(1

k,ϕ), d1 � {0, 1}L2(1
k,ϕ)

return (F1, d1)

simulator S1(y, 1)
(F,X, d)← S(1k, y, ϕ)
F ′ ← F1 ⊕ F , d′ ← d1 ⊕ d

return (X, d′, F ′)

adversary A1(1
k)

b′ ← AGarbleSim,InputSim
2 (1k)

return b′

proc GarbleSim(f)

n← f.n, j ← 0

(ℓ, ℓ1, . . . , ℓn)← L(1k, Φ(f)), S ← 0ℓ

for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
(F, d)← Garble(f)

return (F, d)

proc InputSim(i, c)

xi ← c, j ← j + 1

if j < n then Si � {0, 1}ℓ, S ← S ⊕ Si

else

x← x1 · · ·xn, (X1, . . . , Xn)← Input(x)

(Z1, . . . , Zn)← (X1 ⊕ U1, . . . , Xn ⊕ Un)

Z ← (Z1, . . . , Zn), Si ← Z ⊕ S

Ti ← (Ui, Si)

return Ti

simulator S2(1k, ϕ, 0)
(ℓ, ℓ1, . . . , ℓn)← L(1k, Φ(f)), S ← 0ℓ

(F, d)← S1(1k, ϕ, 0)
for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
return (F, d)

simulator S2(τ2, i, j)
if j < n then Si � {0, 1}ℓ, S ← S ⊕ Si

else

y ← τ2, (X1, . . . , Xn)← S1(y, 1)
(Z1, . . . , Zn)← (X1 ⊕ U1, . . . , Xn ⊕ Un)

Z ← (Z1, . . . , Zn), Si ← Z ⊕ S

Ti ← (Ui, Si)

return Ti

Fig. 13. Top: constructed adversary and simulator for proof of Theorem 2. For the first query, return

random F1 and d1. For the second query, given y = ev(f, x), produce the real triple (F,X, d), and return X with the

one-time pads F1 ⊕ F and d1 ⊕ d. Bottom: constructed adversary and simulator for proof of Theorem 3.

Except for the last query, return random tokens. For the last query, given y = ev(f, x), produce the real tokens and

create the last piece of secret masks so that the shares unmask the real tokens.

D.2 Proof of Theorem 3

Given any PT adversary A2 against the prv2 security of G2 we build a PT adversary A1 against
the prv1 security of G1. Now the assumption of prv1 security yields a PT simulator S1 for A1 such
that Advprv1, Φ,S1

G1
(A1, ·) is negligible. Now we build from S1 a PT simulator S2 such that for all

k ∈ N we have

Advprv2, Φ,S2

G2
(A2, k) ≤ Advprv1, Φ,S1

G1
(A1, k) . (2)

This yields the theorem.

We may assume wlog (again, formally, by first transforming the algorithms of G1 via suitable
padding if necessary) that there is a PT function L′ such that if (F, e, d) ∈ [Gb1(1

k, f)] and e =
(X0

1 , X
1
1 , . . . , X

0
f.n, X

1
f.n) and x ∈ {0, 1}f.n andX = (X1, . . . , Xf.n) = En(e, x) and (ℓ, ℓ1, . . . , ℓf.n)←

Adaptively Secure Garbling 39

L′(1k, |f |, f.n) then |X| = ℓ and |X0
i | = |X1

i | = ℓi for all 1 ≤ i ≤ f.n. Now, since Φ(f) is assumed
to always reveal f.n, f.m and |f |, there is a PT function L such that L(1k, Φ(f)) = L′(1k, |f |, f.n).

Proceeding now to the constructions, we define A1 and S2 as in the bottom of Fig. 13. There, ad-
versary A1 runs A2, simulating the latter’s Garble and Input oracles via procedures GarbleSim
and InputSim, respectively. These invoke Garble and Input oracles from A1’s own Prv1G1,Φ,S1

game. The first phase of the simulator is specified first, and in the second piece of code, j ∈
{1, . . . , n}. The simulator gets n from ϕ. Letting b1, b2 be the challenge bits in games Prv1G1,Φ,S1

and Prv2G2,Φ,S2 , respectively, we observe that

Pr
[
Prv1A1

G1,Φ,S1
(k) | b1 = 1

]
= Pr

[
Prv2A2

G2,Φ,S2
(k) | b2 = 1

]
Pr

[
¬Prv1A1

G1,Φ,S1
(k) | b1 = 0

]
= Pr

[
¬Prv2A2

G2,Φ,S2
(k) | b2 = 0

]
.

Subtracting yields Eq. (2).

D.3 Proof of Theorem 4

Given any PT adversary A1 against the prv1 security of G1 we build a PT adversary A against
the prv security of G. The assumption of prv security yields a PT simulator S for A such that
Advprv, Φ,S

G (A, ·) is negligible. Now we build from S a PT simulator S1 such that for all k ∈ N,

Advprv1, Φ,S1

G1
(A1, k) ≤ Advprv, Φ,S

G (A, k) + 4Q(k)/2k (3)

where Q is a polynomial such that Q(k) ≤ 2k−1 upper bounds the total number of queries to Hash
(made either directly by A1 or by scheme algorithms) in the execution of game Prv1G1,Φ,S1 with A1

on input 1k. This yields the theorem.
Let L1, L2 be as in the proof of Theorem 2, that is, L1 and L2 are PT functions that give

the length of the pads masking the garbled function F and decoding function d respectively. The
constructions of A and S1 are then provided at the top of Fig. 14, and H is a global variable
maintained by the simulator, representing the current state of the simulated RO. Let Bad be
the event that A1 can query (ℓ, w) to the random oracle such that R is the suffix of w, prior to
receiving R from the garbled input, where R is the seed generating the pads. If Bad happens then

Advprv1, Φ,S1

G1
(A1, k) ≤ 1 ≤ Advprv, Φ,S

G (A, k) + 2 . (4)

If Bad does not happen then

Advprv1, Φ,S1

G1
(A1, k) = Advprv, Φ,S

G (A, k) . (5)

From Eq. (4) and Eq. (5), totally, Advprv1, Φ,S1

G1
(A1, k) ≤ Advprv, Φ,S

G (A, k)+ 2 ·Pr[Bad]. To estab-

lish Eq. (3), it suffices to show that Pr[Bad] ≤ 2Q(k)/2k. Each of A1’s query, if failing to trigger
Bad, removes at most a possible value of R, so after Q(k) queries, the chance that Bad occurs is
at most Q(k)/

(
2k −Q(k)

)
≤ 2Q(k)/2k.

D.4 Proof of Theorem 5

Given any PT adversary A2 against the prv2 security of G2 we build a PT adversary A1 against
the prv1 security of G1. Now the assumption of prv1 security yields a PT simulator S1 for A1 such

40 Bellare, Hoang, and Rogaway

adversary A(1k)
b′ ← AGarbleSim,InputSim,HashSim

1 (1k)

return b′

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f)), d1 � {0, 1}L2(1

k,Φ(f))

return (F1, d1)

proc InputSim(x)

(F,X, d)← Garble(f, x), R� {0, 1}k
H[|F |, 0∥R]← F1 ⊕ F , H[|d|, 1∥R]← d1 ⊕ d

return (X,R)

proc HashSim(ℓ, w)

if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

simulator S1(1k, ϕ, 0)
F1 � {0, 1}L1(1

k,ϕ), d1 � {0, 1}L2(1
k,ϕ)

return (F1, d1)

simulator S1(y, 1)
(F,X, d)← S(1k, y, ϕ), R� {0, 1}k
H[|F |, 0∥R]← F1 ⊕ F , H[|d|, 1∥R]← d1 ⊕ d

return (X,R)

simulator S1(ℓ, w, ro)

if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

adversary A1(1
k)

b′ ← AGarbleSim,InputSim,HashSim
2 (1k)

return b′

proc GarbleSim(f)

n← f.n, j ← 0

(ℓ, ℓ1, . . . , ℓn)← L(1k, Φ(f))

for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
(F, d)← Garble(f)

return (F, d)

proc InputSim(i, c)

xi ← c, j ← j + 1, Si � {0, 1}k
if j=n then

x← x1 · · ·xn, (X1, . . . , Xn)← Input(x)

S ← S1 ⊕ · · · ⊕ Sn

for t{1, . . . , n} do H[ℓt, 1∥t∥S]← Xt ⊕ Ut

Ti ← (Ui, Si)

return Ti

proc HashSim(ℓ, w)

if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

simulator S2(1k, ϕ, 0)
(ℓ, ℓ1, . . . , ℓn)← L(1k, Φ(f))

(F, d)← S1(1k, ϕ, 0)
for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
return (F, d)

simulator S2(τ2, i, j)
Si � {0, 1}ℓ
if j=n then

y ← τ2, (X1, . . . , Xn)← S1(y, 1)
S ← S1 ⊕ · · · ⊕ Sn

for t ∈ {1, . . . , n} do H[ℓt, 1∥t∥S]← Xt ⊕ Ut

Ti ← (Ui, Si)

return Ti

simulator S2(ℓ, w, ro)

if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

Fig. 14. Top: constructed adversary and simulator for proof of Theorem 4. For the first query, return

random F1 and d1. For the second query, given y = ev(f, x), produce the real triple (F,X, d), choose a random seed

R� {0, 1}k, and program the RO so that the pads F1⊕F and d1⊕ d are indeed Hash(|F |, 0∥R) and Hash(|d|, 1∥R)

respectively. Bottom: constructed adversary and simulator for proof of Theorem 5. Except for the last

query, return random tokens. For the last query, given y = ev(f, x), produce the real tokens, choose a random seed

S� {0, 1}k, and program the RO so that the shares unmask the real tokens.

that Advprv1, Φ,S1

G1
(A1, ·) is negligible. Now we build from S1 a PT simulator S2 such that for all

k ∈ N we have

Advprv2, Φ,S2

G2
(A2, k) ≤ Advprv1, Φ,S1

G1
(A1, k) + 4Q(k)/2k . (6)

Adaptively Secure Garbling 41

where Q is a polynomial such Q(k) ≤ 2k−1 upper bounds the total number of queries to Hash
(made either directly by A2 or by scheme algorithms) in the execution of game Prv2G2,Φ,S2 with A2

on input 1k. This yields the theorem.
Let L be as in the proof of Theorem 3, that is, L is a PT function that gives the lengths of

the pads masking the tokens. The constructions of A1 and S2 are then provided at the bottom of
Fig. 14. Let Bad be the event that A2 can query (ℓ, w) to the random oracle such that S is the
suffix of w, prior to receiving the entire garbled input, where S is the seed generating the pads. If
Bad happens then

Advprv2, Φ,S2

G2
(A2, k) ≤ 1 ≤ Advprv1, Φ,S1

G1
(A1, k) + 2 . (7)

If Bad does not happen then

Advprv2, Φ,S2

G2
(A2, k) = Advprv1, Φ,S1

G1
(A1, k) . (8)

From Eq. (7) and Eq. (8), totally, Advprv2, Φ,S2

G2
(A2, k) ≤ Advprv1, Φ,S1

G1
(A1, k) + 2 · Pr[Bad]. To

establish Eq. (6), it suffices to show that Pr[Bad] ≤ 2Q(k)/2k. Each of A2’s query, if failing to
trigger Bad, removes at most a possible value of S, so after Q(k) queries, the chance that Bad
occurs is at most Q(k)/

(
2k −Q(k)

)
≤ 2Q(k)/2k.

D.5 Proof of Theorem 8

For part (1), by adapting the proof of Theorem 2, we can show that if G is obv secure then scheme
G′ = prv-to-prv1[G] is obv1 secure. Concretely, given any PT adversary A1 against the obv1 security
of G′ we build a PT adversary A against the obv security of G. Now the assumption of obv1
security yields a PT simulator S for A such that Advobv, Φ,S

G (A, ·) is negligible. We build from S
a PT simulator S1 such that for all k ∈ N we have

Advobv1, Φ,S1

G′ (A1, k) ≤ Advobv, Φ,S
G (A, k) . (9)

The code of A and S1 is shown in the top box of Fig. 15, with L1 as in the proof of Theorem 2,
that is, L1 is a PT function that gives the length of the pad masking the garbled function F . The
analysis is analogous to the proof of Theorem 2.

Now for each xxx ∈ {prv, obv}, if G is xxx secure then G′ is xxx1 secure. In scheme G′, the
decoding function is d⊕d′, and the garble input is (X, d′, F ′), whereas in scheme G1 = all-to-all1[G],
the former is (d ⊕ d′,K), and the latter is (X, d′, F ′,FK(d′)), with K� {0, 1}k. Scheme G1 thus
can be re-interpreted as scheme G′, with a different encoding of the garbled input and decoding
function. Hence G1 is also xxx1 secure.

For part (2), fix an adversary A1. We claim that there are adversaries A and B such that

Advaut1
G1

(A1, k) ≤ 2−k +Advaut
G (A) +Advprf

F (B, k) .

Moreover, the running time of A is at most that of A1 plus the time to garble A1’s queries, and so
is the running time of B. Let L1 and L2 be as in the proof of Theorem 2, that is, L1 and L2 are PT
functions that give the length of the pads masking the garbled function F and decoding function d
respectively. Consider the games G0−G2 in Fig. 17. In each game, A1 has oracle access to procedure
GarbleSim to get the garbled function and decoding function, and to procedure InputSim to get
the garbled input. Game G0 corresponds to game Aut1G1 . We explain the game chain up until

42 Bellare, Hoang, and Rogaway

adversary A(1k)
b′ ← AGarbleSim,InputSim

1 (1k)

return b′

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f))

return F1

proc InputSim(x)

(F,X)← Garble(f, x), F ′ ← F1 ⊕ F

return (X,F ′)

simulator S1(1k, ϕ, 0)
F1 � {0, 1}L1(1

k,ϕ)

return F1

simulator S1(1)
(F,X)← S(1k, ϕ), F ′ ← F1 ⊕ F

return (X,F ′)

adversary A1(1
k)

b′ ← AGarbleSim,InputSim
2 (1k)

return b′

proc GarbleSim(f)

n← f.n, j ← 0

(ℓ, ℓ1, . . . , ℓn)← L(1k, Φ(f)), S ← 0ℓ

for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
F ← Garble(f)

return F

proc InputSim(i, c)

xi ← c, j ← j + 1

if j < n then Si � {0, 1}ℓ, S ← S ⊕ Si

else

x← x1 · · ·xn, (X1, . . . , Xn)← Input(x)

(Z1, . . . , Zn)← (X1 ⊕ U1, . . . , Xn ⊕ Un)

Z ← (Z1, . . . , Zn), Si ← Z ⊕ S

Ti ← (Ui, Si)

return Ti

simulator S2(1k, ϕ, 0)
(ℓ, ℓ1, . . . , ℓn)← L(1k, Φ(f)), S ← 0ℓ, F ← S1(1k, ϕ, 0)
for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
return F

simulator S2(i, j)
if j < n then Si � {0, 1}ℓ, S ← S ⊕ Si

else

(X1, . . . , Xn)← S1(1)
(Z1, . . . , Zn)← (X1 ⊕ U1, . . . , Xn ⊕ Un)

Z ← (Z1, . . . , Zn), Si ← Z ⊕ S

Ti ← (Ui, Si)

return Ti

Fig. 15. Top: constructed adversary and simulator from part (1) of the proof of Theorem 8. For the

first query, return random F1. For the second query, produce the real pair (F,X), and return X with the one-time

pad F1 ⊕ F . Bottom: constructed adversary and simulator from part (1) of the proof of Theorem 9.

Except for the last query, return random tokens. For the last query, produce the real tokens and create the last piece

of secret masks so that the shares unmask the real tokens.

the terminal game. � G0 → G1 : we use the technique of “swapping dependent and independent
variables”. Namely, instead of sampling F ′ and then computing F1 ← F ⊕ F ′, we sample F1 and
then let F ′ ← F ⊕ F1. Then, we can move the garbling of f and the construction of K, d1 to
procedure Input, as the outputs of those commands are not used until then. The transition is
conservative. Hence Advaut1

G1
(A1, k) = Pr[GA1

0 (k)] = Pr[GA1
1 (k)]. � G1 → G2 : in game G1 we

use A1’s output to recover the decoding function d, but in game G2 we retrieve the correct d from
memory. The two games are identical until G2 sets bad.

Adversary A(1k) runs A1(1
k). When the latter makes queries, the former replies via the code of

the top box of Fig. 16. Then, Advaut
G (A, k) = Pr[GA1

2 (k)], since the decoding function to authenti-
cate A’s output is the correct one instead of the one recovered from A1’s output. Adversary B(1k)
has an oracle Fn that implements either FK(·) or a truly random function. It runs A1(1

k), and
follows the code of the bottom box of Fig. 16. If the challenge bit b of the PRF game is 0, that
is, the oracle Fn implements a truly random function, then B will answer 1 with probability 2−k.

Adaptively Secure Garbling 43

adversary A(1k)
Y1 ← AGarbleSim,InputSim

1 (1k)

(Y, tag, V)← Y1

if tag ̸= FK(V) then return ⊥
return Y

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f)), d′ � {0, 1}L2(1

k,Φ(f))

return F1

proc InputSim(x)

(F,X)← Garble(f, x), K� {0, 1}k, F ′ ← F ⊕ F1

return (X, d′, F ′,FK(d′))

adversary B(1k)
Y1 ← AGarbleSim,InputSim

1 (1k)

(Y, tag, V)← Y1

if V ̸= d′ and Fn(V) = tag then return 1

return 0

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f)), d′ � {0, 1}L2(1

k,Φ(f))

return F1

proc InputSim(x)

(F, e, d)← Gb(1k, f), X ← En(e, x), F ′ ← F ⊕ F1

return (X, d′, F ′,Fn(d′))

Fig. 16. Top: constructed prv adversary A for part (2) of the proof of Theorem 8. Its aut advantage is

Advaut1
G1

(A1, k) if A1 decides to output V = d′, as their outputs will be authenticated by the same d. Otherwise, A1

must forge (V, tag) that bypasses the test tag = FK(V). Bottom: constructed PRF adversary B for part (2)

of the proof of Theorem 8. It feeds A1 with correct F1 and X1. When A1 outputs Y1 = (Y, tag, V), if V ̸= d′

then B queries V to its Fn oracle to test if tag = Fn(V).

proc GarbleSim(f)

(F, e, d)← Gb(1k, f), K� {0, 1}k

F ′ � {0, 1}L1(1
k,Φ(f)), d′ � {0, 1}L2(1

k,Φ(f))

F1 ← F ⊕ F ′, d1 ← (d⊕ d′,K)

return F1

proc InputSim(x) Game G0

X ← En(e, x)

return (X, d′, F ′,FK(d′))

proc Finalize(d1, Y1)

(D,K)← d1, (Y, tag, V)← Y1

if tag ̸= FK(V) then return false

d← D ⊕ V

return (De(d, Y) ̸= ⊥ ∧ Y ̸= Ev(F,X))

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f)), d′ � {0, 1}L2(1

k,Φ(f))

return F1

proc Input(x) Games G1/G2

(F, e, d)← Gb(1k, f), X ← En(e, x)

F ′ ← F ⊕ F1, K� {0, 1}k, d1 ← (d⊕ d′,K)

return (X, d′, F ′,FK(d′))

proc Finalize(d1, Y1)

(D,K)← d1, (Y, tag, V)← Y1

if tag ̸= FK(V) then return false

if d′ ̸= V then bad ← true, V ← d′ ←− Use this in G2

d← D ⊕ V

return (De(d, Y) ̸= ⊥ ∧ Y ̸= Ev(F,X))

Fig. 17. Games used in part (2) of the proof of Theorem 8. In procedure Finalize of game G2, we make sure

that V must be d′ = d⊕D before we do the assignment d← D ⊕ V , and thus keep d unchanged.

On the other hand, if b = 1 then B answers correctly if only if A1 can forge a pair (V, tag) that
bypasses the test FK(V) = tag. This, in other words, means that A can set the flag bad in game G2

44 Bellare, Hoang, and Rogaway

to be true. Then,

Pr[PRFB
F (k) | b = 1] = Pr[BAD(GA1

2 (k))]

≥ Pr[GA1
2 (k)]− Pr[GA1

1 (k)] = Advaut1
G1

(A1, k)−Advaut
G (A, k) .

Hence Advprf
F (B, k) ≥ Advaut1

G1
(A1, k)−Advaut

G (A, k)− 2−k, as claimed.

For part (3), if the encoding function e of G encodes (X0
1 , X

1
1 , . . . , X

0
n, X

1
n) then the encoding

function e1 of G1 can be re-interpreted as (T 0
1 , T

1
1 , . . . , T

0
n , T

1
n), where T b

i = (Xb
i , d

′, F ′,FK(d′)) if
i = n, and T b

i = Xb
i if i < n, for b ∈ {0, 1}. Then, for x = x1 · · ·xn, the garbled input of G1 is(

(Xx1
1 , . . . , Xxn

n), d′, F ′,FK(d′)
)
= (T x1

1 , . . . , T xn
n),

and the scheme G1 is therefore projective.

D.6 Proof of Theorem 9

Let G2 = all1-to-all2[G1]. For part (1), it suffices to give the proof for the obliviousness case. The
proof is similar to that of Theorem 3. Given any PT adversary A2 against the obv2 security of G2
we build a PT adversary A1 against the obv1 security of G1. Now the assumption of obv1 security
yields a PT simulator S1 for A1 such that Advobv1, Φ,S1

G1
(A1, ·) is negligible. We build from S1 a PT

simulator S2 such that for all k ∈ N we have

Advobv2, Φ,S2

G2
(A2, k) ≤ Advobv1, Φ,S1

G1
(A1, k) . (10)

The code of A1 and S2 is given in the bottom box of Fig. 15, with L as in the proof of Theorem 3
(that is, L is a PT function that gives the length of the pads masking the tokens).

For part (2), we reuse the procedures GarbleSim and InputSim in part (1). Let A2 attack
the aut2 security of G2. Adversary A1(1

k) runs A2(1
k), simulating the latter’s Garble and Input

oracles via procedures GarbleSim and InputSim respectively. When A2 outputs Y , adversary A1

also outputs Y . Let X and T be the garbled input given to A1 and A2 respectively. Then

Advaut2
G2

(A2, k) = Pr[Y ̸= Ev2(F, T) ∧ De1(d, Y) ̸= ⊥]
= Pr[Y ̸= Ev1(F,X) ∧ De1(d, Y) ̸= ⊥] = Advaut1

G1
(A1, k);

the second equality holds because Ev2(F, T) = Ev1(F,X).

D.7 Proof of Theorem 10

For part (1), by adapting the proof of Theorem 4, we can show that if G is obv secure then scheme
G′ = rom-all-to-all1[G] is obv1 secure. Concretely, given any PT adversary A1 against the obv1
security of G′ we build a PT adversary A against the obv security of G. Now the assumption of
obv1 security yields a PT simulator S for A such that Advobv, Φ,S

G (A, ·) is negligible. We build
from S a PT simulator S1 such that for all k ∈ N we have

Advobv1, Φ,S1

G′ (A1, k) ≤ Advobv, Φ,S
G (A, k) + 4Q(k)/2k, (11)

where Q is a polynomial such that Q(k) ≤ 2k−1 bounds the total number of queries to Hash (made
either directly by A1 or by the scheme algorithms) in the execution of game Obv1G′,Φ,S1 with A1

on input 1k. The code of A and S1 is shown in the top box of Fig. 18, with L1 as in the proof

Adaptively Secure Garbling 45

adversary A(1k)
b′ ← AGarbleSim,InputSim,HashSim

1 (1k)

return b′

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f))

return F1

proc InputSim(x)

(F,X)← Garble(f, x), R� {0, 1}k
H[|F |, 0∥R]← F1 ⊕ F

return (X,R)

proc HashSim(ℓ, w)

if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

simulator S1(1k, ϕ, 0)
F1 � {0, 1}L1(1

k,ϕ)

return F1

simulator S1(1)
(F,X)← S(1k, ϕ), R� {0, 1}k
H[|F |, 0∥R]← F1 ⊕ F

return (X,R)

simulator S1(ℓ, w, ro)

if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

adversary A(1k)
Y1 ← AGarbleSim,InputSim,HashSim

1 (1k)

(Y,R′, tag)← Y1

if tag ̸= HashSim(k,K ∥ R′) then return ⊥
return Y

proc GarbleSim(f)

F1 � {0, 1}L1(1
k,Φ(f))

return F1

proc InputSim(x)

(F,X)← Garble(f, x), R� {0, 1}k, K� {0, 1}k
H[|F |, 0∥R]← F1 ⊕ F , tag← HashSim[k,K ∥ R]

return (X,R, tag)

proc HashSim(ℓ, w)

if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

Fig. 18. Top: constructed adversary and simulator used in part (1) of the proof of Theorem 10.

For the first query, return random F1. For the second query, produce the real pair (F,X), choose a random seed

R� {0, 1}k, and program the RO so that the pad F1 ⊕ F is indeed Hash(|F |, 0∥R). Bottom: constructed ad-

versary for part (2) of the proof of Theorem 10. When A1 outputs Y1 = (Y,R′, tag), perform the test

tag ̸= HashSim(k,K ∥ R′) as in algorithm De1 of G1, and output Y if this test is passed.

of Theorem 2 (that is, L1 is a PT function that gives the length of the pad masking the garbled
function F). The analysis is analogous to the proof of Theorem 4.

Now for each xxx ∈ {prv, obv}, if G is xxx secure then G′ is xxx1 secure. In scheme G′, the
decoding function is d1, and the garble input is (X,R), whereas in scheme G1 = rom-all-to-all1[G],
the former is (d1,K), and the latter is (X,R,Hash(k,K ∥ R)), with K� {0, 1}k. Scheme G1 thus
can be re-interpreted as scheme G′, with a different encoding of the garbled input and decoding
function. Hence G1 is also xxx1 secure.

For part (2), given any PT adversary A1 against the aut1 security of G1, we build a PT adver-
sary A against the aut security of G such that for all k ∈ N we have

Advaut1
G1

(A1, k) ≤ Advaut
G (A, k) + (4Q(k) + 1)/2k,

where Q is a polynomial such that Q(k) ≤ 2k−1 bounds the total number of queries to Hash
(made either directly by A1 or by the scheme algorithms) in the execution of game Aut1G1 with A1

on input 1k. The code of the adversary A is given in the bottom of Fig. 18. Let Bad be the
even that A can query (ℓ, w) to the random oracle such that either (i) R is a suffix of w, and
this query is made prior to receiving R from the garbled input, or (ii) K is a prefix of w. Each
random-oracle query, if failing to trigger Bad, removes at most a value of K and a value of R. Hence

46 Bellare, Hoang, and Rogaway

adversary A1(1
k)

b′ ← AGarbleSim,InputSim,HashSim
2 (1k)

return b′

proc GarbleSim(f)

n← f.n, j ← 0

(ℓ, ℓ1, . . . , ℓn)← L(1k, Φ(f))

for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
F ← Garble(f)

return F

proc InputSim(i, c)

xi ← c, j ← j + 1, Si � {0, 1}k
if j=n then

x← x1 · · ·xn, (X1, . . . , Xn)← Input(x)

S ← S1 ⊕ · · · ⊕ Sn

for t ∈ {1, . . . , n} do H[ℓt, 1∥t∥S]← Xt ⊕ Ut

Ti ← (Ui, Si)

return Ti

proc HashSim(ℓ, w)

if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

simulator S2(1k, ϕ, 0)
(ℓ, ℓ1, . . . , ℓn)← L(1k, Φ(f)), F ← S1(1k, ϕ, 0)
for i ∈ {1, . . . , n} do Ui � {0, 1}ℓi
return F

simulator S2(i, j)
Si � {0, 1}ℓ
if j=n then

(X1, . . . , Xn)← S1(1)
S ← S1 ⊕ · · · ⊕ Sn

for t ∈ {1, . . . , n} do H[ℓt, 1∥t∥S]← Xt ⊕ Ut

Ti ← (Ui, Si)

return Ti

simulator S2(ℓ, w, ro)

if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

Fig. 19. Constructed adversary and simulator used in part (1) of the proof of Theorem 11. Except for

the last query, return random tokens. For the last query, produce the real tokens, choose a random seed S� {0, 1}k,
and program the RO so that the shares unmask the real tokens,

Pr[Bad] ≤ 2Q(k)/(2k−Q(k)) ≤ 4Q(k)/2k. Suppose than Bad does not happen. Let Y1 = (Y,R′, tag)
be the output of A1. If R

′ ̸= R then the chance that tag = HashSim(k,K ∥ R′) is at most 2−k. If
R = R′ then Advaut1

G1
(A1, k) = Advaut

G (A, k). Hence, totally,

Advaut1
G1

(A1, k) ≤ Advaut
G (A, k) + Pr[Bad] + 2−k ≤ Advaut

G (A, k) + (4Q(k) + 1)/2k .

D.8 Proof of Theorem 11

Let G2 = rom-all1-to-all2[G1]. For part (1), it suffices to give the proof for the obliviousness case.
The proof is similar to that of Theorem 5. Given any PT adversary A2 against the obv2 security
of G2 we build a PT adversary A1 against the obv1 security of G1. Now the assumption of obv1
security yields a PT simulator S1 for A1 such that Advobv1, Φ,S1

G1
(A1, ·) is negligible. We then build

from S1 a PT simulator S2 such that for all k ∈ N we have

Advobv2, Φ,S2

G2
(A2, k) ≤ Advobv1, Φ,S1

G1
(A1, k) + 4Q(k)/2k, (12)

where Q is a polynomial such that Q(k) ≤ 2k−1 bounds the total number of queries to Hash (made
either directly by A2 or by the scheme algorithms) in the execution of game Obv2G2,Φ,S2 with A2

on input 1k. The code of A1 and S2 is given in the bottom box of Fig. 18, with L as in the proof
of Theorem 5 (that is, L is a PT function that gives the length of the pads masking the tokens).

For part (2), we reuse the procedures GarbleSim and InputSim in part (1). Let A2 attack
the aut2 security of G2. Adversary A1(1

k) runs A2(1
k), simulating the latter’s Garble and Input

oracles via procedures GarbleSim and InputSim respectively. When A2 outputs Y , adversary A1

also outputs Y . Let Bad be the event that A2 queries (ℓ, w) to the random oracle such that S

Adaptively Secure Garbling 47

is the suffix of w, prior to receiving the entire garbled input, where S is the seed generating the
pads. Each random-oracle query, if failing to trigger Bad, removes at most one value of S. Hence
Pr[Bad] ≤ Q(k)/(2k −Q(k)) ≤ 2Q(k)/2k, where Q is a polynomial such that Q(k) ≤ 2k−1 bounds
the total number of queries to Hash (made either directly by A2 or by the scheme algorithms) in
the execution of game Aut2G2 with A2 on input 1k. Let X and T be the garbled input given to A1

and A2 respectively. If Bad happens then Advaut2
G2

(A2, k) ≤ Advaut1
G1

(A1, k) + 1. If Bad does not
happen then

Advaut2
G2

(A2, k) = Pr[Y ̸= Ev2(F, T) ∧ De1(d, Y) ̸= ⊥]
= Pr[Y ̸= Ev1(F,X) ∧ De1(d, Y) ̸= ⊥] = Advaut1

G1
(A1, k),

the second equality holds because Ev2(F, T) = Ev1(F,X). Hence totally,

Advaut2
G2

(A2, k) ≤ Advaut1
G1

(A1, k) + Pr[Bad] ≤ Advaut1
G1

(A1, k) + 2Q(k)/2k .

D.9 Proof of Theorem 7

Proof (Theorem 7). Let S ′ be a simulator to which G is prv2 secure. Fix an adversary A and
distinguisher D. Consider the following simulator S. On input 1k and ϕ = Φ(f), it gets (F, d) ←
S ′(1k, ϕ, 0), initializes Q = ∅ and τ = ⊥, and then runs A(1k, (F, d)). Let n = f.n. Whenever A
queries (i, b), the simulator S proceeds as follows:

if i ̸∈ {1, . . . , n}\Q then return ⊥
Q← Q ∪ {i}, xi ← b
if |Q| = n then x← x1 · · ·xn, τ ← y ← OTPf (x)
Xi ← S ′(τ, i, |Q|)

and then returns Xi to A. Finally, S outputs whatever A outputs. Consider the following ad-
versary B(1k) attacking G. It runs D(1k). When the latter queries f , the former queries f to
its oracle Garble to get (F, d). It then runs A(1k, (F, d)). For each query (i, b) of A, the ad-
versary B queries (i, b) to its oracle Input, and gives the answer to A. Finally, B returns A’s
output to D. If the challenge bit c of game Prv2G,Φ,S′ is 1 then B is giving D the distribution
RealOTC[G],A,f (k). Otherwise, if c = 0 then B is giving D the distribution FakeOTC[G],Φ,S,f (k). Hence

Advprv2, Φ,S′

G (B, k) = Advotc
OTC[G],Φ,A,S,D(k). ⊓⊔

D.10 Proof of Theorem 12

Let Aos be a PT one-time adversary attacking the verifiability of Π[G]. We construct another PT
adversary Ags such that Advosvf

Π[G](Aos, k) ≤ Advaut1
G (Ags, k) for all k ∈ N, which proves the first

claim in the theorem. Adversary Ags(1
k) runs Aos(1

k), answering the GetPK query via Garble
and the (single) Input query via Input. When Aos halts with output Y, j, adversary Ags outputs Y .

Let Bos be a PT one-time adversary attacking the privacy of Π[G]. We construct another PT
adversary Bgs as follows. Adversary Bgs(1k) runs Bos(1k), answering the GetPK query via Garble
and the (single) Input query via Input. When Bos halts with output c′, adversary Bgs outputs c′.
By the assumption that G ∈ GS(obv1, Φ) there is PT simulator Sgs such that Adv

obv1,Φ,Sgs

G (Bgs, ·)
is negligible. Let Sos ≡ Sgs. Then Advospr,Φ,Sos

Π[G] (Bos, k) ≤ Adv
obv1,Φ,Sgs

G (Bgs, k) for all k ∈ N, which
proves the second claim in the theorem.

