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Abstract. Zero-correlation linear attack is a new method for crypt-
analysis of block ciphers. In this paper we adapt Matrix method [13]
to find zero-correlation approximations. Then we present several zero-
correlation linear approximations for 14 rounds of Lblock. Finally, we
describe a cryptanalysis for 22 rounds of the reduced Lblock. While the
previous attacks on Lblock used chosen plaintexts, the new attack needs
distinct known plaintexts which is a more realistic model. Also the time
complexity is 28 times faster than the previous attack.
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1 Introduction

Differential and linear cryptanalysis are the two most prominent cryptanaly-
sis methods against block ciphers. Several improvements of these methods have
been made and applied against block ciphers. Truncated differential cryptanal-
ysis, higher order differential cryptanalysis [15], boomerang [19] and amplified
boomerang cryptanalysis [11], multiple differential [5] and impossible differen-
tial cryptanalysis [1] have been proposed inspired by differential cryptanalysis.
Also some extensions of linear cryptanalysis have been introduced which usu-
ally exploit several linear approximations with high correlation simultaneously.
Kaliski and Robshaw used multiple linear approximations with the same key
mask [10]. The concept of linear hull presented by Nyberg which uses several
linear approximation with the same input and output masks [18]. Multiple lin-
ear approximations cryptanalysis and multidimensional linear cryptanalysis are
proposed in [4] and [9] respectively. Recently, a novel extension of linear crypt-
analysis is proposed which uses zero-correlation linear approximations [6]. It can
be seen as the counterpart of impossible differential cryptanalysis. The origi-
nal proposed had the disadvantage to require almost the full codebook of data.
Bogdanov et.al. proposed a framework which uses several independent zero-
correlation linear approximations to reduce data complexity [7]. The assumption
of independence for all linear approximations is an important challenge. Based
on the multidimensional linear attack, recently a new distinguisher is proposed
to eliminate independence assumption [8]. The distinguisher is supposed to use
distinct known plaintexts.



In this paper the multidimensional zero-correlation linear method is applied
to attack 22 rounds of Lblock [20]. Lblock is a lightweight block cipher with semi-
Feistel structure. The security of the cipher has been evaluated in [12, 16, 20].
Impossible differential cryptanalysis has achieved the best results so far and has
been applied up to 22 rounds of Lblock. The attack uses 258 chosen plaintexts
and the time complexity is 279.28 which is almost equivalent to the exhaustive
search. The authors used the Matrix method to establish the impossible differen-
tial characteristic. In this paper, we show how to use Matrix method [13, 14] to
find 8×8 different classes of zero-correlation linear approximations for 14 rounds
which each one includes 28 − 1 different zero-correlation approximations. Based
on 28 − 1 zero-correlation approximations we present an attack on 22 rounds
of the reduced Lblock. We also use the weaknesses in the permutation layer of
Lblock to decrease the time complexity. The attack uses distinct known plain-
texts. As depicted in Table 1, there is a trade-off between the time complexity
and the data complexity of the attack.

Table 1. Summary of the attacks on Lblock: CP = Chosen Plaintexts, DKP = Distinct
Known Plaintexts

Attack Rounds Data Time Memory (Bytes) Source

Integral Attack (CP) 20 263.7 263.7 Not Specified [20]
Impossible Differential (CP) 20 263 272.7 260 [20]
Impossible Differential (CP) 21 262.5 273.7 264 [16]
Impossible Differential (CP) 21 263 269.5 268 [12]
Impossible Differential (CP) 22 258 279.28 268 [12]

Zero Correlation (DKP) 22 264 270.54 264 This paper
Zero Correlation (DKP) 22 262.1 271.27 264 This paper
Zero Correlation (DKP) 22 260 279 264 This paper

The paper is structured as follows: In Section 2, we briefly describe Lblock.
In Section 3 we review the previous work on zero-correlation linear cryptanal-
ysis. In Section 4 we show how to use Matrix method as an automatic tool to
find zero-correlation approximations and obtain several zero-correlation linear
distinguisher for 14 rounds of the Lblock. Section 5 describes an attack on 22
rounds of Lblock. We conclude the paper in Section 6.

2 A Brief Description of Lblock

Throughout this paper we use the following notations:

Notation

– P: Plaintext
– C: Ciphertext
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– Ski : 32-bit round key
– Ki : 80-bit in the register K in round i
– Si : 4× 4 S-box
– ≪ i : i-bit left cyclic shift
– [i]2 : Binary form of an integer i
– X(i) : i-th nibble of X where the right most one is 0
– X[i] : i-th bit of X where the least significant bit (lsb) is 0
– X[i− j] : concatenation of i, i− 1, · · · , j-th bit of X where i ≥ j
– X(i− j) : concatenation of i, i− 1, · · · , j-th nibble of X where i ≥ j
– | : concatenation of two binary strings
– Li|Ri : the output of the i-round of Lblock

Lblock

Lblock is a block cipher which is designed for constrained environment appli-
cations. Lblock is a variant Feistel block cipher with 32 rounds. It supports 80
secret key bits and the block size is b = 64 bits. One round of Lblock and the
round function are depicted in Figure 1.

Fig. 1. One round of Lblock

Encryption Algorithm Let P = L0|R0 be a 64-bit plaintext. Then encryp-
tion process is as follows:

– For i = 1, 2, · · · , 31, do
• Ri = Li−1

• Li = F (Li−1, SKi)⊕ (Ri1 ≪ 8)
– L32 = L31, R32 = F (L31, SK32)⊕ (R31 ≪ 8)
– C = L32|R32.

In our attacks on reduced-round Lblock we also consider the last round to
be without swapping the halves as in the original Lblock.

Key schedule The 80-bit master key K is stored in a key register. In the
i-th step, the leftmost 32 bits of current content of register K are extracted as
the round key SKi. Then the key register is updated as follows:
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1. K ≪ 29,
2. K[79− 76] = S9[79− 76],
3. K[75− 72] = S8[75− 72],
4. K[50− 46] = K[50− 46]⊕ [i]2,

where s9 and s8 are two 4-bit S-boxes.

Definitions of the S-boxes used in Lblock can be found in Appendix A. For more
details we refer to [20].

3 Zero-Correlation Linear Approximation

Consider a function f : Fn2 7→ Fm2 and let the input of the function be x ∈ Fn2 . A
linear approximation with an input mask u and an output mask v is the following
function:

x 7→ u · x⊕ v · f(x).

The linear approximation has probability

p(u; v) = Pr(u · x⊕ v · f(x) = 0)

and its correlation is defined as follows:

cf (u; v) = 2p(u; v)− 1.

In linear cryptanalysis we are interested in the linear approximation with
correlation far from zero. The number of known plaintexts needed in the lin-
ear cryptanalysis is inversely proportional to the squared correlation. Zero-
correlation linear cryptanalysis uses linear approximations such that the correla-
tion is equal to zero for all keys. If the number of zero-correlation approximations
is 2m, then by [8] the number of required distinct plaintexts is about 2n+2−m/2.
The key recovery can be done with the same method utilized by Matsui’s Algo-
rithm 2 [17].

To describe this process in more detail, let us describe a cipher E as a cascade
E = Ef ◦ Ez ◦ Eb. Assume there exists m independent linear approximations
for Ez such that all ` = 2m − 1 nonzero linear combinations of them have
correlation zero. For each key candidate, the adversary encrypts the plaintexts
for the beginning rounds Eb and decrypts the corresponding ciphertexts for the
final rounds Ef .

For each of i ∈ Fm2 he allocates a counter Ti and computes the number
of times which the corresponding data value is equal to i. Then the adversary
computes the statistic T value

T =

2m−1∑
i=0

(Ti −N2−m)2

N2−m(1− 2−m)
. (1)
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The value T for right key guess follows a χ2−distribution with mean µ0 =
` 2

n−N
2n−1 and variance σ2

0 = 2`( 2n−N
2n−1 )2 while for the wrong key the distribution is

a χ2−distribution with mean µ1 = ` and variance σ2
1 = 2`.

Let show error probability type I as α and error probability type II as β.
If we consider the decision threshold t = µ0 + σ0z1−α = µ1 + σ1z1−β then the
amount of distinct known plaintexts is as follows:

N =
2n(z1−α + z1−β)√

`/2− z1−β
(2)

where zγ = Φ−1(p) for 0 < p < 1 where Φ is the cumulative function of the
standard normal distribution. For more details we refer to [8].

4 Matrix method

Several tools have been proposed for finding statistical distinguisher. Such tools
help us to analyze algorithms systematically. A cryptanalytic tool for finding im-
possible differential characteristics in block ciphers with bijective function was
introduced in [13, 14]. It is called Matrix method and uses “miss-in-the-middle”
approach to find impossible differential characteristic. Miss-in-the-middle tech-
nique proposes to construct the impossible differential characteristic by two
(truncated) differential paths with probability one and which lead to a con-
tradiction in the middle. Matrix method is a tool for finding these paths. In this
section we show this technique is also useful for finding zero-correlation linear
approximation. We can follow the linear approximation patterns of input and
output masks in the intermediate rounds and inquire whether no linear charac-
teristics with non-zero-correlation exists. So the Matrix method is also useful to
automate the process of finding the longest zero-correlation linear approxima-
tions.

4.1 Matrix Method for Finding Linear Approximation with
Correlation Zero

The state is partitioned into n words (usually with the same length). In the
linear pattern, the linear mask of each word can have five types:

1. zero mask which is denoted by 0,
2. fixed non-zero mask which is denoted by 1∗,
3. non-fixed non-zero mask which is denoted by 1,
4. the exclusive-or of a fixed non-zero mask and a non-fixed mask which is

denoted by 2∗,
5. an unknown mask which is denoted by 2 or larger values (with or without
∗).

After that we describe the encryption round as a matrix Ma×a. The matrix
shows how a linear mask of each output word is affected by the linear mask of an
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input word. Let show the input and the output of the round by two bit strings
A and B respectively. If B(j) is not affected by a linear mask of A(i) the value
(i, j) set to 0. If a linear mask of A(i) affects B(j) directly the value (i, j) set to
1. Finally if B(j) is affected by a linear mask of A(i) after the round function
the value (i, j) set to 1F . For decryption of the round, another matrix is defined
similarly. To define the matrices we can use lemmas in Appendix B which are
introduced in [6] (see also [3]).

We can define the arithmetics operations by considering the definition of five
possible types for a linear mask of word. Two types of word are summed under
the following rules: 0 + x = x, 1 + 1 = 2, 1∗ + 1∗ = 1∗, 1∗ + 1 = 2∗ and for other
cases we can just sums the actual values (by holding ∗). In the same way, the
rules for multiplication between the state vector and round matrix entry can be
defined: 1 · 1F = 1, 1∗ · 1F = 1,2∗ · 1F = 2,2 · 1F = 2, x · 1 = x,x · 0 = 0 and
y · 1F = y for states x ≥ 0 and y ≥ 3 (with or without ∗).

For a given state, we use the matrix iteratively to obtain the new state over
multiple rounds. To find the longest zero-correlation linear approximation we
compute the new states in both forward and backward directions just before the
values of all words become only 2 and x > 2 (with or without ). Finally, we scan
intermediate values and check the incoherence events.

For example for the encryption matrix for Feistel structure is
(
0 1
1 1F

)
. if we

assume the initial mask type as (1∗, 0) the mask type of the third round can be
obtained as follows:

(
1∗, 0

)
·
(

0 1
1 1F

)
=
(
1∗ · 0 + 0 · 1, 1∗ · 1 + 0 · 1F

)
=
(
0 + 0, 1+0

)
=
(
0, 1∗

)
(
0, 1∗

)
·
(

0 1
1 1F

)
=
(
0 · 0 + 1∗ · 1, 0 · 1 + 1∗ · 1F

)
=
(
0 + 1∗, 0 + 1

)
=
(
1∗, 1

)
(
1∗, 1

)
·
(

0 1
1 1F

)
=
(
1∗ · 0 + 1 · 1, 1∗ · 1 + 1 · 1F

)
=
(
0 + 1 , 1∗ + 1

)
=
(
1 , 2∗

)
4.2 Zero-Correlation Linear Approximation for 14-rounds of Lblock

We applied Matrix method for Lblock. The Encryption and decryption matrices
can be found in Appendix C. The longest zero-correlation linear approximation
was obtained for 14 rounds of Lblock. If the input mask would be exactly one
non zero nibble in Lr and the output mask after 14 rounds would be one non
zero nibble in Rr+14, then the linear approximation has correlation zero. For
example (000a0000|00000000) → (00000000|0b000000) has correlation exactly
zero which the values a and b are non zero. The states of the rounds which can
be found by using the encryption are depicted in Table 2. The contradiction
occurs in R7(5). We note there exists 8 × 8 different classes of zero-correlation
linear approximations for 14 rounds which each one includes 28 − 1 different
zero-correlation approximations. We will use this observation to reduce the data
complexity as described in 3.
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Table 2. Zero-correlation linear approximation for 14-round Lblock

Round ΓLr ΓRr

0 0001∗0000 00000000

1 00000000 001∗0000

2 01∗000000 00010000

3 01000000 01∗010000

4 01000001∗ 01010010

5 01001001 01010111∗

6 010111∗01 01111112

7 11111201 121212∗13

7 11221132∗ 12011111

8 01111112 01110011∗

9 110011∗01 00101001

10 10100100 000011∗00

11 0011∗0000 00000100

12 00010000 0001∗0000

13 01∗000000 00000000

14 00000000 01∗000000

5 Zero-Correlation Linear Cryptanalysis of 22
Reduced-Round Lblock

In this section, we propose a zero-correlation linear attack on 22-round LBlock.
The attack utilizes the 14-round zero-correlation linear approximations described
in Table 2 from round 5 to 18. After collecting sufficient plaintext-ciphertext
pairs, we guess corresponding subkeys for the first four rounds and the last four
rounds and estimate the correlation of approximations as described in Algo-
rithm 1.

Based on the error probabilities α and β, the number of pairs N in Algo-
rithm 1 and the decision threshold t are determined. The time complexity of
the Algorithm 1 is N · 228 · 228 where N is the number of plaintexts used in the
cryptanalysis. So the time complexity is much more than exhaustive search. To
overcome this restriction we note L4(4) and R18(6) are not affected by all bits in
rounds 1− 4 and 19− 22. So Algorithm 1 is not optimal and it repeats the same
procedure for different pairs. We show that it is possible to remove repetitions
and reduce time complexity significantly.

The nibble L4(4) is affected by 32 bits of plaintext L0|R0, 20 bits of L1|R1, 12
bits of L2|R2 and 8 bits of L3|R3. Also L18(6) is affected by 32 bits of ciphertext
L22|R22, 20 bits of L21|R21, 12 bits of L20|R20 and 8 bits of L19|R19. We call
these bits “active” and other ones “neutral”. The idea is to ignore neutral bits
and instead of encrypting and decrypting all plaintex-ciphertext pairs, do it only
once and count the number of pairs, which have the same value in active bits. In
each step, for each subkey candidate, we encrypt (decrypt) active bits in round
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Algorithm 1 Attack procedure

for all 228 subkey nibbles SK1(4, 2, 1), SK2(6, 0), SK3(7), SK4(5) in rounds 1 − 4
do

for all 228 subkey nibbles SK19(1), SK20(2), SK21(5, 0), SK22(7, 6, 0) in rounds
19− 22 do

for all 28 possible values i = 0, · · · , 28 − 1 do
allocate the counter Ti and set them zero

end for
for all N plaintext-ciphertext pairs do

encrypt plaintext to obtain the nibble L4(4);
decrypt ciphertext to obtain the nibble R18(6);
for correponding i = (L4(4)|R18(6)) increase the counter Ti by one.

end for
compute the statistic value T = N · 28 ∑28−1

i=0 (Ti
N
− 1

28
)

If T < t, then the guess key is a possible candidate.
end for

end for
Do exhaustive search for all keys which corresponds to the guess subkey bits

r over one round and count the number of pairs which give the same value in
active bits in round r + 1 (r − 1).

The attack procedure is as follows:

1. Collect N plaintexts with corresponding ciphertexs.
2. Allocate a 8-bit counter N0[x0, x22] for each of 264 possible values of (x0|x22)

which x0 = L0(5, 4, 2, 1, 0)|R0(6, 4, 1) and x22 = L22(7, 6, 4, 2, 0)|R22(7, 5, 2)
and set them zero. Calculate the number of pairs of plaintext-ciphertext with
given values x0 and x22 and save it in N0[x0, x22]. In this step, around 264

plaintext-ciphertext pairs are divided into 264 different state. The expected
pairs for each state is around one. So the assumption N0 as a 8-bit counter
is sufficient.

3. Guess the 3 nibbles SK1(4, 2, 1). Allocate a counter N1[x1, x22] for each of
252 possible values of (x1|x22) which x1 = L1(6, 3, 0)|R1(5, 0) and set them
zero. For all 232 possible values of x0, encrypt x0 one round to obtain x1 and
update the value N1[x1, x22] = N1[x1, x22] +N0[x0, x22] for all 232 values of
x22

4. Guess 2 nibbles SK2(6, 0). Allocate a counter N2[x2, x22] for each of 244

possible values of (x2|x22) which x2 = L2(7, 2)|R2(3) and set them zero. For
all 220 possible values of x1, encrypt x1 one round to obtain x2 and update
the value N2[x2, x22] = N2[x2, x22] +N1[x1, x22] for all 232 values of x22.

5. Guess the nibble SK3(7). Allocate a counter N3[x3, x22] for each of 240 pos-
sible values of (x3|x22) which x3 = L3(5)|R3(2) and set them zero. For all
212 possible values of x2, encrypt x2 one round to obtain x3 and update the
value N3[x3, x22] = N3[x3, x22] +N2[x2, x22] for all 232 values of x22.

6. Guess the nibble SK4(5). Allocate a counter N4[x4, x22] for each of 236 pos-
sible values of (x4|x22) which x4 = L4(4) and set them zero. For all 28
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possible values of x3, encrypt x3 one round to obtain x4 and update the
value N4[x4, x22] = N3[x4, x22] +N3[x3, x22] for all 232 values of x22.

7. Guess the 3 nibbles SK22(7, 6, 0). Allocate a counter N5[x4, x21] for each
of 224 possible values of (x4|x21) which x21 = L21(4, 2)|R21(5, 3, 0) and set
them zero. For all 232 possible values of x22, decrypt x22 one round to obtain
x21 and update the value N5[x4, x21] = N5[x4, x21] + N4[x4, x22] for all 24

values of x4.
8. Guess 2 nibbles SK21(5, 0). Allocate a counter N6[x4, x20] for each of 216

possible values of (x4|x20) which x20 = L20(3)|R20(2, 0) and set them zero.
For all 220 possible values of x21, decrypt x21 one round to obtain x20 and
update the value N6[x4, x20] = N6[x4, x20] + N5[x4, x21] for all 24 values of
x4.

9. Guess the nibble SK20(2). Allocate a counter N7[x4, x19] for each of 212

possible values of (x4|x19) which x19 = L19(0)|R19(1) and set them zero. For
all 212 possible values of x20 decrypt x20 one round to obtain x19 and update
the value N7[x4, x19] = N7[x4, x19] +N6[x4, x20] for all 24 values of x4.

10. Guess the nibble SK19(1). Allocate a counter N8[x4, x18] for each of 28 pos-
sible values of (x4|x18) which x18 = R18(6) and set them zero. For all 28

possible values of x19, decrypt x19 one round to obtain x18 and update the
value N8[x4, x18] = N8[x4, x18] +N7[x4, x19] for all 24 values of x4.

11. Compute the statistic value T = N · 28
∑24−1
x4=0

∑24−1
x18=0(N8[x4,x18]

N − 1
28 ). If

T < t, then the guess key is a possible candidate.
12. Do exhaustive search for all keys which corresponds to the guess subkey bits.

Attack complexity

The memory complexity of the attack is dominated by step 2 which needs 264

bytes.
Time complexity of step 1 and 2 is equal to the number of needed plaintext-

ciphertext pairs N .
Step 3 requires 212 × 232 × 232 = 276 memory accesses, because we should

guess 12 bits for SK1, and for 232 values encrypt x0 one round and then update
N1 for 232 times.

Step 4 requires 212 × 28 × 220 × 232 = 272 memory accesses, because for all
of guessed 212 keys in previous step, we should guess 8 bits for SK2, and for 220

values encrypt x1 one round and then update N2 for 232 times.
Step 5 requires 220× 24× 212× 232 = 268 memory accesses, because for all of

guessed 220 keys in previous steps, we should guess 4 bits for SK3 and for 212

values encrypt x2 one round and then update N3 for 232 times.
Step 6 requires 224 × 24 × 28 × 232 = 268 memory accesses, because for all

of guessed 224 keys in previous steps, we should guess 4 bits for SK4 and for 28

values encrypt x3 one round and then update N4 for 232 times.
Step 7 requires 228 × 212 × 232 × 24 = 272 memory accesses, because for all

of guessed 228 keys in previous steps, we should guess 12 bits for SK22 and for
232 values decrypt x22 one round and then update N5 for 24 times.
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Step 8 requires 240 × 28 × 220 × 24 = 272 memory accesses, because for all of
guessed 240 keys in previous steps, we should guess 8 bits for SK21 and for 220

values decrypt x21 one round and then update N6 for 24 times.

Step 9 requires 248 × 24 × 212 × 24 = 268 memory accesses, because for all of
guessed 248 keys in previous steps, we should guess 4 bits for SK20 and for 212

values decrypt x20 one round and then update N7 for 24 times.

Step 10 requires 252 × 24 × 28 × 24 = 268 memory accesses, because for all
of guessed 252 keys in previous steps, we should guess 24 for SK19 and for 28

values decrypt x19 one round and then update N8 for 24 times.

Step 11 requires 256 × 28 = 264 memory accesses, because for all of guessed
256 keys in previous steps, we should read 28 values of N8[x4, x18].

So step 12 requires 280 · β full encryption because we expect a wrong subkey
survives with probability β.

The time complexity is dominated by step 3 and step 12. The time complexity
of round 3 is 276 memory accesses. If we consider one memory accesses as a half
round, the time complexity of step 3 is 276× 1

2 ×
1
22 = 270.54 of 22-round Lblock.

Based on the error probability type I α and error probability type II β, the
number of plaintexts-ciphetexts pairs needed, time complexity of step 12 and
success probability are determined.

There is a trade-off between the time complexity and the data complexity of
the attack, as depicted in Table 1. To reduce the time complexity as much as
possible, we assume to have access the full codebook. In this case, the error prob-
abilities and time complexity of step 12 is negligible compared to the complexity
of step 3. To have a lowest data complexity, we can set α = 2−2.7 and β = 2−1.
In this case data complexity decreases to N = 260 in cost of increasing time com-
plexity. The time complexity is dominated by step 12 which needs 280 ·2−1 = 279

22-round Lblock encryption. The more realistic assumption is the state between
these cases. For example, if we set α = 2−2.7 and β = 2−10 then z1−α = 1
and z1−β = 3.09. Equation (2) determines the data complexity N = 262.1. The
time complexity is dominated by step 3 and 12 270.5 + 270 = 271.27. The success
probability is 1− α = 0.84.

6 Conclusion

In this paper we showed how to use Matrix method to establish zero-correlation
linear approximations automatically. We used this method to obtain several
zero-correlation linear approximation for the 14 rounds of Lblock. We also hope
described method will be useful for further research in other block ciphers. Based
on the 14 rounds distinguisher we present an attack on the 22 rounds of Lblock.
While the previous attack used chosen plaintexts, our attack model is distinct
known palaintexts which is a more realistic model. The overall complexity is
improved by a factor of 28.
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comments and suggestions.

References

1. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Diffrentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 1223. Springer, Heidelberg (1999)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 221.
Springer, Heidelberg (1991)

3. Biham, E.: On Matsui’s Linear Cryptanalysis. In: Santis, A,D. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 341-355. Springer, Heidelberg (1994)

4. Biryukov, A., De Canni‘ere, C., Quisquater, M.: On multiple linear approximations.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 122. Springer, Heidelberg
(2004)

5. Blondeau, C., Gérard, B.: Multiple Differential Cryptanalysis: Theory and Practice.
In Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 35-54. Springer, Heidelberg (2011)

6. Bogdanov, A., Rijmen, V.: Linear Hulls with Correlation Zero and Linear Crypt-
analysis of Block Ciphers. Accepted to Designs, Codes and Cryptography, in press,
Springer-Verlag, 2012.

7. Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced Data
Complexity. In Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 29-48, Springer,
Heidelberg (2012)

8. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and Multidimensional
Linear Distinguishers with Correlation Zero. ASIACRYPT 2012. LNCS, Wang, X.,
Sako, K. (eds.), Springer, Heidelberg (2012)

9. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional Extension of Matsuis Algo-
rithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209227. Springer,
Heidelberg (2009)

10. Kaliski, B., Robshaw, M.: Linear cryptanalysis using multiple approximations. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 2639. Springer, Heidelberg
(1994)

11. Kelsey, J., Kohno, T., Schneier, B.: Amplied Boomerang Attacks Against Reduced-
Round MARS and Serpent. In Schneier, B. (ed) FSE 2001. LNCS, vol. 1978, pp.
7593, Springer, Heidelberg (2002)
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A Lblock S-boxes

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S0 14 9 15 0 13 4 10 11 1 2 8 3 7 6 12 5
S1 4 11 14 9 15 13 0 10 7 12 5 6 2 8 1 3
S2 1 14 7 12 15 13 0 6 11 5 9 3 2 4 8 10
S3 7 6 8 11 0 15 3 14 9 10 12 13 5 2 4 1
S4 14 5 15 0 7 2 12 13 1 8 4 9 11 10 6 3
S5 2 13 11 12 15 14 0 9 7 10 6 3 1 8 4 5
S6 11 9 4 14 0 15 10 13 6 12 5 7 3 8 1 2
S7 13 10 15 0 14 4 9 11 2 1 8 3 7 5 12 6
S8 8 7 14 5 15 13 0 6 11 12 9 10 2 4 1 3
S9 11 5 15 0 7 2 9 13 4 8 1 12 14 10 3 6

B Lemmas

Lemma 1. XOR operation: Let f(x1, x2) = x1 ⊕ x2 then the correlation of
linear approximation u1 · x1 + u2 · x2 = v · f(x1, x2) is non-zero if and only if
u1 = u2 = v.

Lemma 2. Branching operation: Let f(x) = (x, x) then the correlation of
linear approximation u1 ·x+u2 ·x = v ·f(x) is non-zero if and only if u = v1+v2.

Lemma 3. Bijective Function: Let f(x) be a bijective function then the cor-
relation of linear approximation u·x = v·f(x) is non-zero if and only if u = v = 0
or u 6= 0 and v 6= 0.
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C Lblock Matrices

MEncryption =



0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1F 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1F 0
1 0 0 0 0 0 0 0 0 1F 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1F 0 0 0 0
0 0 1 0 0 0 0 0 1F 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1F 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1F 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1F



MDecryption =



0 1F 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1F 0 0 0 0 0 0 0 1 0 0 0 0

1F 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1F 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1F 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1F 0 0 0 0 0 0 0 1
0 0 0 0 1F 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1F 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
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