
Biclique Cryptanalysis of the PRESENT and LED Lightweight
Ciphers

Farzaneh Abed, Christian Forler, Eik List, Stefan Lucks, Jakob Wenzel

Bauhaus-University Weimar, Germany
{farzaneh.abed,christian.forler,eik.list,stefan.lucks,jakob.wenzel}@uni-weimar.de

Abstract. In this paper, we propose the first full-round attacks on the PRESENT and LED
lightweight ciphers. In our attacks, we use the independent-biclique approach which has been de-
veloped recently. The proposed attacks on PRESENT-80 and PRESENT-128 require 260 and 244

chosen plaintexts, and have time complexities of 279.46 and 2127.37 respectively. Our attacks on
LED-64 and LED-128 need 256 and 264 chosen plaintexts and the time complexities are equivalent
to 263.34 and 2127.23 encryptions.

Keywords: PRESENT, LED, lightweight block cipher, independent biclique, matching with
precomputations

1 Introduction

Recently, the need for security constructions for limited devices like RFID tags, influenced
the development of lightweight ciphers [4,21,5,10,5,13,11], which are efficient in hardware and
require only small memory resources. At the time, 64 bits of key material are considered adequate
to ensure a sufficient short-term security for limited devices [22]. Therefore, usual lightweight
ciphers support key lengths between 64 and 128 bits.
Biclique cryptanalysis is a generic technique that was introduced by Khovratovich et al. in
2011 [16] for preimage attacks on the hash functions Skein and SHA-2. The approach is an
extension for the splice-and-cut framework by Aoki and Sasaki [2], which itself is a variant of
meet-in-the-middle attacks.
While bicliques had been introduced for the analysis of block-cipher-based hash functions, it
seemed obvious to adapt the general approach also for key-recovery attacks on block ciphers. In
[3], Bogdanov et al. demonstrated that biclique attacks can help to significantly reduce the effort
for key-recovery attacks on block ciphers. In their work, the authors constructed the first attacks
on the full versions of the AES in the single-key model. Since then, biclique attacks have been
successfully applied on several ciphers, including SQUARE [17], ARIA-256 [7], Piccolo [24],
TWINE [6], and HIGHT [12], and have become a well-understood generic principle. In this
paper, we describe our cryptanalytic results of biclique attacks on the PRESENT and LED
lightweight ciphers.
PRESENT is a lightweight cipher which was proposed by Bogdanov and Knudsen in 2007 [4],
and supports the key lengths of 80 and 128 bits, which are denoted by PRESENT-80 and
PRESENT-128. The cipher has become a reference design in the field of lightweight ciphers,
because of its simple structure and its S-box characteristic. In 2008, Wang proposed a first
differential attack with a time complexity of 265 on a reduced version with 16 rounds [23]. In
addition, Wang showed a differential and algebraic attack with time complexity of 2113 for 19
rounds. To the best of our knowledge, the most powerful attack on PRESENT is the work of
Cho [8], which allows to distinguish 25 rounds out of 28 in PRESENT-80 (or out of 31 rounds
in PRESENT-128) from a random permutation. Moreover, in the same work, an attack on 26
rounds was proposed which requires the entire codebook.

LED was designed by Jian et al. in 2011 [11] and supports key lengths between 64 and 128 bits.
We denote the two most relevant versions by LED-64 and LED-128, corresponding to their key
lengths. In their security analysis, Jian et al. proposed two related-key attacks from which they
argued, that the best probabilistic differential attacks on LED could only cover 15 out of 32
rounds of the 64-bit, and 27 out of 48 rounds of the 128-bit version. In [14], Isobe and Shibutani
proposed a splice-and-cut attack on eight rounds of LED-64 which requires 256 encryptions
using eight chosen plaintexts. They proposed another attack on 16 rounds of LED-128 which
requires time equivalent to 2112 encryptions and 216 chosen plaintexts. Recently, Mendel et al.
analyzed differential properties of LED and published related-key attacks on up to half of the
ciphers [18].
Our attacks cover full-round versions of PRESENT-80, PRESENT-128 and LED-128, and al-
most the full LED-64, except for the final key addition. Table 1 summarizes previous attacks on
PRESENT and LED and compares their complexities with the attacks proposed in this work.

Primitive Attack Rounds Attack type Comp. Data Reference

model complexity complexity

PRESENT

PRESENT SK 16 Differential 265 264 CP [23]

PRESENT SK 19 Diff. + Algebraic 2113 n/a [1]

PRESENT SK 24 Saturation 257 257 CP [9]

PRESENT SK 24 Linear n/a 263.5 KP [19]

PRESENT SK 25 Linear 265 262.4 KP [8]

PRESENT SK 26 Linear 272 264 KP [8]

PRESENT-80 SK 21 Biclique 279.03 260 CP This work

PRESENT-80 SK 31 (full) Biclique 279.46 260 CP This work

PRESENT-128 SK 25 Biclique 2126.99 244 CP This work

PRESENT-128 SK 31 (full) Biclique 2127.37 244 CP This work

LED

LED-64 SK 8 Splice-and-cut 256 28 CP [14]

LED-64 CRK 15 Rebound 216 2118 CP [11]

LED-64 RK 16 Differential 2
(n+ 1

p
)/2

(*) 264 CP [18]

LED-64 SK 27.5 Biclique 262.9 256 CP This work

LED-64 SK 31.5 Biclique 263.34 256 CP This work

LED-128 SK 16 Splice-and-cut 2112 216 CP [14]

LED-128 CRK 27 Rebound 216 2118 CP [11]

LED-128 RK 24 Differential 23n/2 (*) 264 CP [18]

LED-128 SK 44 Biclique 2126.92 264 CP This work

LED-128 SK 48 (full) Biclique 2127.23 264 CP This work

Table 1: Attacks on PRESENT and LED (CP: Chosen Plaintexts, KP: Known Plaintexts, RK:
Related Keys, CRK: Chosen Related Keys, SK: Single Key, (*): n denotes a chosen number of
key bits to recover in an attack.

2

We use an automation method to search for bicliques and optimal matching. By using this
method, we could reduce the computational costs and achieve the best attack on the ciphers
PRESENT and LED at the time of writing this paper.

1.1 Notation

– A: A bit string
– A‖B: A concatenation of A and B
– vi: Internal states, indexed by i
– Sj : Internal states, indexed by j
– Pi: Plaintexts, indexed by i
– Ci: Ciphertexts, indexed by i. A ciphertext Ci corresponds to a plaintext Pi
– E: Encryption process
– K[i, j]: Keys used in a biclique, indexed by i and j
– B: A subcipher over which we construct a biclique; usually a few rounds
– ∆i: Differences in the ending states of bicliques, indexed by i
– ∇j : Differences in the starting states of bicliques, indexed by j
– ∆K

i : Differences in the keys for forward computation of bicliques, indexed by i
– ∇Kj : Differences in the keys for backward computation of bicliques, indexed by j

The organization of this paper is as follows. First, in Section 2, we give a brief summary of
both lightweight ciphers to show how they work. In Section 3, we overview biclique cryptanal-
ysis. Sections 4 to 7 contain a detailed description of our attacks including the construction of
bicliques, matchings and the resulting complexities. We conclude our paper in Section 8.

2 Preliminaries

This section contains brief descriptions of the ciphers PRESENT and LED to show how they
work.

2.1 PRESENT

PRESENT has a state size of 64 bits and transforms the state in 31 rounds. After the final round,
the state is XORed with an additional round key to generate the ciphertext. Each round has
three operations: an XOR with the round key, a non-linear substitution layer and a permutation
layer, as shown in Figure 1 (cf. [4]).

0 16 32 48 64

S S S S S S S S S S S S S S S S

ki

Fig. 1: Round structure of PRESENT with 80-bit key or 128-bit key.

The key schedule expands a secret key of 80 or 128 bits to 32 round keys with 64 bits each.
The secret key of the 80-bit version is stored in a key register and represented by k79k78...k1k0,

3

where ki denotes the i-th bit in the register, and k79 is the leftmost bit. At round r, the key
schedule uses the leftmost 64 bits of the key register as the round key. After extraction of the
key, the register is transformed in three operations:

– [k79, k78, . . . , k1, k0] = [k18, k17, . . . , k1, k0, k79, k78, . . . , k20, k19]
– [k79, k78, k77, k76] = Sbox[k79, k78, k77, k76]
– [k19, k18, k17, k16, k15] = [k19, k18, k17, k16, k15]⊕ r

The key is rotated by 61 positions to the left, before the four leftmost bits are processed in
the S-box, and a round counter r is XORed to five bits of the register. The key schedule for
the 128-bit version works similar, but the S-box is used twice for the eight leftmost bits of the
register. A more formal representation of the 128-bit transformation is given by:

– [k127, k126, . . . , k1, k0] = [k66, k65, . . . , k1, k0, k127, k126, . . . k68, k67]
– [k127, k126, k125, k124] = Sbox[k127, k126, k125, k124]
– [k123, k122, k121, k120] = Sbox[k123, k122, k121, k120]
– [k66, k65, k64, k63, k62] = [k66, k65, k64, k63, k62]⊕ r

2.2 LED

LED has a state length of 64 bits and uses key lengths from 64 to 128 bits. The internal state
is arranged in a 4 × 4-matrix, where each matrix cell represents a nibble. At the beginning,
the state is initialized row-wise with the plaintext. The key K is also viewed nibble-wise and is
loaded into one array K1 or two arrays K1 and K2, depending on the key length. For the key
lengths from 65 to 128 bits, the first 64 bits of the given key are used for K1 and the remaining
key is padded with zeroes to fill up K2.
The encryption process of LED consists of two operations, AddRoundKey and step, as shown in
Figure 2. The step operation has four rounds and each round includes AddConstants, SubCells,
ShiftRows, and MixColumnsSerial:

round = (MixColumnsSerial ◦ ShiftRows ◦ SubCells ◦ AddConstants).

step = (round ◦ round ◦ round ◦ round)

LED = (AddRoundKey ◦ step ◦ AddRoundKey ◦ . . . ◦ AddRoundKey ◦ step ◦ AddRoundKey).

In the 64-bit version, only K1 is used in each call of the AddRoundKey operation but in the
128-bit version, K1 and K2 are used alternately. For details on the individual operations, we
refer to the original proposal [11].

P C

K1

4 rounds 4 rounds

K1 K1

4 rounds

K1 K1

P C

K1

4 rounds 4 rounds

K2 K1

4 rounds

K2 K1

Fig. 2: Round structure of LED [11] with 64-bit key(top) or 128-bit key (bottom).

3 Biclique Cryptanalysis

In this section, we give an overview of biclique cryptanalysis following the descriptions by
Bogdanov et al. [3].

4

3.1 Definition

A biclique is a complete bipartite graph, which connects every element in a set of starting states
S with every element in a set of ending states C. We represent the texts in C by Ci, and the
element in S by Sj ,where a path from Sj to Ci represents the encryption under some key
K[i, j]. The 3-tuple of sets [{Sj}, {Ci}, {K[i, j]}] is called a d-dimensional biclique, if

∀i, j ∈ {0, . . . , 2d − 1} : Sj
K[i,j]−−−→
B

Ci.

Figure 3 shows the schematic view of bicliques.

K[2 ˗1,2 ˗1]dd

K[0,0]S0

S1

S2 ˗1d C2 ˗1d

C1

C0

Fig. 3: Schematic view on bicliques.

A biclique defines a group of keys K[i, j], in which every key can be represented relative to the
base key of the group K[0, 0] and two differences ∆i and ∇j :

K[i, j] = K[0, 0]⊕∆i ⊕∇j .

In the beginning of an attack, the adversary divides the key space into 2k−2d subspaces of
22d keys each, where k is the key length and d is the dimension of biclique. The cipher E is
considered as a composition of three parts, E = B ◦ E2 ◦ E1, where E1 is the subcipher that
maps a plaintext P to an internal state V , E2 is the subcipher, that maps V to another internal
state S, and B is the subcipher which maps the state S to the ciphertext C:

P
E1−→ V

E2−→ S
B−→ C.

The adversary can construct a biclique over an arbitrary part of the cipher and use a meet-in-
the-middle or similar attack for the remaining parts.
[16,3] introduced different type of biclique attacks. This paper focuses on independent-biclique
attacks which usually have a high dimension but are limited in the number of rounds they can
cover.

3.2 Independent Bicliques

Independent bicliques allow the construction of bicliques over some subcipher B from two dif-
ferentials. First, one chooses a base computation, i.e., a 3-tupel {S0, C0,K[0, 0]}, where the key
K[0, 0] maps the internal state S0 to the ciphertext C0:

S0
K[0,0]−−−−→
B

C0.

Then, one chooses 2d forward differentials ∆i which connect the state S0 with ciphertexts Ci:

S0
K[0,0]⊕∆K

i−−−−−−−→
B

C0 ⊕∆i = Ci.

5

Similarly, one chooses 2d backward differentials ∇j , which connect the ciphertext C0 with the
states Sj :

Sj = S0 ⊕∇j
K[0,0]⊕∇K

j←−−−−−−−
B−1

C0.

If the trails of the ∆i-differentials do not share any active non-linear operations with the ∇j-
differentials, then each of the 2d input differences ∇j can connect with each of the 2d output
differences ∆i, by applying both differences to the key: K[0, 0] ⊕ ∆k

i ⊕ ∇kj . Therefore, we

obtain a set of 22d independent (∆i,∇j)-differential trails:

S0 ⊕∇j
K[0,0]⊕∆K

i ⊕∇K
j−−−−−−−−−−→

B
C0 ⊕∆i ∀i, j ∈ {0, . . . , 2d − 1}.

A single biclique of dimension d allows to test 22d keys with 2d computations in each direction.
If the full candidate space can be partitioned into groups of 22d keys, then the complexity of an
attack can be reduced to about 2k−2d computations of E in addition to the effort to construct
the biclique and the effort for the matching. More positively, the adversary needs to have access
to only either an encryption or a decryption oracle.
For the independent-biclique approach, the length of differentials is limited by the number of
steps for one full diffusion of the cipher. Thus, when the biclique is quite short and too many
rounds need to be covered, an alternative method called matching with precomputations can be
used instead of a meet-in-the middle attack.

3.3 Matching with Precomputations

In [15,3], Khovratovich et al. introduced matching-with-precomputations as an efficient tech-
nique to perform a matching on those parts which are not covered by the biclique. For this
approach, an adversary first chooses an internal state V between E1 and E2. Secondly, it com-
putes and stores 2d values −→vi,0 in forward direction from the plaintexts to V

Pi
K[i,0]−−−→
E1

−→vi,0,

and 2d values ←−v0,j in backward direction from each of the starting states Sj :

←−v0,j
K[0,j]←−−−−
E−1

2

Sj .

In the end, the adversary re-uses the stored values for the remaining 22d − 2d computations

Pi
K[i,j]−−−→
E1

−→vi,j , and ←−vi,j
K[i,j]←−−−
E−1

2

Sj ,

where it needs to recompute only those parts of the key schedule and the round transformation
that differ from the stored values. By using this method, one can reduce the computational
effort significantly. A further reduction is possible by matching only in a part of the state at v,
which is called partial matching.

3.4 Complexity Calculations

For every biclique, the adversary tests 22d keys with 2 · 2d computations. Hence, the effort for
one such set of keys is upper bounded by 2d computations of E. Therefore, the adversary needs

6

to construct 2n−2d bicliques to cover the full key space. Then, the full complexity is given as
follows:

Cfull = 2n−2d (Cbiclique + Cdecrypt + Cprecompute + Crecompute + Cfalsepos) ,

where

– Cbiclique denotes the costs for constructing a biclique,
– Cdecrypt is the complexity of the oracle to decrypt 2d ciphertexts,
– Cprecompute denotes the costs for the computation of v for 2d computations of E2 ◦ E1,
– Crecompute is the complexity of recomputing 22d values vi,j in both directions,
– Cfalsepos is the complexity to eliminate false positives.

The computational complexity is dominated by the recomputations cost, Crecompute. The mem-
ory requirements are upper bounded by storing 2d values of the intermediate states vi,j .

4 Independent-Biclique Attack on Full PRESENT-80

In this section, we describe the independent-biclique attack on the full PRESENT-80. The
attack consists of three steps: partitioning the key space, constructing a biclique, and matching
over the remaining rounds. As the final step, we show the complexity of the attack.

4.1 Key Space Partitioning

The 80-bit key space is divided into groups of 216 keys each with respect to the secret key. The
base keys K[0, 0] are all 80-bit secret keys with 16 bits fixed to 0, where the remaining 64 bits
can take any other possible values.
The 216 keys in a group of {K[i, j]} are defined relative to the base key K[0, 0] and two dif-
ferences ∆K

i and ∇Kj , where i, j ∈ {0, . . . , 255}. ∆K
i and ∇Kj are used to manipulate eight bits

(k7, k6, k5, k4, k3, k2, k1, k0) in forward direction, and the eight bits (k64,k63,k62,k61,k60,k59, k58,
k57) in backward direction respectively to construct the bicliques. So, we have split the key
space into 264 groups.

K[0, 0] = (k79, k78, 0, . . . , 0, k69, . . . , k13, 0, . . . , 0, k4, k0),

∆K
i = (0, . . . , 0, k12, k11, k10, k9, k8, k7, k6, k5, 0, . . . , 0),

∇Kj = (0, 0, k77, k76, k75, k74, k73, k72, k71, k70, 0, . . . , 0).

4.2 4-Round Biclique of Dimension 8

We can construct a biclique over the first four rounds. Due to the post-whitening after the
final round, a biclique at the end of the cipher could cover only three rounds. So, our biclique
transforms the plaintexts Pj to states Si. The biclique construction is illustrated in Figure 4. For
all key groups, we use the same value for P0. As one can see in the biclique, the key differences
in the nabla trails affect the plaintexts Pj in 15 out of 16 nibbles at most. So, we can say, that
the data complexity will not exceed 260 different values for all texts Pj .

4.3 Matching over 27 Rounds

We apply a matching with precomputations over the remaining rounds of the cipher. Figure
5 shows the matching part which covers the rounds 5-16 in forward direction and the rounds

7

Base computation

Round 1

Round 2

Round 3

Round 4

Forward differential

Round 1

Round 2

Round 3

Round 4

Backward differential

Round 1

Round 2

Round 3

Round 4

P0 PiP0

S0 S0Si

K
iΔ K

j

Δ

Fig. 4: Biclique for PRESENT-80 in rounds 1 - 4 with ∆i- (forward) and ∇j-differentials (back-
ward).

Backward matching Round 17 Round 18 Round 29 Round 30 Round 31

Forward matching Round 5 Round 6

...

...

Round 14 Round 15 Round 16

v

v

Fig. 5: Recomputations for PRESENT-80 in forward and backward direction.

8

17-31 in backward direction. We match in the bits v7, v6, v5, v4, v3, v2, v1, v0 of the state v =
(v63, v62, . . . , v1, v0) after Round 16.
PRESENT can be seen either as a bit-wise operating cipher due to its diffusion layer, or as
a nibble-wise operating cipher due to its S-box. To have a single number which refers best to
the total effort, we consider PRESENT as a nibble-wise operating cipher and approximate the
recomputation costs in the matching part by counting the number of S-box calls in the round
transformation and the key schedule.
We are interested in those S-boxes, which need to be recomputed due to the injected key
differences ∇Kj . In the forward part from Si to ←−vi,j , there are 1 + 5 + 14 + 7 · 16 + 12 + 8 = 152
active S-boxes in the states. Similarly, in the backward part from Cj to−→vi,j , we need to recompute
2 + 4 + 12 · 16 + 5 = 203 active nibbles in backward direction.
Additionally, we need to consider the effort to recompute the round keys in the matching part.
Again, we concentrate on the S-boxes which need to be recomputed. The effort here is quite
low, since PRESENT-80 uses the S-box only for the leftmost four bits in each round key and
the schedule has a very slow diffusion. In the key schedule, we need to recompute only the S-box
in the round key for round 9. So, we need to recompute 152 + 203 + 1 = 356 S-boxes in total.

4.4 The Complexity of the Attack

PRESENT-80 applies its S-box 16 times in each of its 31 rounds and uses it 62 times nibbles
in the key schedule. So, the number of nibble-wise operations sums up to 31 · 16 + 31 = 527.
Since we test 216 keys in a group, the recomputation complexity for one such group is Crecomp =
216 · 356527 ≈ 215.43 full encryptions. In all of our attacks, we match in eight bits in v. Thus, for
every biclique, we can expect to have 28 false positives in average. So, the complexity to test
them false positives Cfalsepos is 28 in all of our attacks.
For the biclique construction, one needs to compute 2 ·28 times the states of 4 out of 31 rounds.
So, Cbiclique is equivalent to 26.05 full encryptions. The precomputations costs Cprecomp are given
by computing 28 times 12 rounds in forward direction P to v and 28 times 15 rounds in backward
direction from S to v. So, one has to consider 28 times 27 out of 31 rounds, which is equal to
27.8 encryptions. The full computational complexity is then given by

264 · (26.05 + 27.8 + 215.43 + 28 + 28) = 279.46.

The data complexity is 260, and we need to store 28 texts.

4.5 Independent-Biclique Attack on 21 Rounds of PRESENT-80

It is desirable to have an advantage of at least one power of two compared to exhaustive search.
For PRESENT-80, we can mount an attack on a reduced version of the first 21 out of 31 rounds
with the same biclique as before. There, we match in the eight bits v23, v22, v22, v20, v19, v18, v17,-
v16 in the state v after Round 8, as shown in Figure 8 (see Appendix A).
One has to consider 1+5+8+8 = 22 S-boxes in the forward, and 2+4+9·16+4 = 154 S-boxes in
the backward part. Additionally, there is one active S-box in the key schedule for the round key
of round 14. The recomputation effort is given by 22 + 154 + 1 = 177 S-boxes. In the reduced
PRESENT-80 cipher, there are 21 · 16 + 21 = 357 S-boxes in round transformation and key
schedule. So, Crecomp is equal to 216 · 177357 = 214.99 encryptions. The construction of the biclique
requires to compute 2 · 28 times 4 out of 21 rounds or 26.61 encryptions; the precomputational
costs make up 28 times encrypting 17 out of 21 rounds or 27.70 encryptions. The total time
complexity is then given by

264 · (26.61 + 27.70 + 214.99 + 28 + 28) = 279.03

9

encryptions. The data and memory complexities remain the same as in the attack on full
PRESENT-80.

5 Independent-Biclique Attack on Full PRESENT-128

This section describes an attack on the full version of PRESENT-128.

5.1 Key Space Partitioning

The 128-bit key space is divided into groups of 216 keys each with respect to the secret key. The
base keys K[0, 0] are all 128-bit secret keys with 16 bits fixed to 0, where the remaining 112
bits can take any other possible values.
The 216 keys in a group of {K[i, j]} are defined based on the base key K[0, 0] and two differ-
ences ∆K

i and ∇Kj , where i, j ∈ {0, . . . , 255}. ∆K
i and ∇Kj are used to manipulate eight bits

(k101, k100, k99, k98, k97, k96, k95, k94) in forward direction, and other eight bits (k36, k35, k34, k33,-
k32, k31, k30, k29) in backward direction respectively to construct the bicliques. So, we have 2112

key groups in total.

K[0, 0] = (k127, . . . , k102, 0, . . . , 0, k93 . . . , k37, 0, . . . , 0, k28, . . . , k0),

∆K
i = (0, . . . , 0, k101, k100, k99, k98, k97, k96, k95, k94, 0, . . . , 0),

∇Kj = (0, . . . , 0, k36, k35, k34, k33, k32, k31, k30, k29, 0, . . . , 0).

5.2 4-Round Biclique of Dimension 8

Similar to the attack on the 80-bit version, we construct a biclique at the beginning of the
cipher. Otherwise, the key addition after the last round would cost one round. Figure 6 shows
the biclique constrcution over the first four rounds. We fix P0 for all key groups. As one can see
from Figure 6, the plaintexts Pj are active in 11 out of 16 nibbles. Thus, the data complexity
for all key groups does not exceed 244 chosen plaintexts.

Base computation

Round 1

Round 2

Round 3

Round 4

Forward differential

Round 1

Round 2

Round 3

Round 4

Backward differential

Round 1

Round 2

Round 3

Round 4

P0 PiP0

S0 S0Si

K
iΔ K

j

Δ

Fig. 6: Biclique for PRESENT-128 in rounds 1 - 4 with ∆i- and ∇j-differentials.

10

5.3 Matching over 27 Rounds

We match in the eight bits v47, v46, v45, v44, v43, v42, v41, v40 of the state v after Round 22, as
shown in Figure 7. Again, we are interested in the S-boxes we need to recompute. In the forward
part from round 5 to 22, there are 1 + 4 + 14 · 16 + 8 + 8 = 245 S-boxes. Similarly, one has to
compute 2 + 4 + 6 · 16 + 4 = 106 S-boxes in the backward part from round 31 to 22. PRESENT-
128 uses the S-box twice, this means for the leftmost eight bits of the key register. For our
attack, we need to consider one additional nibble in the key schedule which is used as input of
the S-box in the round key for round 18, and one more nibble in the round key of round 32 in
the key schedule. In total, we need to recompute 245 + 106 + 2 = 353 S-boxes in the attack.

Backward matching Round 23 Round 30 Round 31

Forward matching Round 5

...

...

Round 20 Round 21 Round 22

v

v

Fig. 7: Recomputations for PRESENT-128 in forward and backward direction.

5.4 The Complexity of the Attack

PRESENT-128 uses the S-box 16 times in each of the 31 rounds; in addition, the key schedule
uses the S-box for the two leftmost nibbles of the key register for every for every round key.
The total number of S-boxes in the cipher sum up to 31 · 16 + 62 = 558 S-boxes. Thus, the
recomputation complexity Crecomp is equal to 216 · 353558 = 215.39. Since we match in eight bits
of v, the complexity to test false positives Cfalsepos can be approximated by 28. Similar to the
attack on PRESENT-80, Cbiclique is equivalent to 26.05 full encryptions. The precomputations
costs Cprecomp are given by computing 28 times 27 out of 31 rounds, which is equal to 27.8

encryptions. The full computational complexity is equivalent to

2112 · (26.05 + 27.8 + 215.34 + 28 + 28) = 2127.37.

The data complexity is 244, and we need to store 28 texts per group.

5.5 Independent-Biclique Attack on 24 Rounds of PRESENT-128

To obtain a better advantage, we can mount an attack on a version of PRESENT-128 reduced
to the first 24 rounds. We use the same biclique structure as in the attack on full PRESENT-128
with a different matching procedure. We match in the eight bits v63, v62, v61, v60, v59, v58, v57, v56
in the state v after Round 15, as shown in Figure 9 (see Appendix B).
In the forward part from round 5 to 15, we have to recompute 1+4+7 ·16+8+8 = 133 S-boxes.
In the backward part from round 24 to 15, there are 2 + 4 + 4 · 16 + 6 = 76 S-boxes. There are
no active S-boxes in the key schedule. So, the effort sums up to 133 + 76 = 209 S-boxes. Since
the 24-round PRESENT-128 cipher uses 24 · 16 + 24 · 2 = 432 S-boxes in round transformation
and key schedule, Crecomp is equal to 216 · 209432 = 214.95. Cbiclique represents the costs to process

11

2 ·28 times 4 out of 24 rounds or 26.42 encryptions; the precomputational costs make up 28 times
encrypting 20 out of 24 rounds or 27.74 encryptions. The total time complexity is then given by

2112 · (26.42 + 27.74 + 214.95 + 28 + 28) = 2126.99.

The data and memory complexities remain the same as in the attack on full PRESENT-128.

6 Independent-Biclique Attack on 31.5 Rounds of LED-64

This part includes an explanation of our attack on 31.5 out of 32 rounds of LED-64. The attack
has three steps: key partitioning, biclique construction and a matching part. The complexity of
the attack comes at the end.

6.1 Key Space Partitioning

In this part, we choose the dimension of 8 for our biclique attack. The key space is partitioned
into 248 groups of 216 keys each. The base keys K[0, 0] are all 16-nibble values K1 with four
nibbles fixed to 0 and all other nibbles running over all possible values. The keys in a group
K[i, j] are enumerated by all possible differences i = (i1‖i2) and j = (j1‖j2) with respect to
K[0, 0].

K[0, 0] =
(K) = 0

0
0
0 ∆K

i (K1) =
(K) =

∇Kj (K1) =
(K) =

6.2 7.5-Round Biclique of Dimension 8

Since LED omits any key schedule, every key injection will affect the state. Moreover, LED pos-
sesses a very fast diffusion which means a difference with only a single active nibble propagates
to a full active state after only two rounds. As a consequence, the ∆i- and ∇j-differentials can
not share a sequence of four consecutive rounds where they have both active differences. Thus,
the length of bicliques in LED-64 is very limited. Furthermore, the key injection after the last
round leads to the active ∇j-trail after two rounds. Thus, a biclique which includes the final
key addition can maximally cover four rounds. The same situation applies for a biclique at the
beginning of the cipher. Figure 10 (see Appendix C) visualizes the biclique over seven rounds,
from 25 to 32, without the final key addition.

6.3 Matching over 24 Rounds

In the matching phase, first, we check if the secret key Ksecret belongs to the group defined by
K[i, j]. We locate the matching state v at Round 3 and concentrate on two nibbles, as shown
in Figure 11 (see Appendix C).
LED has a similar structure to the AES block cipher. In its round transformation, LED uses
XORs with round constants, XORs with the key, S-boxes, row shifts and column-wise multipli-
cations. In our attacks, we have only a negligible number of XORs for the key and a constant
addition. Therefore, the computational cost for this part is negligible. Also, there are no extra
computational costs for the shift operations. Thus, we only need to concentrate on the number
of MixColumnsSerial and SubCell operations which are affected by the key differences and are

12

required to recompute for the matching. In our attacks, the number of S-box calls is the larger
summand in the total complexity compared to the mixing operations. Thus, we only count the
number of S-boxes which need to be recomputed in the matching part as an approximation for
the total effort.
There are 2 + 8 + 4 = 14 S-boxes in forward direction and 2 + 10 + 18 · 16 + 4 = 304 S-boxes
in backward direction which need to be recomputed, which sum up to a total of 318 S-boxes in
the matching phase.

6.4 The Complexity of the Attack

The structure of LED is quite similar to that of the AES. In its round transformation, LED
uses XORs with round constants, XORs with the key, S-boxes, row shifts and column-wise mul-
tiplications. In our attacks, we have only a negligible number of XORs in the AddRoundKey or
AddConstants operations. Further, there are no extra computational costs for the ShiftRow op-
erations. Thus, we only need to concentrate on the number of MixColumnsSerial and SubCell

operations which are affected by the key differences and required to recompute for the matching
part. In our attacks, the number of S-box calls is the larger summand in the total complexity
compared to the mixing operations. Thus, we only count the number of S-boxes which need to
be recomputed in the matching part as an approximation for the total effort.
There are 32 · 16 = 512 S-boxes in the 32 rounds of the cipher. So, for 216 keys in one group,
Crecomp is equivalent to approximately 216 · 318512 ≈ 15.31 encryptions. The biclique construction
costs Cbiclique are given by computing 2 · 28 times 8 out of 32 rounds, which is equal to 27

encryptions. The precomputation costs sum up to computing 28 times 24 out of 32 rounds or
27.58 encryptions. Since we match in eight bits in the state v, we expect Cfalsepos to be 28 in
average. Cdecrypt requires 28 decryptions. The full computational complexity is then given by

248 · (27 + 27.58 + 215.31 + 28 + 28) = 263.34.

In the ∆i-differentials, the end states Ci are fully active. Yet, we only create 28 ciphertexts for
every of our 248 bicliques so the data complexity is upper bounded by 256 ciphertexts and the
memory complexity by 28.
We can decrease the time complexity if we mount an attack on a round-reduced version of the
cipher. Using the same biclique structure, an attack on a version of LED-64 with 27.5 rounds,
reduced to the rounds 5-32 without the final key addition, has a time complexity of

248 · (26.81 + 27.64 + 214.86 + 28 + 28) = 262.9.

7 Independent-Biclique Attack on Full LED-128

In this part, we describe our results for an independent-biclique attack on the full 128-bit version
of LED.

7.1 Key Space Partitioning

We divide the key space into 2112 groups. The base keys K[0, 0] are all 2112 values (K1‖K1) with
four nibbles fixed to 0 and all other nibbles can take any other possible values. With respect to
K[0, 0], the keys in a group {K[i, j]} are enumerated by all possible differences i = (i1‖i2) and
j = (j1‖j2). Therefore, the key space is divided into 2112 groups of 216 keys each.

13

K[0, 0] = 0
0

0
0

∆K
i (K1‖K2) = ∇Kj (K1‖K2) =

7.2 12-Round-Biclique of Dimension 8

Applying two key words alternately is a positive aspect in the 128-bit version of LED. Therefore,
we can extend the length of our biclique by injecting differences only in one 64-bit word of the
key, for instance, in K2. Then, since K1 does not inject any difference, we can construct a biclique
over 12 rounds, from rounds 37 - 48. Figure 12 (see Appendix D) visualizes the construction of
the biclique.

7.3 Matching over 36 Rounds

We locate the matching state v after Round 7 and then, match on two nibbles. Because of the
fast diffusion of LED, large parts of the cipher need to be recomputed in the matching phase.
As we can see from Figure 13 (see Appendix D), the first four rounds are not affected by K2, we
have to recompute only 2 + 8 + 4 = 14 S-boxes in forward direction and 2 + 4 + 26 · 16 + 4 = 426
S-boxes in backward direction, which sum up to 440 S-boxes in the 36 matching rounds.

7.4 The Complexity of the Attack

There are 45 · 16 = 768 S-boxes in the 48 rounds of the cipher, so, for 216 keys in one group,
Crecomp is equal to 216 · 440768 ≈ 215.20 full encryptions. The complexity to test false positives
Cfalsepos can be approximated by 28 and the decryption costs Cdecrypt are given by 28. Cbiclique
is described by computing 2 ·28 times 12 out of 48 rounds or 27 full encryptions. In the matching
step, one has to precompute 36 rounds 28 times, which is equal to 27.59 encryptions. The full
computational complexity is then

2112 · (27 + 27.59 + 215.20 + 28 + 28) = 2127.23.

The data complexity is 264, and 28 is the memory requirement.
To obtain a higher advantage, we can regard a version of LED-128 with 44 rounds, reduced to
the rounds 5-48. Using the same biclique structure, the time complexity is then given by

2112 · (27 + 27.58 + 214.88 + 28 + 28) = 2126.92.

8 Conclusion

In this paper, we showed the first full-round biclique attacks on PRESENT and LED in the
single-key model, using independent bicliques. In our attack on PRESENT-80, the time is
equivalent to 279.46 full encryptions and the data complexity is 260 chosen plaintexts. For the
attack on PRESENT-128, we need time equivalent to 2127.37 full encryptions and at most 244

chosen plaintexts. For LED-64, the time and data complexities are 263.40 and 256, respectively.
The attack on LED-128 has the time complexity of 2127.25 and the data complexity of 264. In
all attacks, we have used bicliques of dimension 8.
As we can see from our work, biclique attacks have the potential to significantly reduce the
computational complexity of an exhaustive key search. Moreover, biclique cryptanalysis is a
powerful generic technique, which can be applied to a variety of ciphers in a comparable way.

14

References

1. Martin Albrecht and Carlos Cid. Algebraic Techniques in Differential Cryptanalysis. Cryptology ePrint
Archive, Report 2008/177, 2008. http://eprint.iacr.org/.

2. Kazumaro Aoki and Yu Sasaki. Preimage Attacks on One-Block MD4, 63-Step MD5 and More. In Selected
Areas in Cryptography’08, pages 103–119, 2008.

3. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique Cryptanalysis of the Full AES.
Cryptology ePrint Archive, Report 2011/449, 2011. http://eprint.iacr.org/.

4. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Rob-
shaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier
and Ingrid Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007.

5. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and KTANTAN - A Family of
Small and Efficient Hardware-Oriented Block Ciphers. In Christophe Clavier and Kris Gaj, editors, CHES,
volume 5747 of Lecture Notes in Computer Science, pages 272–288. Springer, 2009.

6. Mustafa Çoban, Ferhat Karakoç, and Özkan Boztaş. Biclique Cryptanalysis of TWINE. Cryptology ePrint
Archive, Report 2012/422, 2012. http://eprint.iacr.org/.

7. Shaozhen Chen and Tianmin Xu. Biclique Attack of the Full ARIA-256. IACR Cryptology ePrint Archive,
2012:11, 2012.

8. Joo Yeon Cho. Linear Cryptanalysis of Reduced-Round PRESENT. In Josef Pieprzyk, editor, CT-RSA,
volume 5985 of Lecture Notes in Computer Science, pages 302–317. Springer, 2010.

9. Baudoin Collard and François-Xavier Standaert. A Statistical Saturation Attack against the Block Cipher
PRESENT. In Marc Fischlin, editor, CT-RSA, volume 5473 of Lecture Notes in Computer Science, pages
195–210. Springer, 2009.

10. Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A New Family of Lightweight Block Ciphers. In Ari
Juels and Christof Paar, editors, RFIDSec, volume 7055 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2011.

11. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED Block Cipher. In
Preneel and Takagi [20], pages 326–341.

12. Deukjo Hong, Bonwook Koo, and Daesung Kwon. Biclique Attack on the Full HIGHT. In Howon Kim,
editor, ICISC, volume 7259 of Lecture Notes in Computer Science, pages 365–374. Springer, 2011.

13. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok Koo, Changhoon Lee,
Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim, Jongsung Kim, and Seongtaek Chee. Hight: A
new block cipher suitable for low-resource device. In Louis Goubin and Mitsuru Matsui, editors, CHES,
volume 4249 of Lecture Notes in Computer Science, pages 46–59. Springer, 2006.

14. Takanori Isobe and Kyoji Shibutani. Security Analysis of the Lightweight Block Ciphers XTEA, LED and
Piccolo. In Willy Susilo, Yi Mu, and Jennifer Seberry, editors, ACISP, volume 7372 of Lecture Notes in
Computer Science, pages 71–86. Springer, 2012.

15. Dmitry Khovratovich and Christian Rechberger. A Splice-and-Cut Cryptanalysis of the AES. IACR Cryp-
tology ePrint Archive, 2011:274, 2011. http://eprint.iacr.org/2011/274.

16. Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques for Preimages: Attacks on
Skein-512 and the SHA-2 Family. Cryptology ePrint Archive, Report 2011/286, 2011. http://eprint.iacr.
org/.

17. Hamid Mala. Biclique Cryptanalysis of the Block Cipher SQUARE. Cryptology ePrint Archive, Report
2011/500, 2011. http://eprint.iacr.org/.

18. Florian Mendel, Vincent Rijmen, Deniz Toz, and Kerem Varici. Differential Analysis of the LED Block
Cipher. IACR Cryptology ePrint Archive, 2012:544, 2012.

19. Kenji Ohkuma. Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis. In Michael J. Jacobson
Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, volume 5867 of
Lecture Notes in Computer Science, pages 249–265. Springer, 2009.

20. Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic Hardware and Embedded Systems - CHES 2011
- 13th International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings, volume 6917 of
Lecture Notes in Computer Science. Springer, 2011.

21. Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita, and Taizo Shirai.
Piccolo: An Ultra-Lightweight Blockcipher. In Preneel and Takagi [20], pages 342–357.

22. Nigel Smart. ECRYPT II Yearly Report on Algorithms and Keysizes (2010-2011), D. SPA.17 Rev. 1.0,
ICT-2007-216676 (2011). Technical report, European Network of Excellence in Cryptology II, June 2011.
www.ecrypt.eu.org/documents/D.SPA.17.pdf.

23. Meiqin Wang. Differential Cryptanalysis of Reduced-Round PRESENT. In Serge Vaudenay, editor,
AFRICACRYPT, volume 5023 of Lecture Notes in Computer Science, pages 40–49. Springer, 2008.

24. Yanfeng Wang, Wenling Wu, and Xiaoli Yu. Biclique Cryptanalysis of Reduced-Round Piccolo Block Cipher.
In Mark Dermot Ryan, Ben Smyth, and Guilin Wang, editors, ISPEC, volume 7232 of Lecture Notes in
Computer Science, pages 337–352. Springer, 2012.

15

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2011/274
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
www.ecrypt.eu.org/documents/D.SPA.17.pdf

A Independent-Biclique Attack on 21 Rounds of PRESENT-80

Backward matching Round 9 Round 10

...

Round 19 Round 20 Round 21

Forward matching Round 5 Round 6 Round 7 Round 8

v

v

Fig. 8: Recomputations for reduced-round PRESENT-80 in forward and backward direction.

B Independent-Biclique Attack on 24 Rounds of PRESENT-128

Backward matching Round 16 Round 21 Round 22 Round 23 Round 24

Forward matching Round 5 Round 13

...

...

Round 14 Round 15

v

v

Fig. 9: Recomputations for reduced-round PRESENT-128 in forward and backward direction.

16

C Independent-Biclique Attack on 31.5 Rounds of LED-64

Base computation

Round 25

Round 26

Round 27

Round 28

Round 29

Round 30

Round 31

Forward differential

Round 25

Round 26

Round 27

Round 28

Round 29

Round 30

Round 31

Backward differential

Round 25

Round 26

Round 27

Round 28

Round 29

Round 30

Round 31

P0 PiP0

C0 C0Ci

K
iΔ K

j

Δ

Round 32 Round 32 Round 32

Fig. 10: Biclique for LED-64 in rounds 25 - 32 with ∆i- and ∇j-differentials.

Backward matching Round 4 Round 5

...

Round 22 Round 23 Round 24

Forward matching Round 1 Round 2 Round 3

v

v

Fig. 11: Recomputations for LED-64 in forward and backward direction.

17

D Independent-Biclique Attack on Full LED-128

Base computation

Round 37

Round 38

Round 39

Round 40

Round 41

Round 42

Round 43

Round 44

Round 45

Round 46

Round 47

Round 48

Forward differential

Round 37

Round 38

Round 39

Round 40

Round 41

Round 42

Round 43

Round 44

Round 45

Round 46

Round 47

Round 48

Backward differential

Round 37

Round 38

Round 39

Round 40

Round 41

Round 42

Round 43

Round 44

Round 45

Round 46

Round 47

Round 48

P0 PiP0

C0 C0Ci

K
iΔ K

j

Δ

Fig. 12: Biclique for LED-128 in rounds 37 - 48 with ∆i- and ∇j-differentials.

18

Backward matching Round 8 Round 9

...

Round 34 Round 35 Round 36

Forward matching Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7

v

v

Fig. 13: Recomputations for LED-128 in forward and backward direction.

19

	Biclique Cryptanalysis of the PRESENT and LED Lightweight Ciphers

