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1Universitat Rovira i Virgili, Tarragona, Spain
2Nanyang Technological University, Singapore

December 18, 2012

Abstract

One important result in secret sharing is the Brickell-Davenport Theorem: every ideal
perfect secret sharing scheme defines a matroid that is uniquely determined by the access
structure. Even though a few attempts have been made, there is no satisfactory definition of
ideal secret sharing scheme for the general case, in which non-perfect schemes are considered
as well. Without providing another unsatisfactory definition of ideal non-perfect secret
sharing scheme, we present a generalization of the Brickell-Davenport Theorem to the general
case. After analyzing that result under a new point of view and identifying its combinatorial
nature, we present a characterization of the (not necessarily perfect) secret sharing schemes
that are associated to matroids. Some optimality properties of such schemes are discussed.
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1 Introduction

This work deals with the connection between secret sharing and matroid theory. Most of
the concepts appearing in this Introduction will be defined later in the paper. The reader is
referred to [1] for a survey on secret sharing, to [25, 27, 33] for textbooks containing material
about matroids and polymatroids, to [8] for a textbook on information theory, and to [19] for a
more detailed description of the connections of secret sharing with matroid theory.

In a perfect secret sharing scheme, the shares of the participants in an unqualified set do
not provide any information about the secret value. Because of that, the length of every share
is at least the length of the secret [15]. This leads naturally to distinguish the perfect secret
sharing schemes in which every share has the same length as the secret, which are called ideal.
The best known example of such schemes is Shamir’s [30] threshold secret sharing scheme.

Brickell [6] showed how to construct ideal perfect secret sharing schemes for some non-
threshold access structures. This construction was described by Massey [21] in terms of linear
codes. Namely, given a linear code, every random choice of a codeword provides a distribution
of shares. One of the entries corresponds to the secret value while the other ones provide the
shares of the participants. In particular, Shamir’s [30] threshold scheme can be described in this
way. The columns of a generator matrix of a code define a linear (or representable) matroid.
As a consequence, the access structures of the ideal perfect secret sharing schemes constructed
according to Brickell’s method [6] coincide with the ports of linear matroids.

The Brickell-Davenport Theorem [7] generalizes this result. Namely, it states that every
ideal perfect secret sharing scheme defines a matroid, which is uniquely determined by the
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access structure. That is, different ideal perfect secret sharing schemes with the same access
structure define the same matroid. Moreover, the access structure is a port of this matroid.
Therefore, being a matroid port is a necessary condition for an access structure to admit an
ideal perfect secret sharing scheme. As we saw before, being the port of a linear matroid is a
sufficient condition. Nevertheless, the necessary condition is not sufficient [29] and the sufficient
one is not necessary [31].

Because of the Brickell-Davenport Theorem, matroid theory plays an important role in
secret sharing, as it is demonstrated with some examples in the following. Some results about
representability of matroids were used in [4] to obtain an important separation result between
the efficiency of linear and non-linear secret sharing schemes. The algebraic properties of ideal
perfect secret sharing schemes that can be derived from the induced matroid were explored
by Matúš [22]. Matroid ports were introduced by Lehman [17, 18] and a forbidden minor
characterization for them was presented by Seymour [28] before the invention of secret sharing.
These results were applied in [19] to provide a common explanation for a property that had
been observed in several particular families of access structures. Powerful tools for the study
of ideal perfect secret sharing schemes with multipartite access structures are given in [11] by
applying several well known results about integer polymatroids. These techniques provided a
characterization of the hierarchical access structures that admit an ideal perfect secret sharing
scheme [12]. Other relevant results on secret sharing have been obtained by using matroid
theory as, for instance, the ones in [2, 9, 13, 23].

Our main objective is to extend the connection to matroid theory given by the Brickell-
Davenport Theorem to secret sharing schemes that are not necessarily perfect, that is, schemes
in which some unqualified sets may obtain partial information about the secret value. Therefore,
we consider here secret sharing schemes whose access structures consist of two families of sets
of participants. Namely, the qualified sets, which can recover the secret value from the shares
of their participants, and the forbidden sets, which do not obtain any information about the
secret. The sets that are neither qualified nor forbidden can obtain partial information about the
secret value. A secret sharing scheme is perfect if the forbidden sets coincide with the unqualified
ones. Non-perfect secret sharing schemes were first considered by Blakley and Meadows [5], who
introduced the threshold non-perfect secret sharing schemes, also called ramp schemes.

Differently to the perfect case, in a non-perfect secret sharing scheme, the length of some
shares may be smaller than the length of the secret value. The gap of an access structure,
which is the minimum gap between forbidden and qualified sets, provides an upper bound
on the ratio between the length of the secret and the maximum length of the shares [24].
Non-perfect secret sharing schemes attaining this bound can be obtained from linear codes by
generalizing Brickell’s [6] construction of ideal perfect secret sharing schemes. Specifically, a
codeword is selected uniformly at random from a given linear code with length n+ k, where n
is the number of participants and the first k columns of the generator matrix are supposed to
be linearly independent. The first k positions correspond to the secret value, and each of the
other n positions corresponds to the share of a participant. The access structure of this scheme
is determined by the matroid associated to the code.

On the basis of the main properties of these non-perfect secret sharing schemes constructed
from linear codes, Kurosawa et al. [16] proposed a definition for ideal secret sharing scheme that
applies to non-perfect schemes too, and they proved that every scheme that is ideal according to
their definition defines a matroid. Nevertheless, their definition is not as natural as the one for
perfect schemes. As in the perfect case, it is required that all shares have the same length, and
that the ratio of this length with the length of the secret is minimum according to some lower
bound. But, in addition, the definition proposed in [16] requires that the mutual information
between the secret value and the shares of every set of participants is an integer multiple of the
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length of the shares. Paillier [26] presented additional results about ideal (according to [16])
non-perfect secret sharing schemes and their connections to matroid theory. He proposed as well
an alternative definition for ideal scheme, but it has the same requirement as the one in [16].

After considering other possible ways to extend the concept of ideal secret sharing scheme
to non-perfect schemes, we were not able to find a definition that was as natural and useful as
the one for the perfect case. Some examples illustrating this situation are given in Section 8.
Because of that, we think that the best option is to restrict the concept of ideal scheme to the
perfect case, and try to establish which non-perfect secret sharing schemes are connected to
matroids in a similar way as the ideal perfect ones.

Our first step in that direction is to present a new interpretation of the Brickell-Davenport
Theorem by identifying its two main ingredients. The first one is the result by Fujishige [14]
(Theorem 2.2), which states that the joint Shannon entropies of a collection of random variables
define a polymatroid. As a consequence of Theorem 2.2, every secret sharing scheme (perfect or
non-perfect) defines a polymatroid that determines the access structure. This leads to a natural
connection between polymatroids and access structures that has been used previously for the
perfect case in [3, 10, 19] and other works. The second ingredient is a purely combinatorial
result (Proposition 4.2) involving polymatroids and their associated access structures.

In particular, the Brickell-Davenport Theorem is a characterization of the perfect secret
sharing schemes whose associated polymatroid is a multiple of a matroid. We use this new
interpretation of that result to generalize it to non-perfect secret sharing schemes. First, on the
basis of the properties of the aforementioned non-perfect secret sharing schemes defined from
linear codes, we introduce in Section 5 the concepts of quasi-matroid and generalized matroid

port . Our main result, which is presented in Section 7, is a characterization of the secret
sharing schemes whose associated polymatroid is a multiple of a quasi-matroid. In addition,
we prove that, in this case, the quasi-matroid is determined by the access structure, which is a
generalized matroid port. Since those schemes coincide with the ones that are ideal according
to the definition proposed in [16], another characterization for the same class of secret sharing
schemes can be derived from the results in that work. Nevertheless, our approach to the
problem has several advantages. First, our characterization is much simpler, that is, we find
a much weaker condition that characterizes that class. Second, our combinatorial restatement
of the Brickell-Davenport Theorem (Section 4) provides a more natural way to generalize it to
non-perfect schemes. And third, our proofs are simpler and more elegant. They are purely
combinatorial and they use varied known results and techniques from matroid theory.

2 Matroids and Polymatroids

Some basic concepts and facts about matroids and polymatroids that are used in the paper are
presented here. A more detailed presentation can be found in textbooks on the topic [25, 27, 33].
For a finite set Q, we notate P(Q) for the power set of Q, that is, the set of all subsets of Q.

Definition 2.1. A polymatroid is a pair S = (Q, f) formed by a finite set Q, the ground set ,
and a rank function f : P(Q) → R satisfying the following properties.

• f(∅) = 0.

• f is monotone increasing : if A ⊆ B ⊆ Q, then f(A) ≤ f(B).

• f is submodular : f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) for every A,B ⊆ Q.

A polymatroid is called integer if its rank function is integer-valued. A matroid M = (Q, r) is
an integer polymatroid such that r({x}) ∈ {0, 1} for every x ∈ Q.
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Because of the connection between polymatroids and the Shannon entropy that is described
in the following and by analogy to the conditional entropy, we write f(X|Y ) = f(X∪Y )−f(Y ).
Clearly, the polymatroid axioms imply that f(X|Y ) ≥ 0 and f(X|Y ) ≥ f(X|Y ∪Z). In addition,

f(X1 ∪ · · · ∪Xr) =

r∑

i=1

f(Xi|X1 ∪ · · · ∪Xi−1) (1)

for all X1, . . . ,Xr ⊆ Q.
For a polymatroid S = (Q, f) and a set Z ⊆ Q, the polymatroids S \ Z = (Q− Z, f\Z) and

S/Z = (Q − Z, f/Z) are defined, respectively, by f\Z(A) = f(A) and f/Z(A) = f(A|Z). Every
polymatroid that can be obtained from S by repeatedly applying these operations is called a
minor of S. Every minor of S is of the form (S \Z1)/Z2 for some disjoint sets Z1, Z2 ⊆ Q. The
minors of a matroid are matroids as well. The dual of a matroid M = (Q, r) is the matroid
M∗ = (Q, r∗) with r∗(A) = |A| − r(Q) + r(Q − A) for every A ⊆ Q. Clearly, M∗∗ = M. In
addition, (M \ B)∗ = M∗/B and (M/B)∗ = M∗ \ B for every B ⊆ Q. If S = (Q, f) is a
polymatroid and c is a positive real number, then cS = (Q, cf) is a polymatroid as well, which
is called a multiple of S.

For a field K, an integer polymatroid S = (Q, f) is said to be K-linear (or K-linearly

representable, or K-representable) if there exists a K-vector space E and a collection (Vi)i∈Q
of vector subspaces of E such that f(X) = dim

∑
i∈X Vi for every X ⊆ Q. Every minor of a

K-linear polymatroid is K-linear as well. The same applies to the dual of a K-linear matroid.
The following result describes the connection between Shannon entropy and polymatroids

that was discovered by Fujishige [14]. For a tuple (Si)i∈Q of discrete random variables and a
set A = {i1, . . . , ir} ⊆ Q, we write SA for the random variable Si1 × · · · × Sir , and H(SA) for
its Shannon entropy.

Theorem 2.2. If (Si)i∈Q is a tuple of discrete random variables, then the map f : P(Q) → R

defined by f(A) = H(SA) is the rank function of a polymatroid with ground set Q.

Entropic polymatroids are the ones that can be defined in this way from a tuple of discrete
random variables. If K is a finite field, then every K-linear polymatroid is a multiple of an
entropic polymatroid.

3 Secret Sharing Schemes and Polymatroids

We present first a definition of access structure that is more general than the one usually
considered when dealing only with perfect secret sharing schemes.

Definition 3.1. If A,B ⊆ P(P ) are nonempty families of subsets of P such that A is monotone
decreasing, B is monotone increasing, and A ∩ B = ∅, then the pair Γ = (A,B) is called an
access structure on P . The sets in A and the sets in B are, respectively, the forbidden and the
qualified sets of the access structure Γ.

An access structure is connected if every participant x ∈ P is in a minimal qualified set and
in a minimal non-forbidden set. For a family C ⊆ P(P ) of subsets of P , we notate

• C = P(P )− C = {A ⊆ P : A /∈ C}, and

• Cc = {A ⊆ P : P −A ∈ C}.
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Access structures of the form Γ = (B,B) are called perfect . The dual of an access structure

Γ = (A,B) on P is the access structure Γ∗ = (Bc,Ac) on the same set. It is clear that the dual
of a connected access structure is connected as well.

The following definition of an access structure from a polymatroid is well motivated by the
connection between secret sharing schemes and polymatroids that is derived from Theorem 2.2.
From now on, P will denote a finite set of participants, p0 /∈ P a special participant called
dealer, and Q = P ∪ {p0}.

Definition 3.2. Let S = (Q, f) be a polymatroid with f({p0}) > 0 and f({p0}|P ) = 0. The
access structure Γp0(S) = (A,B) on P is defined by

• A = {A ⊆ P : f({p0}|A) = f({p0})},

• B = {B ⊆ P : f({p0}|B) = 0}.

It is not difficult to check that this is indeed an access structure. If M is a matroid, then
the access structure Γp0(M) is perfect and it is called the port of the matroid M at the point p0.

Definition 3.3. A secret sharing scheme Σ on P is a collection (Si)i∈Q of discrete random
variables such that H(Sp0) > 0 and H(Sp0 |SP ) = 0. The random variable Sp0 corresponds to
the secret value that is distributed into shares among the participants in P according to the
random variables (Si)i∈P .

Definition 3.4. Let Σ = (Si)i∈Q be a secret sharing scheme on P . Every multiple of the
polymatroid (Q,h), where h(A) = H(SA) for every A ⊆ Q, is called a Σ-polymatroid.

Definition 3.5. Let Σ be a secret sharing scheme on P and S a Σ-polymatroid. Then the
access structure of the secret sharing scheme Σ is Γ(Σ) = Γp0(S).

The participants in a qualified set B ∈ B can recover the secret value from their shares
because h({p0}|B) = 0. Since h({p0}|A) = h({p0}) if A ∈ A, the shares of the participants in a
forbidden set do not provide any information at all about the secret value. Observe that a set
of participants that is neither qualified nor forbidden can obtain partial information about the
secret value. A secret sharing scheme is said to be perfect if its access structure is perfect, that
is, if every subset of P is either forbidden or qualified.

Observe that, for a secret sharing scheme Σ, every Σ-polymatroid is a multiple of an entropic
polymatroid. Therefore, it is possible that Γ = Γp0(S) for some polymatroid S but it does not
exist any secret sharing scheme Σ with access structure Γ such that S is a Σ-polymatroid (see
Example 8.1).

For a polymatroid S = (Q, f), we define

ρp0(S) =
f({p0})

maxx∈P f({x})
.

The information rate ρ(Σ) of a secret sharing Σ is the ratio between the length of the secret
value and the maximum length of the shares. That is, ρ(Σ) = ρp0(S) if S is a Σ-polymatroid.
If Σ is a perfect secret sharing scheme with connected access structure and S = (Q, f) is a
Σ-polymatroid, then f({x}) ≥ f({p0}) for every participant x ∈ P [15], and hence ρ(Σ) ≤ 1.
A perfect secret sharing scheme is called ideal if every share has the same length as the secret,
that is, if ρ(Σ) = 1.

We present in the following the code-based description due to Massey [21] of Brickell’s [6]
construction of ideal perfect secret sharing schemes. Consider a finite field K and a K-linear
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code C ⊆ K
Q with length |Q|. By considering the uniform probability distribution on C, a

collection (Ci)i∈Q of random variables is obtained. Therefore, the code C determines a secret
sharing scheme Σ on P . Every codeword (ci)i∈Q ∈ C corresponds to a distribution of shares.
This scheme is perfect and, since both the secret value cp0 and the shares ci, where i ∈ P , are
elements in the field K, it is ideal. The columns of a generator matrix of C define a K-linear
matroid M with ground set Q. This matroid is the same for all generator matrices of C. The
matroid M is a Σ-polymatroid, and hence the access structure of Σ is the matroid port Γp0(M).
By the Brickell-Davenport Theorem [7], which is restated here in Theorem 4.1, this property of
the schemes constructed from linear codes applies as well to every ideal perfect secret sharing
scheme.

For Γ = (A,B) and Γ′ = (A′,B′), access structures on P , we write Γ � Γ′ if A ⊆ A′ and
B ⊆ B′. This defines a partial order on the access structures on a set P , and the maximal
elements coincide with the perfect access structures. An access structure Γ is realized by a
secret sharing scheme Σ if Γ � Γ(Σ). An optimization problem appears naturally at this point.
Namely, to find the optimal information rate among all secret sharing schemes that realize a
given access structure Γ. This value is denoted by ρ(Γ).

The gap g(Γ) of an access structure Γ = (A,B) is defined by

g(Γ) = min{|B −A| : A ∈ A, B ∈ B}.

As a consequence of [24, Theorem 13], the information rate of a secret sharing scheme is upper
bounded by the gap of its access structure. For completeness, we present here the combinatorial
statement of this result and its proof.

Proposition 3.6. If Γ = Γp0(S), then ρp0(S) ≤ g(Γ).

Proof. Consider a forbidden set A and a qualified set B with A ⊆ B. Then

f(A) + f({p0}) = f(A ∪ {p0}) ≤ f(B ∪ {p0}) = f(B) ≤ f(A) + f(B −A),

and hence
f({p0}) ≤ f(B −A) ≤

∑

y∈B−A

f({y}) ≤ |B −A|max
x∈P

f({x}) (2)

which clearly concludes the proof.

If ρp0(S) = g(Γ), the inequalities in (2) become equalities for every A ∈ A and B ∈ B with
|B − A| = g(Γ). In particular, f({y}) = maxx∈P f({x}) for every y ∈ B − A. Therefore, all
shares have the same length if the access structure Γ is such that for every x ∈ P there exist
A ∈ A and B ∈ B such that |B − A| = g(Γ) and x ∈ B − A. Observe that g(Γ′) ≤ g(Γ) if
Γ � Γ′. Hence, as a consequence of Proposition 3.6, ρ(Γ) ≤ g(Γ). An access structure with gap
g that is maximal with this property is called g-gap-maximal.

4 Brickell-Davenport Theorem Revisited

We present in Theorem 4.1 a restatement in our terminology of the Brickell-Davenport Theo-
rem [7, Theorem 1]. This makes it clear that the Brickell-Davenport Theorem can be derived
from Theorem 2.2 and Proposition 4.2, being the latter a purely combinatorial result.

Theorem 4.1 (Brickell-Davenport Theorem). Let Σ be an ideal perfect secret sharing scheme.

Then there exists a matroid M that is a Σ-polymatroid. Consequently, the access structure Γ
of Σ is a port of the matroid M. Moreover, the matroid M is determined by Γ if this access

structure is connected
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The last statement of the theorem is due to Lehman [17]. A proof for it can be found in [32]
as well. Since we can assume that Γ is connected to prove the first statement, the following
combinatorial result is enough to conclude the proof of Theorem 4.1.

Proposition 4.2. Let S = (Q, f) be a polymatroid such that the access structure Γp0(S) is

perfect and connected. If f({x}) = 1 for every x ∈ Q, then S is a matroid.

Proof. Consider Γp0(S) = (B,B). If C /∈ B and C ∪{x} ∈ B, then f({x}|C) = 1 and f({x}|C ∪
{p0}) = 0. Indeed, this can be proved by using f(C) + f({p0}|C) + f({x}|C ∪ {p0}) = f(B) +
f({p0}|B), where B = C ∪ {x}.

It is enough to prove that the rank function f is integer-valued. Since f(A∪{p0})− f(A) ∈
{0, 1}, we only have to prove that f(A) ∈ Z for every A ⊆ P . Suppose that f is not integer-
valued and take A ⊆ P , minimal with f(A) /∈ Z. Then m < f(A) < m+ 1 for some integer m.
Clearly, f(A− {x}) = m and 0 < f({x}|A− {x}) < 1 for every x ∈ A.

Suppose that A ∈ B. Then A − {x} ∈ B for every x ∈ A because f({x}|A − {x}) < 1.
Let B be a minimal qualified set with B ⊆ A, and take x ∈ B and C = B − {x}. Then
f({x}|C∪{p0}) = 0 and, since A−{x} is qualified, f({x}|A−{x}) = f({x}|(A−{x})∪{p0}) = 0,
a contradiction.

Suppose now that A /∈ B and consider B ⊆ P , minimal with B /∈ B and A ∪B ∈ B. There
exists such a set because Γ is connected. Then f({y}|(A ∪B)− {y}) = 1 for every y ∈ B, and
hence f(A ∪ B) = f(A) + |B|. Since f({x}|(A ∪ B) − {x}) ≤ f({x}|A − {x}) < 1 for every
x ∈ A, we have that (A ∪B)− {x} ∈ B for every x ∈ A. This implies that f((A ∪B)− {x}) =
f(A−{x})+ |B|. Consider now a minimal qualified subset C such that B ⊆ C ⊆ A∪B and take
x ∈ A ∩C and the subsets C ′ = C − {x} and A′ = (A ∪B)− {x}. Then f({x}|C ′ ∪ {p0}) = 0,
and hence f({x}|A′) = f({x}|A′∪{p0}) = 0. Therefore, f(A∪B) = f(A′)+f({x}|A′) = f(A′),
which implies that f(A) = f(A− {x}), a contradiction.

5 Generalized Matroid Ports

We describe in the following how to generalize Brickell’s [6] construction of ideal perfect secret
sharing schemes, which has been presented in Section 3, to a code-based construction of non-
perfect secret sharing schemes.

Consider a set P of n participants and a set P0 with |P0| = k and P ∩ P0 = ∅. Let K be a
finite field and C ⊆ K

P∪P0 a K-linear code with length n+ k. Assume that, for every generator
matrix of C, the k columns corresponding to P0 are linearly independent, that is,

CP0
= {(cj)j∈P0

: c ∈ C} = K
P0 .

Every codeword c ∈ C is of the form (ci)i∈Q, where cp0 = (cj)j∈P0
∈ K

P0 and ci ∈ K for
every i ∈ P . The collection (Ci)i∈Q of random variables given by the uniform probability
distribution on C defines a secret sharing scheme Σ on P . The properties of such schemes and
their access structures are discussed next. In particular, we prove in Section 6 that the bound
in Proposition 3.6 is attained.

The columns of a generator matrix of C define a K-linear matroid M(C) with ground set
P ∪ P0. The connection between this matroid and the access structure of Σ motivates the
following definition.

Definition 5.1. Let P and P0 be disjoint finite sets and M = (P ∪ P0, r) a matroid such that
r(P0) = |P0| and r(P0|P ) = 0. Then the generalized port of the matroid M at the set P0 is the
access structure ΓP0

(M) = (A,B) defined by
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• A = {A ⊆ P : r(P0|A) = r(P0)},

• B = {B ⊆ P : r(P0|B) = 0}.

Clearly, the access structure of Σ is the generalized matroid port ΓP0
(M(C)). We analyze

next the connections between the matroid M(C) and the Σ-polymatroids. Some notation and
terminology are needed. Given a matroid M = (P ∪P0, r) such that r(P0) = |P0|, consider the
polymatroid M|P0 with ground set Q = P ∪ {p0} and rank function f defined by f(A) = r(A)
and f(A ∪ {p0}) = r(A ∪ P0) for every A ⊆ P . Observe that (M|P0) \ {p0} = M \ P0 and
(M|P0)/{p0} = M/P0. Polymatroids of the form M|P0 are called quasi-matroids. It is obvious
that the quasi-matroid M(C)|P0 is a Σ-polymatroid. A matroid M = (P ∪ P0, r) is said to
be P0-uniform if r(P0) = |P0| and r(A) = min{r(A ∪ P0), r(A − P0) + |A ∩ P0|} for every
A ⊆ P ∪ P0. Observe that every permutation of the elements in P0 is an automorphism of M.
The next proposition is a consequence of more general results about the connections between
integer polymatroids and matroids that can be found in [27, Section 44.6b] and [11].

Proposition 5.2. Let S = (Q, f) be an integer polymatroid with f({x}) = 1 for every x ∈ P =
Q− {p0}. Then there exists a unique P0-uniform matroid M = M(S) = (P ∪ P0, r) such that

M(S)|P0 = S. In particular, S is a quasi-matroid. In addition, if S is K-linear for some field

K, then M(S) is L-linear for every large enough finite extension L of K.

Proof. For every A ⊆ P ∪P0, consider A
′′ = A∩P0 and A′ = A−A′′ ⊆ P . The only possibility

for the rank function r of M(S) is the map defined by

r(A) = min{f(A′ ∪ {p0}), f(A
′) + |A′′|}.

The statement about linearity is a consequence of [11, Theorem 6.1].

Proposition 5.3. The dual of a generalized matroid port is a generalized matroid port.

Proof. Let ΓP0
(M) be a generalized port of a matroid M = (P ∪ P0, r). Consider the dual

matroid M∗. It is not difficult to check that r∗(P0) = |P0| and r∗(P0|P ) = 0. The proof is easily
completed by checking that r∗(A∪P0) = r∗(A)+r∗(P0) if and only if r((P−A)∪P0) = r(P−A)
and that, dually, r∗(A ∪ P0) = r∗(A) if and only if r((P − A) ∪ P0) = r(P − A) + r(P0). This
implies that (ΓP0

(M))∗ = ΓP0
(M∗).

6 Optimality Properties of Generalized Matroid Ports

For a polymatroid S = (Q, f) and the access structure Γp0(S) = (A,B), we define

βp0(S) =
min{f({p0}|C) : C ∈ B}

f({p0})
and αp0(S) =

min{f({p0})− f({p0}|C) : C ∈ A}

f({p0})
.

We define the secrecy β(Σ) and the co-secrecy α(Σ) of a secret sharing scheme Σ by β(Σ) =
βp0(S) and α(Σ) = αp0(S) for some Σ-polymatroid S. That is, the secrecy and the co-secrecy
are, respectively, the minimum uncertainty about the secret among all unqualified subsets and
the minimum amount of information about the secret that is obtained by a non-forbidden subset,
both in relation to the length of the secret. Observe that 0 < α(Σ) ≤ 1 and 0 < β(Σ) ≤ 1. In
addition, a secret sharing scheme is perfect if and only if one of the values α(Σ) or β(Σ) is equal
to 1, in which case both values are equal to 1. We prove in the next proposition that both the
secrecy and the co-secrecy provide lower bounds on the length of the shares.
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Proposition 6.1. Let S = (Q, f) be a polymatroid such that the access structure Γp0(S) is

connected. Then f({x})/f({p0}) ≥ max{αp0(S), βp0(S)} for every participant x ∈ P . In

particular, 1/ρp0(S) ≥ max{αp0(S), βp0(S)}.

Proof. For a participant x ∈ P , consider a minimal qualified set B with x ∈ B and take
C = B − {x}. By Equation (1),

f(B ∪ {p0}) = f({x}) + f(C|{x}) + f({p0}|B) = f(C) + f({p0}|C) + f({x}|C ∪ {p0}). (3)

Since f({p0}|B) = 0 and f({p0}|C) ≥ βp0(S)f({p0}), we have that f({x})/f({p0}) ≥ βp0(S).
Equation (3) can be used as well to prove that f({x})/f({p0}) ≥ αp0(S) by considering now a
minimal non-forbidden set B with x ∈ B and C = B − {x}.

We prove in the following that the bounds in Propositions 3.6 and 6.1 are attained if Γp0(S) is
a generalized matroid port. As a consequence, the code-based secret sharing schemes described
in Section 5 have optimal information rate.

Proposition 6.2. If Γ is a connected generalized matroid port and S = (Q, f) is a quasi-matroid

with Γ = Γp0(S), then

ρp0(S) = g(Γ) =
1

αp0(S)
=

1

βp0(S)
.

Proof. Since S is a quasi-matroid, f({x}) = 1 for every x ∈ P , and hence ρp0(S) = f({p0}).
In addition, αp0(S), βp0(S) ≥ 1/f({p0}) because S is an integer polymatroid. For a participant
x ∈ P , consider a minimal qualified set B ⊆ P with x ∈ B and take C = B − {x}. By
Equation (3), f({p0}|C) ≤ 1, and hence βp0(S) = 1/f({p0}). One can prove in a similar way
that αp0(S) = 1/f({p0}).

We prove next that f(B) = |B| if B is a minimal qualified subset. Obviously, f(B) ≤ |B|.
Take x ∈ B and C = B−{x}. Since f(B) = f(B∪{p0}) = f(C)+f({p0}|C)+f({x}|C∪{p0}),
we have that f(B) ≥ f(C) + f({p0}|C) ≥ f(C) + 1. Therefore, f({x}|B − {x}) = 1 for every
x ∈ B. Finally, f(B) ≥

∑
x∈B f({x}|B−{x}) = |B| by Equation (1). In particular, this implies

that f(A) = |A| for every A ⊆ B.
Let B be a minimal qualified set and let A ⊆ B be a maximal forbidden subset of B. Then

f(A ∪ {p0}) = f(A) + f({p0}) and

f(A ∪ {y} ∪ {p0}) < f(A ∪ {y}) + f({p0}) = f(A) + 1 + f({p0}) = f(A ∪ {p0}) + 1

for every y ∈ B − A. Therefore, f(A ∪ {y} ∪ {p0}) = f(A ∪ {p0}) for every y ∈ B − A, which
implies that f(A ∪ {p0}) = f(B ∪ {p0}) = f(B), and hence |B −A| = f({p0}) = ρp0(S).

Corollary 6.3. If Γ is a connected generalized matroid port with g(Γ) = 1, then Γ is a matroid

port, and hence it is perfect.

Proof. Straightforward from the proof of Proposition 6.2.

7 Generalizing Brickell-Davenport Theorem

This section is devoted to prove Theorem 7.1, which generalizes the Brickell-Davenport Theorem
(Theorem 4.1) to secret sharing schemes that are not necessarily perfect.
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Theorem 7.1. Let Σ be a secret sharing scheme with connected access structure Γ and such

that the secrecy and the co-secrecy of Σ are both equal to the inverse of the information rate.

Then there exists a Σ-polymatroid that is a quasi-matroid. In particular, Γ is a generalized

matroid port. Moreover, there exists a unique P0-uniform matroid M = (P ∪ P0, r) such that

Γ = ΓP0
(M).

Clearly, the first statement is a straightforward consequence of Proposition 7.2, while the
uniqueness result is proved by Propositions 5.2 and 7.9. Combined with Proposition 6.2, The-
orem 7.1 characterizes the secret sharing schemes that have a quasi-matroid among their asso-
ciated polymatroids.

Proposition 7.2. Let S = (Q, f) be a polymatroid such that the access structure Γp0(S) is

connected. Assume that f(x) = 1 for some x ∈ P and αp0(S) = βp0(S) = 1/ρp0(S). Then S is

a quasi-matroid.

The proof of Proposition 7.2 is quite involved and is divided into several partial results. In
particular, we are going to use the following result by Csirmaz [10, Proposition 2.3].

Proposition 7.3. Let Γ = (B,B) be a perfect access structure on a set P and let S ′ = (P, f) be a
polymatroid with ground set P . The polymatroid S ′ can be extended to a polymatroid S = (Q, f)
with f({p0}) = 1 such that S \ {p0} = S ′ and Γ = Γp0(S) if and only if the following conditions

are satisfied.

1. If A ⊆ B ⊆ P are such that A /∈ B and B ∈ B, then f(A) ≤ f(B)− 1.

2. If A,B ∈ B and A ∩B /∈ B, then f(A ∪B) + f(A ∩B) ≤ f(A) + f(B)− 1.

From now on, we assume that S = (Q, f) is a polymatroid in the conditions of Proposition 7.2
and we take Γp0(S) = (A,B). By Proposition 6.1, f(x) ≥ f({p0})/ρp0(S) for every x ∈ P , and
hence f(x) = 1 for every x ∈ P . Therefore, it is enough to prove that that S is an integer
polymatroid.

Lemma 7.4. There exists a matroid M1 = (Q, r1) such that M1 \ {p0} = S \ {p0} and

Γp0(M1) = (B,B).

Proof. We claim that the perfect access structure Γ1 = (B,B) and the polymatroid S ′ = S \
{p0} = (P, f) satisfy the conditions in Proposition 7.3. Indeed, if A /∈ B and B ∈ B, then
f({p0}|A) ≥ 1, and hence f(A) ≤ f(A∪{p0})−1 ≤ f(B∪{p0})−1 = f(B)−1. This proves the
first property. For the second one, f(A∪B)+f(A∩B) ≤ f(A∪B∪{p0})+f((A∩B)∪{p0})−1 ≤
f(A ∪ {p0}) + f(B ∪ {p0}) − 1 = f(A) + f(B) − 1 if A,B ∈ B and A ∩ B /∈ B. Therefore,
the polymatroid S ′ can be extended to a polymatroid M1 = (Q, r1) with r1({p0}) = 1 and
r1({p0}|P ) = 0 such that M1 \ {p0} = S ′ and Γp0(M1) = (B,B). By Proposition 4.2, M1 is a
matroid.

Lemma 7.5. f(Q− {x}) = f(Q) for every x ∈ Q.

Proof. Observe that f(Q) − f(Q − {p0}) = f({p0}|P ) = 0. If x ∈ P , there exists a minimal
qualified set B ∈ B with x ∈ B. Take C = B − {x}. By Equation (3),

0 ≤ f({x}|C ∪ {p0}) = f({x})− f({p0}|C) + f(C|{x})− f(C) ≤ 0,

which implies that f({x}|Q− {x}) = 0.
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Lemma 7.6. Consider the map f∗ : P(Q) → R defined by

f∗(A) =
∑

x∈A

f({x})− f(Q) + f(Q−A)

for every A ⊆ Q. The following properties hold.

1. S∗ = (Q, f∗) is a polymatroid.

2. f∗({x}) = f({x}) and f∗(Q− {x}) = f∗(Q) for every x ∈ Q.

3. Γp0(S
∗) = (Γp0(S))

∗ = (Bc,Ac).

4. αp0(S
∗) = βp0(S

∗) = 1/f∗({p0}).

Proof. Obviously, f∗(∅) = 0. It is easy to prove that f∗(X) ≤ f∗(X ∪ {y}) if X ⊆ Q and
y /∈ X. Consider two arbitrary subsets X,Y ⊆ Q. Then from the definition of f∗ and the
submodularity of f ,

f∗(X) + f∗(Y )− f∗(X ∪ Y )− f∗(X ∩ Y ) =

= f(Q−X) + f(Q− Y )− f(Q− (X ∪ Y ))− f(Q− (X ∩ Y )) ≥ 0.

This completes the proof of the first statement. The second statement is a direct consequence
of Lemma 7.5. Since f∗({p0}) = f({p0}) > 0 and f∗({p0}|P ) = 0, we can consider the access
structure Γp0(S

∗). The third and fourth statements are proved by taking into account that

f∗({p0}|C) = f({p0})− f({p0}|P − C)

for every C ⊆ P .

Lemma 7.7. There exists a matroid M2 with ground set Q such that M2/{p0} = S/{p0} and

Γp0(M2) = (A,A).

Proof. As a consequence of Lemma 7.6, we can apply Lemma 7.4 to the polymatroid S∗. There-
fore, there exists a matroid M3 = (Q, r3) such that M3 \ {p0} = S∗ \ {p0} and Γp0(M3) =
(Ac,Ac). Take M2 = M∗

3
. Then Γp0(M2) = (Γp0(M3))

∗ = (A,A) and

M2/{p0} = (M3 \ {p0})
∗ = S/{p0},

where the second equality can be easily checked from the definitions of the corresponding rank
functions.

Lemma 7.8. The polymatroid S = (Q, f) is integer.

Proof. By Lemma 7.4, f(A) = r1(A) ∈ Z for every A ⊆ P . Moreover, f(A ∪ {p0})− f({p0}) =
r2(A ∪ {p0}) − r2({p0}) ∈ Z for every A ⊆ P by Lemma 7.7, and f({p0}) ∈ Z because f(P ∪
{p0}) = f(P ) ∈ Z.

This concludes of course the proof of Proposition 7.2. The proof of Theorem 7.1 requires the
following proposition. It generalizes a well known result that applies to perfect access structures.
Namely, a connected matroid port is the port of a unique matroid [17, 20, 32].

Proposition 7.9. If Γ = (A,B) is a connected generalized matroid port, then there exists a

unique quasi-matroid S such that Γ = Γp0(S).
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Proof. Let S = (Q, f) be a quasi-matroid such that Γ = Γp0(S). By Lemmas 7.4 and 7.7, there
exist matroids M1 = (Q, r1) and M2 = (Q, r2) such that Γp0(M1) = (B,B) and Γp0(M2) =
(A,A). Since (B,B) and (A,A) are connected perfect access structures, the matroids M1 and
M2 are uniquely determined by Γ. If A ⊆ P , then f(A) = r1(A) and f(A ∪ {p0})− f({p0}) =
r2(A ∪ {p0}) − r2({p0}). By Proposition 6.2, f({p0}) is equal to the gap of Γ. Therefore, the
rank function f is determined by Γ.

The following proposition provides a sufficient condition for a secret sharing scheme to admit
a quasi-matroid among its associated polymatroids. Namely, this is the case if the bound in
Proposition 3.6 is attained and the access structure is gap-maximal.

Proposition 7.10. Let S = (Q, f) be a polymatroid with f({p0}) = g ∈ Z and f({x}) = 1 for

every x ∈ P such that the access structure Γp0(S) = (A,B) is connected and g-gap-maximal.

Then αp0(S) = βp0(S) = 1/f({p0}).

Proof. Suppose that βp0(S) < 1/f({p0}). Then there exists C ∈ B such that f({p0}|C) < 1.
Take a forbidden set A ∈ A with A ⊆ C. Then

g = f({p0}) = f({p0}|A) ≤ f({p0}|C) + f(C −A) < 1 + |C −A|,

and hence |C−A| ≥ g. Consider the access structure Γ′ = (A,B′), where minB′ = minB∪{C}.
Clearly, g(Γ′) = g(Γ) = g, a contradiction with the fact that Γ is g-gap-maximal. One can prove
in a similar way that αp0(S) = 1/f({p0}).

8 Examples

In this section we provide some examples to illustrate the connection between non-perfect secret
sharing schemes, generalized matroid ports, and quasi-matroids. In Example 8.1 we show that
the converse of the first statement of Theorem 7.1 is not true. The optimality of non-perfect
schemes is discussed in Example 8.2, and the gap-maximality of access structures is analyzed
in Examples 8.3 and 8.4.

Example 8.1. We have seen in Sections 6 and 7 that the secret sharing schemes whose access
structure is a generalized matroid port satisfy some optimal properties. Nevertheless, being a
generalized matroid port does not imply that there exist such an optimal secret sharing scheme
for a given access structure. Consider a set P = P1 ∪ P2 ∪ P3 with |Pi| = 2 and Pi ∩ Pj = ∅ if
i 6= j, and the access structure Γ = (A,B) on P determined as follows.

• A is formed by all subsets of P with at most 2 participants.

• B consists of all subsets of P with at least 4 participants except P1 ∪ P2, P2 ∪ P3 and
P3 ∪ P1.

The Vamos matroid V has ground set P ∪P0 with |P0| = 2 and its rank function r is determined
by r(X) = |X| if |X| ≤ 3 and r(X) = 4 if |X| ≥ 4 except for r(P0 ∪ P1) = r(P0 ∪ P2) =
r(P1 ∪ P2) = r(P1 ∪ P3) = r(P2 ∪ P3) = 3. Clearly, the access structure Γ is the generalized
matroid port ΓP0

(V). The quasi-matroid V|P0 = (P∪{p0}, f) satisfies that f({p0}) = f(Pi) = 2,
and f(Pi ∪ Pj) = f({p0} ∪ Pj) = 3 except for r({p0} ∪ P3) = 4, and f(P1 ∪ P2 ∪ P3) = 4. By
using information inequalities, it can be proved that such a polymatroid is not the multiple of
any entropic polymatroid [23]. Therefore, the quasi-matroid V|P0 is not a Σ-polymatroid for
any secret sharing scheme Σ. By Theorem 7.1 and Proposition 7.9, this implies that there does
not exist any secret sharing scheme Σ with access structure Γ and secrecy and co-secrecy equal
to the inverse of the information rate.
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We present next several examples of linear non-perfect secret sharing schemes, that is,
schemes defined from linear collections of random variables. For a finite field K, consider a
family (Vi)i∈Q of vector subspaces of Kk and the K-linear polymatroid S = (Q, f) determined
by f(X) = dim

∑
i∈X Vi. For every i ∈ Q, take ki = dimVi and consider a k × ki matrix Mi

whose columns are a basis of Vi. By choosing uniformly at random a (row) vector x ∈ K
d, one

obtains a secret value s0 = xMp0 and shares si = xMi for i ∈ P . Clearly, Γp0(S) is the access
structure of this linear secret sharing scheme.

Example 8.2. We present a secret sharing scheme Σ such that its access structure Γ is not
a generalized matroid port. Even though the information rate of Σ is equal to the gap of Γ,
the scheme is not optimal because the length of some shares can be improved. This example
provides and argument against defining ideal non-perfect secret sharing scheme as the ones with
information rate equal to the gap of the access structure. Consider a set P = P1 ∩ P2 with
P1 ∩ P2 = ∅ and the access structure Γ = (A,B) defined by

• A ∈ A if and only if |A ∩ Pi| ≤ 1 for i = 1, 2,

• B ∈ B if and only if |B ∩ P1| ≥ 2 or |B ∩ P2| ≥ 3.

Since g(Γ) = 1 and Γ is not perfect, this access structure is not a generalized matroid port by
Corollary 6.3. Consider a finite field K with |K| ≥ 2|P |+1 and the following subspaces (Vi)i∈Q
of K7.

• Vp0 = 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0)〉,

• Vi = 〈(1, xi, 0, 0, 0, 0, 0), (0, 0, 0, 1, yi , 0, 0)〉 if i ∈ P1,

• Vj = 〈(1, 0, zj , 0, 0, 0, 0), (0, 0, 0, 1, 0, tj , t
2

j )〉 if j ∈ P2,

where all values xi, yi, zj , tj are different and different from 0. Let S = (Q, f) be the K-linear
polymatroid defined by this collection of vector subspaces. It is not difficult to check that
Γ = Γp0(S). Moreover, these vector subspaces define a linear secret sharing scheme Σ with
σ(Σ) = g(Γ) = 1. Nevertheless, since Γ is not a generalized matroid port, no Σ-polymatroid is a
quasi-matroid. This can be proved as well by checking the values of the secrecy and co-secrecy
of Σ. A set C = {i, j} ⊆ P2 with i 6= j is minimally non-forbidden. Observe that

f({p0})− f({p0}|C) = dim(Vp0 ∩ (Vi + Vj)) = 1,

and hence α(Σ) = 1/2 < 1/ρ(Σ). One can check similarly that β(Σ) = 1/2. Moreover, we
present next another linear secret sharing scheme for Γ that improves Σ because some the
shares have shorter length. Indeed, consider the following vector subspaces (Wi)i∈Q of K5.

• Wp0 = 〈(1, 0, 0, 0, 0), (1, 1, 1, 0, 0)〉,

• Wi = 〈(1, 0, 0, 0, xi), (1, 1, 1, yi, 0)〉 if i ∈ P1,

• Wj = 〈(1, zj , z
2

j , 0, 0)〉 if j ∈ P2,

where all values xi, yi, zj are different and different from 0 and zj 6= 1. These subspaces define
a linear secret sharing scheme for Γ in which the length of the shares of the participants in P2

is half the length of the secret.

Example 8.3. If dimVi = 1 for every i ∈ P , then the linear polymatroid S = (Q, f) defined
by the collection (Vi)i∈Q is a quasi-matroid. Consider P = P1 ∪ P2 with P1 ∩ P2 = ∅ and the
subspaces of K4
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• Vp0 = 〈(1, 1, 1, 0), (1, a, a2 , 0)〉,

• Vi = 〈(1, xi, x
2

i , 0)〉 if i ∈ P1,

• Vj = 〈(1, 0, 0, yj)〉 if j ∈ P2,

where a, xi, yj are different elements inK−{0, 1}. Then the access structure Γ = Γp0(S) = (A,B)
is given by

• A ∈ A if and only if A ⊆ P2 or |A ∩ Pi| ≤ 1 for i = 1, 2.

• B ∈ B if and only if |A ∩ P1| ≥ 3, or |A ∩ Pi| ≥ 2 for i = 1, 2.

The information rate of the secret sharing scheme defined by this collection is equal to 2, and
hence it coincides with the gap of the access structure. Since Γ is gap-maximal, by Proposi-
tion 7.10 every secret sharing scheme Σ for Γ with ρ(Σ) = g(Γ) = 2 admits a quasi-matroid
among its associated polymatroids.

Example 8.4. We present next a quasi-matroid S = (Q, f) such that there exists a secret
sharing scheme Σ on P associated to S but the generalized matroid port Γp0(S) is not gap-
maximal. As before, take a partition P = P1 ∪ P2 of the set of participants. Consider quasi-
matroid S = (Q, f) defined by the following collection (Vi)i∈Q of vector subspaces of K3.

• Vp0 = 〈(0, 1, 0), (0, 0, 1)〉,

• Vi = 〈(1, xi, 0)〉 if i ∈ P1,

• Vj = 〈(1, 0, yj)〉 if j ∈ P2,

where xi, yj are different nonzero elements in K. Then the generalized matroid port Γ =
Γp0(Z) = (A,B) is given by

• A ∈ A if and only if |A| ≤ 1,

• A ∈ B if and only if |A| ≥ 3 and |A ∩ Pi| ≥ 1 for some i = i, 2.

Nevertheless, Γ is not gap-maximal. Indeed, let Γ′ be the access structures whose forbidden sets
and qualified sets are, respectively, those with at most 1 participant and those with at least 3
participants. Clearly, Γ � Γ′ and g(Γ) = g(Γ′) = 2.
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codes, matroids and secure multi-party computation from linear secret sharing schemes.
IEEE Trans. Inform. Theory 54 (2008) 2644–2657.

[10] L. Csirmaz. The size of a share must be large. J. Cryptology, 10 (1997) 223–231.
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[13] O. Farràs, C. Padró, C. Xing, A. Yang. Natural Generalizations of Threshold Secret Shar-
ing. Advances in Cryptology, Asiacrypt 2011, Lecture Notes in Comput. Sci. 7073 (2011)
610–627.

[14] S. Fujishige. Polymatroidal Dependence Structure of a Set of Random Variables. Informa-

tion and Control 39 (1978) 55–72.

[15] E.D. Karnin, J.W. Greene, and M.E. Hellman, On secret sharing systems, IEEE Trans.

Inform. Theory 29 (1983), 35–41.

[16] K. Kurosawa, K. Okada, K. Sakano, W. Ogata, S. Tsujii. Nonperfect Secret Sharing
Schemes and Matroids. Advances in Cryptology, EUROCRYPT 1993, Lecture Notes in

Comput. Sci. 765 (1994) 126–141

[17] A. Lehman. A solution of the Shannon switching game. J. Soc. Indust. Appl. Math. 12

(1964) 687–725.

[18] A. Lehman. Matroids and Ports. Notices Amer. Math. Soc. 12 (1976) 356–360.
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