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Abstract. We describe GINGER, a built system for un-
conditional, general-purpose, and nearly practical verifi-
cation of outsourced computation. GINGER is based on
PEPPER, which uses the PCP theorem and cryptographic
techniques to implement an efficient argument system (a
kind of interactive protocol). GINGER slashes the query
size and costs via theoretical refinements that are of in-
dependent interest; broadens the computational model
to include (primitive) floating-point fractions, inequality
comparisons, logical operations, and conditional control
flow; and includes a parallel GPU-based implementation
that dramatically reduces latency.

1 Introduction
We are motivated by outsourced computing: cloud com-
puting (in which clients outsource computations to re-
mote computers), peer-to-peer computing (in which
peers outsource storage and computation to each other),
volunteer computing (in which projects outsource com-
putations to volunteers’ desktops), etc.

Our goal is to build a system that lets a client outsource
computation verifiably. The client should be able to send
a description of a computation and the input to a server,
and receive back the result together with some auxiliary
information that lets the client verify that the result is cor-
rect. For this to be sensible, the verification must be faster
than executing the computation locally.

Ideally, we would like such a system to be uncondi-
tional, general-purpose, and practical. That is, we don’t
want to make assumptions about the server (trusted hard-
ware, independent failures of replicas, etc.), we want a
setup that works for a broad range of computations, and
we want the system to be usable by real people for real
computations in the near future.

In principle, the first two properties above have
been achievable for almost thirty years, using powerful
tools from complexity theory and cryptography. Interac-
tive proofs (IPs) and probabilistically checkable proofs
(PCPs) show how one entity (usually called the veri-
fier) can be convinced by another (usually called the
prover) of a given mathematical assertion—without the
verifier having to fully inspect a proof [5, 6, 19, 32]. In
our context, the mathematical assertion is that a given
computation was carried out correctly; though the proof
is as long as the computation, the theory implies—
surprisingly—that the verifier need only inspect the

1This paper is an extended version of a previous publication [46]. This
version includes four Appendices (B–E) that were elided for space.

proof in a small number of randomly-chosen locations
or query the prover a relatively small number of times.

The rub has been the third property: practicality. These
protocols have required expensive encoding of compu-
tations, monstrously large proofs, high error bounds,
prohibitive overhead for the prover, and intricate con-
structions that make the asymptotically efficient schemes
challenging to implement correctly.

However, a line of recent work indicates that ap-
proaches based on IPs and PCPs are closer to practicality
than previously thought [21, 44, 45, 49]. More generally,
there has been a groundswell of work that aims for poten-
tially practical verifiable outsourced computation, using
theoretical tools [11, 12, 20, 24, 25].

Nonetheless, these works have notable limitations.
Only a handful [21, 44, 45, 49] have produced work-
ing implementations, all of which impose high costs on
the verifier and prover. Moreover, their model of com-
putation is arithmetic circuits over finite fields, which
represent non-integers awkwardly, control flow ineffi-
ciently, and comparisons and logical operations only by
degenerating to verbose Boolean circuits. Arithmetic cir-
cuits are well-suited to integer computations and numeri-
cal straight line computations (e.g., multiplying matrices
and computing second moments), but the intersection of
these two domains leaves few realistic applications.

This paper describes a built system, called GINGER,
that addresses these problems, thereby taking general-
purpose proof-based verified computation several steps
closer to practicality. GINGER is an efficient argument
system [37, 38]: an interactive proof system that assumes
the prover to be computationally bounded. Its starting
point is the PEPPER protocol [45] (which is summarized
in Section 2). GINGER’s contributions are as follows.

(1) GINGER demonstrates the strength of linear com-
mitment (§3). This paper proves that PEPPER’s com-
mitment primitive [45], which generalizes the commit-
ment primitive of Ishai et al. [35], is surprisingly pow-
erful: it not only commits an untrusted entity to a func-
tion and extracts evaluations of that function (as previ-
ously shown) but also ensures that the function is linear.
(The primitive embeds a strong linearity test.) This re-
sult sharply reduces the required number of queries (from
500 to 3) and a key error bound, and hence overhead.

(2) GINGER supports a general-purpose programming
model (§4). Although the model does not handle looping
concisely, it includes primitive floating-point quantities,
inequality comparisons, logical expressions, and condi-
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tional control flow. Moreover, we have a compiler (de-
rived from Fairplay [39]) that transforms computations
expressed in a general-purpose language to an executable
verifier and prover. The core technical challenge is rep-
resenting computations as additions and multiplications
over a finite field (as required by the verification proto-
col); for instance, “not equal” and “if/else” do not obvi-
ously map to this formalism, inequalities are problematic
because finite fields are not ordered, and fractions com-
pound the difficulties. GINGER overcomes these chal-
lenges with techniques that, while not deep, require care
and detail. These techniques should apply to other proto-
cols that use arithmetic constraints or circuits.

(3) GINGER exploits parallelism to slash latency (§5).
The prover can be distributed across machines, and some
of its functions are implemented in graphics hardware
(GPUs). Moreover, GINGER’s verifier can use a GPU
for its cryptographic operations. Allowing the verifier to
have a GPU models the present (many computers have
GPUs) and a plausible future in which specialized hard-
ware for cryptographic operations is common.2

We have implemented and evaluated GINGER (§6).
Compared to PEPPER [45], its base, GINGER lowers net-
work costs by 1–2 orders of magnitude (to hundreds
of KB or less in our experiments). The verifier’s costs
drop by multiples and possibly orders of magnitude, de-
pending on the cost of encryption; if we model encryp-
tion as free, the verifier can gain from outsourcing when
batch-verifying as few as 20 computations (down from
3900 in PEPPER). The prover’s CPU costs drop by 10–
15%, which is not much, but our parallel implementa-
tion reduces latency with near-linear speedup. Comput-
ing with rational numbers in GINGER is roughly three
times more expensive than computing with integers, and
arithmetic constraints permit far smaller representations
than a naive use of Boolean or arithmetic circuits.

Despite all of the above, GINGER is not quite ready
for the big leagues. However, PEPPER and GINGER have
made argument systems far more practical (in some cases
improving costs by 23 orders of magnitude over a naive
implementation). We are thus optimistic about ultimately
achieving true practicality.

2 Problem statement and background
Problem statement. A computer V , known as the veri-
fier, has a computation Ψ and some desired input x that
it wants a computer P, known as the prover, to perform.
P returns y, the purported output of the computation, and
then V and P conduct an efficient interaction. This in-
teraction should be cheaper for V than locally comput-
ing Ψ(x). Furthermore, if P returned the correct answer,
2One may wonder why, if the verifier has this hardware, it needs to
outsource. GPUs are amenable only to certain computations (which
include the cryptographic underpinnings of GINGER).

it should be able to convince V of that fact; otherwise,
V should be able to reject the answer as incorrect, with
high probability. (The converse will not hold: rejection
does not imply that P returned incorrect output, only that
it misbehaved somehow.) Our goal is that this guarantee
be unconditional: it should hold regardless of whether
P obeys the protocol (given standard cryptographic as-
sumptions about P’s computational power). If P deviates
from the protocol at any point (computing incorrectly,
proving incorrectly, etc.), we call it malicious.

2.1 Tools

In principle, we can meet our goal using PCPs. The PCP
theorem [5, 6] says that if a set of constraints is satisfi-
able (see below), there exists a probabilistically check-
able proof (a PCP) and a verification procedure that ac-
cepts the proof after querying it in only a small number
of locations. On the other hand, if the constraints cannot
be satisfied, then the verification procedure rejects any
purported proof, with probability at least 1− ε.

To apply the theorem, we represent the computation
as a set of quadratic constraints over a finite field. A
quadratic constraint is an equation of degree 2 that uses
additions and multiplications (e.g., A ·Z1 +Z2−Z3 ·Z4 =
0). A set of constraints is satisfiable if the variables can
be set to make all of the equations hold simultaneously;
such an assignment is called a satisfying assignment. In
our context, a set of constraints C will have a designated
input variable X and output variable Y (this generalizes
to multiple inputs and outputs), and C(X = x, Y = y)
denotes C with variable X bound to x and Y bound to y.

We say that a set of constraints C is equivalent to a
desired computation Ψ if: for all x, y, C(X = x, Y = y) is
satisfiable if and only if y = Ψ(x). As a simple example,
increment-by-1 is equivalent to the constraint set {Y =
Z + 1, Z = X}. (For convenience, we will sometimes
refer to a given input x and purported output y implicitly
in statements such as, “If constraints C are satisfiable,
then Ψ executed correctly”.) To verify a computation y =
Ψ(x), one could in principle apply the PCP theorem to
the constraints C(X = x, Y = y).

Unfortunately, PCPs are too large to be transferred.
However, if we assume a computational bound on the
prover P, then efficient arguments apply [37, 38]: V is-
sues its PCP queries to P (so V need not receive the entire
PCP). For this to work, P must commit to the PCP be-
fore seeing V’s queries, thereby simulating a fixed proof
whose contents are independent of the queries. V thus ex-
tracts a cryptographic commitment to the PCP (e.g., with
a collision-resistant hash tree [40]) and verifies that P’s
query responses are consistent with the commitment.

This approach can be taken a step further: not even
P has to materialize the entire PCP. As Ishai et al. [35]
observe, in some PCP constructions, which they call lin-
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ear PCPs, the PCP itself is a linear function: the verifier
submits queries to the function, and the function’s out-
puts serve as the PCP responses. Ishai et al. thus design
a linear commitment primitive in which P can commit to
a linear function (the PCP) and V can submit function
inputs (the PCP queries) to P, getting back outputs (the
PCP responses) as if P itself were a fixed function.

PEPPER [45] refines and implements the outline
above. In the rest of the section, we summarize the lin-
ear PCPs that PEPPER incorporates, give an overview of
PEPPER, and provide formal definitions. Additional de-
tails are in Appendix A.1.

2.2 Linear PCPs, applied to verifying computations

Imagine that V has a desired computation Ψ and desired
input x, and somehow obtains purported output y. To use
PCP machinery to check whether y = Ψ(x), V compiles
Ψ into equivalent constraints C, and then asks whether
C(X = x, Y = y) is satisfiable, by consulting an oracle
π: a fixed function (that depends on C, x, y) that V can
query. A correct oracle π is the proof (or PCP); V should
accept a correct oracle and reject an incorrect one.

A correct oracle π has three properties. First, π is a
linear function, meaning that π(a)+π(b) = π(a+b) for
all a, b in the domain of π. A linear function π : Fn → F
is determined by a vector w; i.e., π(a) = 〈a, w〉 for all
a ∈ Fn. Here, F is a finite field, and 〈a, b〉 denotes the
inner (dot) product of two vectors a and b. The parameter
n is the size of w; in general, n is quadratic in the number
of variables in C [5], but we can sometimes tailor the
encoding of w to make n smaller [45].

Second, one set of the entries in w must be a redundant
encoding of the other entries. Third, w encodes the actual
satisfying assignment to C(X = x, Y = y).

A surprising aspect of PCPs is that each of these prop-
erties can be tested by making a small number of queries
to π; if π is constructed incorrectly, the probability that
the tests pass is upper-bounded by ε > 0. A key test for
us—we return to it in Section 3—is the linearity test [16]:
V randomly selects q1 and q2 from Fn and checks if
π(q1) + π(q2) = π(q1 + q2). The other two PCP tests
are the quadratic correction test and the circuit test.

The completeness and soundness properties of linear
PCPs are defined in Section 2.4. A detailed explanation
of why the mechanics above satisfy those properties is
outside our scope but can be found in [5, 13, 35, 45].

2.3 Our base: PEPPER

We now walk through the three phases of PEPPER [45],
which is depicted in Figure 1. The approach is to com-
pose a linear PCP and a linear commitment primitive that
forces the prover to act like an oracle.

Specify and compute. V transforms its desired compu-
tation, Ψ, into a set of equivalent constraints, C. V sends

  x

y
Enc(r)

y ←Ψ(x) 

q1, q2, ..., qµ, t

prover (P) 

Enc(π(r))

consistency test

π(q1), …, π(qµ), π(t)

linear PCP verifier

linearity test

π(q1), …, π(qµ)

q1, q2, ..., qµ

r

π(r)

t

π(t)

quad. test
circuit test

verifier (V) 

π

Figure 1—The PEPPER protocol [45], which is GINGER’s base.
Though not depicted, many of the protocol steps happen in par-
allel, to facilitate batching.

Ψ (or C) to P, or P may come with them installed.
To gain from outsourcing, V must amortize the costs of

compiling Ψ to C and generating queries. Thus, V verifies
computations in batches [45] (although they need not be
executed in a batch). A batch (of size β) refers to a set of
computations in which Ψ is the same but the inputs are
different; a member of the batch is called an instance.
In the protocol, V has inputs x1, . . . , xβ that it sends to
P (not necessarily all at once), which returns y1, . . . , yβ ;
for each instance i, yi is supposed to equal Ψ(xi).

For each instance i, an honest P stores a proof vector
wi that encodes a satisfying assignment to C(X = xi, Y =
yi); wi is constructed as described in Section 2.2. Being a
vector, wi can also be regarded as a linear function πi—or
an oracle of the kind described above.

Extract commitment. V cannot inspect {πi} directly
(they are functions; written out, they would have an en-
try for each value in a huge domain). Instead, V extracts a
commitment to each πi. To do so, V randomly generates a
commitment vector r ∈ Fn. V then homomorphically en-
crypts each entry of r under a public key pk to get a vector
Enc(pk, r) = (Enc(pk, r1), Enc(pk, r2), . . . , Enc(pk, rn)).
We emphasize that Enc(·) need not be fully homomor-
phic encryption [27] (which remains unfeasibly expen-
sive); PEPPER uses ElGamal [23, 45].

V sends (Enc(pk, r), pk) to P. If P is honest, then πi is
linear, so P can use the homomorphism of Enc(·) to com-
pute Enc(pk,πi(r)) from Enc(pk, r), without learning
r. P replies with (Enc(pk,π1(r)), . . . , Enc(pk,πβ(r))),
which is P’s commitment to {πi}. V then decrypts to get
(π1(r), . . . ,πβ(r)).

Verify. V now generates PCP queries q1, . . . , qµ ∈ Fn,
as described in Section 2.2. V sends these queries to P,
along with a consistency query t = r+

∑µ
j=1 αj ·qj, where

each αj is randomly chosen from F (here, · represents
scalar multiplication).

For ease of exposition, we focus on a single proof πi;
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however, the following steps happen β times in parallel,
using the same queries for each of the β instances. If P
is honest, it returns (πi(q1), . . . ,πi(qµ),πi(t)). V checks
that πi(t) = πi(r) +

∑µ
j=1 αj · πi(qj); this is known as

the consistency test. If P is honest, then this test passes,
by the linearity of π. Conversely, if this test passes then,
regardless of P’s honesty, V can treat P’s responses as the
output of an oracle (this is shown in previous work [35,
45]). Thus, V can use {πi(q1), . . . ,πi(qµ)} in the PCP
tests described in Section 2.2.

2.4 PCPs and arguments defined more formally

The definitions of PCPs [5, 6] and argument systems [19,
32] below are borrowed from [35, 45].

A PCP protocol with soundness error ε includes a
probabilistic polynomial time verifier V that has access to
a constraint set C. V makes a constant number of queries
to an oracle π. This process has the following properties:

• PCP Completeness. If C is satisfiable, then there ex-
ists a linear function π such that, after V queries π,
Pr{V accepts C as satisfiable} = 1, where the proba-
bility is over V’s random choices.

• PCP Soundness. If C is not satisfiable, then
Pr{V accepts C as satisfiable} < ε for all purported
proof functions π̃.

An argument (P, V) with soundness error ε comprises P
and V , two probabilistic polynomial time (PPT) entities
that take a set of constraints C as input and provide:

• Argument Completeness. If C is satisfiable and P has
access to a satisfying assignment z, then the interac-
tion of V(C) and P(C, z) makes V(C) accept C’s satis-
fiability, regardless of V’s random choices.

• Argument Soundness. If C is not satisfiable, then for
every malicious PPT P∗, the probability over V’s ran-
dom choices that the interaction of V(C) and P∗(C)
makes V(C) accept C as satisfiable is less than ε.

3 Protocol refinements in GINGER

In principle, PEPPER solves the problem of verified com-
putation. The reality is less attractive: PEPPER’s com-
putational burden is high, its network costs are absurd,
and its applicability is limited (to straight line numeri-
cal computations). Our system, GINGER, mitigates these
issues: it lowers costs through protocol refinements (pre-
sented in this section), and it applies to a much wider
class of computations (as we discuss in Section 4).

GINGER’s refinements eliminate many queries, by re-
lying on a new analysis of the base commitment primi-
tive. To motivate this analysis, we note that there is some-
thing seemingly redundant in the base machinery (see
Figure 1): why does the linear PCP require a linearity

test (§2.2) if an honest prover depends on the linear-
ity of its function π to pass the linear commitment pro-
tocol’s consistency test (§2.3)? Can we remove one of
these tests, or combine them somehow? The reason that
PEPPER appears to need both tests is that their guarantees
are (so far) subtly different:

• Consistency test (§2.3): First, an honest prover is
guaranteed to pass this test. Second, if the prover—
even a cheating one—passes this test, then it is very
likely bound to some function (as shown in [35, 45]).

• Linearity test (§2.2): This test is needed in case the
prover cheats—it establishes that π is linear (as re-
quired by the rest of the PCP protocol). More accu-
rately, if π is far from being linear, the test is some-
what likely to catch that case.

Yet, it seems unsatisfying that both tests are required
when composing linear commitment and the linear PCP:
can a prover really pass the consistency test systemati-
cally with a function that the linearity test would reject?
In fact, our intuitive dissatisfaction is well-founded: this
paper proves that the commitment primitive (which in-
cludes the consistency test) is far stronger than the linear-
ity test. Put simply, even a cheating prover is very likely
bound to a function that is linear, or almost so.

Practically, this result saves query generation and re-
sponse costs. For one thing, we can eliminate linearity
tests from the protocol. More significantly, we eliminate
amplification: PEPPER needed to repeat the protocol to
turn the linearity test’s guarantee of “somewhat likely”
into “very likely”. In contrast, our result already gives a
guarantee of “very likely”, so no repetition is required.

More broadly, this result means that the commit-
ment primitive is considerably more powerful than
was realized—it efficiently commits an untrusted en-
tity to a linear function and extracts evaluations of that
function—and may apply elsewhere.

Details. The protocol refinements are rooted in a
strengthened soundness analysis. Soundness error (for
example, ε in Section 2.4) refers to the probability that
a protocol or test succeeds when the condition that it is
verifying or testing is actually false. The ideal is to have
a small upper-bound on soundness error.

The soundness of the PCP protocol in Section 2.2 and
Appendix A.1 is connected to the soundness of linearity
testing [16]. Specifically, the base analysis proves that if
the prover returns y 6= Ψ(x), then the prover survives all
tests (linearity, quadratic correction, circuit) with prob-
ability less than 7/9 (requiring ρ runs to make (7/9)ρ

small). The 7/9 derives from a result [8] that if the proof
oracle is not “somewhat close” to linear, then the linear-
ity test passes with probability < 7/9 (though fascinat-
ing, this result is inconveniently weak in our context).
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PEPPER [45] GINGER

PCP encoding size (n) s2 + s, in general s2 + s, in general

V’s per-instance CPU costs
Issue commit queries (e + 2c) · n/β (e + 2c) · n/β
Process commit responses d d
Issue PCP queries ρ·(χ·f +`′ ·f +5c)·n/β (χ · f +` · f +2c) ·n/β
Process PCP responses ρ · (2`′ + |x|+ |y|) · f (2`+ |x|+ |y|) · f

P’s per-instance CPU costs
Issue commit responses h · n h · n
Issue PCP responses (ρ · `′ + 1) · f · n (`+ 1) · f · n

Network cost (per instance) ((ρ·`′+1)·|p|+|ξ|)·n/β ((`+1)·|p|+|ξ|)·n/β

PCP soundness error (7/9)ρ = 2.3 · 10−8 κ = 2.6 · 10−6

Overall soundness error 2.4 · 10−8 4.5 · 10−6

|x|, |y|: # of elements in input, output
n: # of components in linear function π (§2.2)
s: # of variables in constraint set (§2.1)
χ: # of constraints in constraint set (§2.1)
` = 3: # of high-order PCP queries in

GINGER (§A.2, §A.3)
`′ = 7: # of high-order PCP queries in

PEPPER (§A.1)
ρ = 70: # of PCP reps. in base scheme (§A.1)
β: batch size (# of instances) (§2.3)
e: cost of encrypting an element in F
d: cost of decrypting an encrypted element
f : cost of multiplying in F
h: cost of ciphertext add plus multiply
c: cost to generate 192-bit pseudorandom #
|p|: length of an element in F
|ξ|: length of an encrypted element in F

Figure 2—High-order costs and error in GINGER, compared to its base (PEPPER [45]), for a computation represented as χ constraints
over s variables (§2.1). The soundness error depends on field size (Appendix A.2); the table assumes |F| = 2128. Many of the
cryptographic costs enter through the commitment protocol (see Section 2.3 or Figure 12); Section 6 quantifies the parameters. The
“PCP” rows include the consistency query and check. The network costs slightly underestimate by not including query responses.

Our analysis, detailed in Appendix A.2, establishes
that the commitment protocol binds the prover to a func-
tion that is extremely close to linear (otherwise, the
prover could break the semantic security of the homo-
morphic encryption used by GINGER and PEPPER). This
results in the PCP soundness error improving from 7/9
to κ, where κ ≈ 4 6

√
1/|F|; this analysis does not depend

on linearity tests, so they can be dropped.
The soundness error is somewhat low by crypto-

graphic standards, but in practice, a failure rate (when
the prover is malicious) of 1 in 200,000 is reasonable.

A further optimization. GINGER reuses some queries
across the quadratic correction and circuit tests; this re-
finement is detailed and justified in Appendix A.3.

Savings. Most significantly, V can take advantage of the
lower soundness error to run ρ = 1 instead of ρ = 70
repetitions of the PCP protocol. Also, per repetition,
V’s work to generate pseudorandom queries decreases
by 3/5 (2/5 coming from the elimination of linearity
tests and 1/5 from reusing queries). These gains are de-
picted in Figure 2, most notably in the reduction from
ρ · `′ ≈ 500 to ` = 3 total PCP queries.

The total savings for the verifier depend on the relative
cost of pseudorandom number generation (encapsulated
by c) and encryption (encapsulated by e). These savings
show up in β∗, the minimum batch size (§2.3) at which
V gains from outsourcing. As shown in Section 6.1, the
reduction in β∗ can be several orders of magnitude (when
e is small). Finally, taking |p| = 128 bits and |ξ| = 2 ·
1024 bits, the savings in network costs are 1–2 orders of
magnitude (holding β constant).

4 Broadening the space of computations
GINGER extends to computations over floating-point
fractional quantities and to a restricted general-purpose
programming model that includes inequality tests, log-
ical expressions, conditional branching, etc. To do so,
GINGER maps computations to the constraint-over-finite-
field formalism (§2.1), and thus the core protocol in Sec-
tion 3 applies. In fact, our techniques3 apply to the many
protocols that use the constraint formalism or arithmetic
circuits. Moreover, we have implemented a compiler (de-
rived from Fairplay’s [39]) that transforms high-level
computations first into constraints and then into verifier
and prover executables.

The challenges of representing computations as con-
straints over finite fields include: the “true answer” to the
computation may live outside of the field; sign and or-
dering in finite fields interact in an unintuitive fashion;
and constraints are simply equations, so it is not obvi-
ous how to represent comparisons, logical expressions,
and control flow. To explain GINGER’s solutions, we first
present an abstract framework that illustrates how GIN-
GER broadens the set of computations soundly and how
one can apply the approach to further computations.

Framework to map computations to constraints. To
map a computation Ψ over some domain D (such as the
integers, Z, or the rationals, Q) to equivalent constraints
over a finite field, the programmer or compiler performs

3We suspect that many of the individual techniques are known. How-
ever, when the techniques combine, the material is surprisingly hard
to get right, so we will delve into (excruciating) detail, consistent with
our focus on built systems.
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three steps, as illustrated and described below:

Ψ over D
(C1)−−−−→ Ψ over U

(C2)−−−−→ θ(Ψ) over Fy(C3)

C over F

C1 Bound the computation. Define a set U ⊂ D and re-
strict the input to Ψ such that the output and interme-
diate values stay in U.

C2 Represent the computation faithfully in a suitable fi-
nite field. Choose a finite field, F, and a map θ : U →
F such that computing θ(Ψ) over θ(U) ⊂ F is iso-
morphic to computing Ψ over U. (By “θ(Ψ)”, we
mean Ψ with all inputs and literals mapped by θ.)

C3 Transform the finite field version of the computation
into constraints. Write a set of constraints over F that
are equivalent (in the sense of Section 2.1) to θ(Ψ).

4.1 Signed integers and floating-point rationals

We now instantiate C1 and C2 for integer and rational
number computations; the next section addresses C3.

Consider m × m matrix multiplication over N-bit
signed integers. For step C1, each term in the output,∑m

k=1 AikBkj, has m additions of 2N-bit subterms so is
contained in [−m · 22N−1, m · 22N−1); this is our set U.

For step C2, take F = Z/p (the integers mod a prime
p, to be chosen shortly) and define θ : U → Z/p as
θ(u) = u mod p. Observe that θ maps negative integers
to { p+1

2 , p+3
2 , . . . , p − 1}, analogous to how processors

represent negative numbers with a 1 in the most signifi-
cant bit (this technique is standard [17, 50]). Of course,
addition and multiplication in Z/p do not “know” when
their operands are negative. Nevertheless, the computa-
tion over Z/p is isomorphic to the computation over U,
provided that |Z/p| > |U| (as shown in Appendix B).
Thus, for the given U, we require p > m · 22N . Note that
a larger p brings larger costs (see Figure 2), so there is a
three-way trade-off among p, m, N.

We now turn to rational numbers. For step C1, we re-
strict the inputs as follows: when written in lowest terms,
their numerators are (Na + 1)-bit signed integers, and
their denominators are in {1, 2, 22, 23, . . . , 2Nb}. Note
that such numbers are (primitive) floating-point num-
bers: they can be represented as a · 2−q, so the decimal
point floats based on q. Now, for m×m matrix multiplica-
tion, the computation does not “leave” U = {a/b : |a| <
2N′a , b ∈ {1, 2, 22, 23, . . . , 2N′b}}, for N′a = 2Na + 2Nb +
log2 m and N′b = 2Nb (shown in Appendix B).

For step C2, we take F = Q/p, the quotient field of
Z/p. Take θ( a

b ) = (a mod p, b mod p). For any U ⊂ Q,
there is a choice of p such that the mapped computation
over Q/p is isomorphic to the original computation over

Q (shown in Appendix B). For our U above, p > (m +
1)2 · 24(Na+Nb) suffices.

Limitations and costs. To understand the limitations
of GINGER’s floating-point representation, consider the
number a · 2−q, where |a| < 2Na and |q| ≤ Nq.
To represent this number, the IEEE standard requires
roughly Na + log Nq bits [29] while GINGER requires
2 · (max(Na, Nq) + 1) bits (shown in Appendix B). As
a result, GINGER’s range is vastly more limited: with 64
bits, the IEEE standard can represent numbers on the or-
der of 21023 and 2−1022 (with Na = 53 bits of precision)
while 64 bits buys GINGER only numbers on the order of
232 and 2−32 (with Na = 32). Moreover, unlike the IEEE
standard, GINGER does not support a division operation
or rounding.

However, comparing GINGER’s floating-point repre-
sentation to its integer representation, the extra costs are
not terrible. First, the prover and verifier take an ex-
tra pass over the input and output (for implementation
reasons; see Appendix B for details). Second, a larger
prime p is required. For example, m × m matrix mul-
tiplication with 32-bit integer inputs requires p to have
at least log2 m + 64 bits; if the inputs are rationals with
Na = Nq = 32, then p requires 2 log2(m + 1) + 256 bits.
Roughly speaking, the end-to-end costs are 3× those of
the integers case (see Section 6.2). Of course, the ac-
tual numbers depend on the computation. (Our compiler
computes suitable bounds with static analysis.)

4.2 General-purpose program constructs

Case study: branch on order comparison. We now il-
lustrate C3 with a case study of a computation, Ψ, that
includes a less-than test and a conditional branch; pseu-
docode for Ψ is in Figure 3. For clarity, we will restrict
Ψ to signed integers; handling rational numbers requires
additional mechanisms (see Appendix C).

How can we represent the test x1 < x2 using con-
straint equations? The solution is to use special range
constraints that decompose a number into its bits to test
whether it is in a given range; in this case, C<, depicted
in Figure 3, tests whether e = θ(x1) − θ(x2) is in the
“negative” range of Z/p (see Section 4.1). Now, under
the input restriction x1 − x2 ∈ U, C< is satisfiable if and
only if x1 < x2 (shown in Appendix C). Analogously, we
can construct C>= that is satisfiable if and only if x1 ≥ x2.

Finally, we introduce a 0/1 variable M that encodes
a choice of branch, and then arrange for M to “pull in”
the constraints of that branch and “exclude” those of the
other. (Note that the prover need not execute the untaken
branch.) Figure 3 depicts the complete set of constraints,
CΨ; these constraints are satisfiable if and only if the
prover correctly computes Ψ (shown in Appendix C).
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Ψ :

if (X1 < X2)

Y = 3

else

Y = 4

C< =



B0(1− B0) = 0,
B1(2− B1) = 0,
...

...
BN−2(2N−2 − BN−2) = 0,
θ(X1)− θ(X2)− (p− 2N−1)−

∑N−2
i=0 Bi = 0


CΨ =


M{C<},
M(Y − 3) = 0,
(1−M){C>=},
(1−M)(Y − 4) = 0



Figure 3—Pseudocode for our case study of Ψ, and corresponding constraints CΨ. Ψ’s inputs are signed integers x1, x2; per steps
C1 and C2 (§4.1), we assume x1 − x2 ∈ U ⊂ [−2N−1, 2N−1), where p > 2N . The constraints C< test x1 < x2 by testing whether the
bits of θ(x1)− θ(x2) place it in [p− 2N−1, p). M{C} means multiplying all constraints in C by M and then reducing to degree-2.

Logical expressions and conditionals. Besides order
comparisons and if-else, GINGER can represent ==, &&,
and || as constraints. An interesting case is !=: we can
represent Z1!=Z2 with {M · (Z1 − Z2)− 1 = 0} because
this constraint is satisfiable when (Z1 − Z2) has a multi-
plicative inverse and hence is not zero. These constructs
and others are detailed in Appendix D.

Limitations and costs. We compile a subset of SFDL,
the language of the Fairplay compiler [39]. Thus, our
limitations are essentially those of SFDL; notably, loop
bounds have to be known at compile time.

How efficient is our representation? The program con-
structs above mostly have concise constraint representa-
tions. Consider, for instance, comp1==comp2; the equiv-
alent constraint set C consists of the constraints that rep-
resent comp1, the constraints that represent comp2, and
an additional constraint to relate the outputs of comp1
and comp2. Thus, C is the same size as its two compo-
nents, as one would expect.

However, two classes of computations are costly. First,
inequality comparisons require variables and a con-
straint for every bit position; see Figure 3. Second, the
constraints for if-else and ||, as written, seem to be
degree-3; notice, for instance, the M{C} in Figure 3. To
be compatible with the core protocol, these constraints
must be rewritten to be degree-2 (§2.1), which carries
costs. Specifically, if C has s variables and χ constraints,
an equivalent degree-2 representation of M{C} has s +χ
variables and 2 · χ constraints (shown in Appendix D).

5 Parallelization and implementation
Many of GINGER’s remaining costs are in the crypto-
graphic operations in the commitment protocol (see Ap-
pendix A.1). To address these costs, we distribute the
prover over multiple machines, leveraging GINGER’s in-
herent parallelism. We also implement the prover and
verifier on GPUs, which raises two questions. (1) Isn’t
this just moving the problem? Yes, and this is good:
GPUs are optimized for the types of operations that bot-
tleneck GINGER. (2) Why do we assume that the verifier
has a GPU? Desktops are more likely than servers to have
GPUs, and the prevalence of GPUs is increasing. Also,
this setup models a future in which specialized hardware
for cryptographic operations is common.

Parallelization. To distribute GINGER’s prover, we run
multiple copies of it (one per host), each copy receiving
a fraction of the batch (Section 2.3). In this configura-
tion, the provers use the Open MPI [2] message-passing
library to synchronize and exchange data.

To further reduce latency, each prover offloads work
to a GPU (see also [49] for an independent study of GPU
hardware in the context of [21]). We exploit three levels
of parallelism here. First, the prover performs a cipher-
text operation for each component in the commitment
vector (§2.3); each operation is (to first approximation)
separate. Second, each operation computes two indepen-
dent modular exponentiations (the ciphertext of an ElGa-
mal encryption has two elements). Third, modular expo-
nentiation itself admits a parallel implementation (each
input is a multiprecision number encoded in multiple ma-
chine words). Thus, in our GPU implementation, a group
of CUDA [1] threads computes each exponentiation.

We also parallelize the verifier’s encryption work dur-
ing the commitment phase (§2.3), using the approach
above plus an optimization: the verifier’s exponentiations
are fixed base, letting us memoize intermediate squares.
We implement exponentiations for the prover and veri-
fier with the libgpucrypto library of SSLShader [36],
modified to implement the memoization.

Implementation details. Our compiler consists of two
stages, which a future publication will detail. The front-
end compiles a subset of Fairplay’s SFDL [39] to con-
straints; it is derived from Fairplay and is implemented
in 5294 lines of Java, starting from Fairplay’s 3886 lines
(per [51]). The back-end transforms constraints into C++
code that implements the verifier and prover and then in-
vokes gcc; this component is 1105 lines of Python code.

For efficiency, PEPPER [45] introduced specialized
PCP protocols for certain computations. For some exper-
iments we use specialized PCPs in GINGER also; in these
cases we write the prover and verifier manually, which
typically requires a few hundred lines of C++. Automat-
ing the compilation of specialized PCPs is future work.

The verifier and prover are separate processes that ex-
change data using Open MPI [2]. GINGER uses the El-
Gamal cryptosystem [23] with 1024-bit keys.
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GINGER’s protocol refinements reduce per-instance network costs by 25–30× (to hundreds of KBs for the computations
we study), prover CPU costs by about 10–14% (leaving them still high), and break-even batch size (β∗) by about 4×. §6.1

With accelerated encryption GINGER breaks even from outsourcing short computations at small batch sizes; for 400×400
matrix multiplication, the verifier gains from outsourcing at a batch size of 20 (tens of seconds of computation).

§6.1

Rational arithmetic costs roughly 3× integer arithmetic under GINGER (but much more than native floating-point). §6.2

Parallelizing results in near-linear reduction in the prover’s latency. §6.3

Figure 4—Summary of main evaluation results.

computation (Ψ) O(·) input domain (see §4.1) size of F s n default local

matrix mult. O(m3) 32-bit signed integers 128 bits 2m2 m3 m = 200 800 ms
matrix mult. (Q) O(m3) rationals (Na = 32, Nb = 32) 320 bits 2m2 m3 m = 100 5.90 ms
deg-2 poly. eval. O(m2) 32-bit signed integers 128 bits m m2 m = 100 0.40 ms
deg-3 poly. eval. O(m3) 32-bit signed integers 192 bits m m3 m = 200 160 ms
m-Hamming dist. O(m2) 32-bit unsigned 128 bits 2m2 + m 2m3 m = 100 0.90 ms
bisection method O(m2) rationals (Na = 32, Nb = 5) 320 bits 16 · (m + |C<|) 256 · (m + |C<|)2 m = 25 180 ms

Figure 5—Benchmark computations. s is the number of constraint variables; s affects n, which is the size of V’s queries and of P’s
linear function π (see Figure 2). Only high-order terms are reported for n. The latter two columns give our experimental defaults and
the cost of local computation (i.e., no outsourcing) at those defaults. In polynomial evaluation, V and P hold a polynomial; the input
is values for the m variables. The latter two computations exercise the program constructs in Section 4.2. In m-Hamming distance,
V and P hold a fixed set of strings; the input is a length m string, and the output is a vector of the Hamming distance between the
input and the set of strings. Bisection method refers to root-finding via bisection: both V and P hold a degree-2 polynomial in m
variables, the input is two m-element endpoints that bracket a root, and the output is a small interval that contains the root.

6 Experimental evaluation
Our evaluation answers the following questions:
• What is the effect of the protocol refinements (§3)?
• What are the costs of supporting rational numbers and

the additional program structures (§4)?
• What is GINGER’s speedup from parallelizing (§5)?

Figure 4 summarizes the results.
We use six benchmark computations, summarized in

Figure 5 (Appendix E has details). For bisection method
and degree-2 polynomial evaluation, V and P were pro-
duced by our compiler; for the other computations, we
use tailored encodings (see Section 5). We implemented
and analyzed other computations (e.g., edit distance and
circle packing) but found that V gained from outsourcing
only at implausibly large batch sizes.

Method and setup. We measure latency and comput-
ing cycles used by the verifier and the prover, and the
amount of data exchanged between them. We account
for the prover’s cost in per-instance terms. Because the
verifier amortizes costs over a batch (§2.3), we focus on
the break-even batch size, β∗: the batch size at which the
verifier’s CPU cost from GINGER equals the cost of com-
puting the batch locally. We measure local computation
using implementations built on the GMP library (except
for matrix multiplication over rationals, where we use na-
tive floating-point).

For each result that we report, we run at least three ex-
periments and take the averages (the standard deviations
are always within 5% of the means). We measure CPU
time using getrusage, latency using PAPI’s real time

counter [3], and network costs by recording the number
of application-level bytes transferred.

Our experiments use a cluster at the Texas Advanced
Computing Center (TACC). Each machine is configured
identically and runs Linux on an Intel Xeon processor
E5540 2.53 GHz with 48GB of RAM. Experiments with
GPUs use machines with an NVIDIA Tesla M2070. Each
GPU has 448 CUDA cores and 6GB of memory.

Validating the cost model. We will sometimes predict
β∗, V’s costs, and P’s costs by using our cost model
(Figure 2), so we now validate this model. We run mi-
crobenchmarks to quantify the model’s parameters—e is
reported in this section; Appendix E quantifies the other
parameters—and then compare the parameterized model
to GINGER’s measured performance. GINGER’s empiri-
cal results are at most 2%–15% more than are predicted
by the model. However, local computation costs about
1.2–4.0 times more than is predicted; we think that the
divergence results from adverse caching effects that in-
crease the cost of a multiplication. Thus, we expect the
verifier to break even at batch sizes that are about a factor
of 1.2–4.0 smaller than predicted by the model.

6.1 The effect of GINGER’s protocol refinements

We begin with m × m matrix multiplication (m =
100, 200) and degree-3 polynomial evaluation (m =
100, 200), and batch size of β = 5000. We report per-
instance network and CPU costs: the total network and
CPU costs over the batch, divided by β.

Figure 6 depicts network costs. For matrix multipli-
cation, these are about the same as the cost to send the
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Figure 6—Per-instance network costs of GINGER and its base
(PEPPER [45]), compared to the size of the inputs and outputs.
At this batch size (β = 5000), GINGER’s refinements reduce
per-instance network costs by a factor of 25–30 compared to
PEPPER. GINGER’s network costs here are hundreds of KB or
less. The y-axis is log-scaled.

PEPPER GINGER

local 1.1 s 1.1 s

CPU

β∗ 13000 4100
verifier aggregate 3.9 hr 1.3 hr
prover aggregate 5.0 yr 1.6 yr
prover per-instance 3.5 hr 3.3 hr

GPU

β∗ 8700 2300
verifier aggregate 2.7 hr 43.4 min
prover aggregate 3.5 yr 320 days
prover per-instance 3.5 hr 3.3 hr

crypto
hardware

β∗ 3900 20
verifier aggregate 1.2 hr 22.3 s
prover aggregate 1.6 yr 2.8 days
prover per-instance 3.5 hr 3.3 hr

Figure 7—Break-even batch sizes (β∗) and predicted running
times of prover and verifier at β = β∗, for matrix multiplication
(m = 400), under three models of the encryption cost. The
verifier’s per-instance work is not depicted because it equals the
local running time, by definition of β∗. The local running time
is high in part because the local implementation uses GMP.

inputs and receive the outputs; for polynomial evalua-
tion, these are about 10 times the size of the inputs and
outputs. Also, GINGER improves on PEPPER by 20–30×.

In this experiment, GINGER’s prover incurs about 10–
14% less CPU time compared to PEPPER (estimated us-
ing a cost model from [45]) but still takes tens of min-
utes per-instance; this is obviously a lot, but we reduce
latency by parallelizing (§6.3). For this computation and
at this batch size (β = 5000), GINGER’s verifier takes a
few hundreds of milliseconds per-instance, less than lo-
cally computing using our baseline of GMP.

Amortizing the verifier’s costs. Batching is both a lim-
itation and a strength of GINGER: GINGER’s verifier must
batch to gain from outsourcing but can batch to drive per-
instance overhead arbitrarily low. Nevertheless, we want
break-even batch sizes (β∗) to be as small as possible.
But β∗ mostly depends on e, the cost of encryption (Fig-
ure 2), because after our refinements the verifier’s main
burden is creating Enc(pk, r) (see §2.3), the cost of which

mat. mult. mat. mult. (Q)

local 17.6 ms 5.90 ms
verifier per-instance 17.6 ms 80.2 ms
verifier aggregate 76.1 s 5.7 min
prover per-instance 3.1 min 9.4 min
prover aggregate 9.3 days 28 days

Figure 8—Predicted running times of GINGER’s verifier and
prover for matrix multiplication (m = 100), under integer and
floating-point inputs, at β = 4300 (the break-even batch size
for this computation over integers). The “local” row refers to
GMP arithmetic for Z and native floating-point arithmetic for
Q. Handling rationals costs GINGER roughly 3× more than
handling integers, but both are still far from native.

computation (Ψ) # Boolean gates (est.) # constraint vars.

m-Hamming dist. 1.3 · 106 2 · 104

bisection method 3.0 · 108 1528

Figure 9—GINGER’s constraints compared to Boolean circuits,
for m-Hamming distance (m = 100) and bisection method
(m = 25). The Boolean circuits are estimated using the un-
modified Fairplay [39] compiler. GINGER’s constraints are not
concise but are far more so than Boolean circuits.

amortizes over the batch.
What values of e make sense? We consider three sce-

narios: (1) the verifier uses a CPU for encryptions, (2)
the verifier offloads encryptions to a GPU, and (3) the
verifier has special-purpose hardware that can only per-
form encryptions. (See Section 5 for motivation.) Under
scenario (1), we measure e = 72.1µs on a 2.5 GHz CPU.
Under scenario (3), we take e = 0µs. What about sce-
nario (2)? Our cost model concerns CPU costs, so we
need an exchange rate between GPU and CPU exponen-
tations. We make a crude estimate: we measure the num-
ber of encryptions per second achievable on an NVIDIA
Tesla M2070 (which is 180,000) and on an Intel 2.5 GHz
CPU (which is 13,700), normalize by the dollar cost of
the chips, and obtain that their throughput-per-dollar ra-
tio is 1.8×. We thus take e = 72.1/1.8 = 40µs.

We plug these three values of e into the cost model in
Figure 2, set the cost under GINGER equal to the cost of
local computing, and solve for β∗. The values of β∗ are
4150 (CPU), 2300 (crude GPU estimate), and 20 (crypto
hardware). We also use the model to predict V’s and P’s
costs at β∗, under PEPPER and GINGER. Figure 7 summa-
rizes. GINGER is very sensitive to the value of e because
its refinements have eliminated many of the other costs.
Moreover, the aggregate verifier computing time drops
significantly under all three cost models. The prover’s
per-instance work is mostly unaffected, but as the batch
size decreases, so does its aggregate work.

6.2 Evaluating GINGER’s computational model

To understand the costs of the floating-point representa-
tion (§4.1), we compare it to two baselines: GINGER’s
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Figure 10—Latency speedup observed by GINGER’s verifier when the prover is parallelized. We run with m = 100,β = 150 for
matrix multiplication and degree-3 polynomial evaluation; m = 100,β = 1500 for degree-2 polynomial evaluation; m = 100,β =
15 for m-Hamming distance; and m = 25,β = 15 for bisection method. GINGER’s prover achieves near-linear speedups except
when the problem sizes are small and hence the overhead from parallelizing is significant (e.g., degree-2 polynomial evaluation).

signed integer representation and the computation exe-
cuted locally, using the CPU’s floating point unit. Our
benchmark application is matrix multiplication (m =
100). Figure 8 details the comparison.

We also consider GINGER’s general-purpose program
constructs (§4). Our baseline is Boolean circuits (we are
unaware of efficient arithmetic representations of these
constructs). We compare the number of Boolean circuit
gates and the number of GINGER’s arithmetic constraint
variables, since these determine the proving and verify-
ing costs under the respective formalisms (see [5, 45]).
Taken individually, GINGER’s constructs (<=, &&, etc.)
are the same cost or more than those of Boolean cir-
cuits (e.g., || introduces auxiliary variables). However,
Boolean circuits are in general far more verbose: they
represent quantities by their bits (which GINGER does
only when computing inequalities). Figure 9 gives a
rough end-to-end comparison.

6.3 Scalability of the parallel implementation

To demonstrate the scalability of GINGER’s paralleliza-
tion, we run the prover using many CPU cores, many
GPUs, and many machines. We measure end-to-end la-
tency, as observed by the verifier. Figure 10 summarizes
the results for various computations. In most cases, the
speedup is near-linear.

7 Related work
A substantial body of work achieves two of our goals—
it is general-purpose and practical—but it makes strong
assumptions about the servers (e.g., trusted hardware).
There is also a large body of work on protocols for
special-purpose computation. We regard this work as
orthogonal to our efforts; for a survey of this land-
scape, see [45]. Herein, we focus on approaches that are
general-purpose and unconditional.

Homomorphic encryption and secure multi-party
protocols. Homomorphic encryption (which enables
computation over ciphertext) and secure multi-party pro-
tocols (in which participants compute over private data,
revealing only the result [34, 39, 52]) provide only pri-

vacy guarantees, but one can build on them for verifiable
computation. For instance, the Boneh-Goh-Nissim ho-
momorphic cryptosystem [18] can be adapted to evaluate
circuits, Groth uses homomorphic commitments to pro-
duce a zero-knowledge argument protocol [33], and Ap-
plebaum et al. use secure multi-party protocols for ver-
ifying computations [4]. Also, Gentry’s fully homomor-
phic encryption [27] has engendered protocols for verifi-
able non-interactive computation [20, 24, 26]. However,
despite striking improvements [28, 42, 47], the costs of
hiding inputs (among other expenses) prevent any of the
aforementioned verified computation schemes from get-
ting close to practical (even by our relaxed standards).

PCPs, argument systems, and interactive proofs. Ap-
plying proof systems to verifiable computation is stan-
dard in the theory community [5–7, 10, 15, 32, 37, 38,
41], and the asymptotics continue to improve [13, 14, 22,
43]. However, none of this work has paid much attention
to building systems.

Very recently, researchers have begun to explore using
this theory for practical verified outsourced computation.
In a recent preprint, Ben-Sasson et al. [12] investigate
when PCP protocols might be beneficial for outsourcing.
Since many of the protocols require representing compu-
tations as constraints, Ben-Sasson et al. [11] study im-
proved reductions to constraints from a RAM model of
computation. And Gennaro et al. [25] give a new charac-
terization of NP to provide asymptotically efficient argu-
ments without using PCPs.

However, as far as we know, only two research groups
have made serious efforts toward practical systems. Our
previous work [44, 45] built upon the efficient argument
system of Ishai et al. [35]. In contrast, Cormode, Mitzen-
macher, and Thaler [21] (hereafter, CMT) built upon the
protocol of Goldwasser et al. [31], and a follow-up effort
studies a GPU-based parallel implementation [49].

Comparison of GINGER and CMT [21, 49]. We
compared three different implementations: CMT-native,
CMT-GMP, and GINGER. CMT-native refers to the code
and configuration released by Thaler et al. [49]; it works
over a small field and thereby exploits highly efficient
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m domain component CMT-native CMT-GMP GINGER

256 Z verifier 40 ms 0.6 s 0.3 s
prover 22 min 2.5 hr 36 min
network 88 KB 0.3 MB 1.1 MB

128 Q verifier – 260 ms 190 ms
prover – 1.0 hr 21 min
network – 1.8 MB 1.4 MB

Figure 11—CMT [21] compared to GINGER, in terms of amor-
tized CPU and network costs (GINGER’s total costs are divided
by a batch size of β=5000 instances), for m × m matrix mul-
tiplication. CMT-native uses native data types but is restricted
to small problem sizes and domains. CMT-GMP uses the GMP
library for multi-precision arithmetic (as does GINGER).

machine arithmetic but restricts the inputs to the compu-
tation unrealistically (see Section 4.1). CMT-GMP refers
to an implementation based on CMT-native but modified
by us to use the GMP library for multi-precision arith-
metic; this allows more realistic computation sizes and
inputs, as well as rational numbers.

We perform two experiments using m×m matrix mul-
tiplication. Our testbed is the same as in Section 6. In the
first one, we run with m = 256 and integer inputs. For
CMT-GMP and GINGER, the inputs are 32-bit unsigned
integers, and the prime (the field modulus) is 128 bits.
For CMT-native, the prime is 261 − 1. In the second ex-
periment, m is 128, the inputs are rational numbers (with
Na = Nb = 32; see Section 4.1), the prime is 320 bits,
and we experiment only with CMT-GMP and GINGER.

We measure total CPU time and network cost; for
CMT, we measure “network” traffic by counting bytes
(the CMT verifier and prover run in the same process
and hence the same machine). Each reported datum is an
average over 3 sample runs; there is little experimental
variation (less than 5% of the means).

Figure 11 depicts the results. CMT incurs a significant
penalty when moving from native to GMP (and hence
to realistic problem sizes). Comparing CMT-GMP and
GINGER, the network and prover costs are similar (al-
though network costs for CMT reflect high fixed over-
head for their circuit). The per-instance verifier costs
are also similar, but GINGER is batch verifying whereas
CMT does not need to do so (a significant advantage).

A qualitative comparison is as follows. On the one
hand, CMT does not require cryptography, has better
asymptotic prover and network costs, and for some com-
putations the verifier does not need batching to gain from
outsourcing [49]. On the other hand, CMT applies to a
smaller set of computations: if the computation is not ef-
ficiently parallelizable or does not naturally map to arith-
metic circuits (e.g., it has order comparisons or condi-
tionality), then CMT in its current form will be inappli-
cable or inefficient, respectively. Ultimately, GINGER and
CMT should be complementary, as one can likely ease or
eliminate some of the restrictions on CMT by incorporat-

ing the constraint formalism together with batching [48].

8 Summary and conclusion
This paper is a contribution to the emerging area of
practical PCP-based systems for unconditional verifiable
computation. GINGER has combined theoretical refine-
ments (slashing query costs and network overhead); a
general computational model (including fractions and
standard program constructs) with a compiler; and a mas-
sively parallel implementation that takes advantage of
modern hardware. Together, these changes have brought
us closer to a truly deployable system. Nevertheless,
much work remains: the efficiency of the verifier depends
on special hardware, the costs for the prover are still too
high, and looping cannot yet be handled concisely.
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Linearity testing in characteristic two. IEEE Transactions on
Information Theory, 42(6):1781–1795, Nov. 1996.

[9] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient
probabilistically checkable proofs and applications to
approximations. In STOC, 1993.

[10] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson.
Multi-prover interactive proofs: how to remove intractability
assumptions. In STOC, 1988.

[11] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast
reductions from RAMs to delegatable succinct constraint
satisfaction problems. Feb. 2012. Cryptology eprint 071.

11



[12] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. On the
concrete-efficiency threshold of probabilistically-checkable
proofs. ECCC, (045), Apr. 2012.

[13] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and
S. Vadhan. Robust PCPs of proximity, shorter PCPs and
applications to coding. SIAM J. on Comp., 36(4):889–974, Dec.
2006.

[14] E. Ben-Sasson and M. Sudan. Short PCPs with polylog query
complexity. SIAM J. on Comp., 38(2):551–607, May 2008.

[15] M. Blum and S. Kannan. Designing programs that check their
work. J. of the ACM, 42(1):269–291, 1995.

[16] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting
with applications to numerical problems. J. of Comp. and Sys.
Sciences, 47(3):549–595, Dec. 1993.

[17] D. Boneh and D. M. Freeman. Homomorphic signatures for
polynomial functions. In EUROCRYPT, 2011.

[18] D. Boneh, E. J. Goh, and K. Nissim. Evaluating 2-DNF
formulas on ciphertexts. In TCC, 2005.

[19] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure
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A Efficient arguments with linear PCPs
but no linearity tests

Whereas previous work [35, 45] established that the
commitment protocol in phases 2 and 3 of PEPPER (§2.3)
binds the prover to a particular function, there were no
constraints on that function. The principal result of this
section is that the prover is actually bound to a function
that is linear, or very nearly so. As a consequence, we can
eliminate linearity testing from the PCP protocol. Fur-
thermore, the error bound from one run of this modified
PCP protocol is far stronger (lower) than was known.

This section describes the base protocols (A.1), states
the refinements and proves their soundness (A.2), and de-
scribes a few other optimizations (A.3).

A.1 Base protocols

GINGER uses a linear commitment protocol that is bor-
rowed from PEPPER [45]; this protocol is depicted in Fig-

12
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Commit+Multidecommit
The protocol assumes an additive homomorphic encryption scheme (Gen, Enc, Dec) over a finite field, F.
Commit phase
Input: Prover holds a vector w ∈ Fn, which defines a linear function π : Fn → F, where π(q) = 〈w, q〉.
1. Verifier does the following:

• Generates public and secret keys (pk, sk)← Gen(1k), where k is a security parameter.
• Generates vector r ∈R Fn and encrypts r component-wise, so Enc(pk, r) = (Enc(pk, r1), . . . , Enc(pk, rn)).
• Sends Enc(pk, r) and pk to the prover.

2. Using the homomorphism in the encryption scheme, the prover computes e ← Enc(pk,π(r)) without learning r. The prover
sends e to the verifier.

3. The verifier computes s← Dec(sk, e), retaining s and r.

Decommit phase
Input: the verifier holds q1, . . . , qµ ∈ Fn and wants to obtain π(q1), . . . ,π(qµ).

4. The verifier picks µ secrets α1, . . . ,αµ ∈R F and sends to the prover (q1, . . . , qµ, t), where t = r + α1q1 + · · ·+ αµqµ ∈ Fn.

5. The prover returns (a1, a2, . . . , aµ, b), where ai, b ∈ F. If the prover behaved, then ai = π(qi) for all i ∈ [µ], and b = π(t).

6. The verifier checks: b ?
= s + α1a1 + · · ·+ αµaµ. If so, it outputs (a1, a2, . . . , aµ). If not, it rejects, outputting ⊥.

Figure 12—The commitment protocol of PEPPER [45], which generalizes a protocol of Ishai et al. [35]. q1, . . . , qµ are the PCP
queries, and n is the size of the proof encoding. The protocol is written in terms of an additive homomorphic encryption scheme, but
as stated elsewhere [35, 45], the protocol can be modified to work with a multiplicative homomorphic scheme, such as ElGamal [23].

ure 12.4 As described in Section 2.3, PEPPER composes
this protocol and a linear PCP; that PCP is depicted in
Figure 13. The purpose of {γ0, γ1, γ2} in this figure is to
make a maliciously constructed oracle unlikely to pass
the circuit test; to generate the {γi}, V multiplies each
constraint by a random value and collects like terms, a
process described in [5, 13, 35, 45]. The completeness
and soundness of this PCP are explained in those sources,
and our notation is borrowed from [45]. Here we just as-
sert that the soundness error of this PCP is ε = (7/9)ρ;
that is, if the proof π is incorrect, the verifier detects that
fact with probability greater than 1− ε. To make ε small,
PEPPER takes ρ = 70.

A.2 Stronger soundness analysis and consequences

GINGER retains the (P, V) argument system of PEP-
PER [45] but uses a modified PCP protocol (depicted in
Figure 14) that makes the following changes to the base
PCP protocol (Figure 13):

• Remove the linearity queries and tests.

• Set ρ = 1.

Theorem A.1. The (P, V) described above is an argu-
ment system with soundness εG ≈ 6

√
1/|F|. (The exact

value of εG depends on intermediate lemmas and will be
given at the end of the section.)

We will prove this theorem at the end of this section.
To build up to the proof, we first strengthen the defini-
tion of a linear commitment primitive. We note that only

4Like PEPPER, GINGER verifies in batches (§2.3), which changes the
protocols a bit; see [45, Appendix C] for details.

the third property (linearity) in the definition is new; the
rest is taken from [45, Appendix B], which itself heavily
borrows framing, notation, and text from Ishai et al. [35].

Definition A.1 (Commitment to a function with multi-
ple decommitments (CFMD)). Define a two-phase ex-
periment between two probabilistic polynomial time ac-
tors (S, R) (a sender and receiver, which correspond to
our prover and verifier) in an environment E that gener-
ates F, w and Q = (q1, . . . , qµ). In the first phase, the
commit phase, S has w, and S and R interact, based on
their random inputs. In the decommit phase, E gives Q
to R, and S and R interact again, based on further ran-
dom inputs. At the end of this second phase, R outputs
A = (a1, . . . , aµ) ∈ Fµ or ⊥. A CFMD meets the fol-
lowing properties:

• Correctness. At the end of the decommit phase, R
outputs π(qi) = 〈w, qi〉 (for all i), if S is honest.

• εB-Binding. Consider the following experiment. The
environment E produces two (possibly distinct) µ-
tuples of queries: Q = (q1, . . . , qµ) and Q̂ =
(q̂1, . . . , q̂µ). R and a cheating S∗ run the commit
phase once and two independent instances of the de-
commit phase. In the two instances R presents the
queries as Q and Q̂, respectively. We say that S∗ wins
binding if R’s outputs at the end of the respective
decommit phases are A = (a1, . . . , aµ) and Â =
(â1, . . . , âµ), and for some i, j, we have qi = q̂j but
ai 6= âj. We say that the protocol meets the εB-Binding
property if for all E and for all efficient S∗, the proba-
bility of S∗ winning binding is less than εB. The proba-
bility is taken over three sets of independent random-
ness: the commit phase and the two runnings of the
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The linear PCP from [5]

Loop ρ times:
• Generate linearity queries: Select q1, q2 ∈R Fs and

q4, q5 ∈R Fs2
. Take q3 ← q1 + q2 and q6 ← q4 + q5.

• Generate quadratic correction queries: Select q7, q8 ∈R Fs

and q10 ∈R Fs2
. Take q9 ← (q7 ⊗ q8 + q10).

• Generate circuit queries: Select q12 ∈R Fs and q14 ∈R Fs2
.

Take q11 ← γ1 + q12 and q13 ← γ2 + q14.
• Issue queries. Send q1, . . . , q14 to oracle π, getting back
π(q1), . . . ,π(q14).

• Linearity tests: Check that π(q1) +π(q2) = π(q3) and that
π(q4) + π(q5) = π(q6). If not, reject.

• Quadratic correction test: Check that π(q7) · π(q8) =
π(q9)− π(q10). If not, reject.

• Circuit test: Check that (π(q11)− π(q12)) +
(π(q13)− π(q14)) = −γ0. If not, reject.

If V makes it here, accept.

Figure 13—The linear PCP that PEPPER uses. It is from [5].
The notation x ⊗ y refers to the outer product of two vectors x
and y (meaning the vector or matrix consisting of all pairs of
components from the two vectors). The values {γ0, γ1, γ2} are
described briefly in the text.

decommit phase.
• εL-Linearity. Consider the same experiment above.

We say that S∗ wins linearity if R’s outputs at the
end of the respective decommit phases are A =
(a1, . . . , aµ) and Â = (â1, . . . , âµ), and for some i, j, k,
we have q̂k = qi + qj but âk 6= ai + aj. We say that
the protocol meets the εL-linearity property if for all E
and for all efficient S∗, the probability of S∗ winning
linearity is less than εL. As with the prior property,
the probability is taken over three sets of independent
randomness: the commit phase and the two runnings
of the decommit phase.

Prior work proved that Commit+Multidecommit (Fig-
ure 12) meets the first two properties above [45]. We will
now show that it also meets the third property.

Lemma A.1. Commit+Multidecommit meets the defini-
tion of εL-linearity, with εL = 1/|F|+εS, where εS comes
from the semantic security of the homomorphic encryp-
tion scheme.

Proof. We will show that if S∗ can systematically cheat,
then an adversary A could use S∗ to break the semantic
security of the encryption scheme.

Let r ∈R Fn and Z1, Z2 ∈R F (we use ∈R to mean
“drawn uniformly at random from”). Semantic security
(see [30], definitions 5.2.2, 5.2.8 and Exercise 17) im-

GINGER’s PCP protocol

• Generate quadratic correction queries: Select q1, q2 ∈R Fs

and q4 ∈R Fs2
. Define q3 ← (q1 ⊗ q2 + q4). Note that q3

will not travel, as P can derive it.
• Generate circuit queries: Take q5 ← γ1 + q1. Take q6 ←
γ2 + q4.

• Issue queries. Send (q1, q2, q4, q5, q6) to oracle π, getting
back π(q1),π(q2),π(q3),π(q4),π(q5),π(q6).

• Quadratic correction test: Check that π(q1) · π(q2) =
π(q3)− π(q4). If not, reject.

• Circuit test: Check that (π(q5)− π(q1)) +
(π(q6)− π(q4)) = −γ0. If so, accept.

Figure 14—GINGER’s PCP protocol, which refines PEPPER’s
protocol (Figure 13). This protocol eliminates linearity testing
and repetition, and recycles queries [9].

plies that for all PPT A (A can be non-uniform),

Pr
Gen,Enc,r,Z1,Z2

{A(pk, Enc(pk, r), r + Z1q, r + Z2q) = Z1}

< 1/|F|+ εS. (1)

This holds for all q ∈ Fn.5

Now, assume to the contrary that Com-
mit+Multidecommit does not meet the definition of
εL-linearity. Then there exists an environment E produc-
ing qi, qj, i, j, k, Q, Q̂, S∗ (where Q has qi, qj in the ith and
jth positions and Q̂ has qi + qj in the kth position) such
that Prall 3 phases{S∗ wins linearity under E} > 1/|F|+εS.
Let q′ , q̂k = qi + qj.

We now describe an algorithm A that, when given
input I = (pk, Enc(pk, r), r + Z1q′, r + Z2q′), can re-
cover Z1 with probability more than 1/|F| + εS. A has
Q, Q̂, qi, qj, i, j, k hard-wired (because it is working under
environment E) and works as follows:
(a) A gives (pk, Enc(pk, r)) to S∗ and ignores the reply.
(b) A randomly generates α1, . . . ,αµ and sends to S∗

the input (Q, r+α1q1+· · ·+(αi+Z1)qi+· · ·+(αj+
Z1)qj + · · ·+αµqµ).A is able to construct this input
becauseA was given r + Z1q′ = r + Z1qi + Z1qj. In
response, S∗ returns (b, a1, . . . , ai, . . . , aj, . . . , aµ).

(c) A randomly generates α̂1, . . . , α̂µ.A sends to S∗ the
input (Q̂, r + α̂1q̂1 + · · ·+ Z2q̂k + · · ·+ α̂µq̂µ).A is
able to construct this input becauseA was given r +
Z2q′ = r+Z2q̂k.A gets back (b̂, â1, . . . , âk, . . . , âµ).

At this point, A assumes that the responses from S∗

pass the decommitment phase; that is, A acts as if b =
s+α1a1+· · ·+(αi+Z1)ai+· · ·+(αj+Z1)aj+· · ·+αµaµ
and b̂ = s + α̂1â1 + · · ·+ Z2âk + · · ·+ α̂µâµ.A can write

5We are being loose here. Under the actual definition of semantic secu-
rity, (a) εS should be replaced with a negligible function of n, and (b)
the claim holds only for n sufficiently large.
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K1 = Z2âk − Z1(ai + aj), (2)

whereA can derive K1 = b̂−b−
∑
ι6=k α̂ιâι+

∑
ι αιaι.

Now, let t = r + Z1q′ and let t̂ = r + Z2q′ (both of
these were supplied as input to A). These two equations
concern vectors. However, by choosing an index ι in the
vector q′ where q′ is not zero (if the vector is zero every-
where, then r is revealed), A can derive

K2 = Z2 − Z1, (3)

where K2 = (̂t(ι) − t(ι))/q′(ι).
Now, observe that if âk 6= ai + aj (as happens when

S∗ wins), thenA can recover Z1 by solving equations (2)
and (3). Thus,

Pr
Gen,Enc,r,Z1,Z2,~α,~̂α

{A(I) = Z1}

≥ Pr
Gen,Enc,r,Z1,Z2,~α,~̂α

{S∗ wins linearity under E}

= Pr
all 3 phases

{S∗ wins linearity under E}

> 1/|F|+ εS. (4)

The equality holds because the distribution
of (α1, . . . ,αi + Z1, . . . ,αj + Z1, . . . ,αµ) and
(α̂1, . . . , Z2, . . . , α̂µ) is equivalent to the distribu-
tion from which R selects in the decommit phases of the
three-phase experiment, under Commit+Multidecommit.
Meanwhile, inequality (4) contradicts inequality (1).

The lemmas ahead show that, under Com-
mit+Multidecommit, S is bound to a nearly linear
function, f̃ (·); specifically, f̃ (·) is δ∗-close to linear for
small δ∗. By contrast, previous work [35, 45] showed
only that S was bound to some function f̃ (·).

We now give some notation and restate two claims
from [45]. Let ζ be the event that R’s output is a vec-
tor (a1, . . . , aµ); equivalently, ζ is the event that R’s out-
put is non-⊥. Below, we sometimes write Prcomm{·} or
Prdecomm{·} to mean the probability over the random
choices of the commit or decommit phases.

Lemma A.2 (Existence of an extractor function [45]).
Let (S, R) be a CFMD protocol with binding error εB. Let
εC = µ · 2 · (2 3

√
9/2 + 1) · 3

√
εB. Let v = (vS∗ , vR) rep-

resent the views of S∗ and R after the commit phase (v
captures the randomness of the commit phase). For ev-
ery efficient S∗ and for every v, there exists a function
f̃v : Fn → F such that the following holds.6 For any en-
vironment E , the output of R at the end of the decommit
phase is, except with probability εC, either ⊥ or satisfies

6Note that after the commit phase, f̃v(·) is deterministic. (̃fv(·) is de-
fined [35, 45] to map q to the value that R is most likely to successfully
output in the decommit phase.)

ai = f̃v(qi) for all i ∈ [µ], where (q1, . . . , qµ) are the de-
commitment queries generated by E , and the probability
is over the random inputs of S∗ and R in both phases.

Lemma A.3. Let ε3 = (2 3
√

9/2+1) · 3
√
εB . Label the ith

query in Q as qi and the ith response as ai. For all Q, i,
we have Prcomm,decomm{ζ ∩ {ai 6= f̃v(qi)}} < 2ε3.

Proof. Follows from a claim in [45] (Claim B.4).

Lemma A.4. For all q1, q2 ∈ Fn, Prcomm{f̃v(q1) +
f̃v(q2) 6= f̃v(q1 + q2)} < εF , εL + 6ε3.

Proof. Assume otherwise. Then for some q1 and q2, we
have Prcomm{f̃v(q1) + f̃v(q2) 6= f̃v(q1 + q2)} ≥ εF, which
implies Prall 3 phases{f̃v(q1) + f̃v(q2) 6= f̃v(q1 + q2)} ≥ εF,
since we can “add coin flips that don’t matter”, namely
those of the two decommit phases.

Now, consider the game in the definition of εL-
linearity, and set Q = (q1, q2, . . .) and Q̂ = (q1 +
q2, . . .). Let η be the event that S∗ wins in this game.
Let ν be the event that the outputs a1, a2, â1 are given
by the function f̃v(·). Then Prall 3 phases{qν} < 6ε3, by
Lemma A.3, by the union bound, and by (again) “adding
coin flips that don’t matter” to get from a probability
over two phases to one over three phases. Now, note that
Prall 3 phases{η|ν} ≥ εF, by the contrary hypothesis. This
implies that Prall 3 phases{η} ≥ εF − 6ε3 = εL, which con-
tradicts the definition of εL-linearity.

Lemma A.4 almost talks about a linearity test [16]!
But linearity testing theory [8] relates (a) the probabil-
ity over randomly chosen queries that the test fails and
(b) the closeness-to-linearity of the tested function. Thus,
to apply the theory, we line up Lemma A.4 and (a).

Lemma A.5. With probability greater than 1−√εF over
the commit phase, the fraction of (q1, q2) pairs that cause
f̃v(·) to fail the linearity test is ≤ √εF.

Proof. Let Iv,q1,q2 be an indicator random variable that
equals 1 if, in view v (that is, given the randomness of
the commit phase), f̃v(q1 + q2) 6= f̃v(q1) + f̃v(q2). The
lemma is equivalent to the statement

Pr
comm
{ Pr

q1,q2
{Iv,q1,q2 = 1} >

√
εF} <

√
εF.

Now, define a random variable Yv = 1
Q2

∑
q1,q2

Iv,q1,q2 ,
where Q = |F|n is the number of possibilities for each
of q1 and q2. By linearity of expectation, Ecomm[Yv] =
1

Q2 · (E[Iv,1] + · · ·+ E[Iv,Q2 ]), where E[Iv,i] is the probabil-
ity, over the commit phase, that a particular (qj, qk) pair
causes f̃v(·) to fail the linearity test. Lemma A.4 implies
that E[Iv,i] < εF for all i; hence, Ecomm[Yv] < εF. We now
apply a Markov bound to Yv:

Pr
comm
{Yv >

√
εF} <

Ecomm[Yv]√
εF

<
εF√
εF

=
√
εF.
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But Yv is equivalent to Prq1,q2{Iv,q1,q2 = 1}; making this
substitution immediately above yields the lemma.

Lemma A.6. Let δ∗ be the lesser root of 6δ2 − 3δ +√
εF = 0. If

√
εF <

2
9 , then with probability greater than

1−√εF over the commit phase, f̃v(·) is δ∗-close to linear.

Proof. We use the linearity testing results of Bellare et
al. [8, 9] and the terminology of [8]. Define Dist(f , g)
to be the fraction of inputs on which f and g disagree.
Define Dist(f ) to be the fraction of inputs on which
f disagrees with its “closest linear function” [8]. De-
fine Rej(f ) to be the probability, over uniformly random
choices of x and y from the domain of f , that f (x)+f (y) 6=
f (x + y); Rej(f ) is the probability that f fails the linearity
test. As stated by Bellare et al. [8]:

• If Dist(f ) = δ, then Rej(f ) ≥ 3δ − 6δ2.

• If Dist(f ) ≥ 1
4 , then Rej(f ) ≥ 2

9 .

The above implies the following claim: for all δ′ ∈
{δ′ | 3δ′ − 6δ′2 < 2

9 and 0 ≤ δ′ ≤ 1
4}, if Rej(f ) ≤ 3δ′ −

6δ′2, then Dist(f ) ≤ δ′. (To see this, fix δ′. Assume to the
contrary that δ = Dist(f ) > δ′. There are two cases, and
both contradict the given. If δ < 1

4 , then Rej(f ) ≥ 3δ −
6δ2 > 3δ′−6δ′2. If δ ≥ 1

4 , then Rej(f ) ≥ 2
9 > 3δ′−6δ′2.)

From lemma A.5, the probability is greater than 1 −√
εF over the commit phase that Rej(f̃v) ≤

√
εF. We call

such commit phases usual. Under a usual commit phase,
we can apply the claim just above. To do so, we assume
that
√
εF <

2
9 , and we set δ∗ so that

√
εF = 3δ∗ − 6δ∗2

and δ∗ ≤ 1
4 (such a δ∗ is guaranteed to exist because the

parabola is symmetric about δ = 1
4 ). The claim implies

that Dist(f̃v) ≤ δ∗, or that f̃v is δ∗-close to linear.

Lemma A.7. If the PCP oracle π is known to be δ∗-close
to linear, then the linear PCP (Section A.1) with linearity
testing removed has soundness error κ > max{4δ∗ +

2
|F| , 4δ∗ + 1

|F|}.

Proof. This follows from the proof flow that establishes
the soundness of linear PCPs, as in [5]. (A self-contained
example is in Appendix D of [45].) Those proofs first
establish that if the linearity test passes with probabil-
ity higher than the soundness error, then π is δ-close to
linear, for some δ. However, if we are given that π is δ∗-
close to linear, then we can start those proofs midway
and obtain the soundness of π as κ.

Proof of Theorem A.1. Lemma A.2 implies that there
exists an extractor function that determines a (possibly
incorrect) oracle π̃ such that, if V ′ does not reject during
decommit, then with all but probability εC, V ′ receives
back π̃(q1), . . . , π̃(qµ). We can thus “pay” probability
εC in the union bound (below) to assume that V ′ hears
back from π̃ itself. This allows us to apply Lemma A.6,

at which point we can “pay”
√
εF more probability (again

in the union bound below) to get that π̃ is δ∗-close to lin-
ear. (Applying the lemma requires that

√
εF <

2
9 , and we

will verify below that this bound holds.) Now, we can ap-
ply Lemma A.7 to ρ runs of the PCP protocol, giving a
PCP soundness error of κρ. Thus, the probability that V ′

wrongly accepts a proof is bounded from above by:

εG = εC +
√
εF + κρ.

By inspection (of the lemmas), the dominant contributor
to εG, namely

√
εF, is proportional to 6

√
1/|F|.

We compute a bound on εG as follows.

• εC is given in Lemma A.2. We take µ = 6 (per Fig-
ure 14). We also take εB = 1/|F| (following [45]; this
amounts to ignoring the error from the semantic se-
curity of the homomorphic encryption scheme) and
|F| = 2128, giving εC < 7.4 · 10−12.

• εF = εL + 6ε3 (from Lemma A.4). ε3 is given in
Lemma A.3. We set εL = 1/|F| (which again amounts
to ignoring εS). Again taking |F| = 2128, we get√
εF < 1.9 · 10−6. Thus,

√
εF < 2/9, as required.

• κ = 4δ∗+ 2
|F| , where δ∗ is the lesser root of 6δ2−3δ+

√
εF. This gives δ∗ = 6.4 · 10−7 and κ = 2.6 · 10−6.

Since κ and
√
εF are roughly the same, there is not

much point to taking ρ > 1. Thus, we take ρ = 1, giving
εG < 4.5 · 10−6 when |F| = 2128. When |F| = 2192, we
get εG < 2.8 · 10−9.

A.3 Optimizing out queries

GINGER’s PCP protocol includes two further refine-
ments. First, the protocol reuses q4 and q1 from test to
test. This reuse is sound because the PCP soundness
lemma [5] is of the form, “if all tests pass with proba-
bility greater than X, then the proof oracle π has a cer-
tain desired property”; meanwhile, as Bellare et al. [9]
observe, the tests need not be independent! One can ob-
serve the savings by comparing Figure 13 (minus the lin-
earity queries) to Figure 14. The protocol goes from 8
queries (the original 14 minus 6 linearity queries) to 6
queries, though the real savings for the prover is in re-
ducing the 4 high-order queries (that is, queries to the
Fs2

component of π) to 3. Moreover, the verifier saves
because it goes from generating pseudorandomness for 3
high-order queries (including γ2) to 2. Second, V avoids
transmitting a query (q3) that P can generate for itself.
This optimization offsets the consistency query, which is
computed over Z not Z/p (owing to the details of our
use of ElGamal [45, Appendix E]) and thus has roughly
twice as many bits as a PCP query.
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B Signed integers, floating-point rationals

In this appendix and the two ahead, we describe how
GINGER applies to general-purpose computations. This
appendix describes GINGER’s representation of signed
integers and its representation of primitive floating-point
quantities (this treatment expands on Section 4.1). The
next appendix details the case study (from Section 4.2) of
an inequality test and a conditional branch. Appendix D
describes other program constructs.

Our goal in these appendices is to show how to map
computations to equivalent constraints over finite fields
(according to the definition of equivalent given in Sec-
tion 2.1). To do so, we follow the framework from Sec-
tion 4. Recall that the three steps in that framework are:
(C1) Bound the computation Ψ, which starts out over
some domain D (such as Z or Q), to ensure that Ψ stays
within some set U ⊂ D; (C2) Establish a map between U
and a finite field F such that computing Ψ in F is equiva-
lent to computing Ψ in U. (C3) Transform the finite field
version of the computation into constraints.

B.1 Signed integers

To illustrate step C1, consider m × m matrix multiplica-
tion over signed integers, with inputs of N bits (where
the top bit is the sign): the computation does not “leave”
U = [−m · 22N−1, m · 22N−1), where U ⊂ Z.

For step C2, we take F = Z/p and define θ between U
and Z/p as follows:

θ : U → Z/p

u 7→ u mod p.

Note that:
(1) If U is an interval [a, b] and |Z/p| > |U|, then θ is

1-to-1.
(2) If x1, x2 ∈ U and x1 + x2 ∈ U, then θ(x1) + θ(x2) =

θ(x1 + x2).
(3) If x1, x2 ∈ U and x1x2 ∈ U, then θ(x1)θ(x2) =

θ(x1x2).
To argue property (1), take x mod p = y mod p, which
means x = y + p · k, for k ∈ Z. If x 6= y (so θ is not
1-to-1), then |y − x| ≥ p, which implies that there must
be at least p + 1 elements in U, since U is an interval that
includes x and y. But |U| < |Z/p| = p, a contradiction.
Properties (2) and (3) follow because θ is a restriction
of the usual reduction map, so it preserves addition and
multiplication.

Thus, computation in Z/p is isomorphic to computa-
tion in U: the constraint representation uses only field
operations to represent computations (see Section 2.1),
and for the purposes of field operations, Z/p acts like U.

B.2 Floating-point rational numbers

Step C1

To illustrate this step, we again consider m × m ma-
trix multiplication and this time require the input en-
tries to be in the set T = {a/b : |a| ≤ 2Na , b ∈
{1, 2, 22, 23, . . . , 2Nb}}. To bound the computation to a
set U, we use the claim below.

Claim B.1. For the computation of matrix multiplica-
tion, with input entries restricted to T , the computation
of matrix multiplication is restricted to U = {a/b : |a| <
2N′a , b ∈ {1, 2, 22, 23, . . . , 22Nb}}, for N′a = 2Na + 2Nb +
log2 m.

Proof. Consider an entry in the output; it is of the form∑m
k=1 AikBkj, where each AikBkj is contained in S =

{a/b : |a| < 22Na , b ∈ {1, 2, 22, 23, . . . , 22Nb}}. Thus, we
can write each output entry as

∑m
k=1 ak/bk, the sum of

m numbers from the set S. Writing each bk as 2ek , and
letting e∗ = maxk ek, we can write the sum as∑

k ak2e∗−ek

2e∗ .

The denominator of this sum is contained in
{1, 2, 22, 23, . . . , 22Nb}. The absolute value of each sum-
mand in the numerator, ak2e∗−ek , is no larger than
22Na+2Nb , and there are m summands, so the absolute
value of the numerator is no larger than m · 22Na+2Nb =
22Na+2Nb+log2 m. A fortiori, the intermediate sums are con-
tained in U (they have fewer than m terms).

Step C2

We must identify a field F where the computation can be
mapped; that is, we need a field that behaves something
like Q. For this purpose, we take F = Frac(Z/p), the
quotient field of Z/p, which we denote Q/p.

This paragraph reviews the definition and properties of
Q/p because we will need these details later. As a quo-
tient field, Q/p is the set of equivalence classes on the
set Z/p× (Z/p \ {0}), under the equivalence relation∼,
where (a, b) ∼ (c, d) if ad = bc mod p; the field oper-
ations are (a, b) + (c, d) = (ad + bc mod p, bd mod p)
and (a, b) · (c, d) = (ac mod p, bd mod p), where a pair
(x, y) represents its equivalence class. Note that although
elements of Q/p are represented as having two compo-
nents, each of which seems able to take p or p−1 values,
the cardinality of Q/p is only p. In fact, Q/p is isomor-
phic to Z/p, via the map f ((a, b)) = a · b−1.

We must now define a map from U to Q/p; in doing
so, we will take U to be an arbitrary subset of Q:

θ : U → Q/p
a
b
7→ (a mod p, b mod p).
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Note that θ is well-defined. (This fact is standard, but
for completeness, we briefly argue it. Take q1 = a1

b1
,

q2 = a1x
b1x . Then θ(q1) = (a1 mod p, b1 mod p) and

θ(q2) = (a1x mod p, b1x mod p). But we have (a1 mod
p)(b1x mod p) ≡ (b1 mod p)(a1x mod p) (mod p), so
θ(q1) ∼ θ(q2).)

As mentioned above, Q/p does not have as much
“room” as one might guess. To make θ 1-to-1, we must
choose p carefully. The lemma below says how to do so,
but we need a definition first. Define the s-value of an el-
ement q ∈ Q as follows. Write q as a/b, where a, b ∈ Z,
b > 0, and a and b are co-prime. Then the s-value of q,
written s(q), is s(q) = |a|+ b. We write the s-value of a
set U ⊂ Q as s(U), and we define it as the largest s-value
of U’s elements: s(U) = maxu∈U s(u).

Lemma B.2. For any U ⊂ Q, if p ≥ s(U)2, then θ is
1-to-1.

Proof. Take q1, q2 ∈ U, where θ(q1) ∼ θ(q2). We need
to show that q1 = q2. Write q1 = a1/b1 and q2 = a2/b2
in reduced form (that is, ai and bi are co-prime). Note that
by definition of s-value and choice of p, p is greater than
each of a1, b1, a2, b2, so we can write θ(q1) as (a1, b1)
and θ(q2) as (a2, b2). Since θ(q1) ∼ θ(q2), we have
a1b2 ≡ a2b1 (mod p). But then if a1b2 6= a2b1 (as
would be implied by q1 6= q2) we would have:

p ≤ |a1b2 − a2b1|
≤ |a1b2|+ |a2b1|
< |a1b2|+ |a2b1|+ |a1a2|+ |b1b2|
= (|a1|+ |b1|)(|a2|+ |b2|)
≤ s(U) · s(U),

making p < s(U)2, a contradiction.

Representing computations over Q/p faithfully. Note
that:
(1) If q1, q2 ∈ U and q1 + q2 ∈ U, then θ(q1) + θ(q2) ∼

θ(q1 + q2).
(2) If q1, q2 ∈ U and q1q2 ∈ U, then θ(q1)θ(q2) ∼

θ(q1q2).
These properties can be verified by inspection. Since
θ preserves addition and multiplication, and since θ is
1-to-1 by choice of p, the computation in Q/p is isomor-
phic to the computation in Q.

Examples. If U is defined as in Claim B.1, then the
s-value is upper-bounded by

m · 22(Na+Nb) + 22Nb < m · 22(Na+Nb) + 22(Na+Nb).

Applying Lemma B.2, if we take p > (m+1)2 ·24(Na+Nb),
then computation over Q/p is isomorphic to computa-
tion over U, as claimed in Section 4.1. As another ex-
ample, consider numbers of the form a · 2−q, where

|a| < 2Na and |q| ≤ Nq. Then the prime requires at least
2 log2(2Na +2Nq) ≤ 2·(max{Na, Nq}+1) bits, as claimed
in Section 4.1.

Canonical forms and θ−1

Later, it will be convenient to have defined θ−1

explicitly—and to have expressed this definition in terms
of a particular representation of elements of Q/p. This
may seem strange because the whole concept of equiva-
lence class is that, within a class, all representations are
equivalent. However, our constraints for certain compu-
tations, such as less-than, will require assumptions about
the representation of an element (see Appendix C.2).
Thus, we define a canonical representation below; we
focus on the case when U is of the form {a/b : |a| <
2Na , b ∈ {1, 2, 22, 23, . . . , 2Nb}}.

Definition B.1 (Canonical form in Q/p). An element
(a, b) ∈ θ(U) is a canonical form or canonical represen-
tation of its equivalence class if a ∈ [0, 2Na ]∪ [p−2Na , p)
and b ∈ {1, 2, 4, . . . , 2Nb}. Every element in θ(U) has
such a representation, by definition of U and θ.

We now define θ−1; let (ea, eb) denote a canonical form
of e:

θ−1 : θ(U)→ U

e 7→
{

ea/eb, 0 ≤ ea ≤ 2Na

(ea − p)/eb, p− 2Na ≤ ea < p

Note that when ea is in the “upper” part of the range,
θ−1 maps e to a negative number in Q. Note also that
the canonical form for an equivalence class may not be
unique. However, the following two claims establish that
this non-uniqueness is not an issue in our context.

Claim B.3. θ−1 is well-defined.

Proof. For e ∈ θ(U), let e = (a, b) ∼ (c, d), where
(a, b) and (c, d) are both canonical forms. We wish to
show that θ−1((a, b)) = θ−1((c, d)).

We have θ−1((a, b)) ∈ U and θ−1((c, d)) ∈ U, by
definition of θ−1 and U. Also, we have θ(θ−1((a, b))) ∼
(a, b), as follows. If a ∈ [0, 2Na ], then θ−1((a, b)) =
a/b and θ(a/b) = (a, b). If a ∈ [p − 2Na , p), then
θ−1((a, b)) = (a − p)/b and θ((a − p)/b) = (a −
p mod p, b) ∼ (a, b). Likewise, θ(θ−1((c, d))) ∼ (c, d).
Now, let u1 = θ−1((a, b)) and u2 = θ−1((c, d)). As-
sume toward a contradiction that u1 6= u2; then θ(u1) 6∼
θ(u2), by Lemma B.2. Thus (a, b) ∼ θ(θ−1((a, b)) 6∼
θ(θ−1((c, d))) ∼ (c, d), a contradiction.

Claim B.4. An element in θ(U) cannot have two canon-
ical representations (a, b) and (c, d) with a ∈ [0, 2Na ] and
c ∈ [p− 2Na , p).
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Proof. Take (a, b) ∼ (c, d) where a ∈ [0, 2Na ] and c ∈
[p − 2Na , p) (note that b, d > 0). Because θ−1 is a func-
tion (Claim B.3), θ−1((a, b)) = θ−1((c, d)). However,
θ−1((a, b)) = a/b ≥ 0 and θ−1((c, d)) = (c−p)/d < 0,
which is a contradiction.

Discussion

Most of our work above presumed a restriction on U:
that the denominators of its elements are powers of 2.
We defined U this way because, without this restriction,
we would need a much larger prime p, per Lemma B.2.
However, this restriction is not fundamental, and our
framework does not require it. On the other hand, the
restriction yields primitive floating-point numbers with
acceptable precision at acceptable cost (see Section 4.1).

Implementation detail

When working with computations over Q, we express
them over the finite field Q/p. However, our implemen-
tation (source code, etc.) assumes that the finite field is
represented as Z/p. Fortunately, as noted above, Q/p is
isomorphic to Z/p via the following map:

f : Q/p→ Z/p

(a, b) 7→ ab−1.

We take advantage of this isomorphism to reuse our im-
plementation over Z/p. Specifically, when computing
over Q/p, V and P follow the protocol below.

Definition B.2 (GINGER-Q protocol). Let Ψ be a com-
putation over Q/p, and let Ψ′ be the same computation,
expressed over Z/p. The GINGER-Q protocol for verify-
ing Ψ is defined as follows:

1. V → P: a vector x, over the domain Q/p.
2. P→ V: y = Ψ(x).
3. P→ V: x′ and y′. P obtains x′, y′ (which are vectors

in Z/p) by applying f elementwise to x and y.
4. V checks that for all (a, b) ∈ {x ∪ y} and the corre-

sponding element c ∈ {x′∪ y′}, cb ≡ a mod p. This
confirms that P has applied f correctly. If the check
fails, V rejects.

5. V engages P using the existing GINGER implemen-
tation, to verify that y′ = Ψ′(x′).

The implementation convenience carries a cost: P
must compute b−1 for each element a/b in the input and
output of Ψ (as part of computing f ), and V must check
that P applied f correctly. On the other hand, some cost
seems unavoidable. In fact, it might cost even more if
the implementation worked in Q/p directly: arithmetic
is roughly twice as expensive using the Q/p representa-
tion versus the Z/p representation.

C Case study: branch and inequalities
Below, we will give constraints for a computation that
branches based on a less-than test. (This will instantiate
step C3 for the case study in Section 4.2.) Most of the
work is in representing the less-than test; we do so with
range constraints that take apart a number and interro-
gate its bits.

C.1 Order comparisons over the integers

Preliminaries

We will assume that the programmer or compiler has ap-
plied steps C1 and C2 to bound the inputs, x1 and x2,
and to choose F; thus, their difference is bounded too.
Specifically, we assume x1 − x2 ∈ U ⊂ [−2N−1, 2N−1),
F = Z/p for some p > 2N , and θ(x) = x mod p. (See
Appendix B.1.)

With these restrictions, x1 < x2 if and only if x1−x2 ∈
[−2N−1, 0), which holds if and only if θ(x1) − θ(x2) ∈
[p − 2N−1, p); the second equivalence follows because
θ is 1-to-1 and preserves addition and multiplication, as
shown in the previous appendix.

Step C3

To instantiate step C3, we write a set of constraints, C<:7

C< =



B0(1− B0) = 0,
B1(2− B1) = 0,

...
BN−2(2N−2 − BN−2) = 0,

θ(X1)− θ(X2)− (p− 2N−1)−
∑N−2

i=0 Bi = 0


Lemma C.1. C< is satisfiable if and only if θ(x1) −
θ(x2) ∈ [p− 2N−1, p).

Proof. Assume θ(x1)− θ(x2) ∈ [p− 2N−1, p). Let X3 =
θ(x1)− θ(x2)− (p−2N−1). Observe that X3 ∈ [0, 2N−1),
so X3’s binary representation has bits z0, z1, . . . , zN−2.
Now, set Bi = zi · 2i for i ∈ {0, 1, . . . , N − 2}. This will
satisfy all but the last constraint because Bi is set equal
to either 0 or 2i. And the last constraint is satisfied from
the definition of X3 and because we set the {Bi} so that∑N−2

i=0 Bi = X3. For the other direction, if the constraints
are satisfiable, then θ(x1)−θ(x2) = p−2N−1 +

∑N−2
i=0 Bi,

where the {Bi} are powers of 2, or 0. This means that
θ(x1)− θ(x2) ∈ [p− 2N−1, p).

Corollary C.2. For x1, x2 as restricted above, C< is satis-
fiable if and only if x1 < x2.

In other words, assuming the input restrictions, C< is
equivalent to the logical test of < over Z.
7Step C3 in the body text (§4) calls for “equivalent” constraints, but the
definition of “equivalent” in Section 2.1 presumes a designated output
variable, which the constraints for logical tests do not have. However,
one can extend the definition of “equivalent” to logical tests.
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C.2 Order comparisons over the rationals

When dealing with the rationals, extra preliminary work
is required to apply step C3; the core reason is that each
element in Q/p has multiple representations (recall that
Q/p is isomorphic to Z/p).

Preliminaries

We assume that the programmer or compiler has ap-
plied steps C1 and C2 to restrict the inputs, x1 and x2,
so that x1 − x2 ∈ U, for U = {a/b : |a| < 2Na , b ∈
{1, 2, 22, . . . , 2Nb}}. Similarly, we assume that F is Q/p,
p is chosen according to Lemma B.2, and θ(a/b) =
(a mod p, b mod p). (See Appendix B.2.)

At this point, we need the x1 < x2 test to be in a form
suitable for representation in Q/p. Observe that x1 < x2
if and only if x1 − x2 ∈ S = {a/b : − 2Na ≤ a <
0, b ∈ {1, 2, 22, . . . , 2Nb}}, which holds if and only if
θ(x1) − θ(x2) ∈ θ(S); as with the integers case, the sec-
ond biconditional follows because θ is 1-to-1, and pre-
serves addition and multiplication. However, we wish to
represent this condition in a way that explicitly refers to
the representation of θ(x1)− θ(x2).

Claim C.3. θ(x1) − θ(x2) ∈ θ(S) if and only if the
numerator in the canonical representation (see Defini-
tion B.1) of θ(x1)− θ(x2) is contained in [p− 2Na , p).

Proof. We will use the definition of θ−1 in the previ-
ous appendix. Let e = θ(x1) − θ(x2). If e ∈ θ(S),
then θ−1(e) = a/b, where a ∈ [−2Na , 0) and b ∈
{1, 2, 22, . . . , 2Nb}. Thus, θ(a/b) = (p + a, b), where
p + a ∈ [p − 2Na , p), and θ(a/b) = θ(θ−1(e)) ∼ e, so e
has a canonical representation of the required form. On
the other hand, if e ∼ (a, b), where a ∈ [p− 2Na , p), then
θ−1(e) = (a− p)/b ∈ S, so e ∼ θ(θ−1(e)) ∈ θ(S).

Step C3

We instantiate step C3 with the following constraints C<:

C< =



A0((1, 1)− A0) = (0, 1),
A1((2, 1)− A1) = (0, 1),
...

...
ANa−1((2Na−1, 1)− ANa−1) = (0, 1),

A− (p− 2Na , 1)−
∑Na−1

i=0 Ai = (0, 1),

B0((1, 1)− B0) = (0, 1),
B1((1, 1)− B1) = (0, 1),
...

...
BNb((1, 1)− BNb) = (0, 1),∑Nb

i=0 Bi − (1, 1) = (0, 1),

B−
∑Nb

i=0 Bi · (1, 2i) = (0, 1),

θ(X1)− θ(X2)− A · B = (0, 1)



Lemma C.4. C< is satisfiable if and only if the numer-
ator in the canonical representation (see Definition B.1)
of θ(x1)− θ(x2) is contained in [p− 2Na , p).

Proof. Assume that X3 = θ(x1)− θ(x2) has the required
form (a, b). We have k = log2 b ∈ {0, 1, 2, . . . , Nb} and
a ∈ [p − 2Na , p). Now, take Bk = (1, 1) and all other
Bj = (0, 1); this satisfies all of the Bi constraints, includ-
ing
∑Nb

i=0 Bi−(1, 1) = (0, 1), which requires that exactly
one Bi be equal to (1, 1). For B, take B = (1, b) = (1, 2k),
to satisfy B−

∑Nb
i=0 Bi · (1, 2i) = (0, 1).

Now, let a′ = a− (p−2Na). The binary representation
of a′ has bits z0, z1, . . . , zNa−1. Set Ai = (zi, 1)(2i, 1) for
i ∈ {0, 1, . . . , Na−1}. This will satisfy all of the individ-
ual Ai constraints. And, since

∑Na−1
i=0 Ai = (a′, 1), we can

take A = (a, 1) to satisfy A− (p− 2Na , 1)−
∑Na−1

i=0 Ai =
(0, 1). The remaining constraint is the last one in the
list. It is satisfiable because we took B = (1, b) and
A = (a, 1), giving X3 − (a, 1) · (1, b) = (0, 1).

For the other direction, if the constraints are satis-
fiable, then X3 = θ(x1) − θ(x2) can be written as
(a, 1)(1, b), where b ∈ {1, 2, . . . , 2Nb} and where a =

p − 2Na +
∑Na−1

i=0 zi2i, for zi ∈ {0, 1}. This implies that
a ∈ [p− 2Na , p).

In analogy with the integers case, notice that the
lemma, together with the reasoning in “Preliminaries”,
implies the following corollary.

Corollary C.5. If the input restrictions are met, then C<
is satisfiable if and only if x1 < x2.

That is, C< is equivalent to < over Q.

C.3 Branching

We now return to the case study in Section 4.2. We will
abstract the domain (Z/p or Q/p): when we write 0 in
constraints below, it denotes the additive identity, which
is (0, 1) in Q/p, and when we write 1, it denotes the
multiplicative identity, which is (1, 1) in Q/p. Recall the
computation Ψ and the constraints CΨ (Figure 3):

if (X1 < X2)

Y = 3

else

Y = 4

CΨ =


M{C<},
M(Y − 3) = 0,
(1−M){C>=},
(1−M)(Y − 4) = 0


We now argue that CΨ is equivalent to Ψ. (The definition
of “equivalent” is given in Section 2.1.)

Lemma C.6. The constraints CΨ(X1 = x1, X2 = x2, Y =
y) are satisfiable if and only if y = Ψ(x1, x2).

Proof. Assume C = CΨ(X1 = x1, X2 = x2, Y = y) is sat-
isfiable. Since C< and C>= cannot be simultaneously sat-
isfiable (that would imply opposing logical conditions),
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then M = 0 or 1 − M = 0. If 1 − M = 0, then y = 3,
since we are given that the constraint M(Y − 3) = 0 is
satisfiable when Y = y. Moreover, C< must be satisfiable,
implying that x1 < x2 (see Corollaries C.2 and C.5). On
the other hand, by analogous reasoning, if M = 0, then
y = 4, C>= is satisfiable, and x1 ≥ x2. Thus, we have
two cases: (1) x1 < x2 and y = 3 or (2) x1 ≥ x2 and
y = 4. But this means that y = Ψ(x1, x2) for all x1, x2 in
the permitted input.

Now assume that y = Ψ(x1, x2). If x1 < x2, then y = 3.
Take M = 1 to satisfy the constraints (1−M){C>=} = 0
and (1−M)(Y−4) = 0. Also, M(Y−3) = 0 is satisfied,
because y = 3. Last, C< can be satisfied, because x1 < x2.
Thus, the constraints are satisfiable if x1 < x2. Similar
reasoning establishes that the constraints are satisfiable
if x1 ≥ x2.

We can generalize the computation Ψ. For instance,
let Ψ1, Ψ2 be sub-computations, which we abbreviate in
code as comp1 and comp2. Let CΨ1 and CΨ2 denote the
constraints that are equivalent to Ψ1 and Ψ2, and rename
the distinguished output variables in CΨ1 and CΨ2 to be
Y1 and Y2, respectively. Below, Ψ and CΨ are equivalent:

Ψ :

if (X1 < X2)

Y = comp1

else

Y = comp2

CΨ =



M{C<},
M{CΨ1},
M(Y − Y1) = 0,
(1−M){C>=},
(1−M){CΨ2},
(1−M)(Y − Y2) = 0,


The reasoning that establishes the equivalence is very

similar to the proof of Lemma C.6. (The differences are
as follows. In the forward direction, take M = 1. Then,
since Y = y and M(Y − Y1) is satisfied, Y1 = y; mean-
while, CΨ1(Y1 = y, X1 = x1, X2 = x2) must be satisfied,
which implies y = Ψ1(x1, x2) and hence y = Ψ(x1, x2).
In the reverse direction, take x1 < x2. Then we have
y = Ψ1(x1, x2). But this implies that when Y1 = y, we
can satisfy CΨ1 , so set Y1 = y. Furthermore, set Y = y,
and we thus satisfy M(Y−Y1) and hence all constraints.)

We can generalize further. First, the logical test in the
“if” can be an arbitrary test constructed from ==, !=, &&,
||, >, >=, <, <=; in this case, we must also construct the
negation of the test (just as we need constraints that rep-
resent both C< and C>=). Second, we need not capture the
result of the conditional in Y; we can assign the result to
an intermediate variable Z. In that case, we would replace
the constraints M(Y−Y1) = 0 and (1−M)(Y−Y2) = 0
with M(Z−Y1) and (1−M)(Z−Y2), respectively, and of
course we would need other constraints that capture the
flow from Z to the ultimate output, Y .

D Program constructs and costs
This appendix describes further program constructs; as
with the case study, the work here corresponds to step C3
in our framework. However, in this appendix, we will not
delve into as much detail as in the previous appendices;
a more precise syntax and semantics is future work. Be-
low, we describe how we map program constructs to con-
straints and then briefly consider the costs of doing so.

D.1 Program constructs

Aside from order comparisons, the computations and
constraints below are independent of the domain of the
computation; as in Appendix C.3, 0 and 1 denote the ad-
ditive and multiplicative identities in the field in question.

Tests

==. Consider the fragment (comp1) == (comp2),
where comp1 and comp2 are computations Ψ1 and Ψ2.
Renaming the output variables in Ψ1 and Ψ2 to be Y1
and Y2, respectively, we can represent the fragment with
the constraint Y1 − Y2 = 0.
!=. Consider the program fragment Z1 != Z2. An

equivalent constraint is M · (Z1 − Z2)− 1 = 0, where M
is a new auxiliary variable. This constraint is satisfiable
if and only if Z1−Z2 has a multiplicative inverse; that is,
it is satisfiable if and only if Z1 − Z2 6= 0, or Z1 6= Z2.
As above, we can represent (comp1) != (comp2); the
constraint would be M · (Y1 − Y2)− 1 = 0.
<, <=, >, >=. Appendix C described in detail the

constraints that represent <. A similar approach ap-
plies for the other three order comparisons. For exam-
ple, for X1 <= X2 over the rationals, we want to en-
force that the canonical numerator (see Definition B.1)
of X1 − X2 ∈ [p − 2Na , p) ∪ {0}. To do so, we modify
C< in Appendix C.2 as follows. First, we add a constraint
A′0(A′0 − (1, 1)) = (0, 1). Second, we change the A con-
straint from

A− (p− 2Na , 1)−
Na−1∑
i=0

Ai = (0, 1)

to

A− (p− 2Na , 1)−
Na−1∑
i=0

Ai − A′0 = (0, 1).

Composing tests into expressions

To compose logical expressions, we provide && and ||.
We do not provide logical negation explicitly, but our
computational model includes inverses for all tests (for
example, == and !=), so the programmer or compiler can
use DeMorgan’s laws to write the negation of any logical
expression in terms of && and ||.
||. Consider the expression (cond1) || (cond2),

and let C1 and C2 be the constraints that are equivalent to
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cond1 and cond2 respectively. The expression is equiv-
alent to the following constraints, where M1, M2 are new
variables:

C|| =

 (M1 − 1)(M2 − 1) = 0,
M1{C1},
M2{C2}


We now argue that C|| is equivalent to the original ex-
pression. If cond1 holds, then C1 is satisfiable; choose
M1 = 1 and M2 = 0 to satisfy all constraints. Note that
if cond2 also holds, then setting M2 = 1 also works, but
the prover might wish to avoid “executing” (i.e., finding
a satisfying assignment for) C2. On the other hand, if C||
is satisfiable, then M1 = 1 or M2 = 1, or both. If M1 = 1,
then C1 is satisfied, which implies that cond1 holds. The
identical reasoning applies if M2 = 1.
&&. To express (cond1) && (cond2), the program-

mer simply includes C1 and C2.

Conditionals

We covered conditional branching in detail in Ap-
pendix C.3. Below we describe two other conditional
constructs, EQUALS-ZERO and NOT-EQUALS-ZERO, that
are useful as “type casts” from integers to 0-1 values.

NOT-EQUALS-ZERO. The computation Ψ is
Y = (X != 0) ? 1 : 0, and it can be represented
with the following constraints:

CNOT-EQUALS-ZERO =

{
X ·M − Y = 0,
(1− Y) · X = 0

}
.

One can verify by inspection that CNOT-EQUALS-ZERO(Y =
y, X = x) is satisfiable if and only if y = Ψ(x). Note that
we could implement NOT-EQUALS-ZERO by using a con-
ditional branch (see Appendix C.3) together with a !=

test (see above). However, relative to that option, the con-
straints above are more concise (fewer constraints, fewer
variables). They are also more concise than the represen-
tation given by Cormode et al. [21]. Roughly speaking,
Cormode et al. represent NOT-EQUALS-ZERO with a con-
straint like Xp−1 − Y = 0, where p is the modulus of
Z/p (the approach works because Fermat’s Little Theo-
rem says that for any non-zero X, Xp−1 ≡ 1 (mod p));
this approach requires log p intermediate variables.

EQUALS-ZERO. This computation is the inverse of the
previous; the constraint representation of CEQUALS-ZERO is
the same as CNOT-EQUALS-ZERO but with Y replaced by 1−Y .

D.2 Costs

As mentioned in Section 4.2, there are two main costs of
the constructs above. First, the order comparisons require
a variable and a constraint for each bit position, Second,
the constraints for conditional branching and || appear
to be degree-3 or higher—notice the M{C} notation in

these constructs—but must be reduced to be degree-2, as
required by the protocol (see Sections 2.1–2.2). Below,
we describe this reduction and its costs.

We will start with the degree-3 case and then
generalize. Let C be a constraint set over variables
{Z1, . . . , Zn, M}, and let C have a degree-3 constraint,
Q(Z1, . . . , Zn, M). Q has the form R(M) · S(Z1, . . . , Zn),
where R(M) is M or (1−M); this follows because higher-
degree constraints only ever emerge from multiplication
by an auxiliary variable. We reduce Q by constructing a
C′ that is the same as C except that Q is replaced with the
following two constraints, using a new variable M′:

M′ − S(Z1, . . . , Zn) = 0,
R(M) ·M′ = 0.

Claim D.1. C is satisfiable if and only if C′ is satisfiable.

Proof. Abbreviate Z = Z1, . . . , Zn. Assume C is satisfied
by assignment Z = z, M = m. Use this same setting for
C′. So far, all constraints other than the two new ones
are satisfied in C′. To satisfy the two new ones, set M′ =
S(z). This satisfies the first new constraint. It also satisfies
the second new constraint because either M′ = 0 or M′ 6=
0, in which case S(z) 6= 0, which implies (because C is
satisfied and hence Q is too) that R(m) = 0.

Now assume that C′ is satisfiable with assignment Z =
z, M = m, M′ = m′. In C, set Z = z, M = m. Now, in this
assignment, in C′, R(m) = 0 or m′ = 0. If R(m) = 0,
then Q(z, m) = 0. If m′ = 0, then S(z) = 0, so Q(z, m) =
0 again.

Since applying a single transformation of the kind
above does not change the satisfiability of the resulting
set, we can transform all of the constraints this way, to
make M{C} degree-2. The costs of doing so are as fol-
lows. Each of the χ constraints in C causes us to add
another constraint and a new variable. Thus, if C has s
variables and χ constraints, then our representation of
M{C} has s + χ variables and 2 · χ constraints.

The approach above generalizes to higher degrees.
Higher-degree constraints emerge from nesting of
branches or || operations. If there are k levels of nesting
somewhere in the computation, then the computation’s
constraints have a subset of the form

Cnested = Mk{Mk−1{· · ·M1{C} · · · }}.

(Each of the Mi could also be 1 − Mi.) Then there is a
set of equivalent degree-2 constraints that uses in total
s + k · χ variables and (k + 1) · χ constraints.

The details are as follows. Consider a single constraint
in Cnested; it has the form R(Mk) · · ·R(M2)R(M1)S(Z) =
0, where S(Z) is degree-2. Replace this constraint with
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input:

Xa: a string of size m

Xb: two dimensional matrix of size m x m.

Each row is a string of size m

output:

Y: a vector of size m, where each entry is an

unsigned integer

m-Hamming-distance(Xa, Xb):

for (i = 1; i <= m; i++) {

Y[i] = Hamming-distance(Xa, Xb[i]);

}

unsigned int Hamming-distance(U1, U2):

unsigned int D = 0;

for (i = 1; i <= m; i++) {

D += (U1[i] != U2[i]);

}

return D;

// constraint-friendly version

m-Hamming-distance(Xa, Xb):

unsigned int Za[m];

unsigned int Zd[m][m]; // 0-1 variables

for (pos = 1; pos <= m; pos++) {

Za[pos] = Xa[pos];

}

for (row = 1; row <= m; row++) {

for (pos = 1; pos <= m; pos++) {

Zd[row][pos] =

(Za[pos] - Xb[row][pos] != 0) ? 1 : 0;

}

}

for (row = 1; row <= m; row++) {

Y[row] = Zd[row][1] + ... + Zd[row][m];

}

Figure 15—Pseudocode for m-Hamming distance computation, presented two ways. The second presentation permits a more natural
translation to constraints (see Figure 16).

the following ones, to form C′nested:

M′0 − S(Z) = 0,
M′1 − R(M1) ·M′0 = 0,
M′2 − R(M2) ·M′1 = 0,

...
M′k−1 − R(Mk−1) ·M′k−2 = 0,
R(Mk) ·M′k−1 = 0.

The proof that C′nested and Cnested are equivalent is similar
to the proof of Claim D.1 and is omitted for the sake
of brevity. Observe that this construction introduces, per
constraint in C, k new variables and k new constraints,
leading to the costs stated above.

E Evaluation benchmarks
This appendix describes some of the benchmark compu-
tations from Section 6 and reports microbenchmarks to
quantify our cost model (Figure 2).

E.1 Benchmark computations

Below, we cover in detail m-Hamming distance and bi-
section method; the other benchmark computations in
Section 6 (Figure 5) are described elsewhere [45].

m-Hamming distance

Recall that the Hamming distance between two strings of
the same length is the number of positions at which they
differ. We define the m-Hamming distance computation
as follows. The input is a string, xa, of length m, and there
is also a predefined set of m strings, xb; the computation
is to find the Hamming distance between the input string
and every string in the predefined set (i.e., the output is



Z(a)
i − X(a)

i = 0 (1 ≤ i ≤ m)

(Z(a)
j − X(b)

i,j ) ·Mi,j − Z(d)
i,j = 0 (1 ≤ i, j ≤ m)

(1− Z(d)
i,j ) · (Z(a)

j − X(b)
i,j ) = 0 (1 ≤ i, j ≤ m)

Yi −
∑m

j=1 Z(d)
i,j = 0 (1 ≤ i ≤ m)


Figure 16—Constraints for the m-Hamming distance computa-
tion. The pseudocode for this computation is in Figure 15.

a vector of length m containing integers). This formu-
lation makes the work super-linear (motivating the use
of GINGER) and is similar to a suggested use of Apache
Mahout, namely computing “the pairwise similarity be-
tween all documents . . . in a corpus”.8

Figure 15 gives the pseudocode for the computation, in
two forms. Notice that in the second form, there are three
groups of “loops”; each group corresponds to an array of
constraints of a given type. The three types are input han-
dling, NOT-EQUALS-ZERO (see the previous appendix),
and a summation at the end. The constraints themselves
are listed in Figure 16.

We now describe a specialized PCP for this computa-
tion (such tailoring is discussed in Section 5 and [45]).
Because the input variables {X} will be assigned based
on the user’s input (§2.1), the only degree-2 terms in the
constraints have the form Z(a)

j · Mi,j and Z(d)
i,j · Z

(a)
j . Our

linear PCP captures these terms. Specifically, the PCP π
is given by a vector w of the following form:

(Z(a), M, Z(d), Z(a) ⊗M, Z(d) ⊗ Z(a)).

8https://cwiki.apache.org/confluence/display/MAHOUT/

Algorithms
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Z(a)
1,j − X(a)

j = (0, 1) (1 ≤ j ≤ m)

Z(b)
1,j − X(b)

j = (0, 1) (1 ≤ j ≤ m)

Z(c)
i − F((1, 2) · (Z(a)

i + Z(b)
i )) = (0, 1) (1 ≤ i ≤ L)

Ci,is>, constraints for a sub-computation: “Mi = (Z(c)
i > (0, 1)) ? (1, 1) : (0, 1)” (1 ≤ i ≤ L)

Z(a)
i+1,j −Mi · Z(a)

i,j − (1−Mi) · (1, 2) · (Z(a)
i,j + Z(b)

i,j ) = (0, 1) (1 ≤ i < L, 1 ≤ j ≤ m)

Z(b)
i+1,j − (1−Mi) · Z(b)

i,j −Mi · (1, 2) · (Z(a)
i,j + Z(b)

i,j ) = (0, 1) (1 ≤ i < L, 1 ≤ j ≤ m)

Y(a)
j −ML · Z(a)

L,j − (1−ML) · (1, 2) · (Z(a)
L,j + Z(b)

L,j ) = (0, 1) (1 ≤ j ≤ m)

Y(b)
j − (1−ML) · Z(b)

L,j −ML · (1, 2) · (Z(a)
L,j + Z(b)

L,j ) = (0, 1) (1 ≤ j ≤ m)


Figure 17—Constraints for the bisection method computation, as output by our compiler; the SFDL source code is in Figure 18.
The constraints Ci,is> are not unpacked above; they use inequality comparisons (see Appendix C).

If the PCP is correct, the setting of Z(a), M, Z(d) in w
satisfies the constraints. (Here, Z(a) refers to all Z(a)

j , M

refers to all Mi,j, and Z(d) refers to all Z(d)
i,j , for 1 ≤ i, j ≤

m.) The size of this encoding is n = 2m3 + 2m2 + m
elements.

In formulating the PCP tests, let π(1), . . . ,π(5) denote
the linear functions that correspond to the 5 components
of w above. The first PCP tests are two quadratic correc-
tion tests (since there are two outer products):

π(1)(q1) · π(2)(q2)
?
= π(4)(q1 ⊗ q2 + q3)− π(4)(q3)

π(1)(q4) · π(3)(q5)
?
= π(5)(q4 ⊗ q5 + q6)− π(5)(q6),

where q1, q4 ∈R Fm q2, q5 ∈R Fm2
q3, q6 ∈R Fm3

.

The final PCP test is a circuit test. Recall that to test a sat-
isfying assignment, V constructs a polynomial, Q(·), as
a random linear combination of its constraints (see [45,
§2]). This Q(·) can be written in the following form:

Q
(
Z(a), M, Z(d)

)
=

γ0 + 〈γ1, Z(a)〉+ 〈γ2, M〉+ 〈γ3, Z(d)〉+
〈γ4, Z(a) ⊗M〉+ 〈γ5, Z(d) ⊗ Z(a)〉.

(For similar constructions, see [45, §2 and AppendixD].)
The circuit test, then, is to construct self-correcting
queries from the γi (for instance, qs and γi+qs), to supply
the self-correcting γi to π(i), and to check that the sum of
the results equals −γ0.

In our experiments, the input “characters” (in the
“strings”) are 32-bit unsigned quantities (see Figure 5),
and we take m = 100. Thus, the number of constraints
is 2m2 + 2m = 20,200. Also, the number of variables is
s = 2m2 + m (per Figure 5), which is 20,100 (as stated in
Figure 9). Note that n, the size of the encoding, is O(m3);
with the standard (non-tailored) encoding, n would be
O(s2) = O(m4).

type Y = struct {float[m] Ya, float[m] Yb};

function Y output (float[m] Xa, float[m] Xb) {

var int i; var int j;

var float[m] Za; var float[m] Zb;

Za = Xa; Zb = Xb;

for (i = 0 to L-1) {

if (fAtMidpt(Za, Zb) > 0) {

for (j = 0 to m-1) {

Za[j] = 1/2*(Za[j] + Zb[j]);

}

} else {

for (j = 0 to m-1) {

Za[j] = 1/2*(Za[j] + Zb[j]);

}

}

}

output.Ya = Za; output.Yb = Zb;

}

Figure 18—Partial SFDL code for the bisection method ap-
plied to a degree-2 polynomial, F, in m variables. The function
fAtMidpt(a, b) evaluates the polynomial F at the midpoint of
a and b.

Root finding by bisection

This computation identifies roots of a function. Root-
finding of course has many uses (in optimization, signal
processing, etc.). The “bisection method”, as we call it,
finds a root of a continuous function in a given interval,
provided the interval brackets a root. The method repeat-
edly bisects the search interval, searching in one of the
two subintervals. As the number of bisections L → ∞,
the search interval is guaranteed to converge to a root of
the function inside the given interval.

Our benchmark computation applies this algorithm to
find roots of a degree-2 polynomial in m variables, and
we assume that the verifier knows the endpoints of the
search space. Note that this is a minor restriction since
the computation can be modified slightly, with little ad-
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ditional cost, to have the prover supply those endpoints
(say by randomly evaluating the polynomial to identify
valid endpoints). Figure 17 depicts the constraints pro-
duced by our compiler; the SFDL source code is depicted
in Figure 18. The float and int types in our SFDL are
an extension to Fairplay’s SFDL [39].

In our experiments, we take the number of iterations,
L, to be 8. The inputs are vectors of m = 25 floating-
point numbers (using our primitive representation) with
Na = 32 and Nb = 5 (see Section 4.1). Thus, we can
bound the computation to the subset U = {a/b : |a| <
2100, b ∈ {1, 2, 22, . . . , 230}}. This allows us to imple-
ment Ci,is> with 145 constraints and 140 variables (in-
cluding the {Mi}). Adding up the constraints and vari-
ables in Figure 17, we get 1618 constraints and 1528
variables (as stated in Figure 9).

E.2 Microbenchmarks

To quantify the parameters in the cost model, we run a
program that executes each operation (encryption, de-
cryption, etc.) at least 5000 times using 1024-bit keys
with inputs chosen from different finite fields. Here are
the mean execution times of the operations (standard de-
viations are within 5% of the means):

field size e d h f c

128 bits 72 µs 170 µs 190 µs 18 ns 69 ns
192 bits 85 µs 170 µs 280 µs 45 ns 69 ns
320 bits 280 µs 170 µs 560 µs 180 ns 69 ns
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