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Abstract

Polynomial selection is very important in number field sieve. If the yield of a pair
of polynomials is closely correlated with the coefficients of the polynomials, we can
select polynomials by checking the coefficients first. This can speed up the selection
of good polynomials. In this paper, we aim to study the correlation between the
polynomial coefficients and the yield of the polynomials. By theoretical analysis
and experiments, we find that a polynomial with the ending coefficient containing
more small primes is usually better in yield than the one whose ending coefficient
contains less. One advantage of the ending coefficient over the leading coefficient
is that the ending coefficient is bigger and can contain more small primes in root
optimizing stage. The number of real roots can be determined by only the last two
or three coefficients of the polynomial if it is skewed. All these observations can be
used to speed up the search of good polynomials for the number filed sieve.

Key words: cryptography, integer factorization, number field sieve, polynomial
selection, coefficients

1 Introduction

The general number field sieve[1,2] is known as the asymtotically fastest al-
gorithm for factoring large integers. It is based on the observation that if
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a2 = b2modN and a 6= b, gcd(a− b,N) will give a proper factor of N with at
least a half chance. The number field sieve starts by choosing two irreducible
and coprime polynomials f(x) and g(x) over Z which share a common root
m modulo N . Let F (x, y) = yd1f(x/y) and G(x, y) = yd2g(x/y) be the ho-
mogenized polynomials corresponding to f(x) and g(x) respectively, where d1
and d2 are the degree of f(x) and g(x) respectively. We want to find many
coprime pairs (a, b) ∈ Z2 such that the polynomials values F (a, b) and G(a, b)
are simultaneously smooth with respect to some upper bound B and the pair
(a, b) is called a relation. An integer is smooth with respect to bound B (or
B-smooth) if none of its prime factors are larger than B. If we find enough
number of relations, by finding linear dependency[3,4] we can construct:∏

(a,b)∈S
(a− bα1) = β2

1 , where f(α1) = 0, β1 ∈ Z[α1]

∏
(a,b)∈S

(a− bα2) = β2
2 , where g(α2) = 0, β2 ∈ Z[α2].

As there exist maps such that ϕ1(α1) = m mod N and ϕ2(α2) = m mod N ,
we have ϕ1(β

2
1) = ϕ2(β

2
2). We can obtain the square root β1 and β2 from β2

1

and β2
2 respectively using method in [5]. If we let ϕ1(β1) = x and ϕ2(β2) = y,

then y2 = x2modN , and we have constructed a congruent squares and so may
attempt to factor N by computing gcd(x− y,N).

In order to obtain enough relations, selecting a polynomial with high prob-
ability of being smooth is very important. A good polynomial not only can
decrease sieving time, but also can reduce the expected matrix size[6]. The
polynomial selection is now a hot research area. Based on base-m method and
with translation and rotation technique[6], non-skewed or skewed polynomial
can be constructed, where one polynomial f(x) is nonlinear and the other
g(x) is monic and linear. If the linear polynomial is nonmonic, the size of
nonlinear polynomial can be greatly reduced[7,1]. The two methods above are
called linear method. Montgomery[8] proposed the nonlinear method, where
the two polynomials are both nonlinear. Recently several papers[9–11] address
nonlinear polynomials construction problem.

The concept of evolutionary cryptography was proposed in [12] and its idea was
used to design cryptographic functions[13,14] or cryptographic algorithm[15].
The capabilities of evolutionary cryptosystem against linear and differential
cryptanalysis were given in [16,17] respectively. To search for good polynomi-
als for number field sieve with evolutionary computing, we need to solve the
difficulty that the space of candidate polynomials is too huge. With the idea
similar to [13], we study if there exists any correlation between the polyno-
mial coefficients and the yield of the polynomials. If they are closely related,
we can search for polynomials by checking the coefficients first before calcu-
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lating its alpha value[6]. Therefore we can search for good polynomials in a
smaller space. This would speed up the selection of polynomials. By theoret-
ical analysis and experiments, we find that the yield of polynomial is closely
related to the coefficients of the polynomial. The polynomial with ending co-
efficient containing more small primes usually have better yields. We also find
that the number of real roots can be determined by partial coefficients of the
polynomial if it is skewed.

The rest of the paper is organized as follows. In Section 2 we review elements
related to the yield of a polynomial. In Section 3 we recite the number of real
roots of a rational polynomial. In Section 4 we analyze the effect of the ending
coefficient and leading coefficient on the yield respectively. In Section 5 we
analyze the effects of coefficients on the number of real roots and on the yield.
Finally we make a conclusion in Section 6.

2 Elements related to smoothness of a polynomial

An integer is said to be B-smooth if the integer can be factored into factors
bounded by B. By Dickman function, given the smooth bound B, the less
the integer is, the more likely the integer is B-smooth. In number field sieve,
we want the homogenous form F (x, y) = adx

d + · · · + a1xy
d−1 + a0y

d of the
polynomial f(x) = adx

d + · · ·+ a1x+ a0 to be small. In [6], the size and root
property are used to describe the quantity. By size we refer to the magnitude
of the values taken by F (x, y). By root property we refer to the distribution
of the roots of F (x, y) modulo small pk, for p prime and k ≥ 1. If F (x, y) has
many roots modulo small pk, values taken by F (x, y) ”behave” as if they are
smaller than they actually are. That is, on average, the likelihood of F (x, y)
values being smooth is increased. It has always been well understood that size
affects the yield of F (x, y). In [18], the number of real roots, the order of Galois
group of f1(x)f2(x) were taken into account. By the number of real roots, if
a/b is near a real root, the value F (a, b) will be small and will be smooth
with high chance. By the order of Galois group of f1f2, it is better to chose
polynomial for which the order of Galois group of f1f2 are small, because they
provide more free relations.

Obviously, if the coefficients of f(x) are small, F (x, y) would have good size
property. In order to obtain polynomial with small coefficients, we can search
extensively, or let the linear polynomial be nonmonic as suggested in [1,7]. In
order to obtain good root property, usually it is required that the leading coef-
ficient contains many small prime as its factors[6]. The paper[19,20] discussed
other ways to improve root property. As for the number of the real roots, it
is left as random.
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3 The number of real roots of a polynomial

In [21,22],the number of real roots or roots distribution of a rational polyno-
mial is given by CDS(complete discrimination system).

In degree 3, take polynomial f(x) = ax3 + bx2 + cx+ d as example. The CDS
is

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2.

The root distribution is as follows.

(1) If ∆ > 0, the equation has three distinct real roots.
(2) If ∆ = 0, the equation has a multiple root and all its roots are real.
(3) If ∆ < 0, the equation has one real root and two nonreal complex conju-

gate roots.

In degree 4, take f(x) = a4x
4 + a3x

3 + a2x
2 + a1x + a0, (a4 6= 0) as example.

Its CDS is as follows:
D2 = 3a23 − 8a2a4,

D3 = 16a24a0a2 − 18a24a
2
1 − 4a4a

3
2 + 14a4a1a3a2 − 6a4a0a

2
3 + a22a

2
3 − 3a1a

3
3,

D4 = 256a34a
3
0−27a24a

4
1−192a24a1a

2
0a3−27a43a

2
0−6a4a

2
3a0a

2
1+a22a

2
1a

2
3−4a4a

3
2a

2
1+

18a2a0a
3
3a1+144a4a2a

2
0a

2
3−80a4a

2
2a0a3a1+18a4a2a

3
1a3−4a32a0a

2
3−4a33a

3
1+

16a4a
4
2a0 − 128a24a

2
2a

2
0 + 144a24a2a0a

2
1,

E = 8a24a1 + a33 − 4a4a3a2.

The numbers of real and imaginary roots and multiplicities of repeated roots
in all cases are given as follows:

(1) D4 > 0
∧
D3 > 0

∧
D2 > 0 {1, 1, 1, 1},

(2) D4 > 0
∧

(D3 ≤ 0
∨
D2 ≤ 0) {},

(3) D4 < 0 {1, 1},
(4) D4 = 0

∧
D3 > 0 {2, 1, 1},

(5) D4 = 0
∧
D3 < 0 {2},

(6) D4 = 0
∧
D3 = 0

∧
D2 > 0

∧
E = 0 {2, 2},

(7) D4 = 0
∧
D3 = 0

∧
D2 > 0

∧
E 6= 0 {3, 1},

(8) D4 = 0
∧
D3 = 0

∧
D2 < 0 {},

(9) D4 = 0
∧
D3 = 0

∧
D2 = 0 {4},

where the column on the right side describes the situations of the roots. For
example, {1, 1, 1, 1} means four real simple roots and {2, 1, 1} means one real
double root plus two real simple roots.

In degree 5, take f(x) = x5 + px3 + qx2 + rx + s as example. Its CDS is as
follows:

D2 = −p

4



D3 = 40rp− 12p3 − 45q2

D4 = 12p4r−4p3q2+117prq2−88r2p2−40qp2s+125ps2−27q4−300qrs+160r3

D5 = −1600qsr3−3750ps3q+2000ps2r2−4p3q2r2+16p3q3s−900rs2p3+825q2p2s2+

144pq2r3+2250q2rs2+16p4r3+108p5s2−128r4p2−27q4r2+108q5s+256r5+

3125s4 − 72p4rsq + 560r2p2sq − 630prq3s

E2 = 160r2p3+900q2r2−48rp5+60q2p2r+1500rpsq+16q2p4−1100qp3s+625s2p2−3375q3s

F2 = 3q2 − 8rp

The numbers of real and imaginary roots and multiplicities of repeated roots
of polynomial in all cases are given as follows:

(1) D5 > 0
∧
D4 > 0

∧
D3 > 0

∧
D2 > 0 {1, 1, 1, 1, 1}

(2) D5 > 0
∧

(D4 ≤ 0
∨
D3 ≤ 0

∨
D2 ≤ 0) {1}

(3) D5 < 0 {1, 1, 1}
(4) D5 = 0

∧
D4 > 0 {2, 1, 1, 1}

(5) D5 = 0
∧
D4 < 0 {2, 1}

(6) D5 = 0
∧
D4 = 0

∧
D3 > 0

∧
E2 6= 0 {2, 2, 1}

(7) D5 = 0
∧
D4 = 0

∧
D3 > 0

∧
E2 = 0 {3, 1, 1}

(8) D5 = 0
∧
D4 = 0

∧
D3 < 0

∧
E2 6= 0 {1}

(9) D5 = 0
∧
D4 = 0

∧
D3 < 0

∧
E2 = 0 {3}

(10) D5 = 0
∧
D4 = 0

∧
D3 = 0

∧
D2 6= 0

∧
F2 6= 0 {3, 2}

(11) D5 = 0
∧
D4 = 0

∧
D3 = 0

∧
D2 6= 0

∧
F2 = 0 {4, 1}

(12) D5 = 0
∧
D4 = 0

∧
D3 = 0

∧
D2 = 0 {5}

4 The yield and the ending coefficient

Let f(x) = adx
d + · · · + a1x + a0 be a nonlinear polynomial. Let F (x, y) =

adx
d + · · · + a1xy

d−1 + a0y
d be the homogenous form of polynomial f(x). Let

pq be the number of roots of the homogeneous polynomial F modulo p and let

α(F ) =
∑

small prime p

(1− pq
p

p+ 1
)

log p

p− 1
.

In order to make α(F ) small, we can increase the value of pq. Equation
F (x, y) = 0 mod p has three kind of roots.

(1) If p|b and p|ad, the pair (a,b) is called the projective root.
(2) If p|a and p|a0, the pair (a,b) is called the zero root.
(3) The rest of pairs (a,b) satisfying F (a, b) = 0mod p are called ordinary

roots, or simply roots.
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Correspondingly, there are three methods to increase the value of pq. The first
method is already known that the leading coefficient ad containing many small
primes can increase the number of projective roots. For example, the leading
coefficient usually is the multiple of 60[7]. As for the ordinary roots,we refer
to [19,20].We propose the third method that if the ending coefficient contains
many small primes, the number of zero roots can be increased. As f(x) is
skewed with ad << a0, a0 can contain more small primes than ad can. The
number of pair (a,b) satisfying second case would be much more than the one
in the first case, especially after the optimization of root properties.

In order to check whether the above analysis is right, we do many experiments.
In our experiments, we let N be an integer of about 30 digits. In Experiment
1, the polynomials are generated by base-m method as described in [6], but
without the optimization step.

Experiment 1:

(1) Generate polynomial as [6]. For each leading coefficient ad below a bound,
we examine

m ≈ b(N
ad

)
1
d c.

Check the magnitude of ad−1, and of ad−2 compared to m, by computing
the integral and non-integral parts of

N − admd

md−1 = ad−1 +
ad−2
m

+O(m−2).

If these are sufficiently small, accept ad and m, and we get a polynomial
f(x) by the expansion of N in base m and with leading coefficient ad.

(2) Collect relations. For each above polynomial, skew the sieving area with
skewness= d

√
a0
ad

. Randomly choose enough pair of coprime (a,b) in sieving

area and check if they form relations. For each polynomial,we denote the
number of relations by numrel.

(3) For each polynomial, there is a row corresponding to it. It includes the
following items: the number of relations numrel, the number of small
primes contained in ad below a predefined bound, denoted by numad ,
the number of small primes in a0 below a predefined bound, denoted by
numa0 . A file is formed.

(4) Sort the above file in ascending order with numrel as key word. From
the sorted file, we can find the parameter numa0 and numad both are
in ascending order, but not strictly. In order to obtain an obvious im-
pression, we divide the sorted file by rows into many length-equal parts,
each of which contains equal number of rows and calculate the sum of
the parameters numad and numa0 in each part respectively.
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Table 1
The trend of three parameter(256 rows/block)

Block num 1 2 3 4 5 6 7 8 9 10

numad 670 670 718 743 785 771 805 818 959 946

numa0 484 482 451 580 622 702 638 710 784 817

numroot 428 462 442 460 440 494 476 482 498 538

Table 1 lists the sums of numad and numa0 respectively, where the parameters
are as follows. N = 39327284784436337729633( an integer in example 3 [9] ).
The degree of the nonlinear polynomial is 3. Sieving area is 2A×A, where A =
4000, coprime pair (a, b) are chosen randomly from sieving area in a way like
”for(a=-A×s;a< A×s;a+=rand()%6+1) for(b=1;b< A/s;b+=rand()%6+1),

where s = 6

√
a0/a3”. From Table 1 we find that the ending coefficients correlate

with the yields of polynomials as the leading coefficient does. For polynomial
of degree 4 or 5, we get similar results.

For nonmonic linear polynomial generated as suggested in [1,7], we can get
similar results. For nonlinear polynomials as suggested in[9], we don’t do the
experiments. We conjecture the results should be similar.

By the analysis above and the experiments, we have:

Observation 1: Increasing the number of small primes which are contained
in the ending coefficient as factors may increase the yield.

Remark 1: In [6], it is said that computing the ideal decomposition for ideals
corresponding to projective roots requires more effort than those correspond-
ing to non-projective roots. Therefore, increasing zero roots is a better choice.

Remark 2: If the size of N, the integer to be factored, gets larger, the skew-
ness of the polynomial would become larger, and a0 can contain more small
primes than ad can. This can be used in optimization of root properties. The
advantage of ending coefficient over leading coefficient will be more obvious
in term of relation yield.

5 The number of real roots and the coefficients

A polynomial with more real roots are preferable in number field sieve because
if a/b is near a real root, the value F (a, b) will be small and will be smooth
with high possibility. Usually the number of real roots is left as random in
polynomial generation. In [21,22],the number of real roots or roots distribu-
tion of a rational polynomial is given by CDS. From CDS, the number of
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real roots should depends on all coefficients of the polynomial. However, the
polynomial for NFS is not randomly generated. It has many special properties.
For example, it is skewed and usually its first 3 coefficients ad, ad−1 and ad−2
are small compared to m while the size of the rest coefficients is similar to or
bigger than that of m. From this, the ratio abs(ad−3/ad−2) will bigger than
d

√
a0/ad while the ratio abs(a0/a1) is smaller than d

√
a0/ad. Based on all these

features and CDS we can analyze the correlation between the number of real
roots and the coefficients.

In degree 3, from the expression of ∆, the sign of ∆ should depend on the
item −4ac3 or −27a2d2, but not depend on −4b3d since b is usually small. If
the ratio abs(d/c) is not big, the sign of ∆ mainly be determined by −4ac3. If
c is small enough, ∆ > 0, which means the polynomial f(x) has 3 real roots.
Similarly if the ratio abs(d/c) is big, ∆ < 0, which means the polynomial f(x)
has only one real root. In Experiment 2, on about more than a half cases the
polynomial has 1 real root and on less than a half cases the polynomial has
3 real roots, where the ratio abs(d/c) is small and c is negative and small
enough.

In degree 4, from the expression of D4, the exponents of a3, a2, a1 are 4 and the
exponent of a0 is 3. If the polynomial is skewed, the coefficients a1, a0 or the
ratio abs(a0/a1) determine the sign of D4. As the ratio abs(a0/a1) is usually

smaller than 4

√
a0/a4, we have abs(27a24a

4
1) > abs(256a34a

3
0) and D4 < 0 with

large chance. That is, in most case the polynomial has 2 real roots. To obtain
4 real roots, the coefficient a2 should be negative and small enough and the
absolute value of a1 should be of similar size with that of a2. In Experiment 2,
on about 80 percent of cases the polynomial has 2 real roots and on about 20
percent of cases the polynomial has 4 real roots, where the absolute values of
a2 and a1 are of similar size. The case with zero real roots should be avoided.

For degree =5, similarly from the expression of D5, the items 256r5 and 3125s4

determine the sign of D5. If r is small enough the polynomial will have 3 real
roots. It is hard to obtain 5 real roots. In order to avoid the case that there is
only one real roots, to have 3 real roots is a good choice.

The analysis above in case of degree 3 should be useful in choosing polynomial
in nonlinear method, where a polynomial with degree 3 is already enough for
practical purpose.

Experiment 2:

(1) Generate polynomial as step 1 of experiment 1.
(2) Collect relation as step 2 of experiment 1. Denote the number of relation

by numrel.
(3) For each polynomial, there is a row corresponding to it. The row has
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numrel, the number of real roots numroot, and all coefficients as its items.
We form a file now.

(4) Sort the above file in ascending order with numroot as the key word.
From the sorted file, we observe the correlation between numroot and the
polynomial coefficients. In case degree =3, if the coefficients of degree 1
is below some value, there will be 3 real roots for most cases. In case
degree=4, if coefficient of degree 2 is below some value, there will be 4
real roots for most cases. In case degree=5, only a few polynomials have
5 real roots.

(5) Sort the file above in ascending order with numrel as the key word. From
the sorted file, we observe the correlation between numroot and numrel.
We can find numroot is also in ascending order, but not strictly. In order
to obtain an obvious impression, we divide the sorted file by rows into
many length-equal parts, each of which contains equal number of rows
and calculate the sum of the parameters numroot in each part.

Table 1 lists the sum of numroot, where the parameters are the same as in
experiment 1. From Table 1 we find that increasing the number of roots can
increase the yield in degree 3. For degree 4 or 5, we get similar results, but
not strong as the case in degree 3.

For polynomial generated as suggested by Kleinjung in [7], where the linear
polynomial is nonmonic, the results is similar. As for the nonlinear polynomial,
we don’t do the experiments, but we conjecture results should be similar if
the polynomials are skewed.

By the analysis above and the experiments, we have:

Observation 2: The number of real roots can be determined almost only by
the last two or three coefficients of the polynomial.

Remark 3: Usually the number of real roots is left as random. However,
based on Observation 2, we can adjust the value of the related coefficients in
polynomial optimizing stage such that the polynomial have more real roots.
This observation is useful because it was stated that increasing the number of
real roots could increase the yield[18].

6 Conclusion

Studying the correlation between the yield of a polynomial and its coefficients
is important because it take less computation if we can choose polynomial by
checking its coefficients first. In this paper, we study the correlation between
the yield of a polynomial and its coefficients. The theoretical analysis and
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the experiments both show that the ending coefficient containing more small
primes will increase the yield of the polynomial. As the ending coefficient is
much bigger than the leading coefficient, the ending coefficient can contain
more small primes in root optimization step. This is one advantage of ending
coefficient over leading coefficient. And the fact that the number of real roots
can be determined almost only by the last two or three coefficients of the
polynomial is also a necessary consideration in choose polynomial as increasing
the number of real roots can increase the yield of the polynomial pair.
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