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Abstract

Given any Random Access Machine (RAM) Program (think of it as written in a modern programming lan-
guage, such as C) we show how to construct a reusable garbled version of this program where the garbled pro-
gram representation is independent of the running time and only depends on a fixed polynomial in the security
parameter. The above result assumes the existence of key-dependent-secure reusable garbled circuits. Without
assuming key-dependent security, we show how to construct reusable garbled programs where its garbled size is
proportional to the running time of the insecure program times a fixed polynomial in the security parameter. By
utilizing recent result of Goldwasser, Kalai, Popa, Vaikuntanathan, and Zeldovich on reusable garbled circuits in
our construction, we get the first reusable garbled RAM program that has size is proportional to the running time
of the insecure program times a fixed polynomial in the security parameter based on LWE assumption. Further-
more, assuming solely the existence of one-way functions, we construct one-time garbled RAM programs where
its size only depends on fixed polynomial in the security parameter times the program running time. We stress
that we avoid converting the RAM programs into circuits. As an example, our techniques implies the first garbled
binary search program (searching over sorted encrypted data stored in a cloud) which is poly-logarithmic in the
data size instead of linear. All of the above methods enjoy the same non-interactive properties as Yao’s original
garbled circuits.
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1 Introduction

Often times, such as in cloud computation, one party wants to store some data remotely and then have the remote
server perform computations on that data. If the client does not wish to reveal this data or the nature of the com-
putation and the results of the computation to the remote server, then one must resort to using secure computation
methods in order to process this remotely stored data. In other words, suppose two parties want to compute some
program π on their private inputs without revealing to each other (or just one party) anything but the output. The
earliest research in secure two-party computation modeled π as a circuit and was accomplished under Yao’s Garbled
Circuits [37] or the Goldreich-Micali-Wigderson [13] paradigm. Both of these approaches require the program π to
be converted to a circuit. Even the recent work of performing secure computation via fully homomorphic encryp-
tion requires representing the program π as a circuit. However, many algorithms are more naturally and compactly
represented as RAM programs, and converting these into circuits may lead to a huge blowup in program size and
its running time.

Of course, there are known polynomial transformations between time-bounded RAM programs, time-bounded
Turing Machines and circuits [9, 30]: Given a T -time RAM program, [9] shows how one can transform it into a
O(T 3)-time TM, and [30] shows how to transform a T -time TM into circuits of size O(T log T ), which results in
a O(T 3 log T ) blowup. Our work aims at circumventing these transformation costs and executing RAM programs
directly in a private manner. This is especially important for the case of complex real-world RAM programs with
running time that is much larger than the input size. Unrolling these complicated RAM programs with multiple
execution path, recursion, multiple loops, etc. into a circuit makes the circuit size polynomially larger and often
prohibitive.

It should be noted that our work is also important in practical applications where the sizes of the inputs are vastly
different, such as database search, or where multiple queries against the same large data-set must be executed. When
compiling a RAM program into a circuit, the compiled circuit must inherently be able to compute all execution paths
of the RAM program. Thus, the circuit itself must be at least be as large as the input size, which in some applications
may be is exponentially larger than execution path of the insecure solution (e.g. consider a binary search). One
can argue that even if the circuit is large, we can “charge” the large circuit cost to the large input size, but in many
cases this is unacceptable: consider the case where a large data is encrypted and uploaded off-line, such as a large
database, and multiple encrypted queries are made on-line, where the insecure execution path is, for example, poly-
logarithmic in the database size and we do not want to “pay” a circuit size which is even linear in the database
size.

Another approach for secure conversion of RAM programs into circuits is dynamic evaluation: even if the
resulting circuit is large and the total size of the is resulting circuit is prohibitive, one can execute and even compile
the large circuit dynamically and intelligently evaluate only parts of the circuit so as to “prune off” dead paths
(e.g. short-circuiting techniques) to make the evaluation efficient, even in the case of large inputs. However,
until now it was not known how to convert RAM programs into circuits which result in an efficient secure non-
interactive execution in a way that does not reveal the execution path of the compiled RAM program. Naturally,
using interaction, one can use the Goldreich-Micali-Wigderson [13] paradigm along with revealing bits along the
way to help prune and determine execution path – however our ultimate goal is to explore the non-interactive
garbling solutions for RAM programs without revealing the execution path.

An alternative method for computing RAM programs without first converting them to circuits was proposed by
Ostrovsky and Shoup [28] which used Oblivious RAM [14] as a building block. The Ostrovsky-Shoup compiler
allows parties to execute Oblivious RAM programs directly, i.e., without first unrolling it into a circuit, which
provided an alternative approach to secure RAM computation. The method was further improved by Gordon et
al. [19] in order to perform sublinear amortized database search. Lu and Ostrovsky [23] considered two-server
Oblivious RAM inside the Ostrovsky-Shoup compiler, which led to logarithmic overhead in both the computation
and the communication complexity. Note that these three works allow secure RAM evaluation without having to
unroll the program into a circuit and represent a different way to perform secure computation that reveals only the
program running time. Among these, [23] is the best result for programs (instead of circuits) in terms of computation
complexity and communication complexity. However, in terms of round complexity, these papers leave much to be
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desired: they all require at least logarithmic rounds for each CPU computation step. Since the running time of CPU
is at least t steps for programs that run in time t, this leads to Ω(t · log t) round complexity. In contrast, in this paper
we show how to retain poly-log overhead in communication and computation, and make the entire computation
non-interactive in the OT-hybrid model, just like Yao.

1.1 The Blueprint for RAM Program Garbling

We describe our approach at a high level: we start with an ORAM compiler (with certain properties which we will
describe later) that takes a program and converts it into an oblivious one. We call this new program the “ORAM
CPU” because it can be thought of as a client running a CPU that performs a local computation followed by reading
or writing something on the remote server. As a conceptual segue, consider the following change: instead of the
ORAM CPU locally performing its computation, it creates a garbled circuit representing that computation, and also
garbles all the inputs for that computation (the inputs are just the client state and the last fetched item, possibly with
some randomness) and sends it to the server who then evaluates the circuit. The output of this computation is just
the next state and the next read/write query, and the server preforms the read/write query locally, and sends back the
result of the read/write query along with the state to the ORAM CPU. We emphasize that this is just a conceptual
intermediate step, since this step does not actually give us any savings and possibly interferes with the security of
the ORAM CPU by having its state revealed to the server.

Next, we change where the ORAM CPU state is stored: instead of letting the client hold it, it is stored on the
server in garbled format. That is to say, the garbled circuit that the client sends to the server now outputs a garbled
state instead of a regular state, which can then be used as input for the next ORAM CPU step. As long as the garbled
circuit for the next CPU step uses the same input encoding as the one generated by our current CPU step, then the
client does not need to garble the state at every step.

With these modifications in place, the interaction between the client and server operates as follows. The client
sends some initial garbled CPU state to the server, then while the program has not terminated, the client generates a
garbled circuit representing a CPU step and garbled inputs representing the most recently fetched memory contents,
the client sends these to the server which executes the garbled circuit using the garbled inputs from the client and
the previous garbled CPU state stored locally on the server. The output is a new garbled ORAM CPU state and
a read/write instruction, which it then executes and sends back to the client the result of it. Our next step aims to
remove this bit of interaction.

Let us suppose that the ORAM compiler had the property that the ORAM CPU knows exactly when the contents
of a memory location was last written to (which is the case for many ORAM schemes). We attempt to perform the
same strategy as we did with garbling the state: whenever the ORAM CPU wants to write something to memory,
it encodes its bits as some garbled input encoding for that particular memory location, for that particular time step.
This way, the server does not need to send back anything to the client as it keeps the garbled memory contents and
garbled state all locally. However, this does not immediately work, because if each memory location uses a different
encoding, the client does not know which encoding to use for the next step if the server does not interact with it.

In order to resolve this, we construct a circuit that assists with this transition: the circuit takes as input a time step
and memory location and outputs a garbled circuit encoded for that time step and memory location. If the garbled
circuit is generated pseudorandomly, the transition mostly consists of just repeatedly evaluating PRFs. Since this
circuit does not require the knowledge of the memory location ahead of time, the client can generate as many of
these as needed at the start of the computation. Indeed, if the ORAM program runs in t steps, the client can generate
t of these circuits, garble them, and send them all to the server, non-interactively.

We would like to achieve a notion of compactness: we would like the size of the garbled program to be depen-
dent on the size of the original program and not on the worst-case running time t. We would need a single circuit to
generate all the necessary garbled circuits for each CPU step. In the work of Goldwasser et al. [15], it was shown
how to construct a reusable garbled circuit. This seems to be a good candidate for our construction except we need
one additional ingredient. Because the garbled outputs of one time step is fed as the garbled inputs of the next time
step, the reusable garbled circuit must remain secure even if it produces outputs that are correlated to its secret input
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garbling algorithm.1 Under the assumption that these key-dependent reusable garbled circuits exist, we observe that
our scheme augments to be program size compact. As a bonus, this will also make our scheme reusable as well, so
that each time the client wants to compute on a new input, the existing garbled circuit does not have to be created
and sent again.

To introduce some notation that we will use later, we recapitulate the discussion above. If the program runs
for t steps, the client can create t Yao’s garbled circuits for each CPU execution step, where each garbled circuit
takes as input the (garbled) state from the previous CPU computation step performs a single CPU step and outputs
garbled state of the CPU after the instruction have been executed. The garbled output of the CPU step is exactly
the encoding of the CPU state that is needed for the garbled circuit for the next CPU step. The main technical
challenge is to garble the read/write calls in-between these CPU steps because the client does not know ahead of
time where the memory locations will be. We implement these queries as follows: we show how to design a small
circuit COclient that outputs a bit representation of another garbled circuit GC(CORAMquery). We show that this
“on the fly” compilation of oracle call into a bit representation of another garbled circuit is efficient and can be a
prepared as another garbled circuit of poly-logarithmic size and does not grow with t.

In this manner, a single ORAM CPU step becomes a circuit of small size that can be “consumed” for each
instruction step. We show that the circuits can be efficiently garbled in a secure, interleaving manner so that the
server can perform alternating CPU instructions and ORAM fetch operations in a garbled execution without learning
the code it is running. We note that we need Oblivious RAM with poly-log overhead where the client size is at most
some fixed polynomial in the security parameter times some poly-log factor in n. This is because for every ORAM
fetch operation, we also need to emulate the client’s internal computation of the Oblivious RAM using our secure
method, which incurs a multiplicative overhead in the size and the running time of the client. Thus, the smaller the
client of Oblivious RAM, the more efficient our solution is: in order to achieve poly-log overhead, all Oblivious
RAM schemes where client memory is larger than poly-logarithmic (e.g. [12, 6]) is not useful for our purposes. We
expand on the intuition in Section 3.1.

In Section 3 we give the main construction for garbled RAM programs. When combined with oblivious trans-
fer, this gives a one-round secure two-party RAM program computation in the semi-honest model (which can be
extended to multi-party using the Beaver-Micali-Rogaway paradigm[3]), which we discuss in Section 4. In Ap-
pendix B, we give a construction for step a single-round ORAM.

1.2 Related Work on Oblivious RAMs.

Oblivious RAM was introduced in the context of software protection by Goldreich and Ostrovsky [14]. In the orig-
inal work by Goldreich [12], a solution was given with O(

√
n) and communication overhead where lookups could

be done in a single round and O(2
√

logn log logn) communication overhead for a recursive solution. Subsequently,
Ostrovsky [26, 27] gave a solution with only poly-log overhead and constant client memory (the so-called “hierar-
chical solution”). All other poly-log overhead solutions for Oblivious RAM used Ostrovsky hierarchical solution as
a building block. This solution, and most other subsequent solutions (except for two exceptions described below)
require a logarithmic number of rounds per query. Let us consider a single round solutions only:

• The original single-round solution of Goldreich [12] requires
√
n client’s memory.

• Recently, Boneh et al. [6] extended Goldreich solution to work on larger blocks, but also requiring
√
n client’s

memory.

• Williams [33] and Sion and Williams [35], presented a single-round Oblivious RAM that has logarithmic
overhead, logarithmic client storage and uses bloom filters.

• Even more recently, Gentry et al. [11] proposed an extension of Sion-Williams scheme [35] that is also
one-round.

1An interesting analogue of this issue comes up in the distinction between leveled versus fully homomorphic encryption during key
switching, where the secret keys for one level are encrypted in some form under the secret keys for the next level.

4



In contrast to all of the above works, we propose the first solution for single-round ORAM solution that makes
use of Yao’s Garbled Circuits, can be based on any one-way function, and using constant client memory in the
security parameter and poly-logarithmic overhead.

Subsequent to Goldreich and Ostrovsky [26, 27, 12, 14], works on Oblivious RAM [34, 36, 29, 16, 17, 31, 18,
21, 32] looked at improving the concrete and asymptotic parameters of Oblivious RAM. We mention several results
that are similar to Oblivious RAM but work in slightly different models. The works of Ajtai [1] and Damgård et
al. [10] show how to construct oblivious RAM with information-theoretic security with poly-logarithmic overhead
in the restricted model where the adversary cannot read memory contents. That is, these results work in a model
where an adversary only sees the sequence of accesses and not the data. Finally, the notion of Private Information
Storage introduced by Ostrovsky and Shoup [28] allows for private storage and retrieval of data. The work was
primarily concentrated in the information theoretic setting. This model differs from Oblivious RAM in the sense
that, while the communication complexity of the scheme is sub-linear, the server performs a linear amount of work
on the database. The work of Ostrovsky and Shoup [28] gives a multi-server solution to this problem in both the
computational and the information-theoretic setting and introduces the Ostrovsky-Shoup compiler of transforming
Oblivious RAM into secure RAM computation.

With regard to secure computation for RAM programs, the implications of the Ostrovsky-Shoup compiler was
explored in the work of Naor and Nissim [25] which shows how to convert RAM programs into so-called circuits
with “lookup tables” (LUT). This transformation incurs a poly-logarithmic blowup, or more precisely, for a RAM
running in time T using space S, there is a family of LUT circuits of size T · polylog(S) that performs the same
computation. The work then describes a specific protocol that securely evaluates circuits with lookup tables. [25]
also applies to the related model of securely computing branching programs.

The Ostrovsky-Shoup compiler was further explored in the work of Gordon et al. [19] in the case of amortized
programs. Namely, consider a client that holds a small input x, and a server that holds a large database D, and the
client wishes to repeatedly perform private queries f(x,D). In this model, an expensive initialization (depending
only on D) is first performed. Afterwards, if f can be computed in time T with space S with a RAM machine, then
there is a secure two-party protocol computing f in time O(T ) · polylog(S) with the client using O(logS) space
and the server using O(S · polylog(S)) space.

The secure RAM computation solution of Lu and Ostrovsky [23] can be viewed as a generalization of the [28]
model where servers must also perform sublinear work. The notion of single-server “PIR Writing” was subsequently
formalized in Boneh, Kushilevitz, Ostrovsky and Skeith [5] where they provide a single-server solution. The case
of amortized “PIR Writing” of multiple reads and writes was considered in [7].

1.3 Our Results

In this paper, we show how to garble any Random Access Machine (RAM) Program πt that runs in time upper
bounded by t while keeping all the non-interactive advantages of the Yao’s Garbled Circuit approach. More specifi-
cally, we present a program garbling method which consists of a triple of polynomial-time algorithms (G,GI,GE).
G takes as input any RAM program πt that includes an upper bound t on its running time and a pseudorandom
function (PRF) family F and a seed s for PRF of size k (a security parameter) and outputs a garbled program
Πt = G(πt, t, F, s), where all inputs are polynomial in the security parameter. Just like gabled circuits, we pro-
vide a way to garble any input x for πt into Garbled Input X = GI(x, s), and an algorithm to evaluate a gar-
bled program on garbled inputs GE(Πt, t,X). The correctness requirement is that for any x, πt, F, s it holds that
πt(x) = GE(G(πt, t, F, s), GI(x, s)) with the security guarantee that nothing about x is revealed except its run-
ning time t, expressed in terms of computational indistinguishability (≈) between the simulator Sim and garbled
outputs.

So far, the above description matches Yao’s garbled circuit description. The difference is both in the running
time and the size of garbled program for our new garbling method. Our first construction is a one-time garbled
program based on any one-way function, and is time-compact in the sense that if the original program runs in t time
and has input size n, our garbled RAM runs in O(t · poly(k, log n)).

Theorem 1. Assume one-way functions exist, and let the security parameter be k and let F be a PRF family based
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on the one-way function. Then, there exists a Program Garbling triple of poly-time algorithmsG,GI,GE such that
for any t any πt and any input x of length n:

• Correctness: ∀x, πt, F, s:
πt(x) = GE [G(πt, t, F, s), GI(x, s)]

• Security: ∃ poly-time simulator Sim, such that ∀π, t, x, s, where |s| = k

[G(πt, t, F, s), GI(x, s)] ≈ Sim
[
1k, t, |x|, πt(x)

]
• Garbled Program Size: The size of the garbled program

|G(πt, t, F, s)| = O
(

(|π|+ t) · kO(1) · polylog(n)
)

• Garbled Input Size: Let |x| = n and |s| = k. ∀x, s the garbled input size

|GI(x, s)| = O
(
n · kO(1) · polylog(n)

)
We can extend our construction to be reusable if the t outer garbled circuits are reusable, and due to Goldwasser

et al. [15], such a construction can be made under the learning with errors (LWE) assumption. our construction can
be made to be reusable. Our first construction is a one-time garbled program based on any one-way function, and
is time-compact in the sense that if the original program runs in t time and has size n, our garbled RAM runs in
O(t · poly(k, log n)).

Theorem 2. Under the LWE assumption, there exists a secure program garbling triple of poly-time algorithms
G,GI,GE that is time-compact and reusable.

Furthermore, under the assumption that there exists private key-dependent, reusable garbled circuits, we achieve
garbled program compactness (i.e. —G(πt, t, F, s)| = O

(
(|π|) · kO(1) · polylog(n)

)
, without dependency on t)).

Theorem 3. Assuming there exists a key-dependent reusable circuit garbling scheme, then there exists a secure
program garbling triple of poly-time algorithms G,GI,GE that is time-compact, reusable, and also program size-
compact.

Additionally, we construct a single-round Oblivious RAM scheme that is based on Yao’s garbled circuits, which
we present in Section B.

1.4 Remarks

• Making programs and outputs private. We note that similar to Yao, we can make πt to be a time-bounded
universal program ut, (i.e., an interpreter) and x = (π′t, y) include both time-bounded program π′t and input
y, so that ut(x) = π′t(y). Part of the specification of π′t may also include masking its output – i.e. to have
output blinded (XORed) with a random string. That allows, just like Yao, to keep both the program and the
output hidden from a machine that evaluates the garbled program. Such a modification has been utilized in
the past (see, e.g. [2]).

• Reactive functionalities. Our result shows that we can first garble a large input x, |x| = n with garbled input
size equal toO(|x| ·kO(1) ·polylog(n)) so that later, given private programs π1

t1 , . . . , π
j
tj
, . . . for polynomially

many programs where program πj runs in time tj and potentially modifies x, (e.g., database updates) we can
garble and execute all of these programs just revealing running times ti, and nothing else. The size of each
garbled program remains O

(
(|πi|+ ti) · kO(1) · polylog(n)

)
. It is also easy to handle the case where the

length of x changes, provided that an upper bound by how much each program changes the length of x is
known prior to garbling of next program.
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• Cloud computing. As an example of the power of our result we outline secure cloud computation/delegation.
In this simple application one party has an input and wants to store it remotely and then repeatedly run differ-
ent private programs on this data. Reactive functionalities allow us to do this with one important restriction:
we do not give the server a choice in adaptively selecting the inputs: but this is not an issue as the server itself
has no inputs to the program. The other possible problem is if the programs themselves are contrived and
circularly reference the code for the garbling algorithm. Such programs would be highly unnatural to run on
data and so we disallow them in our setting.

• Two-party computation. Note that just like in Yao’s garbled circuits, in order to transmit the garbled inputs
corresponding to input bits held by a different party for the sake of secure two-party computation, one relies
on Oblivious Transfer (OT) that can be done non-interactively in the OT-hybrid model. Here, we insist that
the OT-selected inputs to our garbled program are committed to prior to receiving the RAM garbled program,
i.e. non-adaptively [4].

• Optimizations. We remark that step two of our blueprint is applicable to almost all ORAM schemes with
small CPU as follows: instead of collapsing in the hierarchical Oblivious RAMs multiple rounds of a single
read/write to a single round, we can implement our step 2 directly for each round of each read/write (e.g.
even inside a single read/write simulation of Oblivious RAM that requires multiple rounds) of the underlying
Oblivious RAM: by implementing an oracle call for each Oblivious RAM CPU read/write using our method
of compiling memory fetch “on the fly” into garbled circuits. Any Oblivious RAM where the CPU can
tell precisely when any memory location was overwritten last can be complied using our approach. (We
call such Oblivious RAMs “predictive memory” RAMs and explore thus further in the full version.) For
example, this property holds for [21] ORAM. It also allows a generic method to “collapse” all multi-round
predictive memory Oblivious RAM with small CPU into a single round. Observe that the overall complexity
for garbling programs depends both on the CPU complexity and the ORAM read/write complexity.

• Tighter Input Compactness. Using an ORAM scheme that has small input encoding and small size CPU
(such as [21]) we can also make Input Compactness in our main theorem tighter: for all programs we can
make garbled inputs to be O(nk), where recall that n is the input size and k is the security parameter. We
remark that if we wish to garble only “large” programs that run time at least Ω(n · log n · kO(1)), we can
make Input Compactness even better under the assumption that one can encode inputs to garbled circuits to
be of size O(n+ k) and have the garbled program “unpack” the inputs to the full O(nk) size. Such packing
techniques for garbled circuits have been recently developed for garbling the inputs of garbled circuits by
Ishai and Kushilevitz [20].

• Stronger Adversarial models. As already mentioned we describe the scheme in the honest-but-curious
model based on honest-but-curious Yao, and only in the non-adaptively secure setting (see [4] for further
discussion of adaptivity.) There is a plethora of works that convert Yao’s garbled circuits from honest-but-
curious to malicious setting, as well strengthening its security in various settings. Since our machinery is
build on top of Yao’s garbled circuits (and Obvious RAMs that work in the fully adaptive setting), many of
these techniques for stronger guarantees for Yao’s garbled circuit apply in a straightforward manner to our
setting as well. We postpone description of malicious models to the full version.

2 Preliminaries

2.1 Oblivious RAM

We work in the RAM model with stored programs, where there is a CPU that can run a program that performs a
sequence of reads or writes to locations stored on a large memory. This machine, which we will refer to as the CPU
or the client, can be viewed as a stateful2 processor with only a few special data registers that store program counters,

2We can consider a stateless version where all registers are stored in memory. For ease of exposition, we let the client hold local state.
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query counters, and cryptographic keys (primarily a seed for a PRF) and that CPU can run small programs which
model a single CPU step. Given the CPU state Σ and the most recently read element x, CPU(Σ, x) does simple
operations such as addition, multiplication, updating program counter, or executing PRF followed by producing the
next read/write command as well as updating to the next state Σ′.

Because we wish to hide the type of access performed by the client, we unify both types of accesses into
a operation known as a query. A sequence of n queries can be viewed as a list of (memory location, data) pairs
(v1, x1), . . . , (vn, xn), along with a sequence of operations op1, . . . , opn, where opi is a READ or WRITE operation.
In the case of READ operations, the corresponding x value is ignored. The sequence of queries, including both the
memory location and the data, performed by a client is known as the access pattern.

In our model, we wish to obliviously simulate the RAM machine with a client, which can be viewed as having
limited storage, that has access to a server. However, the server is untrusted and assumed to only be, in the best
case, semi-honest, i.e. follow the protocol but attempt to learn additional information by reviewing the transcript
of execution. An oblivious RAM is secure if the view of a server can be simulated in poly-time in a way that is
indistinguishable from the view of the server during a real execution.

We use an ideal/real simulation-based definition of security and also work in the setting of semi-honest adver-
saries. There are two parties, Alice and Bob that receive inputs A and B respectively and they wish to compute
f(A,B). In the ideal world, there is an ideal functionality Ff that on inputs A and B simply computes f(A,B)
and sends the output to Alice and Bob. In the real world, we can think of the Alice and Bob executing a protocol
πf that computes f(A,B). Roughly speaking, we say that πf securely realizes the functionality Ff if there exists
an efficient simulator S playing the role of the corrupted party in the ideal world can produce an output that is
computationally indistinguishable from the view of the corrupted party in the real world.

Concretely, we focus on the hierarchical Oblivious RAM scheme of Ostrovsky [26, 27]. There is a data structure
that consists of a sequence of buffers Bk, Bk+1, . . . , BL of geometrically increasing sizes, e.g. Bi is of size 2i.
Typically k = O(1) (the first buffer is of constant size) and L = log n (the last buffer may contain all n elements),
where n is the total number of memory locations. For ease of exposition, we set k = 1 in the sequel. These buffers
are standard bucketed hash tables, where each Bi consists of, say 2i, buckets, each of size b. To read or write to
a memory location v from the hierarchical data-structure, we wish to hide the identity of the buffer from which
the element was found. Specifically, we start by reading the top (smallest) buffer B1 in its entirety; then, for each
1 ≤ i ≤ L, we compute j = hi(v) (where hi(·) is a hash function implemented as a PRF with appropriate domain
and range for each level) and read the entire j-th bucket (b elements) of that buffer. This alone is not sufficient,
as if we make identical queries, the same locations will be scanned. Thus, once element v is found at some level,
we search upon random dummy locations from subsequent (bigger) level buffers. In addition, at the end of this
process, we re-insert element r (overwriting it in case of a write) into the top buffer of the data-structure. This,
together with the re-shuffling procedure described below, guarantees that when executing future operations with the
same v, independent locations will be read from each buffer. Finally, we remark that even if element v was not in
any buffer before the operation, it will be inserted into the top buffer.

After every 2i insertions, buffer Bi is considered “full” and its contents are moved into the next buffer Bi+1.
More precisely, we do the following: after m = 2i · ` reads or writes, ` odd, where m is divisible by 2i but not by
2i+1, we move all the elements from buffers B1, . . . , Bi into buffer Bi+1 (at such time step, Bi+1 itself is empty).
For this, we pick a fresh pseudo-random hash function for Bi+1 (which can be modeled using a PRF). Finally, there
is a process called oblivious hashing which we will use in detail later that removes any correlation between the new
locations of the elements in Bi+1 and their old locations.

2.2 Yao’s Garbled Circuits

We paraphrase a summary of garbled circuits given in Choi et al. [8] which uses a point-and-permute variant due
to Malkhi et al. [24]. Consider a circuit C and a CPA-secure symmetric encryption scheme (KeyGen,Enc,Dec).
For each wire i ∈ C, we generate two random keys w0

i , w
1
i and a random bit “flip” indicator πi. We associate

wbi with λbi = b ⊕ πi and call the pair (w0
i ||λ0

i , w
1
i ||λ1

i ) the 0 and 1 labels for wire i respectively (the λ will be
henceforth omitted in following sections). For each fan-in 2 gate g with input wires i, j and output wire k, we
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associate a garbled table to the gate consisting of the following four ciphertexts:

EnCwπii

(
EnC

w
πj
j

(
w
g(πi,πj)
k ||πk ⊕ g(πi, πj)

))
EnCwπii

(
EnC

w
¬πj
j

(
w
g(πi,¬πj)
k ||πk ⊕ g(πi,¬πj)

))
EnCw¬πii

(
EnC

w
πj
j

(
w
g(¬πi,πj)
k ||πk ⊕ g(¬πi, πj)

))
EnCw¬πii

(
EnC

w
¬πj
j

(
w
g(¬πi,¬πj)
k ||πk ⊕ g(¬πi,¬πj)

))
.

Given this garbled table and labels for the wires i and j (wbii ||λ
bi
i and wbjj ||λ

bj
j respectively), a party can decrypt

the row corresponding to λbii , λ
bj
j to obtain the proper label for the output wire: wg(bi,bj)k ||λbkk . If the labels to the

input wires are given, then one can recursively evaluate all gates of the circuit. Suppose now the two parties wish
to securely evaluate C on input (x, y) where the circuit generator holds x and the circuit evaluator holds y. The
circuit generator sends the labels for the wires corresponding to the proper bits of x, and the labels for the input
wires corresponding to the proper bits of y can be sent using oblivious transfer. The circuit evaluator at the end will
receive a bunch of labels containing the λo for all the output wires o. We use a variant of Yao’s garbled circuits
in which some of the output wires are revealed to the circuit evaluator immediately in the clear and some are not
revealed. Revealing output wires in the clear is the standard way of viewing garbled circuits. For output wires that
are not revealed, they are either represented as internal garbled keys (that can be used as inputs for other circuits) or
XORed with pseudo-random pads that can later be revealed. It will be clear from the context which representation
of various outputs we use.

We first make an observation that the labels (keys) on a given wire used in a garbled circuit can be re-used
in additional newly generated gates, as long as the value does not change between the uses and it is not revealed
whether this label represents 0 or 1. (For example, assume that garbled circuit evaluator is given a label on some
input wire, which is a key representing a 0 or a 1. We claim that the same key can be used as input key for other
garbled circuits that are generated later.) This observation allows us to execute garbled circuits in “parallel” or
“sequentially” where some labels are re-used. Indeed, this observation is implicitly used in classic garbled circuits
in gates where the fan-out is greater than 1: all outgoing wires share the same labels (see e.g. Footnote 8 in
Lindell-Pinkas [22]).

Lemma 1. Suppose C and C′ are two circuits and suppose there is some input x for which we want to compute C(x)
and C′(x) (resp. C(C′(x))). Suppose the wires w0, . . . , wn in C represent the input wires for x and similarly define
w′0, . . . , w

′
n represent the input wires of x in C′ (resp. v′0, . . . , v

′
n be the output wires of C′). Let kbwi represent the

label indicating wire wi = b, and let C and C ′ be randomly garbled into GC(C) and GC(C′) under the restriction
that kbwi = kbw′i

(resp. kbwi = kbv′i
). Then the tuple (GC(C), GC(C′), {kxiwi}

n
i=0) can be computationally simulated.

Proof. Consider the composite circuit D = C||C′ (resp. E = C ◦ C′) which is just a copy of C and a copy of C′ in
parallel (resp. sequence). Then every garbling of D induces a garbling of C and C′ with the restriction exactly as
above. By the security of garbled circuits, there exists a simulator that can simulate (GC(D), {kxiwi}

n
i=0). We can

construct a simulator for our lemma by simply taking this simulator and taking the output and separate out GC(C)
and GC(C′), as the lemma requires.

Remark: If the data is encrypted bit by bit using Yao’s keys, Lemma 1 allows us to run arbitrary garbled circuits
on this data, akin to general purpose “function evaluation” on encrypted data. This observation itself has a number
of applications, we describe these in the full version of the paper.
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3 Non-interactive Garbled RAM Programs

3.1 Informal description of main ideas

We consider the RAM model of computation as in the works of [14, 26, 27] where a RAM program along with
data is stored in memory of size O(n), and a small, stateful CPU with a O(1) instruction set that can store O(1)
words that can be of size polylog(n) = poly(k) where k is the security parameter. Each step of the CPU is simply
a read/write call to main memory followed by executing its next CPU instruction. We now summarize our idea for
building Garbled RAM programs from our single-round Oblivious RAM.

In order to garble a RAM program πt, we consider the two fundamental operations separately and show how to
mesh them together:

1. Read/Write (v, x) from/to memory.

2. Execute an instruction step to update state and produce next read/write query: Σ′,READ/WRITE(v′, x′) ←
CPU(Σ, x). Updating the state can include updating local registers, incrementing program counters and
query counters, and updating cryptographic keys.

Our goal is to transform this into a non-interactive process by letting the client send the server enough garbled
information to evaluate the program up to t steps, where t upper bounds the RAM program running time. We give
some intuition as to how to construct a circuit for each step, and then how to garble them. The first part will be
modeled as the circuit CORAM , and the second part will be modeled as the circuit CCPU . The circuits satisfy a
novel property: the plain circuit CORAM emulates a query for the ORAM client and outputs a bit representation of
a garbled circuit GCORAM . This GCORAM has output encodings that will be compatible with the garbled circuit
GC(CCPU ) to evaluate a garbled the CPU’s next step. We remark that GCORAM actually contains several sub-
circuits, but is written as a single object for ease of exposition. If we generate t of these garbled circuits, then a
party can evaluate a t-time garbled RAM program by consuming one garbled CORAM and one garbled CCPU per
time step.

We first consider the circuit CCPU , which is straightforward to describe. This circuit takes as input Σ repre-
senting the internal state of the CPU, and x the last memory contents read. Recall that the CPU performs a step
CPU(Σ, x) and updates the state to Σ′ and gives the next read/write query to memory location v′ and contents x′.
In order to turn this into a circuit, we can sacrifice some efficiency and have a “universal” instruction in which we
run every atomic instruction (from its constant sized instruction set) and simply multiplex the actual results using
the instruction opcode. This universal instruction is modeled as a circuit which is of size kO(1). We remark that
although this circuit is simple, the complexity arises from when we want to garble this circuit: the garbling must be
done in a way so that the garbled inputs and outputs are compatible with GCORAM .

The circuit CORAM must emulate the client in Oblivious RAM (we can think of it as being a non-interactive
client either by breaking out each individual step as a separate circuit, or using a non-interactive ORAM). The input
of the circuit is just an ORAM read/write query3, and the output of the circuit is a bit representation that describes
a set of garbled circuits, equivalent to what would have been produced via the ORAM client which we call
GCORAM .4 We give full details on the construction in Section 3.2. It is important that we argue that the result of
this fetch can be combined with the evaluation of the CPU step. Observe that since the labels in our single-round
ORAM are generated as pseudo-random time-labeled encodings, so we know ahead of time only the encoding of
the output (but know neither the input nor output) of the i-th invocation of the single-round ORAM. Thus when
garbling CCPU , the input encodings use exactly the output encodings from the respective outputs of the ORAM.
Recall in our single-round ORAM protocol the server sends back the encoded output to the client; here, we do not

3Since the ORAM client uses randomness as well as time-labeled encodings (which are outputs of the PRF), we will allow these to be
inputs to CORAM , so that they may be pre-computed “for free” rather than computed via the circuit. The circuit consumes these inputs in
order to generate the output garbled circuit without having to evaluate these itself. The only thing the circuit does not have ahead of time is
the hash of the location of the query at each level, so our circuit CORAM must use PRFs to compute them.

4GCORAM consists of a set of |B1|+ 2L− 2 garbled GC(Cmatch), corresponding garbled GC(Cnext), a garbled GC(Cwrite), and all
necessary time-dependent updates GC(Cupdate) as in Theorem 4.
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send it back, and instead keep the result and use it as input in the next CPU step (which is secure and correct via
Lemma 1).

Then, putting it all together, to garble a RAM program πt that runs in time t, the program garbling algorithm G
generates t garbled CORAM and CCPU circuits, and also encodes the initial state Σ0 of the CPU with the program
initialized, counters set to zero, and with fresh cryptographic keys. Because these are all generated at once by G,
there is no issue of adaptivity or selective security. The full construction of G is given the next section, Section 3.2.

Looking ahead, in the context of secure two-party computation, this garbled program can be sent to the server
in a single round, whereupon the server can evaluate the program by itself. The result is sent back to the client,
and since the labels were all generated pseudo-randomly, the client can determine whether the output bits are zero
or one. In the case where the server also has inputs, the client can generate the pseudo-random labels and then
the server uses Oblivious Transfer to select the ones corresponding to its input. We mention that in the OT-hybrid
model, this is a non-interactive protocol, we can avoid adaptivity issues by requiring the server to provide its inputs
upfront at the same time the client sends its garbled program, i.e. this can be viewed as just a one-step process
where the garbled program is sent “along” with the garbled inputs via the OT functionality.

3.2 Main Construction of Garbled Programs

We first describe how to construct the algorithms G,GI,GE. Given a program πt running in time t, we describe
the algorithm G that converts it into a garbled program Πt. In order to do so, we follow the two steps outlined
above and we consider the construction of a circuit that performs an ORAM query CORAM and a circuit that runs
one CPU step CCPU .

Our garbling algorithm G will provide enough garbled circuits to execute t steps of a program πt. Each step is
a garbled RAM query (done obliviously via our single-round ORAM) followed by a garbled CPU computation. It
starts with a garbled encoding of the initial state Σ0 of the CPU with the program πt initialized, counters set to zero,
and with fresh cryptographic keys. For each of the t time steps, it creates a garbled GC(CORAM ) for a read/write
of that time step, then a garbled GC(CCPU ) to perform a CPU step. We show how to construct CORAM and CCPU
such that they can be garbled and interleaved. We will show that this garbling is independent of the actual program
path, regardless of what memory locations have been fetched, and is correct and secure.

First, we describe CORAM to mimic an oblivious read/write access to main memory. For this, it can just perform
the steps in our single-round Oblivious RAM, with one difference: G does not know ahead of time which memory
location will be used. Hence, in order to overcome this, the circuit CORAM must take a memory location as input
and internally formulate what the ORAM client computes. CORAM outputs what the “virtual” ORAM client would
have sent to the server: a garbled circuitGCORAM representing a read/write query. The novelty in this construction
is that when we feed a memory location v into CORAM , the output precisely is a garbled ORAM read/write query
relative to that memory location. In order to hide v, both CORAM and v are garbled into GC(CORAM ) and V
respectively, and by the correctness of garbled evaluation, the output is still GCORAM . By the security of the
underlying ORAM, this output GCORAM can actually be simulated.

Although it is a circuit that outputs another circuit, there is no circularity in this construction: given a query
location and some fixed randomness, the behavior of the ORAM client is completely deterministic, straight-line,
and takes kO(1) ·polylog(n) steps, so the output can be represented by a circuit also of that size. This ORAM client
is independent of the main program CPU which only uses ORAM as an “oracle”. We emphasize this again, because
G will most likely be ran by a client, G does not play the role of the ORAM client but rather emulates the ORAM
client via CORAM , so this is not a client attempting to capture its own logic in a circuit. We provide a pseudocode
description of CORAM in Figure 1.

Looking ahead, G will garble this circuit and ensure that the output of an ORAM query has the same encoding
as that used to garble CCPU . The algorithm G can then garble both CCPU and CORAM ahead of time, without
having to know the memory location.

Next, we consider building the circuit which performs a single CPU step in the RAM program, CCPU that is
supposed to perform Σ′,READ/WRITE(v′, x′)← CPU(Σ, x). In order to hide which instruction is being executed,
we build the circuit to take an instruction opcode and we run every single-step instruction from its constant sized
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Inputs: An ORAM query to read/write (v, x) and a query number `. This circuit interprets the client performing
the `-th ORAM query, which uses randomness and time-labeled encodings based on `. As such, this circuit also
takes these randomness bits and pre-computed encodings as inputs.
Output: A garbled circuit GCORAM representing a read/write ORAM query.
Circuit Description: We describe the functionality of the circuit CORAM . We recall our algorithm for a ORAM
query. Using time-labeled encodings via PRFs, it generates a set of |B1|+ 2L− 2 garbled GC(Cmatch) which
has hard-coded location information built into it, with corresponding garbled GC(Cnext) circuits, and one final
GC(Cwrite) garbled circuit for writing the element back to the top level (and possibly an update circuit).
Although the ORAM client evaluates these PRFs internally, we do not encode this as part of our circuit CORAM ,
but rather we “consume” them as input. Similarly, the ORAM client must use randomness, which we also
consume from the input of CORAM . Since the circuit itself emulates the ORAM client during a query, it appears
similar to the construction in Figure 5, but with the key difference that the encodings/PRFs are fed as inputs.

1. For the top level, B1, for each bucket, CORAM creates a time-labeled garbled circuit GC(Cmatch)
consuming the input encodings to be used as garbled labels.

2. For subsequent levels i = 2 . . . L:

(a) The circuit CORAM computes q0i = hi(v) and consumes q1i from the input (the input itself is
uniformly random)

(b) Consume two secret keys for encryption sk0
i and sk1

i from the input and create a garbled circuit
GC(Cnext)

(c) Create two time-labeled garbled circuits GC(Cmatch), one that searches for w in bucket q0i encrypted
under sk0

i , and one that searches for w in bucket q1i encrypted under sk1
i , again consuming the

encoding from the input to CORAM .

3. CORAM also creates a garbled GC(Cwrite) that writes the result back to the first empty position the top
level buffer Bk.

4. If ` is a multiple of |B1|, then a reshuffle step is performed using the time-labeled garbled update circuit
GC(Cupdate).

5. The combined set of garbled circuits is referred to as GCORAM .

We point out that throughout this entire process, every time a query circuit is created, G increments ` in order to
keep track of the time-labeled encodings required by the CORAM circuits.

Figure 1: The ORAM Client Circuit CORAM

instruction set (not all possible program paths) of the CPU. The circuit multiplexes the actual results using the
instruction opcode. This universal instruction is modeled as a circuit which is of size kO(1) and is independent of
the ORAM circuit, independent of the queried locations, and independent of the current running time.

One may ask the question: How can this circuit be interleaved with the CORAM circuit if it is independent of it?
The answer is that when G garbles CCPU , the encoding will depend on the output of CORAM in the previous

time-step. Note that this construction is not circular as each garbling only depends on the previous one, leading
up to a total of t time steps. This can be done because G knows the encoding of the output encoding (but not the
output) of the Oblivious RAM query, which does not depend on the location queried. This output encoding is then
used for the input parameter encoding for GC(CCPU ). We provide a pseudocode description of G in Figure 2.

The algorithm GI for garbling an input of size n is just the time-labeled encodings starting from wherever the
RAM program expects the inputs to be located.

The algorithm GE used to evaluate a garbled program Πt on garbled inputs evaluates the garbled circuit
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Inputs: A program πt with an upper bound on running time t, and a pseudo-random function family F along
with a key s.
Algorithm Description: The algorithm G is performed as follows. It creates an encoding of the initial state of
the CPU, Σ0 with the program πt initialized. It also encodes an initial program counter and cryptographic keys.
We show how to construct CORAM and CCPU such that they can be garbled and interleaved across t time steps.
We must argue that this garbling is independent of the actual program path, regardless of what memory locations
have been fetched, and is correct and secure.
For each time step i = 1 . . . t, G creates:

1. A garbled read/write query circuit GC(CORAM ) for performing query number i on some (unknown
variable) garbled location Vi (and Xi in the case of a write). G pre-computes randomness and PRF
evaluations and hardwires them. Although G does not know the eventual output, it knows the encoding of
it, which is independent of the queried location. It uses this encoding for the following:

2. A garbled instruction circuit GC(CCPU ) with input wires of Xi using the encoding from above, and the
input wires of Σi using the output encoding from the previous CPU step. The output is a garbled location
Vi+1 (and Xi+1 in the case of a write) to be used in the next read/write query and an garbled updated state
Σi+1.

Figure 2: Program Garbling Algorithm G

GC(CORAM ), then executing the garbled instruction GC(CCPU ) one at a time, up to t times. The process is
precisely performing the same steps as G except evaluating garbled circuits instead of generating them. In addition,
once it gets the garbled ORAM query, it must also execute it as well. We provide a pseudocode description of G in
Figure 3.

Inputs: A garbled program Πt with garbled input X .
Algorithm Description: The algorithm GE is performed as follows. It first stores the initial encoded program
state and inputs into memory. Then, for each time step i = 1 . . . t, GE performs:

1. Evaluate the garbled query circuit GC(CORAM ) on a garbled memory location Vi. The output is GCORAM
which itself is a garbled circuit that represents a read/write query in our single-round ORAM protocol.
Execute the query playing the role of the server to obtain some garbled output Xi which is kept locally
instead of sent to the client.

2. Evaluate the garbled instruction circuit GC(CCPU ) on garbled inputs Xi and Σi. Obtain a new read/write
query Vi+1.

After t steps, output the final value Xt+1.

Figure 3: Garbled Program Evaluation Algorithm GE

3.3 Main Results

We now state our main results:

Theorem 1. Assume one-way functions exist, and let the security parameter be k and let F be a PRF family based
on the one-way function. Then, there exists an efficient Program Garbling triple of algorithmsG,GI,GE such that
for any πt any t and any input x of length n:

• Correctness: ∀x, πt, F, s:
πt(x) = GE [G(πt, t, F, s), GI(x, s)]
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• Security: ∃ poly-time simulator Sim, such that ∀π, t, x, s, where |s| = k

[G(πt, t, F, s), GI(x, s)] ≈ Sim
[
1k, t, |x|, πt(x)

]
• Program Size: The size of the garbled program

|G(πt, t, F, s)| = O
(

(|π|+ t) · kO(1) · polylog(n)
)

• Input Size: Let |x| = n and |s| = k. ∀x, s the garbled input size

|GI(x, s)| = O
(
n · kO(1) · polylog(n)

)
Proof.
Correctness. This construction is correct due to the correctness of the underlying single-round Oblivious RAM
scheme in Theorem 4 and the correctness of garbled circuits. In addition, we need to verify that when interleaving
the garbled instruction execution along with the ORAM fetch queries, the ability to properly decrypt and evaluate
the garbled circuits is maintained. Because G generates a garbled circuit GC(CORAM ) to simulate the fetching
client inside the ORAM, the output encoding is chosen so that it matches the input encoding of GC(CCPU ). Thus,
since G generates sufficiently many circuits for ORAM fetches corresponding to the i-th instruction executed (with
respect to time, regardless of the ordering of the actual instructions in π), the GE algorithm evaluating the garbled
circuits can properly evaluate the instruction and throw away any unused fetches corresponding to the i-th step.
Security. In order to show security, we must show that there exists a simulator Sim that can simulate the garbled
execution given only the running time and program output. In order to do so, we consider what a server running the
algorithm GE does during the execution of the garbled program.

It first stores the initial encoded program state and inputs into memory. Then, for each time step i = 1 . . . t, GE
performs: In each CPU step of the garbled program execution, the server performs the following:

1. Evaluate the garbled query circuit GC(CORAM ) on a garbled memory location Vi. The output is GCORAM
which itself is a garbled circuit that represents a read/write query in our single-round ORAM protocol.

2. Execute the garbled ORAM query GCORAM playing the role of the server to obtain some garbled output Xi

which is kept locally instead of sent to the client.

3. Evaluate the garbled instruction circuit GC(CCPU ) on garbled inputs Xi and Σi. Obtain a new read/write
query Vi+1.

By Theorem 4, the underlying single-round Oblivious RAM is secure and uses time-labeled garbled circuits
and encodings and can be simulated by SimORAM . Furthermore, the underlying Yao’s garbled circuits are secure,
and can be simulated by SimY ao. Thus, the access pattern of the ORAM can be simulated, and we need only show
that the garbled circuit emulating the ORAM client GC(CORAM ) and garbled instructions GC(CCPU ) can also
be simulated. The garbled circuits can be interleaved securely due to Lemma 1, and the time-labeled encodings
themselves are just outputs of a PRF. By the security of Yao’s garbled circuits and the underlying PRF, these can be
simulated securely.
Program Size. We analyze the cost of garbling a program. First, to garble all the instructions of the program,
we incur a cost of O(|π| · kO(1) · polylog(n)). Furthermore, because the overhead of our underlying ORAM is
kO(1) · polylog(n)) and since at each time step, the client must prepare “CPU instruction” circuits which include
some constant number of ORAM queries, we incur another O(t · kO(1) · polylog(n)). Overall this leads to the
garbled program being of size O((|π|+ t) · kO(1) · polylog(n)).
Input Size. We analyze the cost of garbling an input of size n. Each bit of the input is encoded and stored in the
ORAM hierarchy which incurs a O(kO(1) · polylog(n)) multiplicative overhead, the total size of the garbled input
is therefore O(n · kO(1) · polylog(n)).
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Theorem 2. Assume one-way functions exist and there exists a reusable garbling scheme (e.g. under LWE assump-
tion), and let the security parameter be k and let F be a PRF family based on the one-way function. Then, there
exists an efficient Program Garbling triple of algorithms G,GI,GE such that for any πt any t and any input x of
length n:

• Correctness: ∀x, πt, F, s:
πt(x) = GE [G(πt, t, F, s), GI(x, s)]

• Reusable Security: ∃ poly-time simulators S1, S2, such that ∀π, t, x, s, and for all ppt adversaries A where
|s| = k, the two distributions are indistinguishable.{

b|b← AGI(·,s)(G(πt, t, F, s))
}
≈
{
b|b← AO(·)(S1(t, F ))

}
where O(x) is an oracle that feeds S2 the value t and the output of πt(x) running for t steps.

• Program Size: The size of the garbled program has O((|π|+ t) · poly(k, log n)) overhead compared to the
underlying reusable garbling scheme.

• Input Size: The size of the garbled program has O(poly(k, log n)) overhead compared to the underlying
reusable garbling scheme.

Proof Sketch.
In this construction, we replace our t main outer garbled circuits with reusable garbled circuits. Correctness

and the resulting garbled sizes are as before. In order to show security, we must show that there exist simulators
S1, S2 that can simulate the garbled execution given only the garbled program and the running time and output of
all the garbled inputs. By the reusable property of the underlying garbling scheme, there exist simulators (Si1, S

i
2)

for each time step i = 1, . . . , t. We define S1 to be the simulator that generates the simulated t reusable garbled
circuits using the underlying Si1 and S2 to be the simulator which runs St2, to obtain a simulated garbled input, then
simulates the (one-time) garbled circuit for GC(CCPU ) and GCORAM to reconstruct the previous time-step, then
runs St−1

2 , and so forth down to S1
2 .

We create a hybrid of experiments Expti for i = 1, . . . , t where on the i-th time step, we replace the i-th
reusable garbled circuit with the simulated reusable garbled circuit. In other words, in Expti, all reusable garbled
circuits past the i-th are replaced with their simulated counterparts. We can do so because once we have the i+ 1-st
inputs simulated, this allows us to reconstruct the i-th output, which can then be fed into the simulator for the i-th
reusable garbled circuit. Then the ideal experiment is Expt1 and the real experiment is just Exptt+1. By the security
of the underlying reusable garbled circuits, the output distributions of the adversaryA between any two consecutive
experiments are computationally indistinguishable.

3.4 Garbled Program Compactness

We suggest a notion of key-dependency for reusable garbled circuits suitable for our needs. We consider as a
starting point the definition of reusable garbled circuits from [15]. Here, we do not require circuit privacy because
the circuit will represent a publicly known ORAM CPU algorithm. In particular, consider circuits of the following
general form: C takes two inputs (x, y) outputs z. We augment a reusable garbling scheme to first allow for the
generation of the secret key gsk before the garbling, i.e. we have a tuple of algorithms (RKG,RG,RGI,RGE)
such that gsk ← RKG(1k) generates a secret key, which can then be used in Γ ← RG(C, gsk) to generate a
garbled circuit.

We first define what it means for a quadruple of algorithms (KKG,KG,KGI,KGE) to be a key-dependent,
reusable garbling scheme for a circuit family {C} of the above format. The keygen algorithm KKG generates
a secret key given a security parameter k, gsk ← KKG(1k). The garbling algorithm garbles a circuit C but
also hardwires f(gsk) as one of its inputs, Γ ← RG(C(·, gsk), gsk). The input garbling algorithm produces
X ← KGI(x, gsk), and finally the garbled evaluation algorithm produces some evaluation y ← KGE(Γ, X).
Correctness means that y = C(x, gsk)).
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Definition 1 (Key-dependent reusable garbled circuits). Let KRG = (KKG,KG,KGI,KGE) be a key-dependent,
reusable garbling scheme for {C}. We consider the two experiments Real and Ideal. In ExptReal, a ppt adversary
A outputs a circuit C and security parameter k then gets a garbled Γ← KG(C(·, gsk), gsk). Using oracle access
to KGI(·, gsk), A returns a bit b for the output of the experiment.

In ExptIdeal, A interacts with a ppt simulator S in the following way. A outputs a circuit C and security
parameter k. The simulator outputs Γ′ ← S(C, 1k) which is sent to A. Using oracle access to O(x), an oracle that
runs S with inputs 1|x|, C(x). A returns a bit b for the output of the experiment.

Then we say KRG is a private key-dependent, reusable circuit garbling scheme if

∃S ∀A
∣∣∣Pr[b = 1|ExptReal]− Pr[b = 1|ExptIdeal]

∣∣∣
is negligible in k.

To generate a garbled program that runs in t steps, in the main construction, the client must make at least t
garbled circuits that generate sub-circuits for the underlying ORAM CPU steps. If one chooses t to be worst-case,
this potentially affects the benefits of using RAM program computation against the circuit model of computation
(which always must run in the worst-case time). Here, we can make use of these key-dependent reusable garbled
circuits, so that the client only needs to create a single one at the start. At each time step, the reusable garbled circuit
emulates the i-th GC(CORAM ) and also outputs in the clear whether or not the garbled program has halted. Note
that eventually, we arrive at tokens for the i+1-st step, which will be encoded inputs for its own consumption. Thus,
under the assumption of the existence of a key-dependent version of reusable garbled circuits, we achieve a garbled
RAM scheme that satisfies program compactness, where the garbled program depends only on the original program
size and not the worst-case running time. Furthermore, since our definition does not preclude the adversary from
using multiple oracle calls to the input garbler, this allows our garbled RAM scheme to be reusable as well.

Theorem 3. Assume there exists a private key-dependent, reusable circuit garbling scheme such that the family
of circuits {C} can sufficiently represent our circuit CORAM , and let the security parameter be k and let F be a
PRF family based on the one-way function. Then, there exists an efficient Program Garbling triple of algorithms
G,GI,GE such that for any πt any t and any input x of length n:

• Correctness: ∀x, πt, F, s:
πt(x) = GE [G(πt, t, F, s), GI(x, s)]

• Reusable Security: ∃ poly-time simulators S1, S2, such that ∀π, t, x, s, and for all ppt adversaries A where
|s| = k, the two distributions are indistinguishable.{

b|b← AGI(·,s)(G(πt, t, F, s))
}
≈
{
b|b← AO(·)(S1(t, F ))

}
where O(x) is an oracle that feeds S2 the value t and the output of πt(x) running for t steps.

• Compact Program Size: The size of the garbled program has O((|π|) · poly(k, log n)) overhead compared
to the underlying key-dependent, reusable garbling scheme.

• Input Size: The size of the garbled program has poly(k, log n) overhead compared to the underlying key-
dependent, reusable garbling scheme.

Proof Sketch.
Recall in our proof for the reusable garbled programs (without compact program size), we replaced the t main

outer garbled circuits with t reusable garbled circuits. Here, we replace them with a single key-dependent reusable
garbled circuit instead. We see that now the size of the resulting program does not depend on the worst-case running
time, but only the size of the program and the overhead of the circuit garbling scheme.

In order to show security, we must show that there exist simulators S1, S2 that can simulate the garbled execution
given only the garbled program and the running time and output of all the garbled inputs. By the reusable property of

16



the underlying garbling scheme, there exist simulators (S′1, S
′
2) for the scheme. Our simulator S1 will just generate

the same simulated circuit that S′1 generates. Then S2, equipped with the running time, will “unroll” the t time steps
as t invocations of the key-dependent reusable garbled circuit. Starting from the output and going backwards, in
each invocation, it uses S′2 to simulate the garbled inputs, which can be transformed into the output for the previous
time step.

Again, like in the previous proof, we create a hybrid of experiments Expti for i = 1, . . . , t where on the i-th
time step, we replace the i-th invocation of the reusable garbled circuit with the simulated one (of course, now there
is only a single simulated circuit output by S′1). In other words, in Expti, all reusable garbled circuits past the i-th
are replaced with their simulated counterparts. We can do so because once we have the i + 1-st inputs simulated,
this allows us to reconstruct the i-th output, which can then be fed into the simulator for the i-th reusable garbled
circuit. We have that ExptIdeal = Expt1 and ExptReal = Exptt+1. Then again, by the security of the underlying
key-dependent reusable garbled circuits, the output distributions of the adversary A between any two consecutive
experiments are computationally indistinguishable.

4 Application to Secure RAM Computation

We give an example application in which only one party has input and wants to repeatedly run programs on this data.
Such is the case of secure cloud computing, where someone stores data in the cloud and then later runs computations
against that data. We emphasize that in this setting, there is no issue of adaptivity because the server has no inputs.
In the typical setting of two-party secure computation, we deal with this by making the server first perform OTs
to retrieve its inputs before the client sends the garbled program. In the multi-party setting, the technique can be
utilized in the Beaver-Micali-Rogaway paradigm [3] to achieve constant-round MPC with the same approach as
in [3] but with garbled RAM programs.

That is to say, in this application, a client wishes to store some data x on a remote server and then run various
RAM programs on x without the server learning the results of the programs or x itself. Of course, the client could
always ignore the server altogether and run all the programs on x locally, so we are envisioning a scenario in which
the client does not want to carry around all of its data locally and wants to only store a few cryptographic keys or
counters. To apply Garbled RAM programs to this application, the client first garbles the input x to get X = GI(x)
and sends it to the server. Then for each program the client wants to run, it recalls the encoding of the previous
output and creates a garbled program using the labels of the previous output as inputs for the current program.
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A Glossary of Circuits

Circuit Description
CCPU Circuit for evaluating a CPU step.
CORAM Mimics an ORAM client query, outputting garbled versions of the above circuits.
GCORAM Garbled circuit that is the output of CORAM . Consists of garbled circuits used in single-round ORAM:
Cmatch Matches a memory location in a bucket.
Cnext Outputs next bucket to probe depending on found/not found.
Cupdate Performs oblivious hashing for ORAM update.
Cwrite Writes output to top level buffer.

Figure 4: Glossary of Circuits

B Single-Round Oblivious RAM From Any One-way Function

B.1 Informal Description of Main Ideas

As a starting point, we consider the hierarchical ORAM of Ostrovsky [26, 27] and use the same terminology as
in Ostrovsky’s Ph.D. thesis [27]. In this scheme, the data is encrypted (under semantically secure private-key
encryption) and stored in hierarchical levels that reshuffle and move into larger levels as they fill up. To keep track
of the movement, each level is temporally divided into different time periods called epochs, based on how many
queries the client has already performed. The client only needs to keep track of the keys corresponding to the latest
epoch for each level, which in turn only depends on the total number of queries that so far have been performed.

In our new solution, we maintain the same hierarchical levels, but encrypt all bits within the level differently.
To explain our encryption method, we first generalize Pseudo-Random Functions (PRF) into a multi-argument PRF
Fs(x1, x2, ..., xk−1, xk) which is computationally indistinguishable from a truly random multi-argument function.
Our multi-argument PRF, instead of outputting a single bit, outputs a pseudo-random key of length proportional to
the security parameter, i.e. a sufficiently long key for a private-key encryption scheme. Such a multi-argument PRF
can be trivially constructed from any standard PRF.

We now describe the encoding of each bit in the hierarchical solution of Oblivious RAM that we use. For
each bit in each buffer of some level we can uniquely define its location by epoch number, level number, bucket
number within the level and address within the bucket. Let us call these specifications x1, . . . , xk−1 (where the
details of the encoding will be specified later). Now we define two keys for each such bit: Fs(x1, . . . , xk−1, 0)
and Fs(x1, . . . , xk−1, 1). One key corresponds to “encoding of zero” and the other corresponds to “encoding of
one”. Jumping ahead, we will use these encodings inside multiple Yao’s garbled circuits repeatedly using Lemma 1.
More specifically, for every buffer bit b we encode it as Fs(x1, . . . , xk−1, b) and write this key into the buffer as
the encryption of this bit. We remark that since keys are generated pseudo-randomly, the client will not need to
remember anything except the PRF keys used to generate the labels and the current epoch. We describe at a high
level how an ORAM read/write is performed in a single round, and how a re-shuffle is performed.

Recall that in the hierarchical ORAM scheme, to fetch a (virtual) memory location v, the client first scans the
entire top buffer B1 in its entirety, then, until v is found in some bucket, computes the hash j = hi(v) and looks
up bucket j for each subsequent level Bi for i ≤ L. Once v is found, the client retrieves a random bucket j in
subsequent levels. If we let qi denote the bucket that is fetched at level i for k + 1 ≤ i ≤ L, then the important
observation in [33, 35] is that there are only two “choices” for qi: hi(v) or random. Thus, even though the choice
of which qi to use is done interactively, the client can pre-compute a list of 2L − 2 buffer addresses (two for each
level, except the smallest first level which is accessed in its entirety) of the form ((h2(v), r2), . . . , (hL(v), rL)).

The way we encode all values within each buffer allow us to prepare 2L − 2 garbled circuits that operate as
follows. We prepare a circuit that reads the smallest level, since the inputs are keys to the garbled circuit. The
circuit checks if the value is there or not, and depending if it is found or not “decrypts” one of the two circuits for
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the next level, which also indicates which buffer in the next level the circuit is prepared for. That is, for each level
we prepare two garbled circuits, one to access random buffer (if the value already found) and one to access the
location where value could be located. We encrypt both circuits using private key encryption. Each circuit outputs
a decryption key for the next circuit, as well as the buffer number that the just-decrypted circuit is prepared for. The
circuit that reads the smallest level is given un-encrypted.

Additional book-keeping is done to pass information between different circuits and to execute the last circuit
that re-writes the top-level buffer. We stress that the labels in those garbled circuits are generated pseudo-randomly
and depend only on the epoch as well as former inputs. When evaluating the ORAM query, the server evaluates a
garbled circuit for each level in the hierarchy in turn, which allows him to decrypt the next circuit and tells it the
location to apply in the next level buffer the just decrypted circuit.

Finally, we observe that oblivious updates/re-shuffling can be done through garbled circuits implementing sort-
ing networks, where this can be done through several invocations of the sorting network. We now proceed to give a
more detailed description.

Toward this end, we give two definitions which will help in our construction. We recall the notion of a time-
labeled RAM simulation due to Ostrovsky [26, 27]: after any number of queries-so-far, there exists a way for the
client to efficiently compute the number of times it has previously accessed a particular memory location. As briefly
explained above, we define the notion of a so-called time-labeled encoding (via Yao garbling) so that whatever is
stored in memory, the client can efficiently compute the encoding of it.

Definition 2. Suppose some element (v, x) was stored in level Bi in bucket j in some position ` inside the bucket
during epoch e. We define the time-labeled encoding of (v, x) to be a bit-by-bit encoding where the b-th bit of (v, x)
is encoded as Fs(i, j, `, e, b) where F is a multi-argument PRF with output being a random element in the keyspace
of our symmetric-key encryption scheme.5

Next, consider how the client will build a garbled circuit whose input is in some specific buffer in the memory
hierarchy. If the stored information is a time-labeled encoding, the client can compute two pseudorandom keys for
each bit stored in the buffer, where one of the keys is a “zero” key and another key is a “one” key. The client knows
that one of the two keys is stored in the buffer representing either the encoding of zero bit or one bit in that location.
Hence, one can construct a garbled circuit operating on the buffer using Lemma 1. The client prepares two garbled
circuits for each level as described before. It also encrypts both circuits with a private-key encryption where exactly
one key will be revealed depending on whether or not v has been found already or not. We keep track if the item
has been found or not and depending on this variable, we release to the server a decryption key for one of the two
circuits for the larger level, together with is buffer address. Finally, we need to write the found element back to the
top level buffer, and possibly perform a hierarchy update.

Definition 3. Suppose some element (v, x) was stored in level Bi in bucket j in some position ` inside the bucket
during epoch e. Let C be a circuit operating on this bucket. Let sk be a secret key to some encryption scheme. We
define the time-labeled garbling of C to be a garbled circuit GC(C) with special encodings of the wires in which
the labels corresponding to the wires of the hash buckets are precisely the time-labeled encoding of elements in the
buckets. The entire circuit is then encrypted under sk.

B.2 Single-Round Oblivious RAM Construction

As building blocks for our construction, we give details on the circuits which we described above. The circuits
are building blocks to perform the following procedures: We have one circuit searches for a memory location in
a bucket and returns the memory contents and keeps track of whether or not it is found. We have one circuit that
tells the server where to look in the next level: it returns either the real hash location or a random location (and the
corresponding decryption key) depending on the found variable. We have one circuit that writes the final answer to
the top level buffer. We have one circuit to update the ORAM hierarchy.

5Specifically, from any one-way function, one can build PRFs and CPA-secure symmetric-key encryption scheme that satisfy this re-
quirement.
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Here in the details, we highlight a key difference between the utility of Cmatch and Cnext: the output of the
first circuit, when garbled, will be encoded and obscured from the server, but the output of the second circuit,when
garbled, will be released to the server in the clear since it must fetch and decrypt. It will be convenient to refer to
them by name, so we describe them in more detail. More formally, the logic of the circuits are given as:

1. Cmatch: It takes as input an some hash location j in level Bi, a (virtual) memory location w that the client is
searching for, a storage variable y and an indicator bit found. The logic is that if w has already been found,
do nothing, otherwise attempt to find (v, y) where w = v and store it into y. It outputs y′ and found′ with
the following behavior:

y′ = y, found′ = 1 if found = 1;
y′ = x, found′ = 1 if found = 0 and there is some (v, x) in the bucket such that v = w;
y′ = y, found′ = 0 otherwise.

2. Cnext:It takes as input an indicator bit found, some level i and two bucket locations q0 and q1 on level Bi,
and two secret keys for encryption sk0 and sk1. It outputs qfound and skfound.6

3. Cwrite: Given a memory location w and memory contents y, it encodes (w, y) relative to the first empty slot
in the top level buffer.

4. Cupdate: Although oblivious hashing is described as an interactive process in most ORAM schemes, observe
that in many cases (again, e.g. [14]) it ultimately amounts to performing many steps of a large parallel sorting
and re-labeling algorithm wherein the elements need to be retrieved, decrypted, and re-encrypted. Instead,
we can represent this as a large parallel circuit, using sorting networks to perform the sorting, and using
time-labeled encodings instead of encryption. (More generally, the updates have fixed memory access that
can be revealed to the circuit evaluator and are executed in strait-line. Any such program can be converted to
garble circuit directly.)

We describe our construction relative to any hierarchical ORAM scheme that uses hash tables, though concretely
one can think of the Goldreich-Ostrovsky [14] scheme. For a client to read/write to a memory location w, the client
computes garbled buffer search circuits (i.e. GC(Cmatch)) for the top level B1. Then the client pre-computes the
hash of w for each of the levels B2, . . . , BL, i.e. it sets q0i = hi(w). It also generates L − 1 random locations
q1i = ri for each level. This gives the client a list of L− 1 pairs of bucket locations, 2 for each level (one real, one
random): ((q02, q

1
2), . . . , (q0L, q

1
L)) = ((h2(w), r2), . . . , (hL(w), rL)).

For each of these 2L − 2 locations, the client makes a time-labeled garbled circuit that searches for w (i.e. it
creates GC(Cmatch) for those locations) and encrypts them under brand new (pseudo-randomly generated) encryp-
tion key skji . It is the case that only skji decrypts the garbled circuit for location qji . In order to ensure that the
server only gets the correct location and key to go from a level to the next (depending on found/not found), we must
rely on the circuit Cnext that produces exactly one out of the two location/key pairs for each level. In order to do
so, the client hardwires locations q0i , q

1
i and keys sk0

i , sk
1
i into generates a garbled GC(Cnext) that outputs where to

go depending on found/not found and only the correct skji . Finally, the client creates a time-labeled garbled circuit
GC(Cwrite) that ”writes” a time-labeled encoding of (w, y) back to the top level bufferB1 (i.e. it re-writes the entire
top level). To perform hierarchy updates, it uses a garbled GC(Cupdate). The full client and server construction is
given in Figure 5.

B.3 Analysis

The goal of this section is to show the following theorem:
6This can be thought of as a circuit for obliviously transferring one-out-of-two of the locations and keys.
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Client performing a read/write to memory location w with the read/written value being y:

1. For each bucket in the top level, B1, the client creates a time-labeled garbled circuit GC(Cmatch) that
searches for w. The circuits are constructed so that the output encodings matches the input encodings in the
subsequent circuit (i.e. circuit chaining as in Lemma 1).

2. Pre-compute all hash locations q0i = hi(w) and and random locations q1i ← 0 . . . |Bi| for levels i = 2 . . . L.
Pseudo-randomly generate secret keys for encryption sk0

i and sk1
i .

3. For subsequent levels i = 2 . . . L:

(a) Create a time-labeled garbled GC(Cnext) by hardwiring q0i , q1i , sk0
i , and sk1

i as inputs, the only free
variable being the found flag. The outputs are unencoded. The labels for found should match the
found output from the previous level i− 1.

(b) Create two time-labeled garbled GC(Cmatch) circuits, one that searches for w in bucket q0i and one
that searches for w in bucket q1i . Encrypt the first under under sk0

i , and encrypt the second under sk1
i .

4. Create a time-labeled garbled GC(Cwrite) that takes the final output y (or y from the write query) and
writes it back to the first empty position the top level buffer B1.

5. The client in one round sends all these circuits to the server, then the client receives the final output y and
decodes it.

6. The client increments the local query counter t. If t is a multiple of |B1|, then a reshuffle step is performed
using the time-labeled garbled update circuit GC(Cupdate).

As for the server, it performs the following steps:

1. Receive all the garbled circuits from the client.

2. It evaluates GC(Cmatch) for every bucket in the top level B1.

3. For subsequent levels i = 2 . . . L:

(a) Evaluate GC(Cnext) with the garbled found/not found flag from the previous level i− 1 and obtain in
the clear a location qi and a key ski.

(b) On bucket qi, decrypt the GC(Cmatch) using ski and evaluate it, keeping track of the garbled found′

flag and garbled memory contents y′.

4. Evaluate the last garbled circuit GC(Cwrite) which outputs some time-labeled encoding of (w, y) and store
it in the first empty position in Bk and send the encoded output y to the client.

5. In case of an update, evaluate GC(Cupdate) and rewrite the relevant levels of the hierarchy with the
corresponding time-labeled output.

Figure 5: Single-Round ORAM
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Theorem 4. Assume one-way functions exist. Then the construction of given in Figure 5 is a secure single-round
Oblivious RAM with polylog(n) · kO(1) overhead with client only needing kO(1) memory to store the cryptographic
keys.

Proof.

Correctness. This construction is correct due to the correctness of the underlying ORAM scheme and the correct-
ness of garbled circuits. The only additional step we need to check is that the output of one circuit correctly feeds
into the input of the other. Because the labels for the relevant wires are actually time-labeled encodings, they are
correct by the way they are constructed due to Lemma 1.

Cost Analysis. We analyze the cost in terms of communication, computation, and rounds for both the client and
the server. The round complexity is clearly 1. The client must create |B1|+ 2(L− 1) = O(log n) garbled circuits
for Cmatch and Cnext and one final garbled circuit for writing the element back to the top level. The sizes of Cmatch
and Cnext are both O(polylog(n)). It must also garble Cupdate which is of size O(|Bi| · polylog(n)) every |Bi|
steps. Each element of the underlying ORAM scheme is now encoded bit-by-bit where each bit now turns into
kO(1) bits which is size of the output of our multi-argument PRF. The PRF is evaluated at most twice per wire of
each garbled circuit, and the underlying encryption scheme is evaluated at most eight times per gate of each circuit,
each of these invocations run in kO(1). Since the underlying ORAM scheme only has poly-log overhead, the overall
computation and communication for the client amounts to polylog(n) · kO(1) per query. The server has the same
communication complexity, and the computation is just the evaluation of the garbled circuits, which amounts to at
most four decryptions per garbled gate, thus also resulting in polylog(n) · kO(1).

Security. In order to show security, we must show that there exists a simulator Sim that generates the view of the
server for a sequence of polynomially sized t queries. First, we generate a simulated garbled circuit for the top level.
By the security of garbled circuits, there exists some simulator SimY ao that simulates these garbled circuits (except
we use the time-labeled encodings of the inputs and outputs in the simulation, which can further be simulated by
true randomness due to the security of our PRF).

Next, we describe how to create a good simulation of the subsequent levels. Sim has to simulate 2L − 2
(encrypted) GC(Cmatch) circuits which produce garbled outputs, and more problematically, Sim must simulate
GC(Cnext) circuits which produces outputs in the clear. In order to do so, we rely on the fact that the locations
given in the clear can be simulated in turn. Indeed, by the security of our underlying ORAM, there exists a simulator
SimORAM that generates the access pattern of the ORAM across all t queries. This access pattern gives us a list
of locations in the intermediate buffers `i2 ∈ B2, . . . , `

i
L ∈ BL for each query i = 1 . . . t. Our simulator Sim will

use these locations as the simulated outputs of the garbled GC(Cnext) circuits. To simulate the view of the server
seeing the output of GC(Cnext) (on the j-th level in the i-th query), we set it to be the simulated location `ij and a
randomly chosen secret key ski which can only decrypt the proper circuit in the next level. These we simulate via
SimY ao given only the output `ij , ski. Also, because the encrypted garbled GC(Cmatch) circuits for these locations
will be decrypted, we can also simulate them via SimY ao. For the remaining locations that won’t be decrypted, our
simulator Sim encrypts the “all-zeroes” string, which is computationally indistinguishable from a good encryption.

Finally, by Lemma 1, we can reuse the encodings as inputs between different invocations while still being able
to simulate.
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