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Abstract

Given any Random Access Machine (RAM) Program (think of it as written in a modern program-
ming language, such as C) we show how to construct a reusable garbled version of this program where
the garbled program representation is independent of the running time and only depends on a fixed
polynomial in the security parameter. The above result assumes the existence of key-dependent-secure
reusable garbled circuits. Without assuming key-dependent security, we show how to construct reusable
garbled programs where its garbled size is proportional to the running time of the insecure program
times a fixed polynomial in the security parameter. By utilizing recent result of Goldwasser, Kalai, Popa,
Vaikuntanathan, and Zeldovich on reusable garbled circuits in our construction, we get the first reusable
garbled RAM program that has size is proportional to the running time of the insecure program times a
fixed polynomial in the security parameter based on the LWE assumption. Furthermore, assuming solely
the existence of one-way functions, we construct one-time garbled RAM programs where its size only
depends on fixed polynomial in the security parameter times the program running time. We stress that
we avoid converting the RAM programs into circuits. As an example, our techniques implies the first
garbled binary search program (searching over sorted encrypted data stored in a cloud) which is poly-
logarithmic in the data size instead of linear. All of the above methods enjoy the same non-interactive
properties as Yao’s original garbled circuits.
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1 Introduction

Often times, such as in cloud computation, one party wants to store some data remotely and then have the
remote server perform computations on that data. If the client does not wish to reveal this data or the nature
of the computation and the results of the computation to the remote server, then one must resort to using
secure computation methods in order to process this remotely stored data. In other words, suppose two
parties want to compute some program π on their private inputs without revealing to each other (or just
one party) anything but the output. The earliest research in secure two-party computation modeled π as
a circuit and was accomplished under Yao’s Garbled Circuits [39] or the Goldreich-Micali-Wigderson [14]
paradigm. Both of these approaches require the program π to be converted to a circuit. Even the recent work
of performing secure computation via fully homomorphic encryption requires representing the program π
as a circuit. However, many algorithms are more naturally and compactly represented as RAM programs,
and converting these into circuits may lead to a huge blowup in program size and its running time.

Of course, there are known polynomial transformations between time-bounded RAM programs, time-
bounded Turing Machines and circuits [11, 32]: Given a T -time RAM program, [11] shows how one can
transform it into a O(T 3)-time TM, and [32] shows how to transform a T -time TM into circuits of size
O(T log T ), which results in a O(T 3 log T ) blowup. Our work aims at circumventing these transformation
costs and executing RAM programs directly in a private manner, while retaining the same noninteractive
properties as Yao’s Garbled circuits. This goal is especially important for the case of complex real-world
RAM programs with running time that is much larger than the input size. Unrolling these complicated RAM
programs with multiple execution paths, recursion, multiple loops, etc. into a circuit makes the circuit size
polynomially larger and often prohibitive.

It should be noted that our work is also important in practical applications where the sizes of the inputs
are vastly different, such as database search, or where multiple queries against the same large data-set must
be executed. When compiling a RAM program into a circuit, the compiled circuit must inherently be able
to compute all execution paths of the RAM program. Thus, the circuit itself must be at least be as large as
the input size, which in some applications may be is exponentially larger than execution path of the insecure
solution (e.g. consider a binary search). One can argue that even if the circuit is large, we can “charge” the
large circuit cost to the large input size, but in many cases this is unacceptable: consider the case where a
large data is encrypted and uploaded off-line, such as a large database, and multiple encrypted queries are
made on-line, where the insecure execution path is, for example, poly-logarithmic in the database size and
we do not want to “pay” a circuit size which is even linear in the database size.

Another approach for secure conversion of RAM programs into circuits is dynamic evaluation: even if
the resulting circuit is large and the total size of the is resulting circuit is prohibitive, one can execute and
even compile the large circuit dynamically and intelligently evaluate only parts of the circuit so as to “prune
off” dead paths (e.g. short-circuiting techniques) to make the evaluation efficient, even in the case of large
inputs. However, until now it was not known how to convert RAM programs into circuits which result in an
efficient secure non-interactive execution in a way that does not reveal the execution path of the compiled
RAM program. Naturally, using interaction, one can use the Goldreich-Micali-Wigderson [14] paradigm
along with revealing bits along the way to help prune and determine execution path – however our ultimate
goal is to explore the non-interactive garbling solutions for RAM programs without revealing the execution
path.

An alternative method for computing RAM programs without first converting them to circuits was pro-
posed by Ostrovsky and Shoup [30] which used Oblivious RAM [15] as a building block. The Ostrovsky-
Shoup compiler allows parties to execute Oblivious RAM programs directly, i.e., without first unrolling
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it into a circuit, which provided an alternative approach to secure RAM computation. The method was
further improved by Gordon et al. [20] in order to perform sublinear amortized database search. Lu and
Ostrovsky [25] considered two-server Oblivious RAM inside the Ostrovsky-Shoup compiler, which led to
logarithmic overhead in both the computation and the communication complexity. Note that these three
works allow secure RAM evaluation without having to unroll the program into a circuit and represent a
different way to perform secure computation that reveals only the program running time. Among these, [25]
is the best result for programs (instead of circuits) in terms of computation complexity and communication
complexity. However, in terms of round complexity, these papers leave much to be desired: they all require
at least logarithmic rounds for each CPU computation step. Since the running time of CPU is at least t steps
for programs that run in time t, this leads to Ω(t · log t) round complexity. In contrast, in this paper we
show how to retain poly-log overhead in communication and computation, and make the entire computation
non-interactive in the OT-hybrid model, just like Yao.

1.1 The Blueprint for RAM Program Garbling

We describe our approach at a high level: we start with an ORAM compiler (with certain properties which
we will describe later) that takes a program and converts it into an oblivious one. We call this new program
the “ORAM CPU” because it can be thought of as a client running a CPU that performs a local computation
followed by reading or writing something on the remote server. As a conceptual segue, consider the fol-
lowing change: instead of the ORAM CPU locally performing its computation, it creates a garbled circuit
representing that computation, and also garbles all the inputs for that computation (the inputs are just the
client state and the last fetched item, possibly with some randomness) and sends it to the server who then
evaluates the circuit. The output of this computation is just the next state and the next read/write query, and
the server preforms the read/write query locally, and sends back the result of the read/write query along with
the state to the ORAM CPU. We emphasize that this is just a conceptual intermediate step, since this step
does not actually give us any savings and possibly interferes with the security of the ORAM CPU by having
its state revealed to the server.

Next, we change where the ORAM CPU state is stored: instead of letting the client hold it, it is stored
on the server in garbled format. That is to say, the garbled circuit that the client sends to the server now
outputs a garbled state instead of a regular state, which can then be used as input for the next ORAM CPU
step. As long as the garbled circuit for the next CPU step uses the same input encoding as the one generated
by our current CPU step, then the client does not need to interact with the server. However, the garbled CPU
also performs read/write operations into ORAM memory. We need to describe how this is done next.

Let us suppose that the ORAM compiler had the property that the ORAM CPU knows exactly when
the contents of a memory location was last written to (which is the case for many ORAM schemes). We
attempt to perform the same strategy as we did with garbling the state: whenever the ORAM CPU wants to
write something to memory, it encodes its bits as some garbled input encoding for that particular memory
location, for that particular time step. This way, the server does not need to send back anything to the client
as it keeps the garbled memory contents and garbled state all locally. However, this does not immediately
work, because if each memory location uses a different encoding, the CPU circuit does not know which
encoding to use when reading at some future time.

In order to resolve this, we construct a circuit that assists with this transition: the circuit takes as input
a time step and memory location and outputs a garbled circuit encoded for that time step and memory
location. If the garbled circuit is generated pseudorandomly, the transition mostly consists of just repeatedly
evaluating PRFs. Since this circuit does not require the knowledge of the memory location ahead of time,
the client can generate as many of these as needed at the start of the computation. Indeed, if the ORAM
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program runs in t steps, the client can generate t of these circuits, garble them, and send them all to the
server, non-interactively.

We would like to achieve a notion of compactness: the size of the garbled program should be dependent
on the size of the original program and not on the worst-case running time t. We would need a single
circuit to generate all the necessary garbled circuits for each CPU step. In the work of Goldwasser et
al. [16], it was shown how to construct a reusable garbled circuit. This seems to be a good candidate for
our construction except we need one additional ingredient. Because the garbled outputs of one time step
is fed as the garbled inputs of the next time step, the reusable garbled circuit must remain secure even if
it produces outputs that are correlated to its secret input garbling algorithm.1 Under the assumption that
these key-dependent reusable garbled circuits exist, we observe that our scheme augments to be program
size compact. As a bonus, this will also make our scheme reusable as well, so that each time the client wants
to compute on a new input, the existing garbled circuit does not have to be created and sent again. Even
for TMs, the notion of program compactness is of interest. In [16], it is shown how to construct a so-called
TM-homomorphic-encryption scheme that allowed for the online evaluation of any TM with with online
time that is input-dependent instead of worst-case. Our results apply also to garbling TMs so that even a
potentially non-terminating Turing Machine can be garbled and sent to the server such that when running
on a garbled input, it reveals only the output and running time (under our assumptions).

To introduce some notation that we will use later, we recapitulate the discussion above. If the program
runs for t steps, the client can create t Yao’s garbled circuits for each CPU execution step, where each
garbled circuit takes as input the (garbled) state from the previous CPU computation step performs a single
CPU step and outputs garbled state of the CPU after the instruction have been executed. The garbled output
of the CPU step is exactly the encoding of the CPU state that is needed for the garbled circuit for the
next CPU step. The main technical challenge is to garble the read/write calls in-between these CPU steps
because the client does not know ahead of time where the memory locations will be. We implement these
queries as follows: we show how to design a small circuit COclient that outputs a bit representation of
another garbled circuit GC(CORAMquery). We show that this “on the fly” compilation of oracle call into
a bit representation of another garbled circuit is efficient and can be a prepared as another garbled circuit of
poly-logarithmic size and does not grow with t.

Note that we need Oblivious RAM with poly-log overhead where the client size is at most some fixed
polynomial in the security parameter times some poly-log factor in n. This is because for every ORAM
fetch operation, we also need to emulate the client’s internal computation of the Oblivious RAM using our
secure method, which incurs a multiplicative overhead in the size and the running time of the client. Thus,
the smaller the client of Oblivious RAM, the more efficient our solution is: in order to achieve poly-log
overhead, all Oblivious RAM schemes where client memory is larger than poly-logarithmic (e.g. [13, 7]) is
not useful for our purposes. We expand on the intuition in Section 3.1.

In Section 3 we give the main construction for garbled RAM programs. When combined with oblivious
transfer, this gives a one-round secure two-party RAM program computation in the semi-honest model
(which can be extended to multi-party using the Beaver-Micali-Rogaway paradigm[3]), which we discuss
in Section 4. In Appendix B, we give a construction for step a single-round ORAM.

1An interesting analogue of this issue comes up in the distinction between leveled versus fully homomorphic encryption during
key switching, where the secret keys for one level are encrypted in some form under the secret keys for the next level.
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1.2 Related Work on Oblivious RAMs and Secure RAM Computation.

Oblivious RAM was introduced in the context of software protection by Goldreich and Ostrovsky [15]. In
the original work by Goldreich [13], a solution was given with O(

√
n) and communication overhead where

lookups could be done in a single round and O(2
√

logn log logn) communication overhead for a recursive
solution. Subsequently, Ostrovsky [28, 29] gave a solution with only poly-log overhead and constant client
memory (the so-called “hierarchical solution”). This solution, and most other subsequent solutions (except
for two exceptions described below) require a logarithmic number of rounds per query. Let us consider a
single round solutions only:

• The original single-round solution of Goldreich [13] requires
√
n client’s memory.

• Recently, Boneh et al. [7] extended Goldreich solution to work on larger blocks, but also requiring√
n client’s memory.

• Williams [36] and Sion and Williams [35], presented a single-round Oblivious RAM that has loga-
rithmic overhead, logarithmic client storage and uses bloom filters.

• Even more recently, Gentry et al. [12] proposed an extension of Sion-Williams scheme [35] that is
also one-round.

In contrast to all of the above works, we propose the first solution for single-round ORAM solution
that makes use of Yao’s Garbled Circuits, can be based on any one-way function, and using constant client
memory in the security parameter and poly-logarithmic overhead.

Subsequent to Goldreich and Ostrovsky [28, 29, 13, 15], works on Oblivious RAM (e.g. [37, 38, 31, 17,
18, 33, 19, 22, 34]) looked at improving the concrete and asymptotic parameters of Oblivious RAM. The
works of Ajtai [1] and Damgård et al. [10] show how to construct oblivious RAM with information-theoretic
security with poly-logarithmic overhead in the restricted model where the adversary cannot read memory
contents. That is, these results work in a model where an adversary only sees the sequence of accesses and
not the data. The notion of Private Information Storage introduced by Ostrovsky and Shoup [30] allows
for private storage and retrieval of data, and was primarily concentrated in the information theoretic setting.
This model differs from Oblivious RAM in the sense that, while the communication complexity of the
scheme is sub-linear, the server performs a linear amount of work on the database. The work of Ostrovsky
and Shoup [30] gives a multi-server solution to this problem in both the computational and the information-
theoretic setting and introduces the Ostrovsky-Shoup compiler of transforming Oblivious RAM into secure
RAM computation. The notion of single-server “PIR Writing” was subsequently formalized in Boneh,
Kushilevitz, Ostrovsky and Skeith [6] where they provide a single-server solution. The case of amortized
“PIR Writing” of multiple reads and writes was considered in [8].

With regard to secure computation for RAM programs, the implications of the Ostrovsky-Shoup com-
piler was explored in the work of Naor and Nissim [27] which shows how to convert RAM programs into
so-called circuits with “lookup tables” (LUT). The Ostrovsky-Shoup compiler was further explored in the
work of Gordon et al. [20] in the case of amortized programs. Namely, consider a client that holds a small
input x, and a server that holds a large database D, and the client wishes to repeatedly perform private
queries f(x,D). In this model, an expensive initialization (depending only on D) is first performed. After-
wards, if f can be computed in time T with space S with a RAM machine, then there is a secure two-party
protocol computing f in time O(T ) · polylog(S) with the client using O(logS) space and the server using
O(S · polylog(S)) space. The secure RAM computation solution of Lu and Ostrovsky [25] can be viewed
as a generalization of the [30] model where servers must also perform sublinear work.
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1.3 Our Results

In this paper, we show how to garble any Random Access Machine (RAM) Program πt that runs in time
upper bounded by t while keeping all the non-interactive advantages of the Yao’s Garbled Circuit approach.
More specifically, we present a program garbling method which consists of a triple of polynomial-time
algorithms (G,GI,GE). G takes as input any RAM program π (that may include an upper bound t on
its running time) and a pseudorandom function (PRF) family F and a seed s for PRF of size k (a security
parameter) and outputs a garbled program Πt = G(πt, t, F, s), where all inputs are polynomial in the
security parameter. Just like gabled circuits, we provide a way to garble any input x for πt into Garbled
Input X = GI(x, s), and an algorithm to evaluate a garbled program on garbled inputs GE(Πt, t,X).
The correctness requirement is that for any x, πt, F, s it holds that πt(x) = GE(G(πt, t, F, s), GI(x, s))
with the security guarantee that nothing about x is revealed except its running time t, expressed in terms
of computational indistinguishability (≈) between the simulator Sim and garbled outputs. We remark that
the strongest form of our theorem does not need to know t, and can compile arbitrary RAM program (or
Turing Maching) into Garbled Program of compact size. The reason this does not violate the impossibility
of general Program Obfuscation is that just like Yao, the inputs must be encrypted with the same key as was
used to do the garbling.

So far, the above description matches Yao’s garbled circuit description. The difference is both in the
running time and the size of garbled program for our new garbling method.

Theorem 1. Assume one-way functions exist, and let the security parameter be k and let F be a PRF
family based on the one-way function. Then, there exists a Program Garbling triple of poly-time algorithms
G,GI,GE such that for any t any πt and any input x of length n:

• Correctness: ∀x, πt, F, s:
πt(x) = GE [G(πt, t, F, s), GI(x, s)]

• Security: ∃ poly-time simulator Sim, such that ∀π, t, x, s, where |s| = k

[G(πt, t, F, s), GI(x, s)] ≈ Sim
[
1k, t, |x|, πt(x)

]
• Garbled Program Size: The size of the garbled program

|G(πt, t, F, s)| = O
(

(|π|+ t) · kO(1) · polylog(n)
)

• Garbled Input Size: Let |x| = n and |s| = k. ∀x, s the garbled input size

|GI(x, s)| = O
(
n · kO(1) · polylog(n)

)
Our first construction is a one-time garbled program based on any one-way function, and is time-compact

in the sense that if the original program runs in t time and has size n, our garbled RAM runs in O(t ·
poly(k, log n)). We can extend our construction to be reusable if the t outer garbled circuits are reusable,
and due to Goldwasser et al. [16], such a construction can be made under the learning with errors (LWE)
assumption. our construction can be made to be reusable. Our first construction is a one-time garbled
program based on any one-way function, and is time-compact in the sense that if the original program runs
in t time and has size n, our garbled RAM runs in O(t · poly(k, log n)).
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Theorem 2. Under the LWE assumption, there exists a secure program garbling triple of poly-time algo-
rithms G,GI,GE that is time-compact and reusable.

Furthermore, under the assumption that there exists private key-dependent, reusable garbled circuits,
we achieve garbled program compactness (i.e. —G(πt, t, F, s)| = O

(
(|π|) · kO(1) · polylog(n)

)
, without

dependency on t)).

Theorem 3. Assuming there exists a key-dependent reusable circuit garbling scheme, then there exists a
secure program garbling triple of poly-time algorithms G,GI,GE that is time-compact, reusable, and also
program size-compact.

Additionally, we construct a single-round Oblivious RAM scheme that is based on Yao’s garbled circuits,
which we present in Section B.

1.4 Remarks

Compact Garbling of Turing Machines. We stress that Theorem 3 is of interest even for Turing Ma-
chines, not just for garbled circuits or RAM programs. Previously it was not known how to garble Turing
Machines (analogous to Yao), where the garbled size is independent of the running time. Indeed, if we
take a potentially non-terminating Turing Machine, we can garble it and give it to the server. If we later
give a garbled input, the program will run, and if it terminates will output whatever the non-garbled version
outputs. Naturally, if we don’t bound the time of Garbled run-time, the running time will leak. However, we
stress that that is the only information that will leak and nothing else under our assumption.
Making programs and outputs private. We note that similar to Yao, we can make πt to be a time-bounded
universal program ut, (i.e., an interpreter) and x = (π′t, y) include both time-bounded program π′t and
input y, so that ut(x) = π′t(y). Part of the specification of π′t may also include masking its output – i.e. to
have output blinded (XORed) with a random string. That allows, just like Yao, to keep both the program and
the output hidden from a machine that evaluates the garbled program. Such a modification has been utilized
in the literature (see, e.g. [2]).
Reactive functionalities. Our result shows that we can first garble a large input x, |x| = n with garbled
input size equal to O(|x| · kO(1) · polylog(n)) so that later, given private programs π1

t1 , . . . , π
j
tj
, . . . for

polynomially many programs where program πj runs in time tj and potentially modifies x, (e.g., database
updates) we can garble and execute all of these programs just revealing running times ti, and nothing else.
The size of each garbled program remains O

(
(|πi|+ ti) · kO(1)· polylog(n)). It is also easy to handle the

case where the length of x changes, provided that an upper bound by how much each program changes the
length of x is known prior to garbling of next program.
Cloud computing. As an example of the power of our result we outline secure cloud computation/delegation.
In this simple application one party has an input and wants to store it remotely and then repeatedly run differ-
ent private programs on this data. Reactive functionalities allow us to do this with one important restriction:
we do not give the server a choice in adaptively selecting the inputs: but this is not an issue as the server
itself has no inputs to the program. The other possible problem is if the programs themselves are contrived
and circularly reference the code for the garbling algorithm. Such programs would be highly unnatural to
run on data and so we disallow them in our setting.
Two-party computation. Note that just like in Yao’s garbled circuits, in order to transmit the garbled inputs
corresponding to input bits held by a different party for the sake of secure two-party computation, one relies
on Oblivious Transfer (OT) that can be done non-interactively in the OT-hybrid model. Here, we insist
that the OT-selected inputs to our garbled program are committed to prior to receiving the RAM garbled
program, i.e. non-adaptively [4].
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Optimizations. We remark that step two of our blueprint is applicable to almost all ORAM schemes with
small CPU as follows: instead of collapsing in the hierarchical Oblivious RAMs multiple rounds of a single
read/write to a single round, we can implement our step 2 directly for each round of each read/write (e.g.
even inside a single read/write simulation of Oblivious RAM that requires multiple rounds) of the underlying
Oblivious RAM: by implementing an oracle call for each Oblivious RAM CPU read/write using our method
of compiling memory fetch “on the fly” into garbled circuits. Any Oblivious RAM where the CPU can
tell precisely when any memory location was overwritten last can be complied using our approach. (We
call such Oblivious RAMs “predictive memory” RAMs and explore this further in the full version.) For
example, this property holds for [22] ORAM. It also allows a generic method to “collapse” all multi-round
predictive memory Oblivious RAM with small CPU into a single round. Observe that the overall complexity
for garbling programs depends both on the CPU complexity and the ORAM read/write complexity.
Tighter Input Compactness. Using an ORAM scheme that has small input encoding and small size CPU
(such as [22]) we can also make Input Compactness in our main theorem tighter: for all programs we can
make garbled inputs to be O(nk), where recall that n is the input size and k is the security parameter. We
remark that if we wish to garble only “large” programs that run time at least Ω(n · log n · kO(1)), we can
make Input Compactness even better under the assumption that one can encode inputs to garbled circuits
to be of size O(n + k) and have the garbled program “unpack” the inputs to the full O(nk) size. Such
packing techniques for have been recently developed for garbling the inputs of garbled circuits by Ishai and
Kushilevitz [21].
Stronger Adversarial models. As already mentioned we describe the scheme in the honest-but-curious
model based on honest-but-curious Yao, and only in the non-adaptively secure setting (see [4] for further
discussion of adaptivity.) There is a plethora of works that convert Yao’s garbled circuits from honest-but-
curious to malicious setting, as well strengthening its security in various settings. Since our machinery is
build on top of Yao’s garbled circuits (and Obvious RAMs that work in the fully adaptive setting), many of
these techniques for stronger guarantees for Yao’s garbled circuit apply in a straightforward manner to our
setting as well. We postpone description of malicious models to the full version.

2 Preliminaries

2.1 Oblivious RAM

We work in the RAM model with stored programs, where there is a CPU that can run a program that performs
a sequence of reads or writes to locations stored on a large memory. This machine, which we will refer to
as the CPU or the client, can be viewed as a stateful2 processor with only a few special data registers that
store program counters, query counters, and cryptographic keys (primarily a seed for a PRF) and that CPU
can run small programs which model a single CPU step. Given the CPU state Σ and the most recently read
element x, CPU(Σ, x) does simple operations such as addition, multiplication, updating program counter,
or executing PRF followed by producing the next read/write command as well as updating to the next state
Σ′.

Because we wish to hide the type of access performed by the client, we unify both types of accesses
into a operation known as a query. A sequence of n queries can be viewed as a list of (memory location,
data) pairs (v1, x1), . . . , (vn, xn), along with a sequence of operations op1, . . . , opn, where opi is a READ

or WRITE operation. In the case of READ operations, the corresponding x value is ignored. The sequence
2We can consider a stateless version where all registers are stored in memory. For ease of exposition, we let the client hold local

state.
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of queries, including both the memory location and the data, performed by a client is known as the access
pattern.

In our model, we wish to obliviously simulate the RAM machine with a client, which can be viewed as
having limited storage, that has access to a server. However, the server is untrusted and assumed to only
be, in the best case, semi-honest, i.e. follow the protocol but attempt to learn additional information by
reviewing the transcript of execution. An oblivious RAM is secure if the view of a server can be simulated
in poly-time in a way that is indistinguishable from the view of the server during a real execution.

We use an ideal/real simulation-based definition of security and also work in the setting of semi-honest
adversaries. There are two parties, Alice and Bob that receive inputs A and B respectively and they wish
to compute f(A,B). In the ideal world, there is an ideal functionality Ff that on inputs A and B simply
computes f(A,B) and sends the output to Alice and Bob. In the real world, we can think of the Alice and
Bob executing a protocol πf that computes f(A,B). Roughly speaking, we say that πf securely realizes the
functionality Ff if there exists an efficient simulator S playing the role of the corrupted party in the ideal
world can produce an output that is computationally indistinguishable from the view of the corrupted party
in the real world.

Concretely, we focus on the hierarchical Oblivious RAM scheme of Ostrovsky [28, 29]. There is a data
structure that consists of a sequence of buffers Bk, Bk+1, . . . , BL of geometrically increasing sizes, e.g. Bi
is of size 2i. Typically k = O(1) (the first buffer is of constant size) and L = log n (the last buffer may
contain all n elements), where n is the total number of memory locations. For ease of exposition, we set
k = 1 in the sequel. These buffers are standard bucketed hash tables, where each Bi consists of, say 2i,
buckets, each of size b. To read or write to a memory location v from the hierarchical data-structure, we
wish to hide the identity of the buffer from which the element was found. Specifically, we start by reading
the top (smallest) buffer B1 in its entirety; then, for each 1 ≤ i ≤ L, we compute j = hi(v) (where hi(·)
is a hash function implemented as a PRF with appropriate domain and range for each level) and read the
entire j-th bucket (b elements) of that buffer. This alone is not sufficient, as if we make identical queries,
the same locations will be scanned. Thus, once element v is found at some level, we search upon random
dummy locations from subsequent (bigger) level buffers. In addition, at the end of this process, we re-insert
element r (overwriting it in case of a write) into the top buffer of the data-structure. This, together with the
re-shuffling procedure described below, guarantees that when executing future operations with the same v,
independent locations will be read from each buffer. Finally, we remark that even if element v was not in
any buffer before the operation, it will be inserted into the top buffer.

After every 2i insertions, buffer Bi is considered “full” and its contents are moved into the next buffer
Bi+1. More precisely, we do the following: after m = 2i · ` reads or writes, ` odd, where m is divisible
by 2i but not by 2i+1, we move all the elements from buffers B1, . . . , Bi into buffer Bi+1 (at such time
step, Bi+1 itself is empty). For this, we pick a fresh pseudo-random hash function for Bi+1 (which can be
modeled using a PRF). Finally, there is a process called oblivious hashing which we will use in detail later
that removes any correlation between the new locations of the elements in Bi+1 and their old locations.

2.2 Yao’s Garbled Circuits

Garbled circuits were introduced by Yao [39]. A series of works looked at proving the security and formal-
izing the notions of garbled circuits, including Lindell and Pinkas [23], and recently, the work of Bellare et
al. [5]. We refer the reader to the latter work for more details, and we briefly summarize the key properties.

A circuit garbling scheme we view as a triple of algorithms (G,GI,GE) where G(1k, C) takes as input
a security parameter k and circuit C and outputs some garbled circuit Γ and garbling key gsk. GI(x, gsk)
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converts an input x and a gsk into a garbled input X , and GE(Γ, X) evaluates a garbled circuit on an
garbled input.

We also paraphrase a summary of garbled circuits given in Choi et al. [9] which uses a point-and-
permute variant due to Malkhi et al. [26]. Consider a circuit C and a CPA-secure symmetric encryption
scheme (KeyGen,Enc,Dec). For each wire i ∈ C, we generate two random keys w0

i , w
1
i and a random

bit “flip” indicator πi. We associate wbi with λbi = b⊕πi and call the pair (w0
i ||λ0

i , w
1
i ||λ1

i ) the 0 and 1 labels
for wire i respectively (the λ will be henceforth omitted in following sections). For each fan-in 2 gate g with
input wires i, j and output wire k, we associate a garbled table to the gate consisting of the following four
ciphertexts:

EnCwπii

(
EnC

w
πj
j

(
w
g(πi,πj)
k ||πk ⊕ g(πi, πj)

))
EnCwπii

(
EnC

w
¬πj
j

(
w
g(πi,¬πj)
k ||πk ⊕ g(πi,¬πj)

))
EnCw¬πii

(
EnC

w
πj
j

(
w
g(¬πi,πj)
k ||πk ⊕ g(¬πi, πj)

))
EnCw¬πii

(
EnC

w
¬πj
j

(
w
g(¬πi,¬πj)
k ||πk ⊕ g(¬πi,¬πj)

))
.

Given this garbled table and labels for the wires i and j (wbii ||λ
bi
i and wbjj ||λ

bj
j respectively), a party can

decrypt the row corresponding to λbii , λ
bj
j to obtain the proper label for the output wire: wg(bi,bj)k ||λbkk . If the

labels to the input wires are given, then one can recursively evaluate all gates of the circuit. Suppose now the
two parties wish to securely evaluate C on input (x, y) where the circuit generator holds x and the circuit
evaluator holds y. The circuit generator sends the labels for the wires corresponding to the proper bits of x,
and the labels for the input wires corresponding to the proper bits of y can be sent using oblivious transfer.
The circuit evaluator at the end will receive a bunch of labels containing the λo for all the output wires o.

We use a variant of Yao’s garbled circuits in which some of the output wires are revealed to the circuit
evaluator immediately in the clear and some are not revealed. Revealing output wires in the clear is the
standard way of viewing garbled circuits. For output wires that are not revealed, they are either represented
as internal garbled keys (that can be used as inputs for other circuits) or XORed with pseudo-random pads
that can later be revealed. It will be clear from the context which representation of various outputs we use.

We first make an observation that the labels (keys) on a given wire used in a garbled circuit can be re-
used in additional newly generated gates, as long as the value does not change between the uses and it is not
revealed whether this label represents 0 or 1. (For example, assume that garbled circuit evaluator is given a
label on some input wire, which is a key representing a 0 or a 1. We claim that the same key can be used as
input key for other garbled circuits that are generated later.) This observation allows us to execute garbled
circuits in “parallel” or “sequentially” where some labels are re-used. Indeed, this observation is implicitly
used in classic garbled circuits in gates where the fan-out is greater than 1: all outgoing wires share the same
labels (see e.g. Footnote 8 in Lindell-Pinkas [23]).

Lemma 1. Suppose C and C′ are two circuits and suppose there is some input x for which we want to com-
pute C(x) and C′(x) (resp. C(C′(x))). Suppose the wires w0, . . . , wn in C represent the input wires for x and
similarly define w′0, . . . , w

′
n represent the input wires of x in C′ (resp. v′0, . . . , v

′
n be the output wires of C′).

Let kbwi represent the label indicating wire wi = b, and let C and C ′ be randomly garbled into GC(C) and
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GC(C′) under the restriction that kbwi = kbw′i
(resp. kbwi = kbv′i

). Then the tuple (GC(C), GC(C′), {kxiwi}
n
i=0)

can be computationally simulated.

Proof. Consider the composite circuit D = C||C′ (resp. E = C ◦ C′) which is just a copy of C and a
copy of C′ in parallel (resp. sequence). Then every garbling of D induces a garbling of C and C′ with the
restriction exactly as above. By the security of garbled circuits, there exists a simulator that can simulate
(GC(D), {kxiwi}

n
i=0). We can construct a simulator for our lemma by simply taking this simulator and taking

the output and separate out GC(C) and GC(C′), as the lemma requires.

Remark: If the data is encrypted bit by bit using Yao’s keys, Lemma 1 allows us to run arbitrary garbled
circuits on this data, akin to general purpose “function evaluation” on encrypted data. This observation itself
has a number of applications, we describe these in the full version of the paper.

3 Non-interactive Garbled RAM Programs

3.1 Informal description of main ideas

We consider the RAM model of computation as in the works of [15, 28, 29] where a RAM program along
with data is stored in memory of size O(n), and a small, stateful CPU with a O(1) instruction set that can
store O(1) words that can be of size polylog(n) = poly(k) where k is the security parameter. Each step
of the CPU is simply a read/write call to main memory followed by executing its next CPU instruction. We
now summarize our idea for building Garbled RAM programs from our single-round Oblivious RAM.

In order to garble a RAM program πt, we consider the two fundamental operations separately and show
how to mesh them together:

1. Read/Write (v, x) from/to memory.

2. Execute an instruction step to update state and produce next read/write query: Σ′,READ/WRITE(v′, x′)←
CPU(Σ, x). Updating the state can include updating local registers, incrementing program counters
and query counters, and updating cryptographic keys.

Our goal is to transform this into a non-interactive process by letting the client send the server enough
garbled information to evaluate the program up to t steps, where t upper bounds the RAM program running
time. We give some intuition as to how to construct a circuit for each step, and then how to garble them. The
first part will be modeled as the circuit CORAM , and the second part will be modeled as the circuit CCPU .
The circuits satisfy a novel property: the plain circuit CORAM emulates a query for the ORAM client and
outputs a bit representation of a garbled circuit GCORAM . This GCORAM has output encodings that will be
compatible with the garbled circuit GC(CCPU ) to evaluate a garbled the CPU’s next step. We remark that
GCORAM actually contains several sub-circuits, but is written as a single object for ease of exposition. If we
generate t of these garbled circuits, then a party can evaluate a t-time garbled RAM program by consuming
one garbled CORAM and one garbled CCPU per time step.

We first consider the circuit CCPU , which is straightforward to describe. This circuit takes as input
Σ representing the internal state of the CPU, and x the last memory contents read. Recall that the CPU
performs a step CPU(Σ, x) and updates the state to Σ′ and gives the next read/write query to memory
location v′ and contents x′. In order to turn this into a circuit, we can sacrifice some efficiency and have
a “universal” instruction in which we run every atomic instruction (from its constant sized instruction set)
and simply multiplex the actual results using the instruction opcode. This universal instruction is modeled
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as a circuit which is of size kO(1). We remark that although this circuit is simple, the complexity arises
from when we want to garble this circuit: the garbling must be done in a way so that the garbled inputs and
outputs are compatible with GCORAM .

The circuit CORAM must emulate the client in Oblivious RAM (we can think of it as being a non-
interactive client either by breaking out each individual step as a separate circuit, or using a non-interactive
ORAM). The input of the circuit is just an ORAM read/write query3, and the output of the circuit is a bit
representation that describes a set of garbled circuits, equivalent to what would have been produced
via the ORAM client which we call GCORAM .4 We give full details on the construction in Section 3.2.
It is important that we argue that the result of this fetch can be combined with the evaluation of the CPU
step. Observe that since the labels in our single-round ORAM are generated as pseudo-random time-labeled
encodings, so we know ahead of time only the encoding of the output (but know neither the input nor output)
of the i-th invocation of the single-round ORAM. Thus when garbling CCPU , the input encodings use exactly
the output encodings from the respective outputs of the ORAM. Recall in our single-round ORAM protocol
the server sends back the encoded output to the client; here, we do not send it back, and instead keep the
result and use it as input in the next CPU step (which is secure and correct via Lemma 1).

Then, putting it all together, to garble a RAM program πt that runs in time t, the program garbling
algorithm G generates t garbled CORAM and CCPU circuits, and also encodes the initial state Σ0 of the CPU
with the program initialized, counters set to zero, and with fresh cryptographic keys. Because these are all
generated at once by G, there is no issue of adaptivity or selective security. The full construction of G is
given the next section, Section 3.2.

Looking ahead, in the context of secure two-party computation, this garbled program can be sent to the
server in a single round, whereupon the server can evaluate the program by itself. The result is sent back
to the client, and since the labels were all generated pseudo-randomly, the client can determine whether the
output bits are zero or one. In the case where the server also has inputs, the client can generate the pseudo-
random labels and then the server uses Oblivious Transfer to select the ones corresponding to its input. We
mention that in the OT-hybrid model, this is a non-interactive protocol, we can avoid adaptivity issues by
requiring the server to provide its inputs upfront at the same time the client sends its garbled program, i.e.
this can be viewed as just a one-step process where the garbled program is sent “along” with the garbled
inputs via the OT functionality.

3.2 Main Construction of Garbled Programs

We first describe how to construct the algorithms G,GI,GE. Given a program πt running in time t, we
describe the algorithm G that converts it into a garbled program Πt. In order to do so, we follow the two
steps outlined above and we consider the construction of a circuit that performs an ORAM query CORAM
and a circuit that runs one CPU step CCPU .

Our garbling algorithm G will provide enough garbled circuits to execute t steps of a program πt. Each
step is a garbled RAM query (done obliviously via our single-round ORAM) followed by a garbled CPU
computation. It starts with a garbled encoding of the initial state Σ0 of the CPU with the program πt
initialized, counters set to zero, and with fresh cryptographic keys. For each of the t time steps, it creates a

3Since the ORAM client uses randomness as well as time-labeled encodings (which are outputs of the PRF), we will allow these
to be inputs to CORAM , so that they may be pre-computed “for free” rather than computed via the circuit. The circuit consumes
these inputs in order to generate the output garbled circuit without having to evaluate these itself. The only thing the circuit does
not have ahead of time is the hash of the location of the query at each level, so our circuit CORAM must use PRFs to compute them.

4GCORAM consists of a set of |B1|+2L−2 garbled GC(Cmatch), corresponding garbled GC(Cnext), a garbled GC(Cwrite),
and all necessary time-dependent updates GC(Cupdate) as in Theorem 4.
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garbled GC(CORAM ) for a read/write of that time step, then a garbled GC(CCPU ) to perform a CPU step.
We show how to construct CORAM and CCPU such that they can be garbled and interleaved. We will show
that this garbling is independent of the actual program path, regardless of what memory locations have been
fetched, and is correct and secure.

First, we describe CORAM to mimic an oblivious read/write access to main memory. For this, it can
just perform the steps in our single-round Oblivious RAM, with one difference: G does not know ahead
of time which memory location will be used. Hence, in order to overcome this, the circuit CORAM must
take a memory location as input and internally formulate what the ORAM client computes. CORAM outputs
what the “virtual” ORAM client would have sent to the server: a garbled circuit GCORAM representing a
read/write query. The novelty in this construction is that when we feed a memory location v into CORAM ,
the output precisely is a garbled ORAM read/write query relative to that memory location. In order to hide
v, both CORAM and v are garbled into GC(CORAM ) and V respectively, and by the correctness of garbled
evaluation, the output is still GCORAM . By the security of the underlying ORAM, this output GCORAM
can actually be simulated.

Although it is a circuit that outputs another circuit, there is no circularity in this construction: given a
query location and some fixed randomness, the behavior of the ORAM client is completely deterministic,
straight-line, and takes kO(1) · polylog(n) steps, so the output can be represented by a circuit also of that
size. This ORAM client is independent of the main program CPU which only uses ORAM as an “oracle”.
We emphasize this again, because G will most likely be ran by a client, G does not play the role of the
ORAM client but rather emulates the ORAM client via CORAM , so this is not a client attempting to capture
its own logic in a circuit. We provide a pseudocode description of CORAM in Figure 1.

Looking ahead, G will garble this circuit and ensure that the output of an ORAM query has the same
encoding as that used to garble CCPU . The algorithm G can then garble both CCPU and CORAM ahead of
time, without having to know the memory location.

Next, we consider building the circuit which performs a single CPU step in the RAM program, CCPU
that is supposed to perform Σ′,READ/WRITE(v′, x′) ← CPU(Σ, x). In order to hide which instruction is
being executed, we build the circuit to take an instruction opcode and we run every single-step instruction
from its constant sized instruction set (not all possible program paths) of the CPU. The circuit multiplexes
the actual results using the instruction opcode. This universal instruction is modeled as a circuit which is of
size kO(1) and is independent of the ORAM circuit, independent of the queried locations, and independent
of the current running time.

One may ask the question: How can this circuit be interleaved with the CORAM circuit if it is independent
of it?

The answer is that when G garbles CCPU , the encoding will depend on the output of CORAM in the
previous time-step. Note that this construction is not circular as each garbling only depends on the pre-
vious one, leading up to a total of t time steps. This can be done because G knows the encoding of the
output encoding (but not the output) of the Oblivious RAM query, which does not depend on the location
queried. This output encoding is then used for the input parameter encoding for GC(CCPU ). We provide a
pseudocode description of G in Figure 2.

The algorithm GI for garbling an input of size n is just the time-labeled encodings starting from wher-
ever the RAM program expects the inputs to be located.

The algorithm GE used to evaluate a garbled program Πt on garbled inputs evaluates the garbled circuit
GC(CORAM ), then executing the garbled instruction GC(CCPU ) one at a time, up to t times. The process
is precisely performing the same steps as G except evaluating garbled circuits instead of generating them.
In addition, once it gets the garbled ORAM query, it must also execute it as well. We provide a pseudocode
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Inputs: An ORAM query to read/write (v, x) and a query number `. This circuit interprets the client
performing the `-th ORAM query, which uses randomness and time-labeled encodings based on `. As
such, this circuit also takes these randomness bits and pre-computed encodings as inputs.
Output: A garbled circuit GCORAM representing a read/write ORAM query.
Circuit Description: We describe the functionality of the circuit CORAM . We recall our algorithm for a
ORAM query. Using time-labeled encodings via PRFs, it generates a set of |B1|+ 2L− 2 garbled
GC(Cmatch) which has hard-coded location information built into it, with corresponding garbled
GC(Cnext) circuits, and one final GC(Cwrite) garbled circuit for writing the element back to the top level
(and possibly an update circuit). Although the ORAM client evaluates these PRFs internally, we do not
encode this as part of our circuit CORAM , but rather we “consume” them as input. Similarly, the ORAM
client must use randomness, which we also consume from the input of CORAM . Since the circuit itself
emulates the ORAM client during a query, it appears similar to the construction in Figure 5, but with the
key difference that the encodings/PRFs are fed as inputs.

1. For the top level, B1, for each bucket, CORAM creates a time-labeled garbled circuit GC(Cmatch)
consuming the input encodings to be used as garbled labels.

2. For subsequent levels i = 2 . . . L:

(a) The circuit CORAM computes q0i = hi(v) and consumes q1i from the input (the input itself is
uniformly random)

(b) Consume two secret keys for encryption sk0
i and sk1

i from the input and create a garbled
circuit GC(Cnext)

(c) Create two time-labeled garbled circuits GC(Cmatch), one that searches for w in bucket q0i
encrypted under sk0

i , and one that searches for w in bucket q1i encrypted under sk1
i , again

consuming the encoding from the input to CORAM .

3. CORAM also creates a garbled GC(Cwrite) that writes the result back to the first empty position the
top level buffer Bk.

4. If ` is a multiple of |B1|, then a reshuffle step is performed using the time-labeled garbled update
circuit GC(Cupdate).

5. The combined set of garbled circuits is referred to as GCORAM .

We point out that throughout this entire process, every time a query circuit is created, G increments ` in
order to keep track of the time-labeled encodings required by the CORAM circuits.

Figure 1: The ORAM Client Circuit CORAM

description of G in Figure 3.

3.3 Main Results

We now state our main results:

Theorem 1. Assume one-way functions exist, and let the security parameter be k and let F be a PRF
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Inputs: A program πt with an upper bound on running time t, and a pseudo-random function family F
along with a key s.
Algorithm Description: The algorithm G is performed as follows. It creates an encoding of the initial
state of the CPU, Σ0 with the program πt initialized. It also encodes an initial program counter and
cryptographic keys. We show how to construct CORAM and CCPU such that they can be garbled and
interleaved across t time steps. We must argue that this garbling is independent of the actual program
path, regardless of what memory locations have been fetched, and is correct and secure.
For each time step i = 1 . . . t, G creates:

1. A garbled read/write query circuit GC(CORAM ) for performing query number i on some (unknown
variable) garbled location Vi (and Xi in the case of a write). G pre-computes randomness and PRF
evaluations and hardwires them. Although G does not know the eventual output, it knows the
encoding of it, which is independent of the queried location. It uses this encoding for the following:

2. A garbled instruction circuit GC(CCPU ) with input wires of Xi using the encoding from above, and
the input wires of Σi using the output encoding from the previous CPU step. The output is a garbled
location Vi+1 (and Xi+1 in the case of a write) to be used in the next read/write query and an
garbled updated state Σi+1.

Figure 2: Program Garbling Algorithm G

Inputs: A garbled program Πt with garbled input X .
Algorithm Description: The algorithm GE is performed as follows. It first stores the initial encoded
program state and inputs into memory. Then, for each time step i = 1 . . . t, GE performs:

1. Evaluate the garbled query circuit GC(CORAM ) on a garbled memory location Vi. The output is
GCORAM which itself is a garbled circuit that represents a read/write query in our single-round
ORAM protocol. Execute the query playing the role of the server to obtain some garbled output Xi

which is kept locally instead of sent to the client.

2. Evaluate the garbled instruction circuit GC(CCPU ) on garbled inputs Xi and Σi. Obtain a new
read/write query Vi+1.

After t steps, output the final value Xt+1.

Figure 3: Garbled Program Evaluation Algorithm GE

family based on the one-way function. Then, there exists an efficient Program Garbling triple of algorithms
G,GI,GE such that for any πt any t and any input x of length n:

• Correctness: ∀x, πt, F, s:
πt(x) = GE [G(πt, t, F, s), GI(x, s)]

• Security: ∃ poly-time simulator Sim, such that ∀π, t, x, s, where |s| = k

[G(πt, t, F, s), GI(x, s)] ≈ Sim
[
1k, t, |x|, πt(x)

]
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• Program Size: The size of the garbled program

|G(πt, t, F, s)| = O
(

(|π|+ t) · kO(1) · polylog(n)
)

• Input Size: Let |x| = n and |s| = k. ∀x, s the garbled input size

|GI(x, s)| = O
(
n · kO(1) · polylog(n)

)
Proof.

Correctness. This construction is correct due to the correctness of the underlying single-round Oblivious
RAM scheme in Theorem 4 and the correctness of garbled circuits. In addition, we need to verify that
when interleaving the garbled instruction execution along with the ORAM fetch queries, the ability to
properly decrypt and evaluate the garbled circuits is maintained. Because G generates a garbled circuit
GC(CORAM ) to simulate the fetching client inside the ORAM, the output encoding is chosen so that it
matches the input encoding of GC(CCPU ). Thus, since G generates sufficiently many circuits for ORAM
fetches corresponding to the i-th instruction executed (with respect to time, regardless of the ordering of
the actual instructions in π), the GE algorithm evaluating the garbled circuits can properly evaluate the
instruction and throw away any unused fetches corresponding to the i-th step.
Security. In order to show security, we must show that there exists a simulator Sim that can simulate the
garbled execution given only the running time and program output. In order to do so, we consider what a
server running the algorithm GE does during the execution of the garbled program.

It first stores the initial encoded program state and inputs into memory. Then, for each time step i =
1 . . . t,GE performs: In each CPU step of the garbled program execution, the server performs the following:

1. Evaluate the garbled query circuit GC(CORAM ) on a garbled memory location Vi. The output is
GCORAM which itself is a garbled circuit that represents a read/write query in our single-round
ORAM protocol.

2. Execute the garbled ORAM query GCORAM playing the role of the server to obtain some garbled
output Xi which is kept locally instead of sent to the client.

3. Evaluate the garbled instruction circuit GC(CCPU ) on garbled inputs Xi and Σi. Obtain a new
read/write query Vi+1.

By Theorem 4, the underlying single-round Oblivious RAM is secure and uses time-labeled garbled cir-
cuits and encodings and can be simulated by SimORAM . Furthermore, the underlying Yao’s garbled circuits
are secure, and can be simulated by SimY ao. Thus, the access pattern of the ORAM can be simulated, and we
need only show that the garbled circuit emulating the ORAM client GC(CORAM ) and garbled instructions
GC(CCPU ) can also be simulated. The garbled circuits can be interleaved securely due to Lemma 1, and
the time-labeled encodings themselves are just outputs of a PRF. By the security of Yao’s garbled circuits
and the underlying PRF, these can be simulated securely.
Program Size. We analyze the cost of garbling a program. First, to garble all the instructions of the program,
we incur a cost of O(|π| · kO(1) ·polylog(n)). Furthermore, because the overhead of our underlying ORAM
is kO(1) · polylog(n)) and since at each time step, the client must prepare “CPU instruction” circuits which
include some constant number of ORAM queries, we incur another O(t · kO(1) · polylog(n)). Overall this
leads to the garbled program being of size O((|π|+ t) · kO(1) · polylog(n)).
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Input Size. We analyze the cost of garbling an input of size n. Each bit of the input is encoded and stored
in the ORAM hierarchy which incurs a O(kO(1) · polylog(n)) multiplicative overhead, the total size of the
garbled input is therefore O(n · kO(1) · polylog(n)).

Theorem 2. Assume one-way functions exist and there exists a reusable garbling scheme (e.g. under LWE
assumption), and let the security parameter be k and let F be a PRF family based on the one-way function.
Then, there exists an efficient Program Garbling triple of algorithms G,GI,GE such that for any πt any t
and any input x of length n:

• Correctness: ∀x, πt, F, s:
πt(x) = GE [G(πt, t, F, s), GI(x, s)]

• Reusable Security: ∃ poly-time simulators S1, S2, such that ∀π, t, x, s, and for all ppt adversaries A
where |s| = k, the two distributions are indistinguishable.{

b|b← AGI(·,s)(G(πt, t, F, s))
}
≈
{
b|b← AO(·)(S1(t, F ))

}
where O(x) is an oracle that feeds S2 the value t and the output of πt(x) running for t steps.

• Program Size: The size of the garbled program has O((|π|+ t) · poly(k, log n)) overhead compared
to the underlying reusable garbling scheme.

• Input Size: The size of the garbled program has O(poly(k, log n)) overhead compared to the under-
lying reusable garbling scheme.

Proof Sketch.
In this construction, we replace our tmain outer garbled circuits with reusable garbled circuits. Correct-

ness and the resulting garbled sizes are as before. In order to show security, we must show that there exist
simulators S1, S2 that can simulate the garbled execution given only the garbled program and the running
time and output of all the garbled inputs. By the reusable property of the underlying garbling scheme, there
exist simulators (Si1, S

i
2) for each time step i = 1, . . . , t. We define S1 to be the simulator that generates

the simulated t reusable garbled circuits using the underlying Si1 and S2 to be the simulator which runs
St2, to obtain a simulated garbled input, then simulates the (one-time) garbled circuit for GC(CCPU ) and
GCORAM to reconstruct the previous time-step, then runs St−1

2 , and so forth down to S1
2 .

We create a hybrid of experiments Expti for i = 1, . . . , t where on the i-th time step, we replace the i-th
reusable garbled circuit with the simulated reusable garbled circuit. In other words, in Expti, all reusable
garbled circuits past the i-th are replaced with their simulated counterparts. We can do so because once we
have the i+1-st inputs simulated, this allows us to reconstruct the i-th output, which can then be fed into the
simulator for the i-th reusable garbled circuit. Then the ideal experiment is Expt1 and the real experiment
is just Exptt+1. By the security of the underlying reusable garbled circuits, the output distributions of the
adversary A between any two consecutive experiments are computationally indistinguishable.

3.4 Garbled Program Compactness

We suggest a notion of key-dependency for reusable garbled circuits suitable for our needs. We consider
as a starting point the definition of reusable garbled circuits from [16]. Here, we do not require circuit
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privacy because the circuit will represent a publicly known ORAM CPU algorithm. In particular, consider
garbled feedback circuits of the following general form: (y, z, w) = C(x) runs on some input x and outputs
a termination flag y, standard outputs y, and special outputs w that are to be fed back into C as possibly
garbled input.

We first define what it means for a quadruple of algorithms (KKG,KG, KGI,KGE) to be a key-
dependent, reusable garbling scheme for feedback circuits of the above format. The keygen algorithmKKG
generates a secret key given a security parameter k, gsk ← KKG(1k). The garbling algorithm garbles a
circuit C as Γ← KG(C, gsk). The input garbling algorithm produces X ← KGI(x, gsk), and finally the
garbled evaluation algorithm produces some evaluation (y, z, w) ← KGE(Γ, X). If (y′, z′, w′) = C(x)
then correctness means that y = y′, z = z′ and w is a garbling of w′ that can be used for input again.5

Definition 1 (Key-dependent reusable garbled circuits). Let KRG = (KKG,KG,KGI,KGE) be a key-
dependent, reusable garbling scheme for feedback circuits. We consider the two experiments Real and
Ideal. In ExptReal, a ppt adversary A outputs a security parameter k then gets a garbled feedback circuit
Γ. Using oracle access to KGI(·, gsk) and internally running Γ (with feedback) polynomially many times
until termination, A returns a bit b for the output of the experiment.

In ExptIdeal, A interacts with a ppt simulator S in the following way. A outputs a security parameter k.
The simulator outputs Γ′ ← S(C, 1k) which is sent to A. Using oracle access to O(x), an oracle that runs
S with inputs 1|x|, C(x). A returns a bit b for the output of the experiment.

Then we say KRG is a private key-dependent, reusable circuit garbling scheme for C if ∃S ∀A
∣∣∣Pr[b =

1|ExptReal]− Pr[b = 1|ExptIdeal]
∣∣∣ is negligible in k.

To generate a garbled program that runs in t steps, in the main construction, the client must make at
least t garbled circuits that generate sub-circuits for the underlying ORAM CPU steps. If one chooses t to
be worst-case, this potentially affects the benefits of using RAM program computation against the circuit
model of computation (which always must run in the worst-case time). Here, we can make use of these
key-dependent reusable garbled circuits, so that the client only needs to create a single one at the start. At
each time step, the reusable garbled circuit emulates the i-th GC(CORAM ) and also outputs in the clear
whether or not the garbled program has halted. Note that eventually, we arrive at tokens for the i+ 1-st step,
which will be encoded inputs for its own consumption. Thus, under the assumption of the existence of a key-
dependent version of reusable garbled circuits, we achieve a garbled RAM scheme that satisfies program
compactness, where the garbled program depends only on the original program size and not the worst-case
running time. Furthermore, since our definition does not preclude the adversary from using multiple oracle
calls to the input garbler, this allows our garbled RAM scheme to be reusable as well.

Theorem 3. Assume there exists a private key-dependent, reusable circuit garbling scheme for our circuit
CORAM , and let the security parameter be k and let F be a PRF family based on the one-way function.

5We suggest an alternative definition that is more general for key-dependency that is relative to a class of circuits C. The garbling
algorithm hardwires gsk into C as part of its input. Under this definition, C cannot contain trivial circuits that just reveal the gsk,
though in our construction the circuit family will only need to contain something akin to KGI(·, gsk) which does not trivially
reveal gsk.

Let KRG = (KKG, KG, KGI, KGE) be a key-dependent, reusable garbling scheme for some class C. We consider the two
experiments Real and Ideal. In ExptReal, a ppt adversary A outputs a circuit C ∈ C and security parameter k then gets a garbled
Γ← KG(C(·, gsk), gsk). Using oracle access to KGI(·, gsk), A returns a bit b for the output of the experiment.

In ExptIdeal, A interacts with a ppt simulator S in the following way. A outputs a circuit C and security parameter k. The
simulator outputs Γ′ ← S(C, 1k) which is sent to A. Using oracle access to O(x), an oracle that runs S with inputs 1|x|, C(x). A
returns a bit b for the output of the experiment.
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Then, there exists an efficient Program Garbling triple of algorithms G,GI,GE such that for any πt any t
and any input x of length n, we have the following.
Correctness: ∀x, π, F, s: π(x) = GE [G(π, F, s), GI(x, s)].
Reusable Security: ∃ poly-time simulators S1, S2, such that ∀π, t, x, s, and for all ppt adversaries A where
|s| = k, the two distributions are indistinguishable.{
b|b← AGI(·,s)(G(π, F, s))

}
≈
{
b|b← AO(·)(S1(F ))

}
, where O(x) is an oracle that feeds S2 the value t

and the output of π(x) running for t steps.
Compact Program Size: The size of the garbled program has O((|π|) ·poly(k, log n)) overhead compared
to the underlying key-dependent, reusable garbling scheme.

Proof Sketch.
Recall in our proof for the reusable garbled programs (without compact program size), we replaced the

t main outer garbled circuits with t reusable garbled circuits. Here, we replace them with a single key-
dependent reusable garbled circuit instead. We see that now the size of the resulting program does not
depend on the worst-case running time, but only the size of the program and the overhead of the circuit
garbling scheme.

In order to show security, we must show that there exist simulators S1, S2 that can simulate the garbled
execution given only the garbled program and the running time and output of all the garbled inputs. By the
reusable property of the underlying garbling scheme, there exist simulators (S′1, S

′
2) for the scheme. Our

simulator S1 will just generate the same simulated circuit that S′1 generates. Then S2, equipped with the
running time, will “unroll” the t time steps as t invocations of the key-dependent reusable garbled circuit.
Starting from the output and going backwards, in each invocation, it uses S′2 to simulate the garbled inputs,
which can be transformed into the output for the previous time step. Note that although the garbling does
not need to know the running time ahead of time, the simulator for our proof requires to know in advance
the running time to be able to simulate the entire run.

Again, like in the previous proof, we create a hybrid of experiments Expti for i = 1, . . . , t where on the
i-th time step, we replace the i-th invocation of the reusable garbled circuit with the simulated one (of course,
now there is only a single simulated circuit output by S′1). In other words, in Expti, all reusable garbled
circuits past the i-th are replaced with their simulated counterparts. We can do so because once we have the
i+1-st inputs simulated, this allows us to reconstruct the i-th output, which can then be fed into the simulator
for the i-th reusable garbled circuit. We have that ExptIdeal = Expt1 and ExptReal = Exptt+1. Then again,
by the security of the underlying key-dependent reusable garbled circuits, the output distributions of the
adversary A between any two consecutive experiments are computationally indistinguishable.

4 Application to Secure RAM Computation

We give an example application in which only one party has input and wants to repeatedly run programs
on this data. Such is the case of secure cloud computing, where someone stores data in the cloud and then
later runs computations against that data. We emphasize that in this setting, there is no issue of adaptivity
because the server has no inputs. In the typical setting of two-party secure computation, we deal with this
by making the server first perform OTs to retrieve its inputs before the client sends the garbled program. In
the multi-party setting, the technique can be utilized in the Beaver-Micali-Rogaway paradigm [3] to achieve
constant-round MPC with the same approach as in [3] but with garbled RAM programs.

That is to say, in this application, a client wishes to store some data x on a remote server and then run
various RAM programs on xwithout the server learning the results of the programs or x itself. Of course, the
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client could always ignore the server altogether and run all the programs on x locally, so we are envisioning
a scenario in which the client does not want to carry around all of its data locally and wants to only store
a few cryptographic keys or counters. To apply Garbled RAM programs to this application, the client first
garbles the input x to get X = GI(x) and sends it to the server. Then for each program the client wants
to run, it recalls the encoding of the previous output and creates a garbled program using the labels of the
previous output as inputs for the current program.
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A Glossary of Circuits

Circuit Description
CCPU Circuit for evaluating a CPU step.
CORAM Mimics an ORAM client query, outputting garbled versions of the above circuits.
GCORAM Garbled circuit that is the output of CORAM . Consists of garbled circuits used in single-round ORAM:
Cmatch Matches a memory location in a bucket.
Cnext Outputs next bucket to probe depending on found/not found.
Cupdate Performs oblivious hashing for ORAM update.
Cwrite Writes output to top level buffer.

Figure 4: Glossary of Circuits

B Single-Round Oblivious RAM From Any One-way Function

B.1 Informal Description of Main Ideas

As a starting point, we consider the hierarchical ORAM of Ostrovsky [28, 29] and use the same terminology
as in Ostrovsky’s Ph.D. thesis [29]. In this scheme, the data is encrypted (under semantically secure private-
key encryption) and stored in hierarchical levels that reshuffle and move into larger levels as they fill up.
To keep track of the movement, each level is temporally divided into different time periods called epochs,
based on how many queries the client has already performed. The client only needs to keep track of the keys
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corresponding to the latest epoch for each level, which in turn only depends on the total number of queries
that so far have been performed.

In our new solution, we maintain the same hierarchical levels, but encrypt all bits within the level dif-
ferently. To explain our encryption method, we first generalize Pseudo-Random Functions (PRF) into a
multi-argument PRF Fs(x1, x2, ..., xk−1, xk) which is computationally indistinguishable from a truly ran-
dom multi-argument function. Our multi-argument PRF, instead of outputting a single bit, outputs a pseudo-
random key of length proportional to the security parameter, i.e. a sufficiently long key for a private-key
encryption scheme. Such a multi-argument PRF can be trivially constructed from any standard PRF.

We now describe the encoding of each bit in the hierarchical solution of Oblivious RAM that we use.
For each bit in each buffer of some level we can uniquely define its location by epoch number, level
number, bucket number within the level and address within the bucket. Let us call these specifications
x1, . . . , xk−1 (where the details of the encoding will be specified later). Now we define two keys for each
such bit: Fs(x1, . . . , xk−1, 0) and Fs(x1, . . . , xk−1, 1). One key corresponds to “encoding of zero” and
the other corresponds to “encoding of one”. Jumping ahead, we will use these encodings inside multiple
Yao’s garbled circuits repeatedly using Lemma 1. More specifically, for every buffer bit b we encode it as
Fs(x1, . . . , xk−1, b) and write this key into the buffer as the encryption of this bit. We remark that since
keys are generated pseudo-randomly, the client will not need to remember anything except the PRF keys
used to generate the labels and the current epoch. We describe at a high level how an ORAM read/write is
performed in a single round, and how a re-shuffle is performed.

Recall that in the hierarchical ORAM scheme, to fetch a (virtual) memory location v, the client first scans
the entire top buffer B1 in its entirety, then, until v is found in some bucket, computes the hash j = hi(v)
and looks up bucket j for each subsequent level Bi for i ≤ L. Once v is found, the client retrieves a random
bucket j in subsequent levels. If we let qi denote the bucket that is fetched at level i for k + 1 ≤ i ≤ L,
then the important observation in [36, 35] is that there are only two “choices” for qi: hi(v) or random. Thus,
even though the choice of which qi to use is done interactively, the client can pre-compute a list of 2L − 2
buffer addresses (two for each level, except the smallest first level which is accessed in its entirety) of the
form ((h2(v), r2), . . . , (hL(v), rL)).

The way we encode all values within each buffer allow us to prepare 2L−2 garbled circuits that operate
as follows. We prepare a circuit that reads the smallest level, since the inputs are keys to the garbled circuit.
The circuit checks if the value is there or not, and depending if it is found or not “decrypts” one of the two
circuits for the next level, which also indicates which buffer in the next level the circuit is prepared for. That
is, for each level we prepare two garbled circuits, one to access random buffer (if the value already found)
and one to access the location where value could be located. We encrypt both circuits using private key
encryption. Each circuit outputs a decryption key for the next circuit, as well as the buffer number that the
just-decrypted circuit is prepared for. The circuit that reads the smallest level is given un-encrypted.

Additional book-keeping is done to pass information between different circuits and to execute the last
circuit that re-writes the top-level buffer. We stress that the labels in those garbled circuits are generated
pseudo-randomly and depend only on the epoch as well as former inputs. When evaluating the ORAM
query, the server evaluates a garbled circuit for each level in the hierarchy in turn, which allows him to
decrypt the next circuit and tells it the location to apply in the next level buffer the just decrypted circuit.

Finally, we observe that oblivious updates/re-shuffling can be done through garbled circuits implement-
ing sorting networks, where this can be done through several invocations of the sorting network. We now
proceed to give a more detailed description.

Toward this end, we give two definitions which will help in our construction. We recall the notion of a
time-labeled RAM simulation due to Ostrovsky [28, 29]: after any number of queries-so-far, there exists a
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way for the client to efficiently compute the number of times it has previously accessed a particular memory
location. As briefly explained above, we define the notion of a so-called time-labeled encoding (via Yao
garbling) so that whatever is stored in memory, the client can efficiently compute the encoding of it.

Definition 2. Suppose some element (v, x) was stored in level Bi in bucket j in some position ` inside the
bucket during epoch e. We define the time-labeled encoding of (v, x) to be a bit-by-bit encoding where the
b-th bit of (v, x) is encoded as Fs(i, j, `, e, b) where F is a multi-argument PRF with output being a random
element in the keyspace of our symmetric-key encryption scheme.6

Next, consider how the client will build a garbled circuit whose input is in some specific buffer in
the memory hierarchy. If the stored information is a time-labeled encoding, the client can compute two
pseudorandom keys for each bit stored in the buffer, where one of the keys is a “zero” key and another key is
a “one” key. The client knows that one of the two keys is stored in the buffer representing either the encoding
of zero bit or one bit in that location. Hence, one can construct a garbled circuit operating on the buffer using
Lemma 1. The client prepares two garbled circuits for each level as described before. It also encrypts both
circuits with a private-key encryption where exactly one key will be revealed depending on whether or not
v has been found already or not. We keep track if the item has been found or not and depending on this
variable, we release to the server a decryption key for one of the two circuits for the larger level, together
with is buffer address. Finally, we need to write the found element back to the top level buffer, and possibly
perform a hierarchy update.

Definition 3. Suppose some element (v, x) was stored in level Bi in bucket j in some position ` inside the
bucket during epoch e. Let C be a circuit operating on this bucket. Let sk be a secret key to some encryption
scheme. We define the time-labeled garbling of C to be a garbled circuit GC(C) with special encodings of
the wires in which the labels corresponding to the wires of the hash buckets are precisely the time-labeled
encoding of elements in the buckets. The entire circuit is then encrypted under sk.

B.2 Single-Round Oblivious RAM Construction

As building blocks for our construction, we give details on the circuits which we described above. The
circuits are building blocks to perform the following procedures: We have one circuit searches for a memory
location in a bucket and returns the memory contents and keeps track of whether or not it is found. We have
one circuit that tells the server where to look in the next level: it returns either the real hash location or
a random location (and the corresponding decryption key) depending on the found variable. We have one
circuit that writes the final answer to the top level buffer. We have one circuit to update the ORAM hierarchy.

Here in the details, we highlight a key difference between the utility of Cmatch and Cnext: the output of
the first circuit, when garbled, will be encoded and obscured from the server, but the output of the second
circuit,when garbled, will be released to the server in the clear since it must fetch and decrypt. It will be
convenient to refer to them by name, so we describe them in more detail. More formally, the logic of the
circuits are given as:

1. Cmatch: It takes as input an some hash location j in level Bi, a (virtual) memory location w that the
client is searching for, a storage variable y and an indicator bit found. The logic is that if w has
already been found, do nothing, otherwise attempt to find (v, y) where w = v and store it into y. It
outputs y′ and found′ with the following behavior:

6Specifically, from any one-way function, one can build PRFs and CPA-secure symmetric-key encryption scheme that satisfy
this requirement.
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y′ = y, found′ = 1 if found = 1;
y′ = x, found′ = 1 if found = 0 and there is some (v, x) in the bucket such that v = w;
y′ = y, found′ = 0 otherwise.

2. Cnext:It takes as input an indicator bit found, some level i and two bucket locations q0 and q1 on level
Bi, and two secret keys for encryption sk0 and sk1. It outputs qfound and skfound.7

3. Cwrite: Given a memory location w and memory contents y, it encodes (w, y) relative to the first
empty slot in the top level buffer.

4. Cupdate: Although oblivious hashing is described as an interactive process in most ORAM schemes,
observe that in many cases (again, e.g. [15]) it ultimately amounts to performing many steps of a
large parallel sorting and re-labeling algorithm wherein the elements need to be retrieved, decrypted,
and re-encrypted. Instead, we can represent this as a large parallel circuit, using sorting networks to
perform the sorting, and using time-labeled encodings instead of encryption. (More generally, the
updates have fixed memory access that can be revealed to the circuit evaluator and are executed in
strait-line. Any such program can be converted to garble circuit directly.)

We describe our construction relative to any hierarchical ORAM scheme that uses hash tables, though
concretely one can think of the Goldreich-Ostrovsky [15] scheme. For a client to read/write to a memory lo-
cation w, the client computes garbled buffer search circuits (i.e. GC(Cmatch)) for the top level B1. Then the
client pre-computes the hash of w for each of the levelsB2, . . . , BL, i.e. it sets q0i = hi(w). It also generates
L− 1 random locations q1i = ri for each level. This gives the client a list of L− 1 pairs of bucket locations,
2 for each level (one real, one random): ((q02, q

1
2), . . . , (q0L, q

1
L)) = ((h2(w), r2), . . . , (hL(w), rL)).

For each of these 2L − 2 locations, the client makes a time-labeled garbled circuit that searches for
w (i.e. it creates GC(Cmatch) for those locations) and encrypts them under brand new (pseudo-randomly
generated) encryption key skji . It is the case that only skji decrypts the garbled circuit for location qji . In
order to ensure that the server only gets the correct location and key to go from a level to the next (depending
on found/not found), we must rely on the circuit Cnext that produces exactly one out of the two location/key
pairs for each level. In order to do so, the client hardwires locations q0i , q

1
i and keys sk0

i , sk
1
i into generates a

garbledGC(Cnext) that outputs where to go depending on found/not found and only the correct skji . Finally,
the client creates a time-labeled garbled circuit GC(Cwrite) that ”writes” a time-labeled encoding of (w, y)
back to the top level buffer B1 (i.e. it re-writes the entire top level). To perform hierarchy updates, it uses a
garbled GC(Cupdate). The full client and server construction is given in Figure 5.

B.3 Analysis

The goal of this section is to show the following theorem:

Theorem 4. Assume one-way functions exist. Then the construction of given in Figure 5 is a secure single-
round Oblivious RAM with polylog(n) · kO(1) overhead with client only needing kO(1) memory to store the
cryptographic keys.

7This can be thought of as a circuit for obliviously transferring one-out-of-two of the locations and keys.
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Client performing a read/write to memory location w with the read/written value being y:

1. For each bucket in the top level, B1, the client creates a time-labeled garbled circuit GC(Cmatch)
that searches for w. The circuits are constructed so that the output encodings matches the input
encodings in the subsequent circuit (i.e. circuit chaining as in Lemma 1).

2. Pre-compute all hash locations q0i = hi(w) and and random locations q1i ← 0 . . . |Bi| for levels
i = 2 . . . L. Pseudo-randomly generate secret keys for encryption sk0

i and sk1
i .

3. For subsequent levels i = 2 . . . L:

(a) Create a time-labeled garbled GC(Cnext) by hardwiring q0i , q1i , sk0
i , and sk1

i as inputs, the
only free variable being the found flag. The outputs are unencoded. The labels for found
should match the found output from the previous level i− 1.

(b) Create two time-labeled garbled GC(Cmatch) circuits, one that searches for w in bucket q0i and
one that searches for w in bucket q1i . Encrypt the first under under sk0

i , and encrypt the second
under sk1

i .

4. Create a time-labeled garbled GC(Cwrite) that takes the final output y (or y from the write query)
and writes it back to the first empty position the top level buffer B1.

5. The client in one round sends all these circuits to the server, then the client receives the final output
y and decodes it.

6. The client increments the local query counter t. If t is a multiple of |B1|, then a reshuffle step is
performed using the time-labeled garbled update circuit GC(Cupdate).

As for the server, it performs the following steps:

1. Receive all the garbled circuits from the client.

2. It evaluates GC(Cmatch) for every bucket in the top level B1.

3. For subsequent levels i = 2 . . . L:

(a) Evaluate GC(Cnext) with the garbled found/not found flag from the previous level i− 1 and
obtain in the clear a location qi and a key ski.

(b) On bucket qi, decrypt the GC(Cmatch) using ski and evaluate it, keeping track of the garbled
found′ flag and garbled memory contents y′.

4. Evaluate the last garbled circuit GC(Cwrite) which outputs some time-labeled encoding of (w, y)
and store it in the first empty position in Bk and send the encoded output y to the client.

5. In case of an update, evaluate GC(Cupdate) and rewrite the relevant levels of the hierarchy with the
corresponding time-labeled output.

Figure 5: Single-Round ORAM

26



Proof.

Correctness. This construction is correct due to the correctness of the underlying ORAM scheme and the
correctness of garbled circuits. The only additional step we need to check is that the output of one circuit
correctly feeds into the input of the other. Because the labels for the relevant wires are actually time-labeled
encodings, they are correct by the way they are constructed due to Lemma 1.

Cost Analysis. We analyze the cost in terms of communication, computation, and rounds for both the client
and the server. The round complexity is clearly 1. The client must create |B1| + 2(L − 1) = O(log n)
garbled circuits for Cmatch and Cnext and one final garbled circuit for writing the element back to the top
level. The sizes of Cmatch and Cnext are both O(polylog(n)). It must also garble Cupdate which is of size
O(|Bi| · polylog(n)) every |Bi| steps. Each element of the underlying ORAM scheme is now encoded
bit-by-bit where each bit now turns into kO(1) bits which is size of the output of our multi-argument PRF.
The PRF is evaluated at most twice per wire of each garbled circuit, and the underlying encryption scheme
is evaluated at most eight times per gate of each circuit, each of these invocations run in kO(1). Since the
underlying ORAM scheme only has poly-log overhead, the overall computation and communication for the
client amounts to polylog(n) · kO(1) per query. The server has the same communication complexity, and
the computation is just the evaluation of the garbled circuits, which amounts to at most four decryptions per
garbled gate, thus also resulting in polylog(n) · kO(1).

Security. In order to show security, we must show that there exists a simulator Sim that generates the view
of the server for a sequence of polynomially sized t queries. First, we generate a simulated garbled circuit
for the top level. By the security of garbled circuits, there exists some simulator SimY ao that simulates these
garbled circuits (except we use the time-labeled encodings of the inputs and outputs in the simulation, which
can further be simulated by true randomness due to the security of our PRF).

Next, we describe how to create a good simulation of the subsequent levels. Sim has to simulate 2L −
2 (encrypted) GC(Cmatch) circuits which produce garbled outputs, and more problematically, Sim must
simulate GC(Cnext) circuits which produces outputs in the clear. In order to do so, we rely on the fact that
the locations given in the clear can be simulated in turn. Indeed, by the security of our underlying ORAM,
there exists a simulator SimORAM that generates the access pattern of the ORAM across all t queries. This
access pattern gives us a list of locations in the intermediate buffers `i2 ∈ B2, . . . , `

i
L ∈ BL for each query

i = 1 . . . t. Our simulator Sim will use these locations as the simulated outputs of the garbled GC(Cnext)
circuits. To simulate the view of the server seeing the output of GC(Cnext) (on the j-th level in the i-th
query), we set it to be the simulated location `ij and a randomly chosen secret key ski which can only
decrypt the proper circuit in the next level. These we simulate via SimY ao given only the output `ij , ski.
Also, because the encrypted garbled GC(Cmatch) circuits for these locations will be decrypted, we can also
simulate them via SimY ao. For the remaining locations that won’t be decrypted, our simulator Sim encrypts
the “all-zeroes” string, which is computationally indistinguishable from a good encryption.

Finally, by Lemma 1, we can reuse the encodings as inputs between different invocations while still
being able to simulate.
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