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Abstract
We construct the first Message Authentication Codes (MACs) that are existentially unforge-

able against a quantum chosen message attack. These chosen message attacks model a quantum
adversary’s ability to obtain the MAC on a superposition of messages of its choice. We begin by
showing that a quantum secure PRF is sufficient for constructing a quantum secure MAC, a fact
that is considerably harder to prove than its classical analogue. Next, we show that a variant of
Carter-Wegman MACs can be proven to be quantum secure. Unlike the classical settings, we
present an attack showing that a pair-wise independent hash family is insufficient to construct a
quantum secure one-time MAC, but we prove that a four-wise independent family is sufficient
for one-time security.

Keywords: Quantum computing, MAC,chosen message attacks, post-quantum security

1 Introduction

Message Authentication Codes (MACs) are an important building block in cryptography used to
ensure data integrity. A MAC system is said to be secure if an efficient attacker capable of mounting
a chosen message attack cannot produce an existential MAC forgery (see Section 2.2).

With the advent of quantum computing there is a strong interest in post-quantum cryptography,
that is systems that remain secure even when the adversary has access to a quantum computer.
There are two natural approaches to defining security of a MAC system against a quantum adversary.
One approach is to restrict the adversary to issue classical chosen message queries, but then allow
the adversary to perform quantum computations between queries. Security in this model can be
achieved by basing the MAC construction on a quantum intractable problem.

The other more conservative approach to defining quantum MAC security is to model the entire
security game as a quantum experiment and allow the adversary to issue quantum chosen message
queries. That is, the adversary can submit a superposition of messages from the message space and
in response receive a superposition of MAC tags on those messages. Informally, a quantum chosen
message query performs the following transformation on a given superposition of messages:∑

m

ψm
∣∣m〉 −→

∑
m

ψm
∣∣m,S(k,m)

〉
where S(k,m) is a tag on the message m with secret key k.

To define security, let q be the number of queries that the adversary issues by the end of the
game. Clearly it can now produce q classical message-tag pairs by sampling the q superpositions
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it received from the MAC signing oracle. We say that the MAC system is quantum secure if the
adversary cannot produce q + 1 valid message-tag pairs. This captures the fact that the adversary
cannot do any better than trivially sampling the responses from its MAC signing oracle and is the
quantum analogue of a classical existential forgery.

1.1 Our results

In this paper we construct the first quantum secure MAC systems. We begin with a definition
of quantum secure MACs and give an example of a MAC system that is secure against quantum
adversaries capable of classical chosen message queries, but is insecure when the adversary can issue
quantum chosen message queries. We then present a number of quantum secure MAC systems.

Quantum secure MACs. In the classical settings many MAC systems are based on the observa-
tion that a secure pseudorandom function gives rise to a secure MAC [BKR00, BCK96]. We begin
by studying the same question in the quantum settings. Very recently Zhandry [Zha12b] defined
the concept of a quantum secure pseudorandom function (PRF) which is a PRF that remains
indistinguishable from a random function even when the adversary can issue quantum queries to
the PRF. He showed that the classic GGM construction [GGM86] remains secure under quantum
queries assuming the underlying pseudorandom generator is quantum secure.

The first question we study is whether a quantum secure PRF gives rise to a quantum secure
MAC, as in the classical settings. To the MAC adversary a quantum secure PRF is indistinguishable
from a random function. Therefore proving that the MAC is secure amounts to proving that with q
quantum queries to a random oracle H no adversary can produce q + 1 input-output pairs of H
with non-negligible probability. In the classical settings where the adversary can only issue classical
queries to H this is trivial: given q evaluations of a random function, the adversary learns nothing
about the value of the function at other points. Unfortunately, this argument fails under quantum
queries because the response to a single quantum query to H : X → Y contains information about all
of H. In fact, with a single quantum query the adversary can produce two input-output pairs of H
with probability about 2/|Y| (with classical queries the best possible is 1/|Y|). As a result, proving
that q quantum queries are insufficient to produce q + 1 input-output pairs is quite challenging. We
prove tight upper and lower bounds on this question by proving the following theorem:

Theorem 1.1 (informal). Let H : X → Y be a random oracle. Then an adversary making at
most q < |X | quantum queries to H will produce q + 1 input-output pairs of H with probability at
most (q + 1)/|Y|. Furthermore, when q � |Y| there is an algorithm that with q quantum queries
to H will produce q + 1 input-output pairs of H with probability 1− (1− 1/|Y|)q+1 ≈ (q + 1)/|Y|.

The first part of the theorem is the crucial fact needed to build quantum secure MACs and is the
harder part to prove. It shows that when |Y| is large any algorithm has only a negligible chance in
producing q+ 1 input-output pairs of H from q quantum queries. To prove this bound we introduce
a new lower-bound technique we call the rank method for bounding the success probability of
algorithms that succeed with only small probability. Existing quantum lower bound techniques such
as the polynomial method [BBC+01] and the adversary method [Amb00, Aar02, Amb06, ASdW09]
do not give the result we need. One difficulty with existing lower bound techniques is that they
generally prove asymptotic bounds on the number of queries required to solve a problem with high
probability, whereas we need a bound on the success probability of an algorithm making a limited
number of queries. Attempting to apply existing techniques to our problem at best only bounds
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the success probability away from 1 by an inverse polynomial factor, which is insufficient for our
purposes. The rank method for proving quantum lower bounds overcomes these difficulties and is a
general tool that can be used in other post-quantum security proofs.

The second part of Theorem 1.1 shows that the lower bound presented in the first part of the
theorem is tight. A related algorithm was previously presented by van Dam [vD98], but only for
oracles outputting one bit, namely when Y = {0, 1}. For such a small range only about |X |/2
quantum queries are needed to learn the oracle at all |X | points. A special case where Y = X = {0, 1}
and q = 1 was developed independently by Kerenidis and de Wolf [KdW03]. Our algorithm is a
generalization of van Dam’s result to multi-bit oracles.

Quantum secure Carter-Wegman MACs. A Carter-Wegman MAC [WC81] signs a message m
by computing

(
r, h(m)⊕ F (k, r)

)
where h is a secret hash function chosen from an xor-universal

hash family, F is a secure PRF with secret key k, and r is a short random nonce. The attractive
feature of Carter-Wegman MACs is that the long message m is hashed by a fast xor-universal hash h.
We show that a slightly modified Carter-Wegman MAC is quantum secure assuming the underlying
PRF is quantum secure in the sense of Zhandry [Zha12b].

One-time quantum secure MACs. A one-time MAC is existentially unforgeable when the
adversary can make only a single chosen message query. Classically, one-time MACs are constructed
from pair-wise independent hash functions [WC81]. These MACs are one-time secure since the value
of a pair-wise independent hash at one point gives no information about its value at another point.
Therefore, a single classical chosen-message query tells the adversary nothing about the MAC tag of
another message.

In the quantum settings things are more complicated. Unlike the classical settings, we show
that pair-wise independence does not imply existential unforgeability under a one-time quantum
chosen message attack. For example, consider the simple pair-wise independent hash family
H = {h(x) = ax+b}a,b∈Fp with domain and range Fp. We show that a quantum adversary presented
with an oracle for a random function h ∈ H can find both a and b with a single quantum query
to h. Consequently, the classical one-time MAC constructed from H is completely insecure in the
quantum settings. More generally we prove the following theorem:

Theorem 1.2 (informal). There is a polynomial time quantum algorithm that when presented with
an oracle for h(x) = a0 + a1x+ . . .+ adx

d for random a0, . . . , ad in Fp can recover a0, . . . , ad using
only d quantum queries to the oracle with probability 1−O(d/n).

The h(x) = ax+ b attack discussed above is a special case of this theorem with d = 1. With
classical queries finding a0, . . . , ad requires d + 1 queries, but with quantum queries the theorem
shows that d queries are sufficient.

Theorem 1.2 is a quantum polynomial interpolation algorithm: given oracle access to the
polynomial, the algorithm reconstructs its coefficients. This problem was studied previously by
Kane and Kutin [KK11] who prove that d/2 quantum queries are insufficient to interpolate the
polynomial. Interestingly, they conjecture that quantum interpolation requires d + 1 quantum
queries as in the classical case, but Theorem 1.2 refutes that conjecture. Theorem 1.2 also applies
to a quantum version of secret sharing where the shares themselves are superpositions. It shows
that the classical Shamir secret sharing scheme [Sha79] is insecure if the shares are allowed to be
quantum states obtained by evaluating the secret sharing polynomial on quantum superpositions.
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More generally, the security of secret sharing schemes in the quantum settings was analyzed by
Dam̊ard et al. [DFNS11].

As for one-time secure MACs, while pair-wise independence is insufficient for quantum one-time
security, we show that four-wise independence is sufficient. That is, a four-way independent hash
family gives rise to an existentially unforgeable MAC under a one-time quantum chosen message
attack. It is still an open problem whether three-way independence is sufficient. More generally,
we show that (q + 1)-way independence is insufficient for a q-time quantum secure MAC, but
(3q + 1)-way independence is sufficient.

Motivation. Allowing the adversary to issue quantum chosen message queries is a natural and
conservative security model and is therefore an interesting one to study. Showing that classical
MAC constructions remain secure in this model gives confidence in case end-user computing devices
eventually become quantum. Nevertheless, one might imagine that even in a future where computers
are quantum, the last step in a MAC signing procedure is to sample the resulting quantum state so
that the generated MAC is always classical. The quantum chosen message query model ensures
that even if the attacker can bypass this last “classicalization” step, the MAC remains secure.

As further motivation we note that the results in this paper are the tip of a large emerging
area of research with many open questions. Consider for example signature schemes. Can one
design schemes that remain secure when the adversary can issue quantum chosen message queries?
Similarly, can one design encryption systems that remain secure when the the adversary can issue
quantum chosen ciphertext queries? More generally, for any cryptographic primitive modeled as an
interactive game, one can ask how to design primitives that remain secure when the interaction
between the adversary and its given oracles is quantum.

Other related work. Several recent works study the security of cryptographic primitives when
the adversary can issue quantum queries [BDF+11, Zha12a, Zha12b]. So far these have focused on
proving security of signatures, encryption, and identity-based encryption in the quantum random
oracle model where the adversary can query the random oracle on superpositions of inputs. These
works show that many, but not all, random oracle constructions remain secure in the quantum
random oracle model. The quantum random oracle model has also been used to prove security of
Merkle’s Puzzles in the quantum settings [BS08, BHK+11]. Meanwhile, Damård et al. [DFNS11]
examine secret sharing and multiparty computation in a model where an adversary may corrupt a
superposition of subsets of players, and build zero knowledge protocols that are secure, even when a
dishonest verifier can issue challenges on superpositions.

Some progress toward identifying sufficient conditions under which classical protocols are also
quantum immune has been made by Unruh [Unr10] and Hallgren et al. [HSS11]. Unruh shows that
any scheme that is statistically secure in Cannetti’s universal composition (UC) framework [Can01]
against classical adversaries is also statistically secure against quantum adversaries. Hallgren et al.
show that for many schemes this is also true in the computational setting. These results, however,
do not apply to MACs.

2 Preliminaries: Definitions and Notation

Let [n] be the set {1, ..., n}. For a prime power n, let Fn be the finite field on n elements. For any
positive integer n, let Zn be the ring of integers modulo n.
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Functions will be denoted by capitol letters (such as F ), and sets by capitol script letters
(such as X ). We denote vectors with bold lower-case letters (such as v), and the components of a
vector v ∈ An by vi, i ∈ [n]. We denote matrices with bold capital letters (such as M), and the
components of a matrix M ∈ Am×n by Mi,j , i ∈ [m], j ∈ [n]. Given a function F : X → Y and a
vector v ∈ X n, let F (v) denote the vector (F (v1), F (v2), ..., F (vk)). Let F ([n]) denote the vector
(F (1), F (2), ..., F (n)).

Given a vector space V , let dimV be the dimension of V , or the number of vectors in any basis for
V . Given a set of vectors {v1, ...,vk}, let span{v1, ...,vk} denote the space of all linear combinations
of vectors in {v1, ...,vk}. Given a subspace S of an inner-product space V , and a vector v ∈ V ,
define projSv as the orthogonal projection of v onto S, that is, the vector w ∈ S such that |v−w|
is minimized.

Given a matrix M, we define the rank, denoted rank(M), to be the size of the largest subset of
rows (equivalently, columns) of M that are linearly independent.

Given a function F : X → Y and a subset S ⊆ X , the restriction of F to S is the function
FS : S → Y where FS(x) = F (x) for all x ∈ S. A distribution D on the set of functions F from
X to Y induces a distribution DS on the set of functions from S to Y, where we sample from DS
by first sampling a function F from D, and outputting FS . We say that D is k-wise independent
if, for each set S of size at most k, each of the distributions DS are truly random distributions on
functions from S to Y. A set F of functions from X to Y is k-wise independent if the uniform
distribution on F is k-wise independent.

2.1 Quantum Computation

The quantum system A is a complex Hilbert space H with inner product 〈·|·〉. The state of a
quantum system is given by a vector |ψ〉 of unit norm (〈ψ|ψ〉 = 1). Given quantum systems H1
and H2, the joint quantum system is given by the tensor product H1 ⊗H2. Given |ψ1〉 ∈ H1 and
|ψ2〉 ∈ H2, the product state is given by |ψ1〉|ψ2〉 ∈ H1 ⊗H2. Given a quantum state |ψ〉 and an
orthonormal basis B = {|b0〉, ..., |bd−1〉} for H, a measurement of |ψ〉 in the basis B results in a
value bi with probability |〈bi|ψ〉|2, and the state |ψ〉 is collapsed to the state |bi〉. We let bi ← |ψ〉
denote the distribution on bi obtained by sampling |ψ〉.

A unitary transformation over a d-dimensional Hilbert space H is a d× d matrix U such that
UU† = Id, where U† represents the conjugate transpose. A quantum algorithm operates on a
product space Hin⊗Hout⊗Hwork and consists of n unitary transformations U1, ...,Un in this space.
Hin represents the input to the algorithm, Hout the output, and Hwork the work space. A classical
input x to the quantum algorithm is converted to the quantum state |x, 0, 0〉. Then, the unitary
transformations are applied one-by-one, resulting in the final state

|ψx〉 = Un...U1|x, 0, 0〉 .

The final state is measured, obtaining (a, b, c) with probability |〈a, b, c|ψx〉|
2. The output of the

algorithm is b.

Quantum-accessible Oracles. We will implement an oracle O : X → Y by a unitary transfor-
mation O where

O|x, y, z〉 = |x, y +O(x), z〉
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where + : X × X → X is some group operation on X . Suppose we have a quantum algorithm that
makes quantum queries to oracles O1, ..., Oq. Let |ψ0〉 be the state of the algorithm before any
queries, and let U1, ...,Uq be the unitary transformations applied between queries. The final state
of the algorithm will be

UqOq...U1O1|ψ0〉

We can also have an algorithm make classical queries to Oi. In this case, the input to the oracle
is measured before applying the transformation Oi.

Fix an oracle O : X → Y. Let O(q) : X q → Yq be the oracle that maps x into O(x) =
(O(x1), O(x2), ..., O(xq)). Observe that any quantum query to O(q) can be implemented using q
quantum queries to O, where the unitary transformations between queries just permute the registers.
We say that an algorithm that makes a single query to O(q) makes q non-adaptive queries to O.

The Density Matrix. Suppose the state of a quantum system depends on some hidden random
variable z ∈ Z, which is distributed according to a distribution D. That is, if the hidden variable is
z, the state of the system is |ψz〉. We can then define the density matrix of the quantum system as

ρ =
∑
z∈Z

Pr
D

[z]|ψz〉〈ψz|

Applying a unitary matrix U to the quantum state corresponds to the transformation

ρ→ UρU†

A partial measurement on some registers has the effect of zeroing out the terms in ρ where those
registers are not equal. For example, if we have two registers x and y, and we measure the x register,
then the new density matrix is

ρ′x,y,x′,y′ =
{

ρx,y,x′,y′ if x = x′

0 otherwise

2.2 Quantum secure MACs

A MAC system comprises two algorithms: a (possibly) randomized MAC signing algorithm S(k,m)
and a MAC verification algorithm V (k,m, t). Here k denotes the secret key chosen at random from
the key space, m denotes a message in the message space, and t denotes the MAC tag in the tag
space on the message m. These algorithms and spaces are parameterized by a security parameter λ.

Classically, a MAC system is said to be secure if no attacker can win the following game: a
random key k is chosen from the key space and the attacker is presented with a signing oracle
S(k, ·). Queries to the signing oracle are called chosen message queries. Let {(mi, ti)}qi=1 be the set
of message-tag pairs that the attacker obtains by interacting with the signing oracle. The attacker
wins the game if it can produce an existential forgery, namely a valid message-tag pair (m∗, t∗)
satisfying (m∗, t∗) 6∈ {(mi, ti)}qi=1. The MAC system is said to be secure if no “efficient” adversary
can win this game with non-negligible probability in λ.
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Quantum chosen message queries. In the quantum settings we allow the adversary to maintain
its own quantum state and issue quantum queries to the signing oracle. Let

∑
m,x,y ψm,x,y

∣∣m,x, y〉
be the adversary’s state just prior to issuing a signing query. The MAC signing oracle transforms
this state as follows:

1. it chooses a random string r that will be used by the MAC signing algorithm,
2. it signs each “slot” in the given superposition by running S(k,m; r), that is running algorithm
S with randomness r. More precisely, the signing oracle performs the following transformation:∑

m,x,y

ψm,x,y
∣∣m,x, y〉 −→

∑
m,x,y

ψm,x,y
∣∣m, x⊕ S(k,m; r), y

〉
When the signing algorithm is deterministic there is no need to choose an r. However, for randomized
signing algorithms the same randomness is used to compute the tag for all slots in the superposition.
Alternatively, we could have required fresh randomness in every slot, but this would make it harder
to implement the MAC system on a quantum device. Allowing the same randomness in every slot
is more conservative and frees the signer from this concern. At any rate, the two models are very
close — if need be, the random string r can be used as a key for a quantum-secure PRF [Zha12b]
which is used to generate a fresh pseudorandom value for every slot.

Existential forgery. After issuing q quantum chosen message queries the adversary wins the
game if it can generate q + 1 valid classical message-tag pairs.

Definition 2.1. A MAC system is existentially unforgeable under a quantum chosen message attack
(EUF-qCMA) if no adversary can with the quantum MAC game with non-negligible advantage in λ.

Zhandry [Zha12b] gives an example of a classically secure PRF that is insecure under quantum
queries. This PRF gives an example MAC that is classically secure, but insecure under quantum
queries. Our goal for the remainder of the paper is to construct EUF-qCMA secure MACs.

3 The Rank Method

In this section we introduce the rank method which is a general approach to proving lower bounds
on quantum algorithms. The setup is as follows: we give a quantum algorithm A access to some
quantity H ∈ H. By access, we mean that the final state of the algorithm is some fixed function
of H. In this paper, H will be a set of functions, and A will be given oracle access to H ∈ H by
allowing A to make q quantum oracle queries to H, for some q. For now, we will treat H abstractly,
and return to the specific case where H is a set of functions later.

The idea behind the rank method is that, if we treat the final states of the algorithm on
different H as vectors, the space spanned by these vectors will be some subspace of the overall
Hilbert space. If the dimension of this subspace is small enough, the subspace (and hence all of
the vectors in it) must be reasonably far from most of the vectors in the measurement basis. This
allows us to bound the ability of such an algorithm to achieve some goal.

For H ∈ H, let |ψH〉 be the final state of the quantum algorithm A, before measurement, when
given access to H. Suppose the different |ψH〉 vectors all lie in a space of dimension d. Let ΨA,H be
the the |H| × d matrix whose rows are the various vectors |ψH〉.
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Definition 3.1. For a quantum algorithm A given access to some value H ∈ H, we define the rank,
denoted rank(A,H), as the rank of the matrix ΨA,H.

The rank of an algorithm A seemingly contains very little information: it gives the dimension of
the subspace spanned by the |ψH〉 vectors, but gives no indication of the orientation of this subspace
or the positions of the |ψH〉 vectors in the subspace. Nonetheless, we demonstrate how the success
probability of an algorithm can be bounded from above knowing only the rank of ΨA,H.

Theorem 3.2. Let A be a quantum algorithm that has access to some value H ∈ H drawn from
some distribution D and produces some output w ∈ W. Let R : H×W → {True, False} be a binary
relation. Then the probability that A outputs some w such that R(H,w) = True is at most(

max
w∈W

Pr
H←D

[R(H,w)]
)
× rank(A,H) .

In other words, the probability that A succeeds in producing w ∈ W for which R(H,w) is true is
at most rank(A,H) times the best probability of success of any algorithm that ignores H and just
outputs some fixed w.

Proof. The probability that A outputs a w such that R(H,w) = True is

Pr
H←D

w←|ψH〉
[R(H,w)] =

∑
H

Pr
D

[H]
∑

w:R(H,w)
|〈w|ψH〉|

2 =
∑
w

∑
H:R(H,w)

Pr
D

[H]|〈w|ψH〉|
2

Now, |〈w|ψH〉| is just the magnitude of the projection of |w〉 onto the space spanned by the
vector |ψH〉, that is, projspan|ψH〉(|w〉). This is at most the magnitude of the projection of |w〉 onto
the space spanned by all of the |ψH′〉 for H ′ ∈ H, or projspan{|ψ

H′〉}
(|w〉). Thus,

Pr
H←D

w←|ψH〉
[R(z, w)] ≤

∑
w

 ∑
H:R(H,w)

Pr
D

[H]

∣∣∣∣projspan{|ψ
H′〉}

(|w〉)
∣∣∣∣2

Now, we can perform the sum over H, which gives PrH←D[R(H,w)]. We can bound this by the
maximum it attains over all w, giving us

Pr
H←D

w←|ψH〉
[R(H,w)] ≤

(
max
w

Pr
H←D

[R(H,w)]
)∑

w

∣∣∣∣projspan{|ψ
H′〉}

(|w〉)
∣∣∣∣2

Now, let |bi〉 be an orthonormal basis for span{|ψH′〉}. Then∣∣∣∣projspan{|ψ
H′〉}

(|w〉)
∣∣∣∣2 =

∑
i

|〈bi|w〉|2

Summing over all w gives

∑
w

∣∣∣∣projspan{|ψ
H′〉}

(|w〉)
∣∣∣∣2 =

∑
w

∑
i

|〈bi|w〉|2 =
∑
i

∑
w

|〈bi|w〉|2
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Since the w are the possible results of measurement, the vectors |w〉 form an orthonormal basis
for the whole space, meaning

∑
w |〈bi|w〉|

2 = | |bi〉 |2 = 1. Hence, the sum just becomes the number
of |bi〉, which is just the dimension of the space spanned by the |ψH′〉. Thus,

Pr
H←D

w←|ψH〉
[R(H,w)] ≤

(
max
w∈W

Pr
H←D

[R(H,w)]
)

(dim span{|ψH′〉}) .

But dim span{|ψH′〉} is exactly rank(ΨA,H) = rank(A,H), which finishes the proof of the
theorem.

We now move to the specific case of oracle access. H is now some set of functions from X to
Y, and our algorithm A makes q quantum oracle queries to a function H ∈ H. Concretely, A is
specified by q + 1 unitary matrices Ui, and the final state of A on input H is the state

UqHUq−1 · · ·U1HU0|0〉

where H is the unitary transformation mapping |x, y, z〉 into |x, y +H(x), z〉, representing an oracle
query to the function H. To use the rank method (Theorem 3.2) for our purposes, we need to
bound the rank of such an algorithm. First, we define the following quantity:

Ck,q,n ≡
q∑
r=0

(
k

r

)
(n− 1)r .

Theorem 3.3. Let X and Y be sets of size m and n and let H0 be some function from X to Y. Let
S be a subset of X of size k and let H be some set of functions from X to Y that are equal to H0
except possibly on points in S. If A is a quantum algorithm making q queries to an oracle drawn
from H, then

rank(A,H) ≤ Ck,q,n .

Proof. Let |ψqH〉 be the final state of a quantum algorithm after q quantum oracle calls to an oracle
H ∈ H. We wish to bound the dimension of the space spanned by the vectors |ψqH〉 for all H ∈ H.
We accomplish this by exhibiting a spanning set for this space. Our basis consists of

∣∣ψqH′〉 vectors
where H ′ only differs from H0 at a maximum of q points in S. We need to show that two things:
that our basis consists of Ck,q,n vectors, and that our basis does in fact span the whole space.

We first count the number of basis vectors by counting the number of H ′ oracles. For each r,
there are

(k
r

)
ways of picking the subset T of size r from S where H ′ will differ from H0. For each

subset T , there are nr possible functions H ′. However, if any value x ∈ T satisfies F (x) = H0(x),
then this is equivalent to a case where we remove x from T , and we would have already counted
this case for a smaller value of r. Thus, we can assume H ′(x) 6= H0(x) for all x in T . There are
(n− 1)r such functions. Summing over all r, we get that the number of distinct H ′ oracles is

q∑
r=0

(
k

r

)
(n− 1)r = Ck,q,n .

Next, we need to show that the
∣∣ψqH′〉 vectors span the entire space of |ψqH〉 vectors. We first

introduce some notation: let
∣∣ψ0〉 be the state of a quantum algorithm before any quantum queries.

Let |ψqH〉 be the state after q quantum oracle calls to the oracle H. Let

Mq
H = UqHUq−1H · · ·U1H .
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Then |ψqH〉 = Mq
H

∣∣ψ0〉.
We note that since

∣∣ψ0〉 is fixed for any algorithm, it is sufficient to prove that the Mq
H matrices

are spanned by the Mq
H′ .

For any subset T of S, and a function F : T → Y, let JT ,F be the oracle such that

JT ,F (x) =
{
F (x) if x ∈ T
H0(x) otherwise

.

Let Mq
T ,H denote Mq

JT ,H
. In other words, MT ,H is the transformation matrix corresponding to

the oracle that is equal to H on the set T , and equal to H0 elsewhere. We claim that any Mq
H for

H ∈ HS is a linear combination of the matrices Mq
T ,H for subsets T of S of size at most q. We will

fix a particular H, and for convenience of notation, we will let JT = JT ,H . That is, JT is the oracle
that is equal to H on the set T and H0 otherwise. We will also let Mq

T = Mq
T ,H and Mq = Mq

H .
That is, Mq is the transition matrix corresponding to the oracle H, and MT is the transition matrix
corresponding to using the oracle JT . For the singleton set {x}, we will also let Jx = J{x}.

We make the following observations:

H =
(∑
x∈S

Jx

)
− (k − 1)H0 (3.1)

JT =
(∑
x∈T

Jx

)
− (|T | − 1)H0 (3.2)

These identities can be seen by applying each side to the different inputs. Next, we take Mq
H

and Mq
T and expand out the H and JT terms using Equations 3.1 and 3.2:

Mq = Uq

((∑
x∈S

Jx

)
− (k − 1)H0

)
Uq−1 · · ·U1

((∑
x∈S

Jx

)
− (k − 1)H0

)
(3.3)

Mq
T = Uq

((∑
x∈T

Jx

)
− (|T | − 1)H0

)
Uq−1 · · ·U1

((∑
x∈T

Jx

)
− (|T | − 1)H0

)
(3.4)

Let J⊥ = H0. For a vector r ∈ (S ∪ {⊥})q, let

Pr = UqJrqUq−1 · · ·Jr2U1Jr1

For a particular r, we wish to expand the Mq and Mq
T matrices in terms of the Pr matrices. If

d of the components of r are ⊥, then the coefficient of Pr in the expansion of Mq is (−1)d(k − 1)d.
If, in addition, all of the other components of r lie in T , then the coefficient in the expansion of
Mq
T is (−1)d(|T | − 1)d (if any of the components of r lie outside of T , the coefficient is 0).
Now, we claim that, for some values a`, we have

Mq =
q∑
`=0

a`
∑

T ⊆S:|T |=`
Mq
T

To accomplish this, we look for the coefficient of Pr in the expansion of the right hand side
of this equation. Fix an `. Let d be the number of components of r equal to ⊥, and let p be the
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number of distinct component values other than ⊥. Notice that p+ d ≤ q. Then there are
(k−p
`−p
)

different sets T of size ` for which all of the values of the components lie in T . Thus, the coefficient
of Pr is

q∑
`=p

a`

(
k − p
`− p

)
(−1)i(`− 1)d

Therefore, we need values a` such that
q∑
`=p

a`

(
k − p
`− p

)
(`− 1)d = (k − 1)d (3.5)

for all d, p. Notice that we can instead phrase this problem as a polynomial interpolation problem.
The right hand side of Equation 3.5 is a polynomial P of degree d ≤ q − p, evaluated at k − 1. We
can interpolate this polynomial using the points ` = p, ..., q, obtaining

P (k − 1) =
q∑
`=p

P (`− 1)
q∏

j=p,j 6=`

k − j
`− j

.

The numerator of the product evaluates to

(k − p)!
(k − `)(k − q − 1)!

while to evaluate the bottom, we split it into two parts: j = p, ..., `− 1 and j − `+ 1, ..., q. The first
part evaluates to (`− p)!, and the second part evaluates to (−1)q−`(q − `)!. With a little algebraic
manipulation, we have that

P (k − 1) =
q∑
`=p

P (`− 1)
((

k − `− 1
k − q − 1

)
(−1)q−`

)(
k − p
`− p

)

for all polynomials P (x) of degree at most q − p. Setting P (x) = xd for d = 0, ..., q − `, we see
that Equation 3.5 is satisfied if

a` =
(
k − 1− `
k − 1− q

)
(−1)q−` .

3.1 An Example

Suppose our task is to, given one quantum query to an oracle H : X → Y, produce two distinct
pairs (x0, y0) and (x1, y1) such that H(x0) = y0 and H(x1) = y1. Suppose further that H is drawn
from a pairwise independent set H. We will now see that the rank method leads to a bound on the
success probability of any quantum algorithm A.

Corollary 3.4. No quantum algorithm A, making a single query to a function H : X → Y drawn
from a pairwise independent set H, can produce two distinct input/output pairs of H, except with
probability at most |X |/|Y|.

11



Proof. Let m = |X | and n = |Y|. Since no outputs of H are fixed, we will set S = X in Theorem 3.3,
showing that the rank of the algorithm A is bounded by Cm,1,n = 1 + m(n − 1) < mn. If an
algorithm makes no queries to H, the best it can do at outputting two distinct input/output pairs
is to just pick two arbitrary distinct pairs, and output those. The probability that this zero-query
algorithm succeeds is at most 1/n2. Then Theorem 3.2 tells us that A succeeds with probability at
most rank(A,H) times this amount, which equates to m

n .

For m > n, this bound is trivial. However, for m smaller than n, this gives a non-trivial bound,
and for m exponentially smaller than n, this bound is negligible.

4 Outputting Values of a Random Oracle

In this section, we will prove Theorem 1.1. We consider the following problem: given q quantum
queries to a random oracle H : X → Y, produce k > q distinct pairs (xi, yi) such that yi = H(xi).
Let n = |Y| be the size of the range. Motivated by our application to quantum-accessible MACs,
we are interested in the case where the range Y of the oracle is large, and we want to show that
to produce even one extra input/output pair (k = q + 1) is impossible, except with negligible
probability. We are also interested in the case where the range of the oracle, though large, is far
smaller than the domain. Thus, the bound we obtained in the previous section (Corollary 3.4) is
not sufficient for our purposes, since it is only non-trivial if the range is larger than the domain.

In the classical setting, when k ≤ q, this problem is easy, since we can just pick an arbitrary
set of k different xi values, and query the oracle on each value. For k > q, no adversary of even
unbounded complexity can solve this problem, except with probability 1/nk−q, since for any set
of k inputs, at least k − q of the corresponding outputs are completely unknown to the adversary.
Therefore, for large n, we have have a sharp threshold: for k ≤ q, this problem can be solved
efficiently with probability 1, and for even k = q+1, this problem cannot be solved, even inefficiently,
except with negligible probability.

In the quantum setting, the k ≤ q case is the same as before, since we can still query the
oracle classically. However, for k > q, the quantum setting is more challenging. The adversary can
potentially query the random oracle on a superposition of all inputs, so he “sees” the output of the
oracle on all points. Proving that it is still impossible to produce k input/output pairs is thus more
complicated, and existing methods fail to prove that this problem is difficult. Therefore, it is not
immediately clear that we have the same sharp threshold as before.

In Section 4.1 we use the rank method to bound the probability that any (even computationally
unbounded) quantum adversary succeeds. Then in Section 4.2 we show that our bound is tight by
giving an efficient algorithm for this problem that achieves the lower bound. In particular, for an
oracle H : X → Y we consider two cases:

• Exponentially-large range Y and polynomial k, q. In this case, we will see that the success
probability even when k = q + 1 is negligible. That is, to produce even one additional
input/output pair is hard. Thus, we get the same sharp threshold as in the classical case

• Constant size range Y and polynomial k, q. We show that even when q is a constant fraction
of k we can still produce k input/output pairs with overwhelming probability using only q
quantum queries. This is in contrast to the classical case, where the success probability for
q = ck, c < 1, is negligible in k.
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4.1 A Tight Upper Bound

Theorem 4.1. Let A be a quantum algorithm making q queries to a random oracle H : X → Y
whose range has size n, and produces k > q pairs (xi, yi) ∈ X ×Y. The probability that the xi values
are distinct and yi = H(xi) for all i ∈ [k] is at most 1

nk
Ck,q,n.

Proof. Before giving the complete proof, we sketch the special case where k is equal to the size of
the domain. In this case, any quantum algorithm that outputs k distinct input/output pairs must
output all input/output pairs. Similar to the proof of Corollary 3.4, we will set S = X , and use
Theorem 3.3 to bound the rank of A at Ck,q,n. Now, any algorithm making zero queries succeeds
with probability at most 1/nk. Theorem 3.2 then bounds the success probability of any q query
algorithm as

1
nk
Ck,q,n .

Now for the general proof: first, we will assume that the probability A outputs any particular
sequence of xi values is independent of the oracle H. We will show how to remove this assumption
later. We can thus write

|ψqH〉 =
∑

x
αx|x〉|φH,x〉

where αX are complex numbers whose square magnitudes sum to one, and |x〉|φH,x〉 is the normalized
projection of |ψqH〉 onto the space spanned by |x, w〉 for all w. The probability that A succeeds is
equal to ∑

H

Pr[H]
∑

x
|〈x, H(x)|ψqH〉|

2 =
∑
H

Pr[H]
∑

x
|αx|2|〈H(x)|φH,x〉|2 .

First, we reorder the sums so the outer sum is the sum over x. Now, we write H = (H0, H1)
where H0 is the oracle restricted to the components of x, and H1 is the oracle restricted to all other
inputs. Thus, our probability is:

1
nm

∑
x
|αx|2

∑
H0,H1

∣∣∣〈H0(x)|φ(H0,H1),x〉
∣∣∣2 .

Using the same trick as we did before, we can replace |〈H(x)|φH,x〉| with the quantity∣∣∣projspan|φ(H0,H1),x〉|H0(X )〉
∣∣∣ ,

which is bounded by
∣∣∣∣projspan{|φ(H′0,H1),x〉}|H0(x)〉

∣∣∣∣ as we vary H ′0 over oracles whose domain is the
components of x. The probability of success is then bounded by

1
nm

∑
x
|αx|2

∑
H0,H1

∣∣∣∣projspan{|φ(H′0,H1),x〉}|H0(x)〉
∣∣∣∣2 .

We now perform the sum over H0. Like in the proof of Corollary 3.4, the sum evaluates to
dim span{|φ(H′0,H1),x〉}. Since the |φ(H′0,H1),x〉 vectors are projections of |ψqH〉, this dimension is
bounded by dim span{

∣∣∣ψq(H′0,H1)

〉
}. Let H be the set of oracles (H ′0, H1) as we vary H ′0, and consider

A acting on oracles in H. Fix some oracle H∗0 from among the H ′0 oracles, and let S be the set of
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components of x. Then (H ′0, H1) differs from (H∗0 , H1) only on the elements of S. Since |S| ≤ k,
Theorem 3.2 tells us that rank(A,H) ≤ Ck,q,n. But

rank(A,H) = dim span{
∣∣∣ψq(H′0,H1)

〉
}

Therefore, we can bound the success probability by

1
nm

∑
x
|αx|2

∑
H1

Ck,q,n .

Summing over all nm−k different H1 values and all x values gives a bound of

1
nk
Ck,q,n

as desired.
So far, we have assume that A produces x with probability independent of H. Now, suppose

our algorithm A does not produce x with probability independent of the oracle. We construct a
new algorithm B with access to H that does the following: pick a random oracle O with the same
domain and range as H, and give A the oracle H + O that maps x into H(x) + O(x). When A
produces k input/output pairs (xi, yi), output the pairs (xi, yi −O(xi)). (xi, yi) are input/output
pairs of H +O if and only if (xi, yi −O(xi)) are input/output pairs of H. Further, A still sees a
random oracle, so it succeeds with the same probability as before. Moreover, the oracle A sees is
now independent of H, so B outputs x with probability independent of H. Thus, applying the
above analysis to B shows that B, and hence A, produce k input/output pairs with probability at
most

1
nk
Ck,q,n

For this paper, we are interested in the case where n = |Y| is exponentially large, and we are
only allowed a polynomial number of queries. Suppose k = q + 1, the easiest non-trivial case for the
adversary. Then, the probability of success is

1
nq+1

q∑
r=0

(
q + 1
r

)
(n− 1)r = 1−

(
1− 1

n

)q+1
≤ q + 1

n
. (4.1)

Therefore, to produce even one extra input/output pair is impossible, except with exponentially
small probability, just like in the classical case. This proves the first part of Theorem 1.1.

4.2 The Optimal Attack

In this section, we present a quantum algorithm for the problem of computing H(xi) for k different
xi values, given only q < k queries:

Theorem 4.2. Let X and Y be sets, and fix integers q < k, and k distinct values x1, ..., xk ∈ X .
There exists a quantum algorithm A that makes q non-adaptive quantum queries to any function
H : X → Y, and produces H(x1), ...,H(xk) with probability Ck,q,n/nk, where n = |Y|.
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The algorithm is similar to the algorithm of [vD98], though generalized to handle arbitrary range
sizes. This algorithm has the same success probability as in Theorem 4.1, showing that both our
attack and lower bound of Theorem 4.1 are optimal. This proves the second part of Theorem 1.1.

Proof. Assume that Y = {0, ..., n− 1}. For a vector y ∈ Yk, let ∆(y) be the number of coordinates
of y that do not equal 0. Also, assume that xi = i.

Initially, prepare the state that is a uniform superposition of all vectors y ∈ Yk such that
∆(y) ≤ q:

|ψ1〉 = 1√
V

∑
y:∆(y)≤q

|y〉

Notice that the number of vectors of length k with at most q non-zero coordinates is exactly
q∑
r=0

(
k

r

)
(n− 1)r = Ck,q,n .

We can prepare the state efficiently as follows: Let Setupk,q,n : [Ck,q,n]→ [n]k be the following
function: on input ` ∈ [Ck,q,n],

• Check if ` ≤ Ck−1,q,n. If so, compute the vector y′ = Setupk−1,q,n(n), and output the vector
y = (0,y′).

• Otherwise, let `′ = `− Ck−1,q,n. It is easy to verify that `′ ∈ [(n− 1)Ck−1,q−1,n].

• Let `′′ ∈ Ck−1,q−1,n and y0 ∈ [n]\{0} be the unique such integers such that `′ = (n−1)`′′+y0−n.

• Let y′ = Setupk−1,q−1,n(`′′), and output the vector y = (y0,y′).

The algorithm relies on the observation that a vector y of length k with at most q non-zero
coordinates falls into one of either two categories:

• The first coordinate is 0, and the remaining k − 1 coordinates form a vector with at most q
non-zero coordinates

• The first coordinate is non-zero, and the remaining k − 1 coordinates form a vector with at
most q − 1 non-zero coordinates.

There are Ck−1,q,n vectors of the first type, and Ck−1,q−1,n vectors of the second type for each
possible setting of the first coordinate to something other than 0. Therefore, we divide [Ak,q,n] into
two parts: the first Ck−1,q,n integers map to the first type, and the remaining (n − 1)Ck−1,q−1,n
integers map to vectors of the second type.

We note that Setup is efficiently computable, invertible, and its inverse is also efficiently
computable. Therefore, we can prepare |ψ1〉 by first preparing the state

1√
Ck,q,n

∑
`∈[Ck,q,n]

|`〉

and reversibly converting this state into |φ1〉 using Setupk,q,n.
Next, let F : Yk → [k]q be the function that outputs the indexes i such that yi 6= 0, in order of

increasing i. If there are fewer than q such indexes, the function fills in the remaining spaces the
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first indexes such that yi = 0 If there are more than q indexes, the function truncates to the first q.
F is realizable by a simple classical algorithm, so it can be implemented as a quantum algorithm.
Apply this algorithm to |ψ1〉, obtaining the state

|ψ2〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

|y, F (y)〉

Next, let G : Yk → Yq be the function that takes in vector y, computes x = F (y), and outputs
the vector (yx1 , yx2 , ..., yxq). In other words, it outputs the vector of the non-zero components of y,
padding with zeros if needed. This function is also efficiently computable by a classical algorithm,
so we can apply if to each part of the superposition:

|ψ3〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

|y, F (y), G(y)〉

Now we apply the Fourier transform to the G(y) part, obtaining

|ψ4〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

|y, F (y)〉
∑

z
e−i

2π
n
〈z,G(y)〉|z〉

Now we can apply H to the F (y) part using q non-adaptive queries, adding the answer to the z
part. The result is the state

|ψ5〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

|y, F (y)〉
∑

z
e−i

2π
n
〈z,G(y)〉|z +H(F (y))〉

We can rewrite this last state as follows:

|ψ5〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

ei
2π
n
〈H(F (y)),G(y)〉|y, F (y)〉

∑
z
e−i

2π
n
〈z,G(y)〉|z〉

Now, notice that H(F (y)) is the vector of H applied to the indexes where y is non-zero, and
that G(y) is the vector of values of y that those points. Thus the inner product is

〈H(F (y), G(y)〉 =
∑
i:yi 6=0

H(i)× yi =
k∑
i=0

H(i)yi = 〈H([k]),y〉 .

The next step is to uncompute the z and F (y) registers, obtaining

|ψ6〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

ei
2π
n
〈H([k]),y〉|y〉

Lastly, we perform a Fourier transform the remaining space, obtaining

|ψ7〉 = 1√
Ck,q,nnk

∑
z

 ∑
y:∆(y)≤q

ei
2π
n
〈H([k])−z,y〉

|z〉
Now measure. The probability we obtain H([k]) is

1
Ck,q,nnk

∣∣∣∣∣∣
∑

y:∆(y)≤q
1

∣∣∣∣∣∣
2

= Ck,q,n
nk

as desired.
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As we have already seen, for exponentially-large Y, this attack has negligible advantage for any
k > q. However, if n = |Y| is constant, we can do better. The error probability is

k∑
r=q+1

(
k

r

)(
1− 1

n

)r( 1
n

)k−r
=

k−q−1∑
s=0

(
k

s

)( 1
n

)s(
1− 1

n

)k−s
.

This is the probability that k consecutive coin flips, where each coin is heads with probability
1/n, yields fewer than k − q heads. Using the Chernoff bound, if q > k(1− 1/n), this probability is
at most

e−
n
2k (q−k(1−1/n))2

.

For a constant n, let c be any constant with 1− 1/n < c < 1. If we use q = ck queries, the error
probability is less than

e−
n
2k (k(c+1/n−1))2

= e−
nk
2 (c+1/n−1)2

,

which is exponentially small in k. Thus, for constant n, and any constant c with 1− 1/n < c < 1,
using q = ck quantum queries, we can determine k input/output pairs with overwhelming probability.
This is in contrast to the classical case, where with any constant fraction of k queries, we can
only produce k input/output pairs with negligible probability. As an example, if H outputs two
bits, it is possible to produce k input/output pairs of of H using only q = 0.8k quantum queries.
However, with 0.8k classical queries, we can output k input/output pairs with probability at most
4−0.2k < 0.76k.

5 Quantum-Accessible MACs

Using Theorem 4.1 we can now show that a quantum secure pseudorandom function [Zha12b] gives
rise to the quantum-secure MAC, namely S(k,m) = PRF(k,m). We prove that this mac is secure.

Theorem 5.1. If PRF : K × X → Y is a quantum-secure pseudorandom function and 1/|Y| is
negligible, then S(k,m) = PRF(k,m) is a EUF-qCMA-secure MAC.

Proof. Let A be a polynomial time adversary that makes q quantum queries to S(k, ·) and produces
q + 1 valid input/output pairs with probability ε. Let Game 0 be the standard quantum MAC
attack game, where A makes q quantum queries to MACk. By definition, A’s success probability in
this game is ε.

Let Game 1 be the same as Game 0, except that S(k, ·) is replaced with a truly random function
O : X → Y , and define A’s success probability as the probability that A outputs q + 1 input/output
pairs of O. Since PRF is a quantum-secure PRF, A’s advantage in distinguishing Game 0 from
Game 1 is negligible.

Now, in Game 1, A makes q quantum queries to a random oracle, and tries to produce q + 1
input/output pairs. However, by Theorem 4.1 and Eq. (4.1) we know that A’s success probability is
bounded by (q + 1)/|Y| which is negligible. It now follows that ε is negligible and therefore, S is a
EUF-qCMA-secure MAC.

17



5.1 Carter-Wegman MACs

In this section, we show how to modify the Carter-Wegman MAC so that it is secure in the quantum
setting presented in Section 2.2. Recall that H is an XOR-universal family of hash functions from
X into Y if for any two distinct points x and y, and any constant c ∈ Y,

Pr
h←H

[H(x)−H(y) = c] = 1/|Y|

The Carter-Wegman construction uses a pseudorandom function family PRF with domain X and
range Y , and an XOR-universal family of hash functions H from M to Y . The key is a pair (k,H),
where k is a key for PRF and H is a function drawn from H. To sign a message, pick a random
r ∈ X , and return (r, PRF(k, r) +H(m)).

This MAC is not, in general, secure in the quantum setting presented in Section 2.2. The reason
is that the same randomness is used in all slots of a quantum chosen message query, that is the
signing oracle computes: ∑

m

αm|m〉 −→
∑
m

αm|m, r,PRF(k, r) +H(m)〉

where the same r is used for all classical states of the superposition. For example, suppose H is
the set of functions H(x) = ax + b for random a and b. With even a single quantum query, the
adversary will be able to obtain a and PRF(k, r) + b with high probability, using the algorithm from
Theorem 6.2 in Section 6. Knowing both of these will allow the adversary to forge any message.

We show how to modify the standard Carter-Wegman MAC to make it secure in the quantum
setting.

Construction 1 (Quantum Carter-Wegman). The Quantum Carter-Wegman MAC (QCW-MAC)
is built from a pseudorandom function PRF, an XOR-universal set of functions H, and a pairwise
independent set of functions R.

Keys: The secret key for QCW-MAC is a pair (k,H), where k is a key for PRF and H :M→ Y is
drawn from H

Signing: To sign a message m choose a random R ∈ R and output the pair
(
R(m), PRF(k,R(m)) +

H(m)
)

as the tag. When responding to a quantum chosen message query, the same R is used
in all classical states of the superposition.

Verification: To verify that (r, s) is a valid tag for m, accept iff PRF(k, r) +H(m) = s.

Theorem 5.2. The Quantum Carter-Wegman MAC is a EUF-qCMA secure MAC.

Proof. We start with an adversary A that makes q tag queries, and then produces q + 1 valid
message/tag pairs with probability ε. We now adapt the classical Carter-Wegman security proof to
our MAC in the quantum setting.

When the adversary makes query i on the superposition∑
m,y,z

α(i)
m,y,z|m, y, z〉 ,

the challenger responds with the superposition∑
m,y,z

α(i)
m,y,z|m, y + Si(m), z〉

18



where Si(m) = (Ri(m),PRF(k, (Ri(m)) +H(m)) for a randomly chosen Ri ∈ R, where R is a
pairwise independent set of functions.

The adversary then creates q+1 triples (mj , rj , sj) which, with probability ε, are valid message/tag
tuples. That means H(mj) + PRF(k, rj) = sj for all j.

We now prove that ε must be small using a sequence of games:
Game 0: Run the standard MAC game, responding to query i with the oracle that maps m to

(Ri(m),PRF(k,Ri(m)) +H(m)), where Ri is a random function from R. The advantage of A in this
game is the probability is produces q + 1 forgeries. Denote this advantage as ε0, which is equal to ε.

Game 1: Replace PRF(k, ·) with a truly random function F , and denote the advantage in this
game as ε1. Since PRF is a quantum-secure PRF, ε1 is negligibly close to ε0.

Game 2: Next we change the goal of the adversary. The adversary is now asked to produce
a triple (m0,m1, s) where H(m0)−H(m1) = s. Given an adversary A for Game 1, we construct
an adversary B for Game 2 as follows: run A, obtaining q + 1 forgeries (mj , rj , sj) such that
H(mj) + F (rj) = sj with probability ε1. If all rj are distinct, abort. Otherwise, assume without
loss of generality that r0 = r1. Then

H(m0)−H(m1) = (s0 − F (r0))− (s1 − F (r1)) = s0 − s1

so output (m0,m1, s0 − s1). Let ε2 be the advantage of B in this game. Let p be the probability
that all rj are distinct and A succeeds. Then ε2 ≥ ε1 − p.

We wish to bound p. Define a new algorithm C, with oracle access to F , that first generates H,
and then runs A, playing the role of challenger to A. When A outputs q + 1 triples (mj , rj , sj), B
outputs q+1 pairs (rj , sj−H(mj)). If A succeeded, then H(mj)+F (rj) = sj , so F (rj) = sj−H(mj),
meaning the pairs C outputs are all input/output pairs of F . If all the rj are distinct, then C will
output q + 1 input/output pairs, which is impossible except with probability at most (q + 1)/|Y|.
Therefore, p ≤ (q + 1)/|Y|. Therefore, as long as |Y| is super-polynomial in size, p is negligible,
meaning ε2 is negligibly close to ε1.

Game 3: Now modify the game so that we draw Ri uniformly at random from the set of all
oracles. Notice that each Ri is queried only once, meaning pairwise-independent Ri look exactly
like truly random Ri, so Game 3 looks exactly like Game 2 from the point of view of the adversary.
Thus the success probability ε3 is equal to ε2.

Game 4: For this game, we answer query i with the oracle that maps m to (Ri(m), F (Ri(m)).
That is, we ignore H for answering MAC queries. Let ε3 be the success probability in this game.

To prove that ε4 is negligibly close to ε3, we need the following lemma:

Lemma 5.3. Consider two distributions D1 and D2 on oracles from M into X × Y:

• D1: generate a random oracle R :M→ X and a random oracle P :M→ Y, and output the
oracle that maps m to (R(m), P (m)).

• D2: generate a random oracle R :M→ X and a random oracle F : X → Y, and output the
oracle that maps m to (R(m), F (R(m))).

Then the probability that any q-quantum query algorithm distinguishes D1 from D2 is at most
O(q2/|X |1/3).

Proof. Let B be a quantum algorithm making quantum queries that distinguishes with probability
λ. We will now define a quantum algorithm C that is given r samples (si, ti) ∈ X ×Y , where si are
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chosen randomly, and ti are either chosen randomly, or are equal to T (si) for a randomly chosen
function T : X → Y. C’s goal is to distinguish these two cases. Notice that as long as the si are
distinct, these two distributions are identical. Therefore, C’s distinguishing probability is at most
the probability of a collision, which is at most O(r2/|X |).

C works as follows: generate a random oracle A :M→ [r]. Let R(m) = sA(m) and P (m) = tA(m),
and give B the oracle (R(m), P (m)). If ti are random, then we have the oracle that maps
m to (sA(m), tA(m)). This is exactly the small-range distribution of Zhandry [Zha12b], and is
indistinguishable from D1 except with probability O(q3/r).

Similarly, if ti = T (si), then the oracle maps m to (sA(m), T (sA(m))). The oracle that maps m
to sA(m) is also a small-range distribution, so it is indistinguishable from a random oracle except
with probability O(q3/r). If we replace sA(m) with a random oracle, we get exactly the distribution
D2. Thus, D2 is indistinguishable from (sA(m), T (sA(m))) except with probability O(q3/r).

Therefore, C’s success probability at distinguishing D1 from D2 is at least λ−O(q3/r), and is
at most O(r2/|X |). This means the distinguishing probability of B is at most

O

(
r2

X
+ q3

r

)

This is minimized by choosing r = O(q|X |1/3), which gives a distinguishing probability of at
most O(q2/|X |1/3).

We show that ε4 is negligibly-close to ε3 using a sequence of sub-games. Game 3a is the game
where we answer query i with the oracle that maps m to (Ri(m), Pi(m)+H(m)) where Pi is another
random oracle. Notice that we can define oracles R(i,m) = Ri(m) and P (i,m) = Pi(m). Then R
and P are random oracles, and using the above lemma, the success probability of B in Game 3a is
negligibly close to that of Game 3. Notice that since Pi is random, P ′i (m) = Pi(m) +H(m) is also
random, so Game 3a is equivalent to the game were we answer query i with the oracle that maps
m to (Ri(m), Pi(m)). Using the above lemma again, the success probability of B in this game is
negligibly close to that of Game 4.

Now, we claim that ε4, the success probability in Game 4 is negligible. Indeed, the view of B is
independent of H, so the probability that H(m0)−H(m1) = s is 1/|Y|. Since ε4 is negligibly close
to ε = ε0, the advantage of A, A’s advantage is also negligible.

6 q-time MACs

In this section, we develop quantum one-time MACs, MACs that are secure when the adversary
can issue only one quantum chosen message query. More generally, we will study quantum q-time
MACs.

Classically, any pairwise independent function is a one-time MAC. In the quantum setting,
Corollary 3.4 shows that when the range is much larger than the domain, this still holds. However,
such MACs are not useful since we want the tag to be short. We first show that when the range is
not larger than the domain, pairwise independence is not enough to ensure security:

Theorem 6.1. For any set Y of prime-power size, and any set X with |X | ≥ |Y|, there exist
(q + 1)-wise independent functions from X to Y that are not q-time MACs.
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To prove this theorem, we treat Y as a finite field, and assume X = Y , as our results are easy to
generalize to larger domains. We use random degree q polynomials as our (q + 1)-wise independent
family, and show in Theorem 6.2 below that such polynomials can be completely recovered using
only q quantum queries. It follows that the derived MAC cannot be q-time secure since once the
adversary has the polynomial it can easily forge tags on new messages.

Theorem 6.2. For any prime power n, there is an efficient quantum algorithm that makes only
q quantum queries to an oracle implementing a degree-q polynomial F : Fn → Fn, and completely
determines F with probability 1−O(qn−1).

The theorem shows that a (q+1)-wise independence family is not necessarily a secure quantum q-
time MAC since after q quantum chosen message queries the adversary extracts the entire secret key.
The case q = 1 is particularly interesting. The following lemma will be used to prove Theorem 6.2:

Lemma 6.3. For any prime power n, and any subset X ⊆ Fn of size n− k, there is an efficient
quantum algorithm that makes a single quantum query to any degree-1 polynomial F : X → Fn, and
completely determines F with probability 1−O(kn−1).

Proof. Write F (x) = ax+ b for values a, b ∈ Fn, and write n = pt for some prime p and integer t.
We design an algorithm to recover a and b.

Initialize the quantum registers to the state

|ψ1〉 = 1√
n− k

∑
x∈X
|x, 0〉

Next, make a single oracle query to F , obtaining

|ψ2〉 = 1√
n− k

∑
x∈X
|x, ax+ b〉

Note that we can interpret elements z ∈ Fn as vectors z ∈ Ftp. Let 〈y, z〉 be the inner product of
vectors y, z ∈ Ftp. Multiplication by a in Fn is a linear transformation over the vector space Ftp, and
can therefore be represented by a matrix Ma ∈ Ft×tp . Thus, we can write

|ψ2〉 = 1√
n− k

∑
x∈X
|x,Max + b〉

Note that in the case t = 1, a is a scalar in Fp, so Ma is just the scalar a.
Now, the algorithm applies the Fourier transform to both registers, to obtain

|ψ3〉 = 1
n
√
n− k

∑
y,z

(∑
x∈X

ω〈x,y〉+〈Max+b,z〉
p

)
|y, z〉

where ωp is a complex primitive pth root of unity.
The term in parenthesis can be written as(∑

x∈X
ω〈x,y+MT

a z〉
p

)
ω〈b,z〉p
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We will then do a change of variables, setting y′ = y + MT
a z.

Therefore, we can write the state as

|ψ3〉 = 1
n
√
n− k

∑
y′,z

(∑
x∈X

ω〈x,y
′〉

p

)
ω〈b,z〉p |y′ −MT

a z, z〉

For z 6= 0 and y′ = 0, we will now explain how to recover a from (−MT
a z, z). Notice that the

transformation that takes a and outputs −MT
a z is a linear transformation. Call this transformation

Lz. The coefficients of Lz are easily computable, given z, by applying the transformation to each of
the unit vectors. Notice that if t = 1, Lz is just the scalar −z. We claim that Lz is invertible if z 6= 0.
Suppose there is some a such that Lza = −MT

a z = 0. Since z 6= 0, this means the linear operator
−MT

a is not invertible, so neither is −Ma. But −Ma is just multiplication by −a in the field Fn.
This multiplication is only non-invertible if −a = 0, meaning a = 0, a contradiction. Therefore, the
kernel of Lz is just 0, so the map is invertible.

Therefore, to compute a, compute the inverse operator L−1
z and apply it to −MT

a z, interpreting
the result as a field element in Fn. The result is a. More specifically, for z 6= 0, apply the computation
mapping (y, z) to (L−1

z y, z), which will take (−MT
a z, z) to (a, z). For z = 0, we will just apply the

identity map, leaving both registers as is. This map is now reversible, meaning this computation
can be implemented as a quantum computation. The result is the state

|ψ4〉 = 1
n
√
n− k

∑
y′

(∑
x∈X

ω〈x,y
′〉

p

)∑
z 6=0

ω〈b,z〉p |L−1
z y′ + a, z〉+ |y′, 0〉


We will now get rid of the |y′, 0〉 terms by measuring whether z = 0. The probability that z = 0

is 1/n, and in this case, we abort. Otherwise, we are left if the state

|ψ5〉 = 1√
n(n− 1)(n− k)

∑
z 6=0,y′

(∑
x∈X

ω〈x,y
′〉

p

)
ω〈b,z〉p |L−1

z y′ + a, z〉

The algorithm then measures the first register. Recall that X has size n− k. The probability
the outcome of the measurement is a is then (1− k/n). In this case, we are left in the state

|ψ6〉 = 1√
n− 1

∑
z 6=0

ω〈b,z〉p |z〉

Next, the algorithm performs the inverse Fourier transform to the second register, arriving at
the state

|ψ7〉 = 1√
n(n− 1)

∑
w

∑
z 6=0

ω〈b−w,z〉
p

|w〉
Now the algorithm measures again, and interpret the resulting vector as a field element. The

probability that the result is b is 1−1/n. Therefore, with probability (1−k/n)(1−1/n)2 = 1−O(k/n),
the algorithm outputs both a and b.
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Now we use this attack to obtain an attack on degree-d polynomials, for general d:
Proof of Theorem 6.2. We show how to recover the q + 1 different coefficients of any degree-q
polynomial, using only q − 1 classical queries and a single quantum query.

Let a be the coefficient of xq, and b the coefficient of xq−1 in F (x). First, make q − 1 classical
queries to arbitrary distinct points {x1, ..., xq−1}. Let Z(x) be the unique polynomial of degree q− 2
such that r(xi) = F (xi), using standard interpolation techniques. Let G(x) = F (x)− Z(x). G(x) is
a polynomial of degree q that is zero on the xi, so it factors, allowing us to write

F (x) = Z(x) + (a′x+ b′)
q−1∏
i=1

(x− xi)

By expanding the product, we see that a = a′ and b = b′ − a
∑
xi. Therefore, we can implement an

oracle mapping x to a(x+
∑
xi) + b as follows:

• Query F on x, obtaining F (x).

• Compute Z(x), and let G(x) = F (x)− Z(x).

• Output G(x)/
∏

(x− xi) = a(x+
∑
xi) + b.

This oracle works on all inputs except the q − 1 different xi values. We run the algorithm from
Lemma 6.3 on X = Fn \ {xi}, we will recover with probability 1−O(q/n) both a and b+ a

∑
xi

using a single quantum query, from which we can compute a and b. Along with the F (xi) values,
we can then reconstruct the entire polynomial.

6.1 Sufficient Conditions for a One-Time Mac

We show that, while pairwise independence is not enough for a one-time MAC, 4-wise independence
is. We first generalize a theorem of Zhandry [Zha12a]:

Lemma 6.4. Let A be any quantum algorithm that makes c classical queries and q quantum queries
to an oracle H. If H is drawn from a (c+2q)-wise independent function, then the output distribution
of A is identical to the case where H is truly random.

Proof. If q = 0, then this theorem is trivial, since the c outputs A sees are distributed randomly.
If c = 0, then the theorem reduces to that of Zhandry [Zha12a]. By adapting the proof of the c = 0
case to the general case, we get the lemma. Our approach is similar to the polynomial method, but
needs to be adapted to handle classical queries correctly.

Our quantum algorithm makes k = c + q queries. Let Q ⊆ [k] be the set of queries that are
quantum, and let C ⊆ [k] be the set of queries that are classical.

Fix an oracle H. Let δx,y be 1 if H(x) = y and 0 otherwise. Let ρ(i) be the density matrix after
the ith query, and ρ(i−1/2) be the density matrix before the ith query. ρ(q+1/2) is the final state of
the algorithm.

We now claim that ρ(i) and ρ(i+1/2) are polynomials of the δx,y of degree ki, where ki is twice
the number of quantum queries made so far, plus the number of classical queries made so far.

ρ(0) and ρ(0+1/2) are independent of H, so they are not a function of the δx,y at all, meaning
the degree is 0 = k0.

We now inductively assume our claim is true for i − 1, and express ρ(i) in terms of ρ(i−1/2).
There are two cases:
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• i is a quantum query. In this case, ki = ki−1 + 2. We can write

ρ
(i)
x,y,z,x′,y′,z′ = ρ

(i−1/2)
x,y−H(x),z,x′,y′−H(x′),z

An alternative way to write this is as

ρ
(i)
x,y,z,x′,y′,z′ =

∑
r,r′

δx,y−rδx′,y′−r′ρ
(i−1/2)
x,r,z,x′,r′,z

By induction, each of the ρ
(i−1/2)
x,r,z,x′,r′,z are polynomials of degree ki−1 in the dx,y values, so

ρ
(i)
x,y,z,x′,y′,z′ is a polynomial of degree ki−1 + 2 = ki.

• i is a classical query. This means li = ki−1 + 1. Let ρ(i−1/4) representing the state after
measuring the x register, but before making the actual query. This is identical to ρ(i−1/2),
except the entries where x 6= x′ are zeroed out. We can then write

ρ
(i)
x,y,z,x′,y′,z′ =

∑
r,r′

δx,y−rδx′,y′−r′ρ
(i−1/4)
x,r,z,x′,r′,z =

∑
r,r′

δx,y−rδx,y′−r′ρ
(i−1/2)
x,r,z,x,r′,z

Now, notice that δx,y−rδx,y′−r′ is zero unless y − r = y′ − r′, in which case it just reduces to
δx,y−r. Therefore, we can simply further:

ρ
(i)
x,y,z,x′,y′,z′ =

∑
r

δx,y−rρ
(i−1/2)
x,r,z,x,(y−y′)+r,z

By induction, each of the ρ
(i−1/2)
x,r,z,x,(y−y′)+r,z values are polynomials of degree ki−1 in the dx,y

values, so ρ
(i)
x,y,z,x′,y′,z′ is a polynomial of degree ki−1 + 1 = ki

Therefore, after all q queries, final matrix ρ(q+1/2) is a polynomial in the δx,y of degree at most
k = 2q + c. We can then write the density matrix as

ρ(q+1/2) =
∑
x,y

Mx,y

rq∏
t=0

δxi,yi

where x and y are vectors of length k, Mx,y are matrices, and the sum is over all possible vectors.
Now, fix a distribution D on oracles H. The density matrix for the final state of the algorithm,

when the oracle is drawn from H, is given by

∑
x,y

Mx,y

(∑
H

Pr[H ← D]
rq∏
t=0

δxi,yi

)

The term in parenthesis evaluates to PrH←D[H(x) = y]. Therefore, the final density matrix can be
expressed as ∑

x,y
Mx,y Pr

H←D
[H(x) = y]

Since x and y are vectors of length k = 2q + c, if D is k-wise independent, PrH←D[H(x) = y]
evaluates to the same quantity as if D was truly random. Thus the density matrices are the same.
Since all of the statistical information about the final state of the algorithm is contained in the
density matrix, the distributions of outputs are thus identical, completing the proof.
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Using this lemma we show that (3q + 1)-wise independence is sufficient for q-time MACs.

Theorem 6.5. Any (3q + 1)-wise independent family with domain X and range Y is a quantum
q-time secure MAC provided (q + 1)/|Y| is negligible.

Proof. Let D be some (3q + 1)-wise independent function. Suppose we have an adversary A that
makes q quantum queries to an oracle H, and attempts to produces q + 1 input/output pairs. Let
εR be the probability of success when H is a random oracle, and let εD be the probability of success
when H is drawn from D. We construct an algorithm B with access to H as follows: simulate A
with oracle access to H. When A outputs q + 1 input/output pairs, simply make q + 1 queries to H
to check that these are valid pairs. Output 1 if and only if all pairs are valid. Therefore, B makes
q quantum queries and c = q + 1 classical queries to H, and outputs 1 if and only if A succeeds:
if H is random, B outputs 1 with probability εR, and if H is drawn from D, B outputs 1 with
probability εD. Now, since D is (3q + 1)-wise independent and 3q + 1 = 2q + c, Lemma 6.4 shows
that the distributions of outputs when H is drawn from D is identical to that when H is random,
meaning εD = εR.

Thus, when H is drawn from D, A’s succeeds with the same probability that it would if H
was random. But we already know that if H is truly random, A’s success probability is less than
(q + 1)/|Y|. Therefore, when H is drawn from D, A succeeds with probability less than (q + 1)/|Y|,
which is negligible. Hence, if H is drawn from D, H is a q-time MAC.

7 Conclusion

We introduced the rank method as a general technique for obtaining lower bounds on quantum oracle
algorithms and used this method to bound the probability that a quantum algorithm can evaluate
a random oracle O : X → Y at k points using q < k queries. When the range of Y is small, say
|Y| = 8, a quantum algorithm can recover k points of O from only 0.9k queries with high probability.
However, we show that when the range Y is large, no algorithm can produce k input-output pairs of
O using only k−1 queries, with non-negligible probability. We use these bounds to construct the first
MACs secure against quantum chosen message attacks. We consider both PRF and Carter-Wegman
constructions. For one-time MACs we showed that pair-wise independence does not ensure security,
but four-way independence does.

These results suggest many directions for future work. First, can these bounds be generalized to
signatures to obtain signatures secure against quantum chosen message attacks? Similarly, can we
construct encryption systems secure against quantum chosen ciphertext attacks where decryption
queries are superpositions of ciphertexts?
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