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Abstract. Embedding an element of a finite field into auxiliary groups such as elliptic curve groups or ex-
tension fields of finite fields has been useful tool for analysis of cryptographic problems such as establishing
the equivalence between the discrete logarithm problem and Diffie-Hellman problem or solving the discrete
logarithm problem with auxiliary inputs (DLPwAI). Actually, Cheon’s algorithm solving the DLPwAI can
be regarded as a quantitative version of den Boer and Maurer. Recently, Kim showed in his dissertation that
the generalization of Cheon’s algorithm using embedding technique including Satoh’s [19] is no faster than
Pollard’s rho algorithm when d - (p± 1).
In this paper, we propose a new approach to solve DLPwAI concentrating on the behavior of function mapping
between the finite fields rather than using an embedding to auxiliary groups. This result shows the relation
between the complexity of the algorithm and the number of absolutely irreducible factors of the substitution
polynomials, hence enlightens the research on the substitution polynomials.
More precisely, with a polynomial f(x) of degree d over Fp, the proposed algorithm shows the complexity

O
(√

p2/R log2 d log p
)

group operations to recover α with g, gα, . . . , gα
d

, where R denotes the number

of pairs (x, y) ∈ Fp × Fp such that f(x) − f(y) = 0. As an example using the Dickson polynomial,
we reveal α in O(p1/3 log2 d log p) group operations when d|(p + 1). Note that Cheon’s algorithm requires
g, gα, . . . , gα

d

, . . . , gα
2d

as an instance for the same problem.
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1 Introduction

Let g be a group element of order p. The Discrete Logarithm Problem (DLP) is a problem to find
α ∈ Fp when the elements g, gα are given. The DLP is considered as a cryptographic hard problem
and guarantees the security of many cryptographic schemes such as encryptions, signatures, and key
exchange protocols.

In a recent decade, many variants of DLP such as the Bilinear Diffie-Hellman Problem (BDHP) [3],
the `-Strong Diffie-Hellman Problem (`-SDHP) [2], the Bilinear Diffie-Hellman Exponent Problem [4],
and the Bilinear Diffie-Hellman Inverse Problem [1] are used to assure the security of many crypto-
graphic schemes such as the ID-based encryption (IBE) [1,3], the short signatures [2] and so on. How-
ever the hardness of these variants has not been well-understood. In Eurocrypt 2006, Cheon [7,8] in-
troduced a general version of these problems, so called Discrete Logarithm Problem with Auxiliary
Inputs (DLPwAI), to compute a discrete logarithm α when the auxiliary inputs g, gα, . . . , gα

d
are given,

and proposed an algorithm to solve this problem more efficiently when d divides either p − 1 or p + 1.
The p− 1 case has been dealt with independently in [5].

The idea of Cheon’s algorithm is to embed a discrete logarithm α ∈ Fp into a finite field Fp (or
Fp2 , respectively) for p − 1 case (or p + 1 case, respectively). By this algorithm, one can recover

the discrete logarithm α in time complexity O(
√

p−1
d log p) with the auxiliary inputs g, gα, gα

d
when

d < p1/2 divides p − 1 and recover α in time O(
√

p+1
d log p) with the inputs g, gα, . . . , gα

d
, . . . , gα

2d

when d < p1/3 divides p + 1. In fact, Cheon’s algorithm can be regarded as a quantitative version of
the famous reduction algorithms from the DL problem to the DH problem [10,15,18], and so we may
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expect to use the embeddings to other auxiliary groups such as extension fields or elliptic curves in this
problem. Satoh [19] generalized Cheon’s algorithm when d divides ϕk(p) for k ≥ 3 using an embedding
Fp intoGL(n,Fp), where ϕk(x) denotes the k-th cyclotomic polynomial. At last, Kim [13] realized that
Satoh’s algorithm essentially uses an embedding from Fp into Fpn and proved that the algorithm can
never be faster than the ordinary algorithm for DLP when d|ϕk(p) for k ≥ 3. However, it is very hard to
believe that this DLPwAI is as secure as DLP except only the p± 1 cases. At this point, we need totally
different approaches for this problem. We remark that any small progress in this area is very important
because it can result in the attacks of numerous cryptographic schemes and protocols.

Our perspective is focused on the behavior of a function mapping from Fp to itself rather than
an embedding from Fp into some other groups. We observed that if there exist many points (x, y)
in Fp × Fp satisfying the equation f(x) − f(y) = 0 for rational functions (or polynomials) f(x)
over Fp then it can be used to obtain the discrete logarithm more efficiently. A bivariate polynomial
f∗(x, y) := f(x)−f(y) ∈ Fp[x, y] is called the substitution polynomial and by Weil’s bound the number
of points of the curve f∗(x, y) = 0 over Fp is closely related to the number of absolutely irreducible
factors, say r. An irreducible polynomial over Fp is called absolutely irreducible if it is irreducible
over algebraic closure F̄p. At last our algorithm reduces solving DLPwAI to find a polynomial whose
substitution polynomial has many absolutely irreducible factors.

Let us describe our result more precisely. Let f(x) be a polynomial of degree d over Fp and consider
a mapping by the polynomial. Define R by the number of solutions in Fp × Fp of the equation f(x)−
f(y) = 0 and letRi be the number of images which are mapped by i elements from its domain, thenR =∑d

i=1 i
2Ri. With the result on the non-uniform birthday problem in [11], for given g, gα, . . . , gα

d
, we

can recover α in O(m log2 d log p) group operations where the expected value of m is
√

p2π
R +O(p1/4).

Thus if Rd is large i.e., many images are mapped by d elements then we can solve α efficiently. The
polynomial f(x) = xd with d|(p − 1) gives a trivial example which has the value Rd = p−1

d and in
this case the complexity almost matches with the Cheon’s p− 1 algorithm. As a nontrivial example, the
Dickson polynomial with d|(p+1) hasR1 = (p−1)/2 andRd = (p+1)/2d, thus our method finds α in
O(
√
pπ/d log2 d log p) group operations. This method takes only g, gα, . . . , gα

d
as inputs as in Satoh’s

[19]. Note that Cheon’s algorithm requires g, gα, . . . , gα
d
, . . . , gα

2d
as an instance for the same problem.

As a crucial part for the algorithm, we require the fast multipoint evaluation of the polynomial in
blackbox manner. The word “blackbox” means that the function to be evaluated is given by the encrypted
coefficients. In other words if we have the values gf0 , . . . , gfd where f(x) = f0 +f1x+ · · ·+fdx

d, then
we can compute the evaluated values of f(x) at many points in the blackboxed form gf(x0), . . . , gf(xd)

efficiently (in time complexity quasi-linear in the degree of f(x)). In [17], Mohassel also proposed a
similar algorithm when the primitive d-th root of unity exists and applied this to obtain the efficient
protocol such as the oblivious polynomial evaluation (OPE) protocols and the private set intersection
protocols. By simple observation using Schönhage-Straßen multiplication, we also indicate that the fast
multiplication is possible when the primitive root of unity does not exist.

By Weil’s theorem, the valuem = O(
√
p2/R) is equal toO(

√
p/r), andm is bounded byO(

√
p/d) ≤

m ≤ O(
√
p) since 1 ≤ r ≤ d. Mit’kin [16] improved an estimates for the value R, which says that

R ≤ (bd/2c+1)p+c(d)
√
p for some constant c(n) in many cases. On the other hands, in [12] the com-

plete lists of polynomials of degree d < p1/4 whose substitution polynomial has at least d/2 absolutely
irreducible factors were given. For our algorithm to work valuably, it is worthwhile to find a polynomial
with large r and until the present there seems to be a room that such polynomials may exist.

Unlike the polynomial cases, for any d, we can obtain a rational function f(x) = f1(x)
f2(x)

of degree d

with R >
√
dp easily by using the

√
d-th division polynomial. However, the main drawback of using

this rational function is that the fast evaluation of gf(xi) for many xi’s seems hard to achieve.
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2 Cheon’s algorithm

In [7], Cheon proposed an algorithm to solve DLPwAI for some cases. The result is as follows:

Theorem 1. Let G = 〈g〉 be a cyclic group of prime order p. Then

1. Let d be a divisor of p − 1. Given g, gα, gα
d
, one can solve α in O

(√
p−1
d +

√
d

)
group

exponentiations.

2. Let d be a divisor of p+1. Given g, gα, . . . , gα
d
, . . . , gα

2d
, one can solveα inO

(√
p+1
d + d

)
group exponentiations.

This algorithm is obtained by observing that the exponent can be embedded into a subgroup of small
order of auxiliary groups. More precisely, if d divides (p− 1) then αd ∈ F×p is an element in a subgroup
of order p−1

d . Then one can recover αd and α in Baby Step Giant Step style in the subgroup of small
order p−1d . On the other hand, let d be a divisor of (p+1). Since Fp2 has a subgroupH of order p+1 and
H has subgroup of order p+1

d , one can recover α by representing an element in H by rational functions
in terms of α and also by using the Baby Step Giant Step technique. In [19], Satoh proposed generalized
Cheon’s algorithm when d divides ϕk(p), where ϕk(·) denotes the k-th cyclotomic polynomial. However
the efficiency of the algorithm was not well-studied. Finally, Kim [13] showed that Satoh’s algorithm
essentially uses the embedding from Fp to Fpn and this generalization is no faster than time complexity√
p when d divides ϕk(p) for k ≥ 3.

3 Non-uniform Birthday Problem

In [11], Galbraith and Holmes considered the sampling of coloured balls and placing them in p urns
with non-uniform probability distributions depending on the colour of the ball. They also determined
the expected number of trials until two different types of balls are put in the same urn. We describe them
briefly in this section. We only consider two types of colours of balls.

Assumption 1 ([11]) Assume that there are two colours of balls. rk,c denotes the probability the k-th
ball sampled has colour c = 1, 2. Let qc := limn→∞ n

−1∑n
k=1 rk,c exists and q1 ≥ q2 > 0. Let

bn,c = qc − n−1
∑n

k=1 rk,c. Assume that there exists a constant K such that |bn,c| ≤ K/p for all c.

Assumption 2 ([11]) There are p distinct urns. Let qc,a denote the probability that c coloured ball is put
in urn a. Assume there exists d > 0 such that for all c = 1, 2 and 1 ≤ a ≤ p, 0 ≤ qc,a ≤ d/p. There
exist constants γ, µ > 0 such that the set Sp := {1 ≤ a ≤ p : q1,a, q2,a ≥ µ/p} is such that |Sp| ≥ γp.

Theorem 2 ([11, Theorem 1]). Define Ap := 2q1q2
∑p

a=1 q1,aq2,a. Let Z be the first time that there are
two balls with different colours in the same urn under Assumption 1 and 2. Then

E(Z) =

√
π

2Ap
+O(p1/4)

as p→∞ and the constant in the O depends on C, qc, d,K, γ, µ but not depend on N or qc,a.

Let us apply the result to the following case. Let f(x) be a polynomial of degree d over Fp. Assume
that a ball ri is considered to be coloured with white and sj is coloured with red. Among p urns, the
white ball ri is considered to be put into an urn numbered by f(riα) and the red ball sj into an urn

numbered by f(sj). In our case rk,1 = 1−(−1)k
2 and rk,2 = 1+(−1)k

2 . We consider the image f(x) as
urns in which the ball x is placed. After the rearrangement, we may assume that V1(f) = {1, 2, . . . , R1},
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V2(f) = {R1 + 1, . . . , R1 + R2}, . . . , Vd(f) = {R1 + · · · + Rd−1 + 1, . . . , R1 + · · · + Rd} where
Vi(f) denotes the set of images which are mapped by i elements from the domain. The probability that
a ball of colour c is put in urn a is denoted by qc,a and in our case, for c = 1, 2,

qc,a =


1
p , 1 ≤ a ≤ R1
2
p , R1 + 1 ≤ a ≤ R1 +R2

...,
d
p , R1 + · · ·+Rd−1 + 1 ≤ a ≤ R1 + · · ·+Rd.

The expected value of the iterations of f until a collision occurs between the sets

{f(r1α), f(r2α), . . . , f(rmα)}

and
{f(s1), . . . , f(sm)}

is
√

p2π
R +O(p1/4) for R :=

∑d
i=1 i

2Ri as p→∞.

4 Multipoint Evaluation in Blackbox Manners

Let g be a group element of order p in G. For a polynomial a(x) = an−1x
n−1 + · · · + a0 ∈ Fp[x] of

degree less than n, we denote ga(x) := (ga0 , ga1 , . . . , gan−1).
In this section we present the fast multipoint polynomial evaluation where the coefficients of the

function are given in the blackbox manners. This means that for given gai , 0 ≤ i < n, we can obtain
ga(xi)’s for many points xi in quasi-linear time in degree n. The method is analogous to usual fast
multipoint evaluation using the fast Fourier transform (FFT). The key observation of the algorithm is
that computing the exponentiation (ga)b for given ga and b corresponds to the multiplication a · b in the
finite fields.

The first step is to obtain the fast multiplication algorithm in blackbox manners using the Discrete
Fourier Transform (DFT). TheDFTω of the polynomial a(x) is an n-tuple

(
a(1), a(ω), a(ω2), . . . , a(ωn−1)

)
in Fnp with the n-th primitive root of unity ω.

In [17], they dealt with the case when the primitive n-th root of unity exists, however it can be easily
extended to the case that the primitive n-th root of unity does not exist using Schönhage and Straßen’s
multiplication algorithm.

The following algorithm shows the fast Fourier transform in blackbox manner and Lemma 1 analyzes
its complexity.

Algorithm 1 Blackbox Fast Fourier Transform
Input : n = 2k ∈ N, ga(x) := (ga0 , ga1 , . . . , gan−1) ∈ Gn with a(x) ∈ Fp[x] and the powers ω, ω2, . . . , ωn−1 of a
primitive n-th root of unity ω ∈ Fp

Output : gDFTω(a) := (ga(1), ga(ω), . . . , ga(ω
n−1)) ∈ Gn

1. If n = 1 then return ga0

2. gr0(x) ← (ga0+an/2 , · · · , gan/2−1+an−1), gr1(x) ← (g1·(a0−an/2), · · · , gw
n/2−1(an/2−1−an−1))

3. call the algorithm recursively to get gDFTw2 (r0) and gDFTw2 (r1)

4. return
(
ga(1), ga(ω), . . . , ga(ω

n−1)
)
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Lemma 1. Given ga(x) = (ga0 , ga1 , . . . , gan−1) for a polynomial a(x) = an−1x
n−1+· · ·+a0 of degree

< n, we compute gDFTω(a) =
(
ga(1), ga(ω), . . . , ga(ω

n−1)
)

in O(n log n) group operations.

Proof. Let S(n) and T (n) denote the number of exponentiations and multiplications in G, respectively,
that the algorithm requires for input size n. The cost for the individual steps is: In step 2, n multiplica-
tions and n/2 exponentiations by powers ω, ω2, . . . , ωn/2 in G, in step 3, 2S(n/2) exponentiations and
2T (n/2) multiplications.Thus S(n) = 2S(n/2) + n, T (n) = 2T (n/2) + n/2, and by unfolding the
recursions we find that S(n) = n log n and T (n) = 1

2n log n. ut

Recall that DFTω(a ∗ b) = DFTω(a) ·DFTω(b) where · denotes the pointwise multiplication and
∗ denotes the convolution map a ∗ b = a(x)b(x) mod xn − 1. Furthermore a ∗ b(x) = a(x)b(x) when
deg(a(x)b(x)) < n. The map DFTω : a(x) = (a0, a1, . . . , an−1) 7→

(
a(1), a(ω), . . . , a(ωn−1)

)
can

be considered as multiplication by the matrix

Vω :=


1 1 · · · 1
1 ω · · · ωn−1

1 ω2 · · · ω2(n−1)

...
...

. . .
...

1 ωn−1 · · · ω(n−1)2

 .

We can easily verify that Vω · Vω−1 = nI , where I denotes the n× n identity matrix. Therefore

DFT−1ω = V −1ω =
1

n
Vω−1 =

1

n
DFTω−1 .

Lemma 2 and Algorithm 2 are devoted to compute fast convolution.

Algorithm 2 Fast Convolution in Blackbox Manners
Input : ga(x) and b(x) where a(x), b(x) ∈ Fp[x], and a primitive n-th root of unity ω ∈ Fp.
Output : ga(x)b(x) ∈ Gn.

1. compute ω2, . . . , ωn−1

2. B ← DFTω(b) =
(
b(1), b(ω), . . . , b(ωn−1)

)
3. gA ← gDFTω(a) =

(
ga(1), ga(ω), . . . , ga(ω

n−1)
)

4. gC = gDFTω(a∗b) ← (gA)B , pointwise exponentiation

5. return gDFT
−1
ω (C) =

(
gDFTω−1 (C)

) 1
n

Lemma 2. Let ω be a primitive n-th root of unity. Given ga(x) = (ga0 , ga1 , . . . , gan−1) and b(x) ∈ Fp[x]
with deg(ab) < n, we can compute ga(x)b(x) in O(n log n) group exponentiations.

Proof. The cost for each step becomes: in step 1, n− 2 multiplication by ω ∈ Fp and step 2 O(n log n)
operations in Fp. In step 3 and 5, we require O(n log n) group exponentiations by Lemma 1, in step 4
O(n) exponentiations are needed. ut

In the next lemma, the blackbox version of the fast polynomial division algorithm is proposed. We
use the Newton iteration method as in the ordinary case. We define the reversal of a polynomial a(x) as
revk(a) = xka(1/x). Note that if k = deg(a) then the reversal of a is simply the polynomial with the
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coefficients of a reversed. Consider the division a by b, we want to find polynomials q and r such that
a = bq + r with deg(r) < deg(b). By the definition of the reversal we can easily obtain

revn(a) = revm(b)revn−m(q) + xn−m+1revm−1(r)
= revm(b)revn−m(q) mod xn−m+1

where deg(a) = n, deg(b) = m. Then revn−m(q) = revn(a)revm(b)−1 mod xn−m+1, and we can find
revm(b)−1 mod xn−m+1 by using Newton iteration. Consequently we can obtain q and r = a − bq.
The following algorithm is simply the analogous version of the fast polynomial division using Newton
iteration.

Algorithm 3 Blackbox Polynomial Division
Input : ga(x) and b(x) where a(x), b(x) ∈ Fp[x] with deg(a) = n,deg(b) = m (n > m)
Output : ga(x) mod b(x) ∈ Gm−1

1. Compute revm(b)−1 mod xn−m+1 using Newton iteration.
2. Call the algorithm 2 to compute gq(x) = grevn(a)revm(b)−1 mod xn−m+1

3. Call the algorithm 2 to compute gq(x)b(x) with inputs gq(x) and b(x)
4. Return gr(x) = ga(x)/gq(x)b(x)

Lemma 3. Given ga(x) and b(x), we compute ga(x) mod b(x) in O(n log n) group exponentiations, where
deg(a) = 2n, deg(b) = n.

Proof. The cost for individual steps becomes: in step 1,O (m logm) field operations, andO ((n−m) log(n−m))
group exponentiations by lemma 2 in step 2, and O (n log n) group exponentiations in step 3. Finally in
step 4 we only require n divisions of the group elements. Especially if deg(a) = 2n, deg(b) = n, then
the total cost becomes O(n log n) group exponentiations. ut

Finally we can propose the fast multipoint evaluation algorithm by building up the sub-product tree
of (x − x0)(x − x1) · · · (x − xn−1) where x0, . . . , xn−1 are to be evaluated values. Let mi := x − xi
and define the recursive relations M0,j = mj , Mi+1,j = Mi,2j ·Mi,2j+1. From the fact that f(xj) =
f(x) mod mj , we can obtain the following algorithm and the lemma is just a direct consequence.

Algorithm 4 Blackbox Multipoint Evaluation Algorithm
Input : ga(x) with a(x) ∈ Fp[x] of degree < n = 2k for some k ∈ N and x0, . . . , xn−1 ∈ Fp
Output : ga(x0), . . . , ga(xn−1) ∈ G

1. Compute the subproduct Mi,j

2. Call the algorithm 3, gR0 ← ga(x) mod Mk−1,0 , gR1 ← ga(x) mod Mk−1,1

3. Call the algorithm recursively to compute gR0(x0), . . . , gR0(xn/2−1)

4. Call the algorithm recursively to compute gR1(xn/2), . . . , gR1(xn−1)

5. Return gR0(x0), . . . , gR0(xn/2−1), gR1(xn/2), . . . , gR1(xn−1)

Lemma 4. Given ga(x) = (ga0 , ga1 , . . . , gan−1), we can compute ga(x0), · · · , ga(xn−1) in O(n log2 n)
exponentiations in group G.

Let a(x) = an−1x
n−1 + · · · + a0 and b(x) = bn−1x

n−1 + · · · + b0 be polynomials over Fp with
deg(ab) < n = 2k. The blackbox Schönhage-Straßen multiplication outputs ga(x)b(x) = (gc0 , gc1 , . . . , gcn−1)
with inputs ga(x) = (ga0 , ga1 , . . . , gan−1) and b(x) = (b0, . . . , bn−1).
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Let us first explain the non-blackbox version of the method. Let m = 2bk/2c and t = n/m. Write
down the polynomial as a(x) = A0 + A1x

m + · · · + At−1x
m(t−1) where Ai ∈ Fp[x] with degree less

than m and let a′(x, y) = A0 + A1y + · · · + At−1y
t−1 ∈ Fp[x, y] so that a′(x, xm) = a(x). Consider

a ring D := Fp[x]/(x2m + 1) and let ζ ∈ D be an element corresponding to x in Fp[x]/(x2m + 1).
Then we can view a∗(y) = a′(ζ, y) = A0(ζ) + A1(ζ)y + · · · + At−1(ζ)yt−1 ∈ D[y]. The goal is to
obtain a(x)b(x) mod xn + 1 which is equivalent to a∗(y)b∗(y) mod yt + 1. However since ζ2m = −1
and ζ4m = 1, ζ is a 4m-th primitive root of unity in D, thus η = ζ2 if t = m and η = ζ if t =
2m is a primitive 2t-th root of unity in D. Now we want to compute a∗(ηy)b∗(ηy) mod (ηy)t + 1 or
a∗(ηy)b∗(ηy) mod yt − 1, this can be done by fast multiplication using the discrete Fourier transform
with the t-th primitive root of unity ω = η2 in D. The multiplication in D can be done recursively
with polynomial degree less than 2m. In blackbox version of the algorithm, we simply write ga(x) =
(ga0 , ga1 , . . . , gan−1) = (gA0 , . . . , gAt−1) where gAi means (gami , gami+1 , . . . , gami+(m−1)).

Finally, we give the blackbox version of fast blackbox Schönhage and Straßen multiplication in the
following algorithm.

Algorithm 5 Blackbox Schönhgae-Straßen Multiplication
Input : n = 2k ∈ N, ga(x) := (ga0 , ga1 , . . . , gan−1) ∈ Gn and b(x) = bn−1x

n−1 + · · · + b0 where a(x), b(x) ∈ Fp[x]
with deg(ab) < n
Output : ga(x)b(x) := (gc0 , gc1 , . . . , gcn−1) ∈ Gn

1. m← 2bk/2c, t← n/m
let ga(x) = (gA0 , . . . , gAt−1) and b(x) = (B0, . . . , Bt−1) so that a(x) =

∑t−1
i=0 Aix

mi, b(x) =
∑t−1
i=0 Bix

mi where
degAi, degBj < m

2. let D = Fp[x]/(x
2m + 1) and ζ ← x mod (x2m + 1)

if t = 2m then η ← ζ, otherwise η ← ζ2 so that η is a primitive 2t-th root of unity
call the algorithm 2 with ω = η2 to compute gc

∗(ηy) = ga
∗(ηy)b∗(ηy) mod (yt−1) using algorithm 5 recursively for the

multiplication in D
3. return gc

∗(y) = (gC0 , . . . , gCt−1)

Lemma 5. Let a(x), b(x) ∈ Fp[x] with deg(ab) < n. Given ga(x) and b(x), we can compute ga(x)b(x)

in O(n log n log logn) group operations.

5 New Approach to DLP with Auxiliary Inputs using Function Mapping

In this section, we show that if a function f(x) defined over Fp has many collisions by its mapping, then
it can be used to solve DLPwAI efficiently. Our function can also be a rational function, however for a
while we let our function to be a polynomial of degree d.

Let f(x) := f0 + f1x+ · · ·+ fdx
d ∈ Fp[x]. Define the value set of f(x) by V (f) := {f(x) : x ∈

Fp} = {a1, . . . , at} where t is the size of the value set. Since f is a polynomial of degree d, we have
q` := #f−1(a`) ≤ d for 1 ≤ ` ≤ t. Thus p =

∑t
`=1 q` ≤ d · t which is equivalent to t ≥ bp−1d c+ 1. If

a function f(x) has V (f) with size t = bp−1d c+ 1, we say that the function has a minimal value set.

5.1 New Approach with Function Mappings

Let Ri denote the number of the set Si := {a` ∈ V (f) : |f−1(a`)| = i}, i.e., the number of images
which are mapped by i elements. We also define R to be the size of the set {(x, y) ∈ Fp ×Fp : f(x) =
f(y)}. Then we have

p =

d∑
i=1

iRi, |V (f)| =
d∑
i=1

Ri, and R =

d∑
i=1

i2Ri.
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For randomly chosen r ∈ Fp, the probability that f(r) (or f(rα), resp.) is equal to a` in Si for some
i is i

p . In this case we shall say that a ball r ∈ Fp colored by 1 (or 2, resp.) is put into a urn a` ∈ Si.
In this manner we want to find a collision, that is, two balls of different types are put into a same urn.
Naturally the expected number of trials until a collision occurs is related to the number of solutions of
the equation f(x) = f(y).

Definition 1. Let f(x) be any function defined over Fp. Consider the algorithm which receives g, gα, . . . , gα
d

and the description of f(x) as inputs and returns gf(r1α), gf(r2α), . . . , gf(rmα) for random ri ∈ Fp (or
gf(s1), gf(s2), . . . , gf(sm) for random si ∈ Fp resp.). The number of required group operations of the
algorithm is defined by T1(m) (or T2(m) resp.). We simply define T (m) := T1(m) + T2(m).

Theorem 3. Let g, gα, · · · , gαd with d ≤ p1/3 be given and let f(x) := f0 + f1x + · · · + fdx
d be a

polynomial of degree d over Fp. Let R and Ri be defined as aforementioned. Then we can find α with
T1(m)+O(m+d) group operations andO(m log2 d+d log p) Fp-operations, where the expected value

of m is
√

p2π
R +O(p1/4). The group operation includes group multiplications and exponentiations.

Proof. Suppose we choose random elements ri and sj from Fp alternatively and compute f(riα) and
f(sj) sequentially. Let m be the number of iterations until a collision occurs between the following two
lists

{f(r1α), f(r2α), . . . , f(rmα)}

and
{f(s1), . . . , f(sm)}.

The expected value of m is
√

p2π
R +O(p1/4) as described in Section 3.

After a collision occurs, solving an equation f(riα) = f(sj) with respect to the intermediate α gives
candidates for α. However actually the value α is secret thus we cannot compute f(riα). Thus we shall
find a collision in the exponentiated forms instead of the original values. Computing gf(riα) and gf(sj)

with the description of f(x) requires T (m) group operations by the definition 1.
The value of T2(m) can be determined by the fast multipoint polynomial evaluation. Evaluating

f(x) at randomly chosen points s1, . . . , sm requires O(m log2 d) operations in Fp. Then computing the
list
{
gf(s1), . . . , gf(sm)

}
takes O(m) group exponentiations. After we have a collision, one solves the

equation f(riα) = f(sj) with respect to the intermediate α. The solutions of the equation consist of
f−1(f(sj)). Thus we have at most d possibilities of riα. We can find roots in Fp of polynomial of degree
d over Fp using an expected number of Õ(d log p) operations in Fp [25]. If the number of solutions for
the equation does not exceed d elements, then we raise these solutions to the power with base g in O(d)
group exponentiations and compare these values with gα. ut

Remark 1. As shown in Section 4, T1(m) is equal to O(m log2 d) for m ≥ d if a given function f
is a polynomial of degree d. In this case, the total complexity of the algorithm is upper bounded by
O(m log2 d+ d) group operations.

Remark 2. For any function, not a polynomial, f(x) defined over Fp, we can show by analogous ar-

gument using non-uniform birthday problem that the value m is equal to O
(√

p2/R
)

where R is the
number of Fp-points on the curve f(x) − f(y) = 0. Thus for a constant map f(x), R attains the max-
imum value p2 which induces m = O(1). It trivially means that finding the collision is easy, but in this
case the number of the candidates for α becomes p, which obstructs finding the solutions by exhaustive
trials.
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5.2 Substitution Polynomial and Value Set of Polynomial

In our algorithm, it is crucial to find a polynomial with sufficiently large R. Since R =
∑d

i=1 i
2Ri and

p =
∑d

i=1 iRi, it is easily seen that p ≤ R ≤ dp inducing O(
√
p/d) ≤ m ≤ O(

√
p). In the case

m = O(
√
p), the algorithm performs like the ordinary DL-solving algorithms such as Pollard’s rho

algorithm. In the case m = O(
√
p/d), the proposed algorithm collides with Cheon’s algorithm and the

value is optimal in the sense of Shoup’s [21] lower bound in generic group model.
If |V (f)| ≤ p

c for some 1 ≤ c ≤ d, then R ≥ cp by Cauchy-Schwartz inequality(
d∑
i=1

i2Ri

)(
d∑
i=1

Ri

)
≥

(
d∑
i=1

iRi

)2

.

Thus the polynomial with small value sets would give an improvement in the complexity of the algo-
rithm.

It has been long-standing issue to determine the value sets of polynomials. Carlitz et al. [9] showed
that the polynomial with minimal value sets exists if and only if d|(p−1) and f(x) is of form a(x−b)d+c
for some constants a, b and c in Fp. Wan et al. [24] showed that there exists no polynomial whose value
set size is between bp−1d c+1 and bp−1d c+

2(p−1)
d2

. Furthermore, Gomez-Calderon and Madden [12] gave
a complete list of polynomials with V (f) ≤ 2p

d . Unfortunately, it is shown that the mean value of |V (f)|
over all polynomials of degree d < p is about cdp+O(1) where cd = 1− 1

2!+
1
3!+· · ·+(−1)d−1 1

d! ≈ 1/e
by Uchiyama [23], so we can deduce that polynomials with small value sets are rare.

More precisely, the value of R for a polynomial f(x) is definitely related to the substitution polyno-
mial f∗(x, y) = f(x)− f(y) ∈ Fp[x, y]. It is widely used to determine the value set of polynomials.

Weil’s bound says that if f∗(x, y) has r absolutely irreducible factors (that is, irreducible factors
over Fp which are irreducible over algebraic closure of Fp), then the value of R is rp+O(d2

√
p). With

this observation, Mit’kin [16] estimated the value of R, which says that R < (bd/2c+ 1)p+ c(d)p1/2 in
most cases for a constant c(d) depending on d. He also showed that for a polynomial ϕ(x, y) of degree
t, being square-free and having no factor (x− y) and Resy(ϕ(x, y), ϕ(z, y)) = c(x− z)t(ϕ(x, z))t−1,
c 6= 0, there exists a polynomial f(x) such that f∗(x, y) = (x− y)ϕ(x, y). Here, Resy(·, ·) denotes the
resultant with respect to y. From this, he derived the existence of f(x) satisfying

f∗(x, y) = (x− y)

(d−1)/2∏
k=1

(
x2 − (ζk + ζ−k)xy + y2 + a(ζ2k + ζ−2k − 2))

)
for a ∈ F∗p, where ζ ∈ Fp2 is a primitive d-th root of unity and d|(p2 − 1). This polynomial is exactly
the substitution polynomial of the Dickson polynomial. This result induces that R = d+1

2 p+O(d2) and
in Section 6.1 we give the exact value of R by virtue of [6].

In particular, Gomez-Calderon and Madden [12] gave a complete list of polynomials of degree d <
p1/4 which has r ≥ bd/2c. The list contains polynomials of following forms:

1. f(x) = (x+ a)d + b, where d|p− 1,
2. f(x) = ((x+ a)d/2 + b)2 + c, where (d/2)|(p− 1),
3. f(x) = ((x+ a)2 + b)d/2 + c, where (d/2)|(p− 1), or
4. f(x) = Dd,a(x + b) + c, where Dd,a(x) is the Dickson polynomial of degree d such that
d|(p2 − 1) and a is a 2k-th power in Fp2 , where d = 2kr for odd r.

By Weil’s bound, we can write m = O
(√

p2/R
)

in terms of O
(√

p/r
)

. The first polynomial

of the list trivially factors into d linear factors, assuming a = 0, f(x) − f(y) = (x − ζ0y) · · · (x −
ζd−1y) where ζ is a primitive d-th root of unity in Fp, hence has d absolutely irreducible factors and
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m = O(
√
p/d). Second polynomial factors into d/2 linear factors and one irreducible factor, hence

m = O(
√

2p/d). The third and forth have one or two linear factor(s) and all others quadratic factors,
thus r ≈ bd/2c.

Overall, the existence of polynomials with not so small r < d/2 may not be clear, however it seems
that analyzing the substitution polynomial may give a new direction to solve DLPwAI.

5.3 Application with Rational Functions

Let f(x) = f1(x)
f2(x)

be a rational function defined over Fp where f1(x) and f2(x) are relatively prime.
The degree of f(x) is defined to be the maximum of the degrees of the numerator and the denominator.
If the degree of f(x) is d, then the solutions of the equation f(x) = a are equal to the solutions of
f1(x) − af2(x) = 0 with deg(f1 − af2) ≤ d. By simple observation, Theorem 3 also holds for the
rational functions.

Consider an elliptic curve E(Fp) with a divisor k of its order and a rational function f(x) = φk(x)
ψ2
k(x)

where ψk(x) denotes the k-th division polynomial. Then we know that f(x) denotes the x-coordinate
of the point [k](x, y) ∈ E(Fp) for (x, y) ∈ E(Fp). If we define S = {x ∈ Fp : (x, y) ∈ E(Fp)}
then f(S) = x[H] where H ⊂ E(Fp) is a subgroup of order #E(Fp)

k and x[H] denotes the set of x-
coordinates of all points in H . It means that the mapping by f is almost k-to-1 mapping with domain S.
Since |S| ≈ p/2, we have R ≥ k2Rk ≈ kp/2 thus the value m =

√
p2/R ≤ O(

√
p/k). Consequently,

to solve DLPwAI, we require at least T (m) group operations, however it remains open to compute
gf(r1α), gf(r2α), . . . , gf(rmα) in quasi-linear in terms of m.

The remarkable thing is that for any d, we can obtain a rational function f(x) = f1(x)
f2(x)

of degree d

with R ≥
√
dp easily by using the

√
d-th division polynomial unlike polynomial cases.

6 Examples

We shall give a concrete example by using the Dickson polynomial. The example solvesα inO
(√

pπ
d log2 d

)
group operations given g, gα, . . . , gα

d
when d|(p + 1), otherwise one requires g, gα, . . . , gα

d
, . . . , gα

2d

using Cheon’s algorithm. Satoh’s generalization [19] also solves the problem with g, gα, . . . , gα
d

for
p + 1 case. The value set of the Dickson polynomial is not small, so it shows that the value sets of the
polynomials are not necessarily small.

6.1 Application with the Dickson Polynomials

For a ∈ F∗p and d ∈ Z≥1, let

Dd(x, a) =

bd/2c∑
k=0

d

d− k

(
d− k
k

)
(−a)kxd−2k

denote the Dickson polynomial of degree d over Fp. In this section, we explain the cardinality of Ri’s
of the Dickson polynomial without proof. Refer to [6] for details.

Let p be an odd prime. Write 2u||v if 2u|v and 2u+1 - v. Suppose that 2u||(p2 − 1). Recall that Ri
for the polynomial f(x) denotes the number of the set {a` ∈ V (f) : #f−1(a`) = i}. The followings
are direct consequence of Theorem 9 in [6].
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Case 1. 2u||d. Then

Ri =


p−1−i

2i , i = (d, p− 1)
p+1−i

2i , i = (d, p+ 1)

1, i = (d,p−1)+(d,p+1)
2

0, otherwise.

Case 2. 2u−1||d. If a is a quadratic residue in Fp, then Ri’s are same as in Case 1. Otherwise, if a is a
quadratic non-residue in Fp, then

Ri =


p−1−i

2i , i = (d, p− 1)
p+1−i

2i , i = (d, p+ 1)

1, i = (d,p−1)
2 or (d,p+1)

2
0, otherwise.

Case 3. 2v||d with 1 ≤ v ≤ u − 2. Suppose that p−1
(d,p−1) is odd and p+1

(d,p+1) is even. If a is a quadratic
residue, then

Ri =


p−1−i

2i , i = (d, p− 1)
p+1−2i

2i , i = (d, p+ 1)

1, i = (d,p−1)+(d,p+1)
2 or (d,p+1)

2
0, otherwise.

If a is a quadratic non-residue, then

Ri =


p−1−i

2i , i = (d, p− 1)
p+1
2i , i = (d, p+ 1)

1, i = (d,p−1)
2

0, otherwise.

The case where p−1
(d,p−1) is even and p+1

(d,p+1) is odd is similar.

Case 4. d is odd. If a is a quadratic residue, then

Ri =


p−1−2i

2i , i = (d, p− 1)
p+1−2i

2i , i = (d, p+ 1)

2, i = (d,p−1)+(d,p+1)
2

0, otherwise.

Otherwise,

Ri =


p−1
2i , i = (d, p− 1)
p+1
2i , i = (d, p+ 1)

0, otherwise.

In any case if some index i of Ri coincides with the other j, then we consider Ri as Ri + Rj . For
example, in Case 1, if (d, p− 1) = (d, p+ 1) = 1 then

R1 =
p− 1− (d, p− 1)

2(d, p− 1)
+
p+ 1− (d, p+ 1)

2(d, p+ 1)
+ 1 = p.

Thus Dd(x, a) is a permutation if (d, p− 1) = (d, p+ 1) = 1.
Consider the Dickson polynomial of an odd degree d with quadratic non-residue a. This is the

second case in Case 4. Assume that d divides p + 1, then trivially (d, p − 1) = 1 since d is odd.
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Thus we have R1 = p−1
2 , Rd = p+1

2d and R ≈ dp
2 for Dd(x, a). By applying our method, we can

recover α in O(
√
p/d log2 d) group operations. If d ≈ p1/3 then it becomes O(p1/3 log2 d). With

the Dickson polynomial Dd(x, a) of degree d, we only require g, gα, . . . , gα
d

to solve DLPwAI, not
g, gα, . . . , gα

d
, . . . , gα

2d
.

7 Conclusion and Open Problems

In this paper, we proposed a new approach to solve DLPwAI focusing on the behavior of the function
mapping. For a given polynomial over Fp, our algorithm recovers α with g, gα, . . . , gα

d
in Õ(

√
p2/R+

d) operations in the base group and Fp where R denotes the number of zeros in Fp of the substitu-
tion polynomial f∗(x, y) = f(x) − f(y). The value of R is determined by the number of absolutely
irreducible factors of f∗(x, y) by Weil’s theorem. As a result, we reduced solving DLPwAI into find-
ing a polynomial whose substitution polynomial has many absolutely irreducible factors. It would be
enlightening to study further on the substitution polynomial.

Unlike polynomial cases, it is easy to find a rational function of degree d with R ≈ p
√
d using the

√
d-th division polynomial. In this case, the complexity becomes Õ

(√
p/
√
d+ d

)
, assuming T (m) =

Õ(m). However, it seems hard to obtain an algorithm with T (m) = Õ(m) for a positive integer m.
It would be also worthwhile to determine whether the lower bound for DLPwAI in the generic

group model coincides with the complexity of the proposed algorithm. It may give another evidence of
hardness to solve DLPwAI other than p± 1 cases.
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