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Abstract. Time memory tradeoff algorithms are tools for inverting one-
way functions, and they are often used to recover passwords from un-
salted password hashes. There are many publicly known tradeoff algo-
rithms, and the rainbow tradeoff is widely believed to be the best algo-
rithm. This work provides an accurate complexity analysis of the fuzzy
rainbow tradeoff algorithm, which has not yet received much attention.
Based on the analysis results, we show that, when the pre-computation
cost and the online efficiency are both taken into consideration, the fuzzy
rainbow tradeoff may be seen as preferable to the original rainbow trade-
off in many situations.
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1 Introduction

Cryptanalytic time memory tradeoff algorithms are tools for quickly inverting
one-way functions with the help of pre-computed data. They are used by law
enforcement agencies and hackers to recover passwords from unsalted password
hashes, and the multi-target variants of the algorithms have been used [7, 10, 11,
15] to show that the GSM mobile phones are insecure.

There are a multitude of publicly known tradeoff algorithms. However, a
search for password recovery tools on the Web reveals [1–4] that the rainbow
tradeoff [23] is by far the most popular algorithm, and this seems to indicate
that the rainbow tradeoff is widely believed, at least among implementers, to be
the best tradeoff algorithm.

Although it is difficult to clearly specify what is meant by one tradeoff al-
gorithm to be better than another, the recent work [19] has given a plausible
method for comparing the performances of different tradeoff algorithms. Unlike
previous comparison attempts that had focused mainly on the optimal online
phase behavior of the algorithms, the suggested method takes both the pre-
computation cost and the online efficiency into account. Hence, the new method
reflects our intuition concerning the practicality, usefulness, or value of the algo-
rithms more closely. This approach was used in [19, 20] to show that the perfect
and non-perfect rainbow tradeoffs perform better than the classical Hellman [16],



perfect distinguished point [12–14], and non-perfect distinguished point tradeoff
algorithms, under typical situations, thus supporting the aforementioned beliefs.

In this work, we analyze the execution behavior of the non-perfect table fuzzy
rainbow tradeoff [6, 8], which has not yet received much attention. The results
are then used to compare the performance of the fuzzy rainbow tradeoff against
those of the usual perfect and non-perfect rainbow tradeoffs.

We find that, with the appropriate choice of parameters, the usual rainbow
tradeoffs can achieve a certain degree of online efficiency that cannot be reached
by the fuzzy rainbow tradeoff through any choice of its parameters. However,
we also find that, for online efficiency levels that can be reached by both the
fuzzy rainbow and usual rainbow tradeoff algorithms, the fuzzy rainbow tradeoff
calls for less pre-computation effort than the usual rainbow tradeoffs. In other
words, up to a certain point, for the same pre-computation investment, better
online efficiency is returned by the fuzzy rainbow tradeoff. Since the massive
pre-computation requirement stands as a significant barrier to any large scale
deployment of the tradeoff technique, the fuzzy rainbow tradeoff will often be
preferable to the original rainbow tradeoffs.

The main contribution of this article is in providing an accurate execution
behavior analysis of the non-perfect table fuzzy rainbow tradeoff. The final part
of this article, concerning algorithm comparisons, is mostly a careful application
of the framework set by [19].

The fuzzy rainbow tradeoff is a combination of the distinguished point trade-
off and the rainbow tradeoff. In fact, both the distinguished point and rainbow
tradeoffs are special cases of the fuzzy rainbow tradeoff, corresponding to cer-
tain extreme parameter choices. Hence, one might expect the performance of
the fuzzy rainbow tradeoff to come somewhere in between those of the distin-
guished point and rainbow tradeoffs. The findings of this paper, which indicate
otherwise, could be seen as slightly surprising.

Arguments supporting the efficiency of the fuzzy rainbow tradeoff were given
in the publications [6, 8] that introduced the algorithm. However, the argu-
ments were based on the concept of hidden states, which totally disregards pre-
computation cost, and the complexity claims made there were not tight enough
to be accurate up to small constant factors. Since the performances of tradeoff
algorithms often differ only by small constant factors, which nevertheless have
heavy consequences in practice, it was not possible to provide an appropriate
comparison of algorithms based on their results.

The only work concerning the fuzzy rainbow tradeoff that we are aware
of, other than the articles introducing the algorithm, are the two presenta-
tions [21, 22] of a fully implemented attack on GSM phones. The tradeoff al-
gorithm they explained as having used was the multi-target version of the fuzzy
rainbow tradeoff1, but they did not provide any theoretic analysis of the algo-
rithm.

1 The authors claim themselves to be the first in combining the distinguished point
tradeoff and the rainbow tradeoff, hence it seems they were unaware of the preceding
works [6, 8].
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The rest of this paper is organized as follows. In Section 2, we review the
fuzzy rainbow tradeoff algorithm. The subsequent three sections are devoted to
analyzing the execution behavior of the fuzzy rainbow tradeoff. Section 3 gives
the probability of success, Section 4 gives the accurate online time complexity
that takes the effects of false alarms into account, and Section 5 discusses the
physical storage size required to record the pre-computation tables. The main
parts of our arguments made during the analyses are experimentally verifying
in Section 6. A method for fixing one fuzzy rainbow tradeoff parameter that is
not used in other tradeoff algorithms is discussed in Section 7. Our theoretic
findings are finally used in Section 8 to present a fair comparison between the
fuzzy rainbow tradeoff and the usual rainbow tradeoffs. Concluding remarks are
made in Section 9.

2 Preliminaries

The reader is assumed to be familiar with the basic tradeoff techniques. In this
section, we fix the terminology and quickly recall the fuzzy rainbow tradeoff
algorithm.

Throughout this paper, the one-way function f : N → N is taken to acts on
a search space N of size N. The composition of the one-way function and the
reduction function of i-th color will be written as fi. The standard notation for
the number of chains per table m, the chain length t, and the number of tables ℓ
will be used. When dealing with DPs (distinguished points), the distinguishing
property will always be assumed to be of probability 1

t , so that the expected
length of a random chain is t. The collection of all m chains, associated with one
pre-computation table, is referred to as a pre-computation matrix.

The fuzzy rainbow tradeoff [6, 8] is a combination of the rainbow tradeoff and
the DP tradeoff. Recall that the rainbow tradeoff uses length-t pre-computation
chains of the form

SP
f1−−→ ◦ f2−−→ ◦ · · · ◦ ft−−→ EP, (1)

where SP and EP denote the starting and ending points, respectively. An online
chain for the rainbow tradeoff starts from one of the colors 1 ≤ i ≤ t and
continues to the final t-th color. Also recall that the DP tradeoff uses variable
length pre-computation and online chains of the form

SP
fi−−→ ◦ fi−−→ ◦ · · · ◦ fi−−→ DP = EP, (2)

with a preset distinguishing property that defines DPs.

In the case of the fuzzy rainbow tradeoff, a distinguishing property and a
positive integer s are fixed, and pre-computation chains of the form

SP
f1−−→ ◦ · · · ◦ f1−−→ DP

f2−−→ ◦ · · · ◦ f2−−→ DP
f3−−→ ◦ · · ·

· · · fs−1−−−−→ DP
fs−−→ ◦ · · · ◦ fs−−→ DP = EP

(3)
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are used. That is, the one-way function iterations are continued under a fixed
color until a DP is reached, after which the iterations are continued under a
different color. A total of s colors are used for each pre-computation chain, so
that the average chain length becomes ts. An online chain for the fuzzy rainbow
tradeoff starts from one of the colors 1 ≤ i ≤ s and terminates at the DP for the
final s-th color.

As with other tradeoff algorithms, in the pre-computation phase of the fuzzy
rainbow tradeoff,m chains are generated for each of the ℓ pre-computation tables,
and only the starting point and ending point pairs, sorted according to the ending
points, are stored in the pre-computation tables.

One can also consider the perfect tables version of this algorithm, obtained
by retaining just one chain from every set of merging chains. However, only the
non-perfect table version of the fuzzy rainbow tradeoff will be studied in this
work. The perfect table version is likely to be more efficient during the online
phase, but will require higher pre-computation cost. The results of this paper
indicate that the perfect table fuzzy rainbow tradeoff is well worth analyzing,
and this will be a subject of our future study.

The fuzzy rainbow tradeoff analogue of the matrix stopping rules ismt2s ≈ N.
In other words, we always assume that the parameters m, t, and s, for the fuzzy
rainbow tradeoff, are chosen in such a way that the matrix stopping constant

Fmsc = mt2s
N is neither too large nor very close to zero. We shall often express

such a condition simply as Fmsc = Θ(1). Appropriateness of the matrix stopping
rule mt2s ≈ N is explained in [6]. The theoretic arguments of this paper will be
easier to comprehend when s is assumed to be much smaller than m or t, even
though no such assumption appears in [6, 8]. It will later become clear that the s
values of interest will mostly be in the range 15 ∼ 100.

To complete the description of the fuzzy rainbow tradeoff algorithm, the
order of online chain creation needs to be clarified. In short, all the tables are
processed in parallel, in the sense that the usual rainbow tradeoff processes tables
in parallel.

Let us explain this in more detail. In the initial pass, for each of the ℓ pre-
computation tables, the online chain that starts from the s-th color for the table
is generated. Then all the alarms generated by these ℓ online chains are fully
resolved. All computation associated with this first pass is fully executed even if
the correct answer is found during this process. The second pass is executed only
if the first pass did not return the correct answer. In the second pass, the online
chains that start from the (s − 1)-th colors and extend into the s-th colors are
generated for all the pre-computation tables. The subsequent passes are similarly
continued until either the correct answer is found or all the s passes are complete.

Just as with the usual rainbow tradeoff, in real implementations, the ℓ online
chains may or may not be generated simultaneously. It suffices to have all of them
generated and all the associated alarms treated, in any order, before moving onto
the next pass. Our theoretic arguments are placing a slight disadvantage on the
fuzzy rainbow tradeoff by assuming the full processing of any single pass that has
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started, but our results will still be good approximations of the true situation,
as long as s is not too small.

The fuzzy rainbow tradeoff algorithm introduced by [6, 8] was a time mem-
ory data tradeoff algorithm that aimed to invert just one of multiple inversion
targets. Since it is known [9] that the multi-target application of the original
rainbow tradeoff results in a tradeoff curve that is quite inferior to those of
the multi-target classical Hellman or distinguished point tradeoffs, the inten-
sion of [6, 8] was to create a variant of the rainbow tradeoff with a multi-target
tradeoff curve of the TM2D2 ≈ N2 form. However, in this work, we will restrict
ourselves to theD = 1 case and treat the fuzzy rainbow tradeoff as a single target
inversion algorithm. The multi-target version of the fuzzy rainbow tradeoff must
be compared against the multi-target versions of the classical Hellman and DP
tradeoffs, but nothing similar to [19, 20] has yet appeared for these multi-target
algorithms. Furthermore, preliminary analysis seems to indicate that the analy-
ses for the single target inversion algorithms will carry over to the multi-target
algorithms almost word for word.

The fuzzy rainbow matrix may be viewed as a concatenation of s DP sub-
matrices, with the ending points of one DP sub-matrix used as the starting
points for the next DP sub-matrix. Throughout this work, the i-th (1 ≤ i ≤ s)
DP sub-matrix will be denoted by DMi. The only difference between DMi and a
normal non-perfect DP matrix is that DMi may contain duplicate starting points,
that bring about fully identical chains.

Any implementation of a tradeoff algorithm that relies on DPs will set a chain
length bound to detect chains falling into loops. In this work, we assume that
a sufficiently large chain length bound is used. This is not exactly equivalent to
taking the limit where the chain length bound is sent to infinity. A more detailed
discussion of the exact meaning of this assumption may be found in [19, 20].

There will be many approximations made throughout this paper. Most of
these will depend on the relation (1 − 1

b )
a ≈ e−

a
b , which is appropriate when

a = O(b). A more precise statement can be found in [19]. Under any reason-
able choice of tradeoff parameters, these approximations will be very accurate
whenever we apply the relation, and they will be written as equalities rather
than as approximations. Another class of approximations appearing in this pa-
per will involve interpretation of finite sums as definite integrals. Once again,
when the summation is made over a large index set so that the approximation
is accurate, we shall silently write the relation as an equality rather than as an
approximation.

As is done by any theoretic treatment of the tradeoff algorithms, the one-way
function is assumed to be a random function throughout this article.

3 Probability of Success

The number of one-way function invocations required to construct all the pre-
computation tables is expected to be mtsℓ. Let us define the pre-computation
coefficient of the fuzzy rainbow tradeoff that uses parameters m, t, s, and ℓ to
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be

Fpc =
mtsℓ

N
, (4)

so that, when the effort of table sorting, which is of much smaller mℓ logm order,
is ignored, we may state FpcN as the cost of pre-computation.

We also define the coverage rate of a fuzzy rainbow matrix to be

Fcr =
1

mts

(
|DM1|+ |DM2|+ · · ·+ |DMs|

)
, (5)

where |DMi| denotes the number of distinct points expected in the i-th DP sub-
matrix. Readers familiar with the definitions of the coverage rate appearing in
previous works should note the slight difference. The current definition does not
refer to the total number of distinct points in the pre-computation matrix. Nev-
ertheless, the following proposition shows that the above is the natural definition
to use in the case of fuzzy rainbow tradeoffs.

Proposition 1. Given an inversion target created from a random input to the
one-way function, the fuzzy rainbow tradeoff will succeed in recovering the correct
input with probability

Fps = 1− e−FcrFpc .

Proof. The probability of successful inversion expected from the single DP sub-

matrix DMi is
|DMi|
N . Since the DP sub-matrices that were created with different

reduction functions can be treated as being independent, the success rate of the
complete online phase is

Fps = 1−
s∏

i=1

(
1− |DMi|

N

)ℓ

.

This may be approximated by

Fps = 1−
s∏

i=1

exp
(
− |DMi|ℓ

N

)
= 1− exp

(
−

s∑
i=1

|DMi|
ℓ

N

)
= 1− exp

(
− Fcr

mtsℓ

N

)
= 1− exp

(
− FcrFpc

)
,

as claimed. ⊓⊔

This proposition does not regard the finding of a pre-image of the inversion
target that is different from the exact input used to create the inversion target
as being successful. Note also that it does not deal with the situation where the
inversion target, rather than the one-way function input, is chosen at random.
These different versions of the inversion problem behave sufficiently differently
to require separate analyses, if the accuracy aimed for by this paper is to be
obtained. A more careful definition of |DMi|, suitable for the inversion problem
considered in this work, would have counted only the points that were used as
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inputs to the one-way function during the pre-computation, disregarding the
ending points. Careful treatment of these technical details, which we do not
illustrate fully in the remainder of this paper, can be found in [19].

To utilize the above proposition, we need a way to express the coverage rate in
terms of the tradeoff algorithm parameters. Recall from [18, 20] that the number
of distinct entries |DM| contained in a non-perfect DP matrix satisfies

|DM| = mept, (6)

where mep denotes the number of distinct ending points of the DP matrix. The
work [20] uses this fact in conjunction with another expression for |DM|, found
in [19], to obtain the formula

mep = msp
2

1 +
√
1 +

2mspt2

N

, (7)

that relates the number of distinct starting points msp to the number of distinct
ending points mep in a normal DP matrix.

Returning to the fuzzy rainbow matrices, let us use mi−1 and mi to denote
the number of distinct starting points and ending points, respectively, expected
in each DP sub-matrix DMi. In particular, m0 = m and ms are the numbers of
distinct starting and ending points, respectively, of the full fuzzy rainbow matrix.
We shall refer to each collection of mi points as the i-th color boundary points
of a fuzzy rainbow matrix, where 0 ≤ i ≤ s. Adopting the above two facts to
our situation, we can state that

|DMi| = mit (8)

and

mi+1 = mi
2

1 +
√
1 + 2mit2

N

with m0 = m (9)

are to be expected at each applicable color index i. The following closed-form
formula for mi is easier to utilize than the iterative formula (9).

Lemma 1. When the number of colors s used in each pre-computation table
is large, the number of i-th color boundary points in a fuzzy rainbow matrix is
expected to be

mi =
2m

2 + Fmsc
i
s

,

for i = 0, 1, . . . , s.

Proof. The iterative formula (9), written in a series expansion form, is

mi+1 = mi

(
1− 1

2

mit
2

N

)
+O

(
mi

(mit
2

N

)2)
.
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Since the lemma statement assumes mit
2

N = O
(
1
s

)
to be small, we can ignore the

big-O part and rewrite this as the difference equation

mi+1

m
− mi

m
= −Fmsc

2s

(mi

m

)2

.

As an application of the Euler method, we can interpret this as the differential
equation

y′ = −Fmsc

2s
y2,

with the initial condition y(0) = m0

m = 1, and solve for y to obtain

mi

m
=

2

2 + Fmsc
i
s

,

which is the claimed formula. ⊓⊔

The coverage rate, at least for the large s values, follows directly from this
lemma.

Proposition 2. When the number of colors s used in each pre-computation table
is large, the coverage rate of a fuzzy rainbow matrix is

Fcr =
2

Fmsc
ln
(
1 +

Fmsc

2

)
.

Proof. Combining Lemma 1 and (8), one can check that

Fcr =
1

mts

s∑
k=1

|DMk| =
1

s

s∑
k=1

mk

m
=

s∑
k=1

2

2 + Fmsc
k
s

1

s
=

∫ 1

0

2

2 + Fmscu
du.

Computation of the final definite integral results in what is claimed. ⊓⊔

The computation done in this proof also gives the partial coverage rate

1

mts

s∑
k=i+1

|DMk| =
1

s

s∑
k=i+1

mk

m
=

2

Fmsc
ln
( 2 + Fmsc

2 + Fmsc
i
s

)
, (10)

which contains Proposition 2 as the special case of i = 0.
The arguments given so far supports the validity of formula (10) only for

large s values. There are two sources of inaccuracy, the first being the Euler
method used in Lemma 1 and the second being the interpretation of a summa-
tion an a definite integral. However, as explained below, one can verify through
explicit computations that formula (10) is accurate even when s is very small.

After rewriting (9) in the form

mi+1

m
=

mi

m

2

1 +
√
1 + 2 Fmsc

s
mi

m

with
m0

m
= 1, (11)
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Fmsc=1.0, s=5
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Fig. 1. Comparisons between closed-form formula (line) and iteratively computed val-

ues (dots) of the partial coverage rate at small s. (x-axis: i
s
; y-axis: s

s−i

∑s
k=i+1

|DMk|
mts

)

one can iteratively compute all mi

m , for any given Fmsc and any s that is not too
large. In Figure 1, we have compared

s

s− i
× 1

s

s∑
k=i+1

mk

m
, (12)

with mk

m iteratively computed through (11), against the graphs of

s

s− i
× 2

Fmsc
ln
( 2 + Fmsc

2 + Fmsc
i
s

)
, (13)

at very small s values. The s
s−i factor has been multiplied to the partial coverage

rates so that all values are close to 1 and they may be gather within a single
figure. The figures testify that Lemma 1, Proposition 2, and formula (10) are
accurate even at these very small s values. Since it will become clear, later in
Section 7.3, that the s values of interest will be somewhat larger than those given
by these explicitly computed examples, henceforth, we shall treat Lemma 1,
Proposition 2, and formula (10) as being valid for all s values of interest.

Remark 1. Proposition 1 implies that any set of parameters m, t, s, and ℓ that
achieves the success rate Fps must satisfy the relation

ℓ

t
=

Fpc

Fmsc
=

{− ln(1− Fps)}
FmscFcr

, (14)

and Proposition 2 gives the coverage rate Fcr as a function of the single vari-
able Fmsc. Hence, when parameter sets are restricted to those that achieve a fixed
requirement Fps on the success rate, the ratio ℓ

t may also be seen as a function
of the single variable Fmsc.

Remark 2. Recall that we are working with parameters for which Fmsc is of Θ(1)
order. This fact and Proposition 2 imply that the coverage rate

Fcr = 1− 1

2

(Fmsc

2

)
+

1

3

(Fmsc

2

)2

− 1

4

(Fmsc

2

)3

+ · · ·
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is also of Θ(1) order. Hence, unless the success rate requirement Fps is unrealis-
tically close to 100%, relation (14) implies that ℓ and t are of similar order.

4 Online Complexity

Having secured full knowledge concerning the success rate of the fuzzy rainbow
tradeoff, we next discuss the online execution complexities. Our interest lies with
the average case complexity, rather than the worst case complexity.

We first write the probability for each pass of the online phase to be executed.

Lemma 2. For any number of colors s of interest, the probability for the online
chains that start from the i-th colors of the fuzzy rainbow matrices to be gener-
ated, i.e., the probability for the DP sub-matrices DMi within the fuzzy rainbow
matrices to be searched for the correct answer to the inversion problem, is(2 + Fmsc

i
s

2 + Fmsc

)2 ℓ
t

.

Proof. The online chains that start from the i-th color of any fuzzy rainbow
matrix will be generated if and only if the correct answer to the inversion target
does not belong to the DP sub-matrices DMi+1, . . . , DMs contained in the ℓ fuzzy
rainbow matrices. Hence, the probability under consideration is

s∏
k=i+1

(
1− |DMk|

N

)ℓ

= exp
(
− ℓ

N

s∑
k=i+1

|DMk|
)

= exp
(
− ℓ

t
Fmsc

s∑
k=i+1

|DMk|
mts

)
=

(2 + Fmsc
i
s

2 + Fmsc

)2 ℓ
t

,

where the final equality follows from (10), which hold true for all s values of
interest. ⊓⊔

The expected cost of generating the online chains is a direct consequence of
this lemma.

Proposition 3. For any number of colors s of interest, the generation of the
online chains during the online phase of a fuzzy rainbow tradeoff is expected to
require

tℓ
s∑

i=1

(s− i+ 1)
(2 + Fmsc

i
s

2 + Fmsc

)2 ℓ
t

iterations of the one-way function.

Proof. Each of the ℓ online chains that start from the i-th color of each fuzzy
rainbow matrix is expected to require (s − i + 1)t iterations of the one-way
function. The probability for each of these iterations to be executed is given by
Lemma 2. The claim is a simple combination of these two observations. ⊓⊔
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Our next objective is to express the cost of dealing with alarms, which is
the remaining component of the online time complexity. To compute the cost of
resolving alarms associated with an online chain that starts from the i-th color,
the merging of normal single colored DP chains needs to be considered first.

Lemma 3. The probability for two randomly generated DP chains to merge into

each other is t2

N .

Proof. Assuming t ≪
√
N, the probability for the first chain to become a DP

chain of length i is
(
1− 1

t

)i−1 1
t . The probability for the second chain to merge

into this chain at its j-th iteration is
(
1− 1

t −
i+1
N

)j−1 i+1
N . Hence, the probability

for two chains to merge can be expressed as

∞∑
i=1

(
1− 1

t

)i−1 1

t

∞∑
j=1

(
1− 1

t
− i+ 1

N

)j−1 i+ 1

N
.

The two infinite sums here should be understood as expressing the summations
up to a sufficiently large chain length bound, so that we have i+1

N ≪ 1
t and(

1− 1
t −

i+1
N

)j−1 ≈
(
1− 1

t

)j−1
. The above may now be approximated by

t2

N

∫ ∞

0

∫ ∞

0

e−ue−vu dv du =
t2

N
,

and this completes the proof. ⊓⊔

With the simplifying assumption that the two DP chains are of length t, the
merge probability can be computed more simply as

1−
(
1− t

N

)t

=
t2

N
−
(
t

2

)( t

N

)2

+ · · · − (−1)t
(
t

t

)( t

N

)t

≈ t2

N
, (15)

which is in agreement with the lemma. This approach seems trivial enough to
have been previously tried by many researchers. We had treated the chain lengths
carefully in the proof, since merge probabilities are higher with longer chains,
and it was unclear as to whether this fact could bring about a difference in the
final expression for the merge probability, when averaged over all chain lengths.

The merge probability for single colored chains is now used to compute the
cost of resolving alarms from the fuzzy rainbow chains.

Lemma 4. Consider a single fuzzy rainbow pre-computation matrix and its as-
sociated s colors. Assume the generation of an online chain for this matrix that
starts from the i-th color. The cost of resolving alarms that may be induced by
possible merges of this online chain with the chains of the single fuzzy rainbow
matrix is expected to be

t
Fmsc

s

{
i(s− i+ 1) + 1

}
iterations of the one-way function.
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Proof. The alarms need to be handled separately for each pre-computation chain
that merges with the online chain. The resolving of an alarm associated with one
pre-computation chain requires the same amount of work regardless of whether
or not the pre-computation and online chains merge with other pre-computation
chains. Hence, the total cost of resolving alarms is m times the cost associated
with one pre-computation chain. Below, we will focus on the possible merge be-
tween the online chain and a single randomly generated pre-computation chain.

If the online chain that starts from the i-th color merges with a given pre-
computation chain, the merge will be at precisely one of the colors i, i+ 1, . . . ,
s. The case of possible merge at the i-th color will be treated separately from
the possible merge at strictly later colors.

The probability for the i-th colored DP sub-chain of the pre-computation

chain to be of length p is
(
1 − 1

t

)p−1 1
t . The probability for the online chain to

merge into this DP sub-chain of length p within its i-th color DP sub-chain is

∞∑
q=1

(
1− 1

t
− p+ 1

N

)q−1 p+ 1

N
=

p+ 1

N

1
1
t +

p+1
N

≈ t(p+ 1)

N
.

To resolve the alarm from such a merge, one must expect to compute (i − 1)t
iterations of the one-way function to regenerate the pre-computation chain up to
the start of the i-th colored sub-chain and then additionally compute p iterations
to reach the end of the i-th colored sub-chain. The only exception is when the
correct answer is found, but this is a single rare event among the many alarms,
and can be ignored. Hence, the cost of resolving an alarm that may occur due
to a possible merge at the i-th color is

∞∑
p=1

(
1− 1

t

)p−1 1

t
· t(p+ 1)

N
·
{
(i− 1)t+ p

}
,

which may be approximated by

t3

N

∫ ∞

0

e−uu
{
(i− 1) + u

}
du = (i+ 1)

t3

N
.

For color indices j > i, we can infer from Lemma 3 that the merge of the two

chains at the j-th color will occur with probability
(
1− t2

N

)j−i t2

N . The combined
probability of merge at any one of the colors appearing strictly after the i-th
color is

s∑
j=i+1

(
1− t2

N

)j−i t2

N
=

(
1− t2

N

){
1−

(
1− t2

N

)s−i}
≈ (s− i)

t2

N
.

The final approximation is true since t2

N ≪ 1, and the same result would have
been obtained if we had simply treated the merge probability at each color to

be t2

N , regardless of j. Since any such merge will require just it iterations of the
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one-way function to resolve, the sum of costs associated with possible merges at
all colors appearing strictly after the i-th color is

(s− i)
t2

N
· it.

The sum of the two computed costs

(i+ 1)
t3

N
+ i(s− i)

t3

N
=

{
i(s− i+ 1) + 1

} t3
N

is the cost expected from a single pre-computation chain, and m times this value
is what is claimed. ⊓⊔

In the case of the DP tradeoff, the cost of resolving alarms can be reduced
slightly [18] through the online chain record (OCR) technique [17, 24]. The
method is to keep a full record of the online chain during its generation, so
that any pre-computation chain regeneration can be stopped at the exact point
of merge, rather than at the terminating DP. Some readers may have wondered
why the OCR technique is not being applied to the fuzzy rainbow tradeoff. A
careful reading of the above proof shows that, for an online chain that starts
from the i-th color, the OCR technique can take effect only if the merge occurs
within the i-th colored sub-chain. This observation indicates that the application
of OCR technique to the fuzzy rainbow tradeoff will reduce the number of one-
way function iterations, at the inconvenience of more frequent memory accesses,
but the reduction will be too small to be of interest, unless a very small s is in
use.

During the online phase, the generation of an online chain that starts from
the i-th color, which the above lemma assumes, is done only if all previous shorter
online chains have failed to return the correct answer. The following statement
accounts for this in computing the cost of resolving alarms.

Proposition 4. For any number of colors s of interest, the resolving of alarms
during the online phase of a fuzzy rainbow tradeoff is expected to require

tℓ
Fmsc

s

s∑
i=1

{
i(s− i+ 1) + 1

}(2 + Fmsc
i
s

2 + Fmsc

)2 ℓ
t

iterations of the one-way function.

Proof. The probability for the online chains that start from the i-th colors of
the pre-computation matrices to be generated is given by Lemma 2. The cost of
alarm treatment expected from each of these online chains is stated by Lemma 4.
It now suffices to multiply by ℓ to account for the multiple online chains and
sum the product of the mentioned probability and expected work over all color
indices. ⊓⊔

The two components of the online time complexity for the fuzzy rainbow
tradeoff have been obtained, and we are ready to state the tradeoff coefficient,
which succinctly expresses the online efficiency of a tradeoff algorithm.
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Theorem 1. For any number of colors s of interest, the time memory tradeoff
curve for the non-perfect table fuzzy rainbow tradeoff is TM2 = Ftc,sN

2, where
the tradeoff coefficient is

Ftc,s = F2msc

(ℓ
t

)3 s∑
i=1

{(
1− i− 1

s

)(
1 + Fmsc

i

s

)
+

Fmsc

s2

}(2 + Fmsc
i
s

2 + Fmsc

)2 ℓ
t 1

s
.

Proof. The storage complexity of the fuzzy rainbow tradeoff is M = mℓ, and
the time complexity is the sum

T = tℓ

s∑
i=1

{
(s− i+ 1)

(
Fmsc

i

s
+ 1

)
+

Fmsc

s

}(2 + Fmsc
i
s

2 + Fmsc

)2 ℓ
t

of the two terms given by Proposition 3 and Proposition 4. The tradeoff curve
is obtained by appropriately combining the two complexities M and T . Easy
modifications of the formula are needed to arrive at the form of the tradeoff
coefficient presented by this theorem. ⊓⊔
Remark 3. Note that the time complexity T , appearing in the above proof, can
be bounded from below by

T ≥ tℓ
s∑

i=1

(s− i+ 1)
( 2

2 + Fmsc

)2 ℓ
t

= tℓ
s(s+ 1)

2

( 2

2 + Fmsc

)2 ℓ
t

and bound from above by

T ≤ tℓ
s∑

i=1

{
(s− i+ 1)(Fmsc + 1) +

Fmsc

s

}
= tℓ

{s(s+ 1)

2
(Fmsc + 1) + Fmsc

}
.

Since we know from Remark 2 that ℓ = Θ(t), the online time complexity T of
the fuzzy rainbow tradeoff must be of Θ(t2s2) order. In fact, one can similarly
verify from Proposition 3 and Proposition 4 that both the online chain creation
and alarm resolving consumes Θ(t2s2) iterations of the one-way function.

As the final result of this section, we state the number of table lookups
expected during the online phase. The time required for each table lookup is
very implementation dependent. Since, when the pre-computation tables reside
in fast memory, the cost of table lookups could be negligible in comparison to
the cost of one-way function computations, table lookups are mostly ignored in
theoretic analyses of the tradeoff algorithms. The same approach will be taken
by this paper and the result below will not be referred to in the rest of this
paper. However, in practice, table lookups can become a bottleneck and affect
the performance of the algorithms significantly.

Proposition 5. For any number of colors s of interest, the online phase of the
fuzzy rainbow tradeoff is expected to call for

ℓ

s∑
i=1

(2 + Fmsc
i
s

2 + Fmsc

)2 ℓ
t

,

table lookups.
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Proof. The probability for the online chains that start from the i-th colors of the
pre-computation matrices to be generated is given by Lemma 2, and every such
online chain generation will call for a single table lookup per pre-computation
table. Hence, the expected number of lookups can be written as claimed. ⊓⊔

Remark 4. The table lookup count stated by this proposition is upper bounded

by sℓ and lower bounded by sℓ
(

2
2+Fmsc

)2 ℓ
t . Referring to Remark 2 one more, we

can state that the number of table lookups made by the online phase of the fuzzy
rainbow tradeoff is of Θ(ts) order.

Later discussions in Section 8 show that ts for the fuzzy rainbow tradeoff
corresponds naturally to t for the usual rainbow tradeoff, in a manner that is
somewhat analogous to how mt for the classical Hellman tradeoff corresponds
to m for the rainbow tradeoff. Since the usual rainbow tradeoff requires Θ(tℓ) =
Θ(t) table lookups [19], the table lookup requirements of the fuzzy rainbow and
original rainbow tradeoffs are comparable.

5 Storage Optimization

The storage complexity M appearing in the tradeoff curve of Theorem 1 refers
to the total number of entries, i.e., starting and ending point pairs, that are
written to the pre-computation tables. In practice, the physical storage size,
which depends not only on the number of table entries, but also on how many
bits of storage must be allocated to each table entry, will be more important.

Each randomly generated starting point requires logN bits of storage to
record. However, notice that, as long as we are treating the one-way function
as a random function, any set of m distinct starting points is as good as a
set of randomly generated starting points. Hence, one can utilize sequentially
generated starting points [5, 11, 12] and record each starting point in logm bits,
which is usually much smaller than the original logN bits.

The issue of recording the ending points effectively is more complicated.
There are three major techniques that can be used with various tradeoff algo-
rithms. Slightly more detail than what is explained below can be found in [19, 20].

The first of the three methods is the index file method [11], which is widely
used even outside the tradeoff subject. Once a pre-computation table has been
sorted according to the ending points, two consecutive ending points in the
table are highly likely to share a small number of common significant bits. This
predictability of the significant bits can be used to remove almost logm bits per
table entry, without any loss of information concerning the ending points, when
the table contains m entries. A generalization of this storage technique is widely
known by the name of hash tables.

The second method for reducing ending point storage size is applicable only
when the ending points are DPs. One simply does not have to record any por-
tion of the ending points that can be recovered from the distinguishing prop-
erty [11, 25]. This allows removal of log t bits from each ending point without any
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information loss, when the distinguishing property is of 1
t probability. Clearly,

the fuzzy rainbow tradeoff allows application of this technique.
The final technique is to simply truncate the ending points to a certain length

before recording them to storage [8, 11]. During the online phase, the terminating
DP of an online chain is likewise truncated before being searched for in the
pre-computation table. This reduces the storage requirement, but since partial
matches of ending points will now be incorrectly announced as collisions, this
will cause a new type of false alarms to appear and increase the cost of resolving
alarms. In the remainder of this section we work to find the degree of truncation
that restricts the side effects of ending point truncation to a negligible fraction
of the online time complexity.

Let us assume a fixed truncation method for the ending points with a trun-
cated match probability of 1

r . That is, we assume that the truncated outcome of
two independently and randomly chosen ending points, which are a priori DPs,
will be identical with probability 1

r . For example, the case of no truncation cor-
responds to 1

r = t
N . In most cases, the truncated match probability of 1

r can be
obtained by retaining just log r bits of each ending point, that are unrelated to
the distinguishing property. Note that whether the part that can be recovered
from the distinguishing property, which contains no entropy, is also retained,
does not affect the truncated match probability.

The extra cost incurred by the truncation-related alarms is stated below.

Proposition 6. Assume the use of the ending point truncation method with the
truncated match probability set to 1

r . Then, during the online phase of the fuzzy
rainbow tradeoff, one can expected to observe

tℓ
m

r

s∑
i=1

i
(2 + Fmsc

i
s

2 + Fmsc

)2 ℓ
t

extra invocations of the one-way function induced by truncation-related alarms,
for any number of colors s of interest.

Proof. As was argued during the proof of Lemma 4, it suffices to focus on the
possible merges between a set of s online chains starting at different colors and
a single pre-computation chain, and later account for multiple pre-computation
chains.

We first need to separate the normal alarms from alarms caused by end-
ing point truncations. Consider an online chain that starts from the i-th color.
Through an argument similar to that appearing in the proof of Lemma 4, we
can deduce from Lemma 3 that the probability for the online chain not to merge

into any single fixed pre-computation is 1 − (s − i + 1) t
2

N . Unless 1
r ≈ t

N , the
probability for the non-merging two chains to bring about a truncated match
is 1

r . Hence, the probability for an online chain that starts from the i-th color to
cause a truncation related alarm is{

1− (s− i+ 1)
t2

N

}1

r
.
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Each of these pseudo-alarms will require it iterations of the one-way function
to resolve. Taking the ℓm pre-computation chains into account and recalling
Lemma 2, which gives the probability for an online chain that starts from the
i-th color to be generated, the cost of dealing with truncation-related alarms can
be written as

ℓm
s∑

i=1

it ·
{
1− (s− i+ 1)

t2

N

}1

r
·
(2 + Fmsc

i
s

2 + Fmsc

)2 ℓ
t

.

It now suffices to observe that (s− i+ 1) t
2

N = O
(

1
m

)
to realize that the claimed

formula is an accurate approximation. ⊓⊔

The cost stated by this proposition is upper bounded by

tℓ
m

r

s∑
i=1

i = tℓ
m

r

s(s+ 1)

2

and lower bounded by

tℓ
m

r

s∑
i=1

i
(
1− t2s

N

)( 2

2 + Fmsc

)2 ℓ
t ≈ tℓ

m

r

s(s+ 1)

2

( 2

2 + Fmsc

)2 ℓ
t .

Recalling Remark 2, given at the end of Section 3, we can state that the added
cost of dealing with truncation-related alarms is of Θ

(
t2s2m

r

)
order. In compar-

ison, Remark 3 states that the time complexity T is of Θ(t2s2) order.
The two time complexity orders imply that, if m

r is a sufficiently small frac-
tion, then the added cost of treating truncation-related alarms will be insignif-
icant in comparison to the time complexity T for the algorithm that does not
employ truncation of ending points. In other words, the side effects of ending
point truncation can be ignored if the truncated ending points contain slightly
more than logm bits of information.

Of course, if the truncated ending points still contain bits that can be re-
covered from the DP definition they may also be removed without any loss of
information. Furthermore, even the remaining effective logm bits of the ending
points can mostly be removed through the index table method, without any loss
of information.

In summary, storage of each starting point of the fuzzy rainbow tradeoff
requires logm bits and the storage of each ending point requires a very small
number ε of bits. Each entry of the fuzzy rainbow tradeoff can be recorded in
logm+ ε bits.

Now that we have seen the detailed effects of the ending point truncation
method, we can present an overall interpretation of the inner workings that is
easier to understand. The cost of resolving alarms is of Θ(t2s2) order (Remark 3)
and each alarm induces Θ(ts) iterations of the one-way function, on average.
Hence, one is expected to encounter Θ(ts) alarms during the online phase. Since
this is also the approximate number of table lookups expected during the online
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phase (Remark 4), one can conclude that each table lookup incurs Θ(1) alarm, or
merges between an online chain and a pre-computation chain, on average. Hence,
as long as slightly more than logm bits of each ending point are retained, so that
the ending points within any single pre-computation table remain distinguishable
from each other and also from the truncated online chain ending point, the
number of pseudo-collisions will be kept at a small fraction of the Θ(1) order
true merges.

6 Experimental Results

Test results that support our theoretic findings are given in this section.
The one-way function used during all the tests was the key to ciphertext map-

ping, under a randomly generated fixed plaintext, of AES-128. Freshly generated
random plaintexts were used each time we required a new random mapping for
multiple independent tests. Truncations of 128-bit ciphertexts to 40 bits and
zero-extensions of 40-bit strings to 128-bit keys were used to control the search
space to a manageable size of N = 240. The parameter t was always taken to be
an integer power of 2, and the distinguishing property was set to check whether
log t least significant bits were zero. XOR-ing by constants were used as the re-
duction functions, with the binary expression of i used as the i-th color constant.

Our first experiment verifies Lemma 1. This should give strength to the
validity of the partial coverage rate formula (10). After fixing parameters m, t, s,
and N, we began the matrix generation with m starting points. Pre-computation
chains were initially generated only up to the first set of DPs, i.e., only the first
DP sub-matrix DM1 was initially generated. After sorting these color boundary
DPs, any duplicates were discarded, and the number of remaining set of distinct
DPs was recorded. The second DP sub-matrix was then generated from the
distinct set of DPs, and the number of second group of color boundary DPs was
recorded. The process was continued for s colors.

A small number of the chains did not reach a DP within our chain length
bound of 15t, at various colors, and were prematurely discarded. A total of ten
fuzzy rainbow matrices were generated, and the number of i-th color boundary
points was averaged separately for each i.

Table 1. Number of color boundary points mi
m

in a fuzzy rainbow matrix for a small s.
(m = 2000, t = 213, s = 7, N = 240)

i 0 1 2 3 4 5 6 7

test 1.0000 0.9457 0.8955 0.8494 0.8094 0.7743 0.7419 0.7119

Eq. (11) 1.0000 0.9454 0.8964 0.8521 0.8119 0.7752 0.7416 0.7108

Lemma 1 1.0000 0.9425 0.8912 0.8452 0.8038 0.7662 0.7320 0.7007

Test results for the small s = 7 case is given in Table 1. It is clear that
the experimental data is very close to the original theoretic values given by the
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iterative formula (11). This justifies our treatment of each DP sub-matrix DMi
as a normal DP matrix that contains a predictable number of duplicate starting
points or chains. The main target of verification, which is the closed-form formula
for mi

m given by Lemma 1, outputs numeric values that are slightly further away
from the experimental data, but the error is by less than 2% at the worst.

m=3000, t=212, s=20, N=240

Fmsc=0.92

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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m=12000, t=211, s=30, N=240

Fmsc=1.37
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Fig. 2. Number of color boundary points in a fuzzy rainbow matrix (line: theory; dots:
test; x-axis: i

s
; y-axis: mi

m
)

The test results for more practical values of s are given in Figure 2. In order
to present the larger data set for the larger s more effectively, we summarized
the results as graphs. The lines represent our theory given by Lemma 1 and the
dots correspond to the experimental data. Each dot gives the count of the i-th
color boundary points, averaged over ten tests. It is clear that the test results
match our theory very well, despite the small number of test repetitions. We
may conclude that Lemma 1 predicts the number of i-th color boundary points
quite accurately for s values of interest and reasonably accurately for even very
small values of s.

Our second experiment is designed to verify our arguments concerning the
cost of resolving alarms. There are two main components to this argument.
The first component is the probability for the online chains that start from
the i-th color to be generated. This is tightly connected to the partial coverage
rate formula (10), which has already been tested indirectly through our first
experiment.

The second major component of the alarm cost argument is a technical claim
made during the proof of Lemma 4. It concerns the probability of merge between
a pre-computation chain and an online chain that starts from the i-th color.
Explicitly, we had stated the combined probability of such merges at any one of

the colors appearing strictly after the i-th color as (s− i) t
2

N .
The experimental verification of this claim was carried out as follows. Multi-

ple pre-computation chains were generated, and their color boundary DPs were
recorded, rather than just their ending points. Since we were treating these
chains as individual pre-computation chains, rather than as members of a pre-
computation matrix, no sorting was done. After fixing a starting color index i,
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online chains were generated to the ending points. The first DP of the online
chain, i.e., the DP that ends the i-th colored sub-chain, in addition to the ter-
minating DP, were recorded. For each online chain, we did a linear search over
the collection of pre-computation chains for matching ending points. Whenever
a collision was found, we compared the first DP of the online chain against
the corresponding color boundary DP of the colliding pre-computation chain to
check whether the merge occur within the i-th color sub-chain or strictly after
the i-th color, and occurrences of only the latter type of collisions were counted.
Online chains that start at different color indices were tested for merges against
a common large collection of pre-computation chains.

Since the matrix stopping rule plays no role in this experiment, we were free
to use any large number of pre-computation chains, and test repetitions were
not necessary. Two sets of tests, corresponding to different parameter choices,
were executed.

Table 2. Probability of merge between an online chain that starts from the i-th color
and a pre-computation chain. For each test setting, the number of merges at colors
strictly after the i-th color are listed.

t = 212, s = 20, N = 240, # of pre-computation chains = 500000

i 1 4 8 12 16 19

# of online chains 26315 31250 41666 62500 125000 500000

# of
merges

test 3753142 3763624 3795469 3841206 3847142 3728423
theory 3814583 3814697 3814636 3814697 3814697 3814697

test/theory 0.9839 0.9866 0.9950 1.0069 1.0085 0.9774

t = 211, s = 30, N = 240, # of pre-computation chains = 500000

i 1 6 12 18 24 29

# of online chains 17241 20833 27777 41666 83333 500000

# of
merges

test 966734 954600 948527 964926 979533 948478
theory 953653 953659 953648 953659 953671 953674

test/theory 1.0137 1.0010 0.9946 1.0118 1.0271 0.9946

The experimental results are summarized in Table 2. The theoretic merge
counts listed in the table were computed by multiplying the number of pre-
computation chains and the number of online chains generated for the index i

to the claimed probability (s − i) t
2

N . Larger number of chains were used when
testing shorter online chains, since merges are seen less often with these chains,
and a smaller number of merges would bring about unreliable data. The experi-
mentally obtained merge counts for the two sets of tests are close to our theoretic
predictions.
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7 Number of Colors s

Before comparing the fuzzy rainbow tradeoff with the usual rainbow tradeoffs,
we first need to discuss the effects of the parameter s on the performance of
the fuzzy rainbow tradeoff. That is, we treat the fuzzy rainbow tradeoff as an
infinite family of algorithms indexed by the positive integer s, and compare the
performances of these multiple algorithms against each other.

7.1 The Fpc versus Ftc Curve

To carry out the performance comparisons as suggested by [19], we need to draw
the Fpc versus Ftc,s curves for the fuzzy rainbow tradeoff, under various fixed
Fps and s values. The analyses given in the previous sections contain all the
information required for this task, and let us briefly explain how to utilize this
information to explicitly plot the curves.

Recall from Remark 1, given at the end of Section 3, that both the coverage
rate Fcr and the ratio ℓ

t may be seen as functions of the single variable Fmsc,
when parameters are restricted to those that achieve a fixed success rate. Hence,
given any fixed s, we may view both the pre-computation coefficient

Fpc =
{− ln(1− Fps)}

Fcr
(16)

and the tradeoff coefficient Ftc,s of Theorem 1 as functions of the single parame-
ter Fmsc, when under a fixed success rate requirement Fps. Given any Fps and s,
the Fpc versus Ftc,s curve can be drawn as a curve parameterized by Fmsc.

It will become evident in the next subsection that the s values of interest are
in the range 15 ∼ 100. Hence, the summation appearing in the formula for Ftc,s
does not bring about any practical difficulties in handling of the formulas, for
example, in drawing the curves or finding the lowest point on each curve.

: Ftc,24

: Ftc,25

: Ftc,26

Fps=90%

2.4 2.6 2.8 3.0 3.2
2
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: Ftc,25

: Ftc,26

: Ftc,27

Fps=99%

5.0 5.5 6.0
5

10

15

20

25

Fig. 3. The tradeoff coefficients Ftc,s in relation to their respective pre-computation
costs, at small s (x-axis: pre-computation coefficient; y-axis: tradeoff coefficient).

Example curves are presented in Figure 3. In each box, the x-axis gives the
pre-computation coefficient Fpc and the y-axis gives the tradeoff coefficients Ftc,s.
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The lower parts in each box correspond to better online efficiency and parts
closer to the left edge correspond to smaller pre-computation requirements. An
implementer that wishes to utilize optimal online efficiency, at all costs, will
choose to work with parameters corresponding to the lowest point of a curve,
while an implementer with only modest pre-computation resources will have
to be satisfied with a point that is situated higher but closer to the left edge.
However, any set of parameters corresponding to dotted thin parts of the curves
in Figure 3 will not be used by any reasonable implementer, since they correspond
to worse online efficiency at larger pre-computation cost than the lowest point of
each curve. These useless parts of the curves will not be plotted in all our later
graphs.

It is evident that increasing the s value brings the Fpc versus Ftc,s curve closer
to the bottom left corner, which might roughly be interpreted as being more
desirable. However, as will be explained in the next subsection, this observation
alone should not be used to draw any premature conclusions.

To compute a point on one of the curves of Figure 3, i.e., to position a
single (Fpc, Ftc)-pair, it suffices to fix Fps, s, and Fmsc to specific values. Since
there are four algorithm parameters, namely, m, t, s, and ℓ, that can be varied
in instantiating the fuzzy rainbow tradeoff, there still remains a single degree of
freedom in the choice of parameters, even with the three restrictions. Specifically,
one can verify that, given any Fps, s, and Fmsc, and a (T,M)-pair satisfying
TM2 = Ftc,sN

2, where Ftc,s is computed from s and Fmsc through Theorem 1,
the parameters

m =
Fmsc F

2
cr s

{ln(1− Fps)}2
M2

N
=

Fmsc F
2
cr Ftc,s s

{ln(1− Fps)}2
N

T
, (17)

t =
{− ln(1− Fps)}

Fcr s

N

M
=

{− ln(1− Fps)}
Fcr

√
Ftc,s s

√
T , (18)

ℓ =
{ln(1− Fps)}2

Fmsc F
2
cr s

N

M
=

{ln(1− Fps)}2

Fmsc F
2
cr

√
Ftc,s s

√
T , (19)

together with the supplied s, will give an instantiation of the fuzzy rainbow
tradeoff that corresponds to online time T and storage M , while satisfying the
supplied restrictions on Fps and Fmsc.

In other words, the tradeoff between time T and storage M is still fully avail-
able even after one commits to using parameters corresponding to any specific
point on a Fpc versus Ftc curve. An implementer that chooses a point on one
of the curves is only choosing the appropriate balance between pre-computation
cost and online efficiency, and is not relinquishing the ability to tradeoff T andM
against each other. The only restriction the implementer is accepting by fixing
the (Fpc, Ftc)-pair to a specific (α, β)-pair is that the pre-computation cost will
be αN and that the choice of online resources T and M will be constrained to
the specific tradeoff relation TM2 = β N2.
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7.2 Performance Comparisons at Different Number of Colors s

Let us explain how to compare the performances of the fuzzy rainbow tradeoffs
running with different s values.

Consider a fuzzy rainbow tradeoff implementer that is working with a certain
fixed number of colors s = s1. Suppose that a set of parameters m = m1, t = t1,
and ℓ = ℓ1, achieving all properties desired by the implementer, has been found.
These parameters need not be optimal in any particular sense. We are only
assuming that the desired success rate is met and that the balance between
resource requirements, such as the pre-computation cost, physical storage size,
and expected online time, is suitable for the intended purpose and environment.
The implementer is willing to further tweak the parameters slightly, but prefers
not to make large changes to logm1, log t1, and log ℓ1, that would destroy the
favorable balance between pre-computation cost, storage size, and online time.

The implementer still wishes to explore the possibility of using a different
s values, as long as the three resource requirements remain largely unchanged.
Consider another s value s2 and the associated second set of parameters

m2 =
s2
s1

m1, t2 =
s1
s2

t1, and ℓ2 =
s1
s2

ℓ1. (20)

It may be easier to read the material that follows below with the simple example
m2 = 2m1, t2 = 1

2 t1, s2 = 2s1, and ℓ2 = 1
2ℓ1, in mind.

Let us explain that the new set of parameters will be acceptable for con-
sideration by the above mentioned implementer. We can check that the pre-
computation coefficients

Fpc =
m1t1s1ℓ1

N
=

m2t2s2ℓ2
N

(21)

for the two parameter sets are identical, and

Fmsc =
m1t

2
1s1

N
=

m2t
2
2s2

N
(22)

implies that the coverage rates Fcr (Proposition 2) and success rates Fps (Propo-
sition 1) will also be identical.

As for the online time complexity T , since it is of Θ(t2s2) order (Remark 3),
the observation t1s1 = t2s2 implies that the online time complexities associated
with the two sets of parameters will be similar.

It remains to consider the storage size required by the two parameter sets.
The total number of pre-computation table entries M = m1ℓ1 = m2ℓ2 for the
two parameter sets are the same, and we had stated at the end of Section 5 that
logm + ε bits of storage are required per fuzzy rainbow table entry. With the
new symbol m0 = m1

s1
, which allows us to write m1 = m0s1 and m2 = m0s2 in

a more uniform manner, we can state the physical storage size called for by the
two parameter sets as

(logm1 + ε)M = (logm0 + ε+ log s1)M (23)
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and

(logm2 + ε)M = (logm0 + ε+ log s2)M. (24)

Here, we are assuming ε = ε1 = ε2, since the choice of ε, which corresponds to
the ending point portion that remains after applications of the truncation and
index file techniques, is somewhat independent of the choices made for other
parameters. As an example, when s2 = 2s1, the physical storage sizes will be
(logm1+ε)M and (logm1+ε+1)M . Thus, we have confirmed that the physical
storage requirements of the two sets of parameters are similar for any modest
change in s.

Now that we have confirmed the two sets of parameters to be requiring similar
resources, let us continue with the actual comparison of the algorithm perfor-
mances corresponding to the two parameter sets. We have already confirmed
that the probability of success and pre-computation cost are exactly matching
for the two sets of parameters. Hence, it suffices to compare the online time and
physical storage size requirements of the two options, which we denote by

T1 = Ftc,s1
N2

M2
, M1 = (logm0 + ε+ log s1)M (25)

and

T2 = Ftc,s2
N2

M2
, M2 = (logm0 + ε+ log s2)M. (26)

Note that the preferences between options (25) and (26) would be different
for different implementers if, for example, we had T1 > T2 and M1 < M2. In
order to compare the two options in an objective manner, we employ the ability
of the tradeoff algorithm to make tradeoffs between time and storage, even when
Fps, s, and Fmsc are fixed, as was discussed at the end of the previous subsection.

Since the ratio of online time complexities is T2

T1
=

Ftc,s2
Ftc,s1

, by slightly tweaking the

second set of parameters to a third set of parameters m = m3, t = t3, and ℓ = ℓ3,
we can design for online time and physical storage size complexities

T3 = T1, M3 = (logm0 + ε+ log s2)M
(Ftc,s2
Ftc,s1

) 1
2

, (27)

while still using s = s2 and maintaining both the probability of success and
pre-computation cost constant. One minor detail to note is that, the change
from m2 to m3 necessitates a corresponding change to the (logm0 + ε+ log s2)
factor appearing above, but T1 ≈ T2 implies that the change to parameter m
will be very small, so that the even smaller change to the logarithm scale factor
will be ignorable.

The original set of parameters that uses s = s1 requires online resources
stated by (25). In comparison, there is a set of parameters for s = s2 that
achieves the same success rate, requires the same amount of pre-computation,
and requires online resources stated by (27). Since we have T1 = T3, the com-
parison of the two fuzzy rainbow tradeoffs running with s = s1 and s = s2 can
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be done by directly comparing M1 with M3, or, equivalently, by comparing the
adjusted tradeoff coefficients

(logm0 + ε+ log s1)
2Ftc,s1 and (logm0 + ε+ log s2)

2Ftc,s2 , (28)

against each other.
More generally, to find the optimal value of s and other parameters, the

implementer can plot the Fpc versus (logm0+ε+log s)2Ftc,s curves, for all the s
values of interest, and choose a point on one of the curves that corresponds
to the implementer’s most favored balance of pre-computation cost and online
efficiency.

7.3 Optimal Number of Colors s

Let us plot the curves suggested in the previous subsection for some specific
situations. Suppose that a certain set of parameters, achieving an intended suc-
cess rate of Fps = 90% and appropriate for the resources available to a tradeoff
implementer, is such that logm + ε = 26, when s = 24 is used. In the notation
used in the previous subsection, this situation is expressed by logm0 + ε = 22.

: 262Ftc,24

: 272Ftc,25

: 282Ftc,26

Fps=90%
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: 292Ftc,27
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5.0 5.5 6.0
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13 000
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14 000
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Fig. 4. The adjusted tradeoff coefficients {log(m0s) + ε}2Ftc,s in relation to pre-
computation costs, when logm0 + ε = 22 (x-axis: pre-computation coefficient; y-axis:
adjusted tradeoff coefficient).

To find the optimal value of s for this situation, one must plot the Fpc versus
(22 + log s)2Ftc,s curves for various s values. The left-hand side box of Figure 4
presents such curves for the s values of 24, 25, and 26, at Fps = 90%. The switch
from s = 24 to s = 25 moves the curve in the direction previously observed in
Figure 3, but the transition from s = 25 to s = 26 results in a different behavior,
that corresponds to a worsening of performance. The choice of s = 25 is seen to
be optimal, at least among the powers of 2, for this situation.

The optimal choice of s certainly would have been different if we had started
from a different logm0 + ε value. The difference between the two boxes of Fig-
ure 4 indicates that the optimal choice of s also depends on the success rate
requirement Fps.
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We now wish to work with arbitrary integer values of s and explicitly list
the optimal value of s, for a wide range of situations. The definition of s being
optimal must first be made clearer. It can be observed from the curves of Figure 4
that a curve that is generally lower than another curve has a lower lowest point.
This vague claim cannot be written as a precise statement, since two curves may
intersect each other and both be lower than the other at different parts of the
curves. Nevertheless, the example curves of Figure 4 show that we would loose
very little by choosing the curve or s to use, based on the lowest point of the
curves. That is, for each choice of Fps and logm0 + ε, we defining an s to be
optimal, if it minimizes

min
Fmsc

{
{log(m0s) + ε}2Ftc,s

}
, (29)

i.e., the minimum value of the adjusted tradeoff coefficient.

Table 3. The optimal number of colors s at various success probabilities and logm0+ε.

logm0 + ε 25% 50% 75% 90% 95% 99% 99.5% 99.9%

18 15 17 20 26 30 40 45 56

19 15 18 21 27 31 42 47 59

20 16 18 22 28 33 44 49 62

21 17 19 23 29 34 46 51 64

22 17 20 24 31 35 48 53 67

23 18 21 25 32 37 50 55 69

24 19 21 26 33 38 51 57 72

25 19 22 27 34 40 53 59 74

26 20 23 28 35 41 55 61 77

27 21 24 29 36 42 57 63 79

28 21 25 30 38 44 59 65 82

29 22 25 31 39 45 60 67 84

30 23 26 32 40 46 62 69 87

31 23 27 33 41 48 64 72 89

32 24 28 34 42 49 66 74 92

33 25 28 35 43 50 68 76 94

34 25 29 36 45 52 70 78 97

35 26 30 37 46 53 71 80 99

Table 3 lists the optimal number of colors s to be used, for a small number
of fixed success rate requirements Fps and a range of logm0 + ε values. Since
even the raw tradeoff coefficient Ftc,s does depend on s, the Fmsc value giving
the lowest point on each curve needs to be computed separately for each s, but
can still be obtained easily enough through numeric computations tools.

According to Table 3, the use of s = 31 is optimal for the Fps = 90% and
logm0 + ε = 22 situation. Our previous suggestion to use s = 25, that was
made after consulting the left-hand box of Figure 4, was quite reasonable. The
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table also states s = 48 to be optimal for the Fps = 99% and logm0 + ε = 22
situation. Our previous suggestion to use s = 26 was somewhat large, but since
25 < 48 < 26 and the curves for s = 25 and s = 26 in the right-hand side box
of Figure 4 are very close to each other, this is not surprising and we are not
experiencing any contradiction.

The overall observation we can make is that small s values are optimal when
under low success rate requirements and when the storage resources are small,
and that large s values are optimal when working with the opposite environment.

8 Comparison of Tradeoff Algorithms

Let us follow the framework of [19] in comparing the fuzzy rainbow tradeoff
algorithm against the usual rainbow tradeoff algorithm. That is, we present the
pre-computation coefficient versus tradeoff coefficient curves for the non-perfect
fuzzy rainbow, perfect rainbow, and non-perfect rainbow tradeoffs at several
fixed success rate requirements. Since the tradeoff coefficient is a good measure
of the resources required during the online phase, the curves present the range
of options made available by each algorithm concerning the degree of online
efficiency that can be achieved after the investment of certain amount of pre-
computation effort. The perfect and non-perfect rainbow tradeoffs were chosen
as the comparison targets, because the two were shown by recent works [19, 20]
to be the most competitive algorithms among the five major tradeoff algorithms,
under typical conditions.

Instructions for plotting the Fpc versus Ftc,s curves for the fuzzy rainbow
tradeoff were given in Section 7.1, and the corresponding information for the
comparison target algorithms can be found in [19, 20].

To compare the fuzzy rainbow tradeoff directly with the perfect and non-
perfect rainbow tradeoffs, we need to find the appropriate adjustment factors
to be multiplied to the tradeoff coefficients, and this starts with a discussion of
the fuzzy rainbow tradeoff parameters mF, tF, ℓF, and s that would make the
resource requirements of the algorithm comparable to those of the perfect or
non-perfect rainbow tradeoffs running under parameters mR, tR, and ℓR.

We had mentioned in Remark 3 that the online time for the fuzzy rainbow
tradeoff is of Θ(t2Fs

2) order and we know that the online time for the usual
rainbow tradeoff is of Θ(t2R) order. Equating the very rough time and storage
complexities of the two algorithms and using the facts ℓF ≈ tF (Remark 2) and
ℓR ≈ 1, we see that one must require

t2Fs
2 ≈ t2R and mFtF ≈ mFℓF ≈ mRℓR ≈ mR. (30)

These should be taken as extremely rough requirements, but the logarithm scale
relations

log tF + log s ≈ log tR and logmF + log tF ≈ logmR (31)

are somewhat reasonably accurate requirements one should adhere to, if the two
algorithms are to be using similar resources.
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Recall from [19, 20] that each pre-computation table entry of both the perfect
and non-perfect rainbow tradeoffs consumes logmR + εR bits of storage, where
εR is a small positive integer. We have already seen in Section 5 that the fuzzy
rainbow tradeoff similarly consumes logmF + εF bits of storage per table entry.

Our interest lies in the ratio of bits required per table entry, and the use
of (31) implies

logmF + εF
logmR + εR

≈ logmR − log tR + log s+ εF
logmR + εR

≈
1
3 logN+ log s+ εF

2
3 logN+ εR

, (32)

where the second approximation is for the parameter set mR = N
2
3 and tR = N

1
3

that is typically considered during theoretic analyses of tradeoff algorithms. In
the extreme, by ignoring the small integers εF and εR, and also assuming s to be
small, one might argue that this ratio could be as small as 1

2 , at the theoretically
typical parameters. However, this is a rather optimistic figure that is biased in
favor of the fuzzy rainbow tradeoff.

Let us briefly work with some specific numbers. The first example we consider
is the very large search space of logN = 75, for which pre-computation could
be barely within reach by very large organizations. We assume εR ≈ εF ≈ 8 bits
are used to record the ending point portions that remain after applications of
the truncation and index file methods. When logN = 75, the rainbow tradeoff
parameter set that is typically considered during theoretic treatments of the
tradeoff technique is

logmR = 50 and log tR = 25. (33)

According to (31), the parameter set for the fuzzy rainbow tradeoff that calls
for comparable resources would satisfy

logmF − log s ≈ logmR − log tR = 25. (34)

That is, we must take logm0 ≈ 25, in the notation of Section 7.2. The row
labeled as logm0 + εF = 33 in Table 3 state s = 68 as the optimal choice, when
Fps = 99% is required. The ratio of bits per table entry is

logmF + εF
logmR + εR

≈ 25 + log 68 + 8

50 + 8
≈ 0.673922. (35)

Arguments similar to those made in Section 7.2 imply that, if one’s favored bal-
ance of resources corresponds to rainbow tradeoff parameters of (33), one must
compare the adjusted tradeoff coefficient 0.672 Ftc,68 = 0.45 Ftc,68 against the
rainbow tradeoff coefficients Rtc (non-perfect) and R̄tc (perfect). Similar treat-
ment of other success rates can be done, and the bottom row of Table 4 lists the
adjusted tradeoff coefficients for the fuzzy rainbow tradeoff that would be appro-
priate for comparisons against Rtc and R̄tc, when theoretically typical parameters
for space size logN = 75 are considered.
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Table 4. The adjusted tradeoff coefficients for the fuzzy rainbow tradeoff that are
appropriate for direct comparison against the usual rainbow tradeoff coefficients, as-
suming the use of theoretically typical rainbow tradeoff parameters.

logN 25% 50% 75% 90% 95% 99%

39 0.54 Ftc,17 0.55 Ftc,19 0.56 Ftc,23 0.58 Ftc,29 0.59 Ftc,34 0.61 Ftc,46
75 0.42 Ftc,25 0.42 Ftc,28 0.43 Ftc,35 0.44 Ftc,43 0.44 Ftc,50 0.45 Ftc,68

The second example we consider is at the other extreme, and is the small
search space size of logN = 39. Direct exhaustive search might even be rea-
sonable for such small spaces. For this space size, the rainbow tradeoff param-
eters logmR = 26 and log tR = 13 are theoretically typical, and if we assume
εR ≈ εF ≈ 8, as in the previous example, we must accept

logm0 + εF ≈ logmR − log tR + εR = 26− 13 + 8 = 21. (36)

Table 3 shows that the use of s = 46 is optimal for the 99% success rate, in
which case, the ratio of bits per table entry becomes

logmF + εF
logmR + εR

≈ 13 + log 46 + 8

26 + 8
≈ 0.780105. (37)

A fair comparison would let 0.782 Ftc,46 = 0.61 Ftc,46 compete against Rtc and R̄tc.
Similar computations for other success rates can be done, and the outcomes are
summarized in Table 4.

Different adjustment factors for Ftc,s will need to be used, depending on the
success rate requirement and rough range of online resources that are appro-
priate for the situation in hand. However, we will somewhat arbitrarily choose
to compare the two choices listed in Table 4, for each success rate, against Rtc
and R̄tc. It seems reasonable to believe that our two choices represent the ex-
treme situations that can be experienced during practical applications of the
fuzzy rainbow tradeoff.

We clearly state that there could be situations that call for a tradeoff co-
efficient adjustment factor that is much larger than the ones we will be using,
in which case, the conclusions made below could be completely different. The
appropriate adjustment factor depends not only on the externally given imple-
mentation environment, but also on the taste of the implementer concerning the
balance between online efficiency and pre-computation cost, so that the adjust-
ment factor cannot be fixed in an objective manner. In any case, the discussions
given above and to be given below can easily be adjusted to work for any specific
situation.

The pre-computation coefficient versus (adjusted) tradeoff coefficient curves
for the two usual rainbow tradeoffs and the fuzzy rainbow tradeoff are given in
Figure 5. Each box presents data corresponding to the success rate requirement
indicated at its upper right corner. The curves for the fuzzy rainbow tradeoffs
are given as the solid and dashed lines. The data for the perfect rainbow tradeoff
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Fig. 5. The rainbow tradeoff coefficients (Rtc: empty circles; R̄tc: filled dots) and
the adjusted fuzzy rainbow tradeoff coefficients, in relation to their respective pre-
computation costs, at various success rates (x-axis: pre-computation coefficient; y-axis:
(adjusted) tradeoff coefficient).
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(filled dots) and non-perfect rainbow tradeoff (empty circles) appear as discrete
set of points, due to their use of small number of pre-computation tables. The
curves for the fuzzy rainbow tradeoff have been terminated at their lowest points.
Each box includes the lowest point for the two usual rainbow tradeoffs and no
meaningful rainbow tradeoff point lies hidden beyond the right edge of each box.

In all the boxes the two curves for the fuzzy rainbow tradeoff are situated
closer to the lower left corner than the data points for the two rainbow tradeoffs.
Thus a very rough conclusion would be that the fuzzy rainbow tradeoff is better
in performance than the perfect and non-perfect rainbow tradeoffs.

At the 75% and higher success rates, the lowest dot for the perfect rainbow
curve is situated lower than the lowest point of the two fuzzy rainbow tradeoff
curves. This shows that the perfect rainbow tradeoff is able to provide better
online efficiency than the fuzzy rainbow tradeoff at moderate to high success
rates. That is, no choice of fuzzy rainbow tradeoff parameters will make its
online efficiency better than the optimal efficiency reachable with the perfect
rainbow tradeoff. Hence, the perfect rainbow tradeoff can be advantageous over
the fuzzy rainbow tradeoff when the success rate requirement is high and the
online efficiency is important.

However, it must be understood that the higher online efficiency option of
the perfect rainbow tradeoff can be utilized only if it is paid for with higher pre-
computation cost. Since the pre-computation cost is the largest barrier in any
large scale deployment of the tradeoff technique, the higher pre-computation cost
cannot be ignored. At the high success rates, the decision as to whether the fuzzy
rainbow or the perfect rainbow tradeoff is better will be different depending on
how costly the additional pre-computation will be, relative to the value of better
online efficiency, to the implementer.

At the low success rates 25% and 50%, the lowest point of the fuzzy rainbow
curve is lower than the lowest point of the two original rainbow tradeoffs. For
these low success rates, fuzzy rainbow tradeoff is always advantageous over the
two original rainbow tradeoffs in terms of both the online efficiency and pre-
computation cost.

At all success rates, for online efficiency levels that can be reached by both
the usual rainbow and fuzzy rainbow tradeoffs, it is always the case that the
fuzzy rainbow tradeoff can provide the common online efficiency at a lower pre-
computation cost.

Finally, a pass through all six boxes, with focus on the empty circles, reveals
that the performance of the non-perfect rainbow tradeoff is always inferior to
that of the fuzzy rainbow tradeoff. Any degree of online efficiency that can be
provided by the non-perfect rainbow tradeoff can always be obtained with the
fuzzy rainbow tradeoff at even lower pre-computation cost.

9 Conclusion

The online execution behavior of the non-perfect table fuzzy rainbow tradeoff
was analyzed in this work. The success rate, the accurate average case online exe-
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cution time that accounts for false alarms, and the physical storage size required
to hold the pre-computation tables have all been obtained.

The information obtained through our analyses was used to compare the
fuzzy rainbow tradeoff against the original rainbow tradeoff algorithm, which
is widely believed to be the best tradeoff algorithm. The tradeoff coefficient
adjustment factor and the color count s per table had to be fixed to somewhat
arbitrary values for the comparison. However, our choices were based on figures
obtained from reasonable examples, and the ensuing conclusions should be valid
for the most part of the practical parameter range. Furthermore, the process can
be repeated easily for any other choices, should there be the need to work with
a drastically different range of parameters.

We discovered that the fuzzy rainbow tradeoff is always advantageous over
the non-perfect rainbow tradeoff. The fuzzy rainbow tradeoff also outperforms
the perfect rainbow tradeoff at low success rate requirements. For high success
rate requirements, the situation is less conclusive. It is possible for the per-
fect rainbow tradeoff to provide online efficiency that cannot be reached by the
fuzzy rainbow tradeoff, but the advantage must be paid for with higher pre-
computation cost. For efficiency levels that are reachable by both algorithms,
the fuzzy rainbow tradeoff required less pre-computation.

It remains to analyze the perfect table version of the fuzzy rainbow tradeoff.
The good performance of the non-perfect table fuzzy rainbow tradeoff witnessed
through this work is an optimistic sign. On the other hand, the relatively poor
performance of the perfect table DP tradeoff [20] could be interpreted as a neg-
ative indication.
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