
Hardness Preserving Constructions of Pseudorandom Functions,

Revisited

Nishanth Chandran∗ Sanjam Garg†

Abstract

We revisit hardness-preserving constructions of a PRF from any length doubling PRG when
there is a non-trivial upper bound q on the number of queries that the adversary can make
to the PRF. Very recently, Jain, Pietrzak, and Tentes (TCC 2012) gave a hardness-preserving
construction of a PRF that makes only O(log q) calls to the underlying PRG when q = 2n

ε

and
ε ≥ 1

2 . This dramatically improves upon the efficiency of the GGM construction. However,
they explicitly left open the question of whether such constructions exist when ε < 1

2 . In this
work, we make progress towards answering this question. In particular we give constructions of
PRFs that make only O(log q) calls to the underlying PRG even when q = 2n

ε

, for 0 < ε < 1
2 .

Our constructions present a tradeoff between the output length of the PRF and the level of
hardness preserved. We obtain our construction through the use of almost α-wise independent
hash functions coupled with a novel proof strategy.

∗AT&T Security Research Center, New York, NY; Email: nishanth@cs.ucla.edu. Work done while the author was
at Microsoft Research, Redmond.
†Computer Science Department, UCLA; Email: sanjamg@cs.ucla.edu. Work done while the author was visiting

Microsoft Research, Redmond. Part of this research conducted while at the IBM Research, T.J. Watson funded by
NSF Grant No.1017660.

1

1 Introduction

Pseudo-random functions. Goldreich, Goldwasser, and Micali introduced the fundamental
notion of pseudo-random functions in their seminal paper [GGM86]. A pseudo-random function
(PRF) is a keyed function F : {0, 1}n × {0, 1}u → {0, 1}n (with key length n and input length
u) such that no efficient adversary, that can make adaptive oracle queries to F, can distinguish
between the outputs of F and a uniformly random function (from u bits to n bits). Pseudo-random
functions have found extensive applications in cryptography - from symmetric-key cryptography to
software protection to zero-knowledge proofs [GGM84, Gol86b, Gol86a, LR87, Lub96].

Goldreich et al. showed how to construct a PRF from any length doubling pseudo-random
generator, that is a function G : {0, 1}n → {0, 1}2n that takes as input a seed of n bits and outputs
2n bits that are computationally indistinguishable from the uniform distribution on 2n bits. We
will refer to their construction as the GGM construction. The GGM construction gives rise to a
PRF GGMG : {0, 1}n × {0, 1}u → {0, 1}n (for any u ∈ N).

Hardness preservation. Now, assume that the underlying PRG G has “σ bits of security”,
meaning that no adversary of size 2σ can distinguish G(Un) from U2n (where Ut denotes the uniform
distribution on t bits) with advantage more than 2−σ. The GGM construction of a PRF is hardness
preserving, i.e., if G has cn bits of security (for some constant c > 0 and all sufficiently large
n), then GGMG has c′n bits of security for some 0 < c′ ≤ c. The domain size of the PRF can be
arbitrary ({0, 1}u), but the GGM construction makes u calls to the underlying PRG, and hence
the efficiency of GGMG depends critically on u. Levin [Lev87] suggested a trick that improves the
efficiency when u is large; first hash the u bits down to v bits, using a universal one-way hash
function, and now apply the GGM construction to the v bits obtained. Now, the efficiency of the
GGM construction can be reduced to v calls to G, and v can be set to ω(log n), if we want security
only against polynomial-size adversaries. However, if we care about preserving hardness (if G has
cn bits of security), then we are forced to set v = Ω(n) and hence, the best hardness-preserving
construction of a PRF, F, from a length-doubling PRG, G, requires Θ(n) calls to G (except in the
case when u = o(n) is sublinear, in which case one can use the GGM construction directly).

Constructing PRFs with bound on queries of adversary. Jain, Pietrzak, and
Tentes [JPT12] considered a very practical setting, in which the size of the adversary is still 2σ

(or 2cn when G is exponentially hard), but there is a bound q on the number of queries that the
adversary can make to the PRF F. Surprisingly, by making such a restriction on the adversary,
they can dramatically improve the efficiency of PRF constructions. In more detail, they consider an
adversary of size 2cn who can make only q = 2n

ε
(for constant 1

2 ≤ ε < 1) queries to F; against such
an adversary, they give a construction of a PRF F that only makes Θ(nε) calls to the underlying
PRG, but is still hardness preserving.

Hardness preservation and bounding queries in practice. We stress here that the notion
of hardness preserving constructions of PRFs is important both in theory as well as in practice.
For example, if we have a hardness preserving construction of a PRF (and the underlying PRG has
exponential security) we can scale down the security parameter by almost a logarithmic factor in
practical scenarios where security against only polynomial-size adversaries is required. This implies
an almost exponential improvement in the efficiency. Furthermore, in most practical situations, we
will be able to bound the number of queries that the adversary can make to the PRF; e.g., if we
are using the PRF for constructing a symmetric encryption scheme, it is quite conceivable that we

2

can bound the number of ciphertexts that the adversary can get to see (which inherently bounds
the number of queries to the PRF that the adversary can get). In such situations, we can obtain
much more efficient hardness preserving constructions of PRFs.

1.1 Our Results

Unfortunately, for the case when ε < 1
2 , that is when q = 2o(

√
n), the construction of Jain et

al. [JPT12] does not offer any further improvement in efficiency, and the best hardness preserving
construction of F from G makes Θ(

√
n) calls to G.

In this work, we are precisely interested in answering this question. Can we obtain a hardness
preserving construction of a PRF from a PRG that makes o(

√
n) calls to G, when q, the bound on

the number of queries that the adversary can make to the PRF, is 2o(
√
n)? Or is it the case that

Θ(
√
n) is a natural barrier and no efficiency improvements beyond this bound can be obtained?

We make progress towards answering the above question. Roughly speaking it seems that, as
any hardness preserving construction of a PRF tries to make fewer calls to the underlying PRG
its ability to output pseudo-random bits reduces.1 In the setting where a PRF from a PRG makes
o(
√
n) calls to G and when q is bounded by 2o(

√
n) we present a tradeoff between the output length

of the PRF and level of hardness preservation. In particular:

• We provide a hardness preserving construction of a PRF F : {0, 1}`×{0, 1}u → {0, 1}n2ε
, that

makes Θ(nε) calls to G : {0, 1}n → {0, 1}2n for any u ∈ N, where q = 2n
ε

and 0 < ε < 1. Note
that the PRF in this construction outputs n2ε bits as opposed to n bits as in the construction
of Jain et al. [JPT12].

• Here, we note that if we wished to output more number of bits (say n, as opposed to n2ε),
then we can obtain a construction that makes the same Θ(nε) calls to G, but the resulting
PRF F : {0, 1}` × {0, 1}u → {0, 1}n has only 2n

2ε
bits of security.

• We also note that, just as in [JPT12], our results also extend to the case when we start
with a PRG G that has only σ = o(n) bits of hardness, and we have a bound q = 2σ

ε
on the

number of queries that the adversary can make to the PRF, when 0 < ε < 1
2

2.

• Finally, we mention that, similar to Jain et al. [JPT12], our techniques can be used to give
more efficient constructions in other settings, for example to the work of Naor and Rein-
gold [NR95] who construct PRFs computable in low depth from pseudorandom synthesizers
(objects stronger than PRGs but weaker than PRFs). Their construction gives a hardness-
preserving construction of a PRF from a pseudorandom synthesizer (PRS) with Θ(n) calls
to the PRS in depth Θ(log n). Our techniques can be used to improve the efficiency of their
construction to Θ(log q) whenever one can put an upper bound q = 2n

ε
, 0 < ε < 1 on the

number of adversarial queries.

1.2 Technical Difficulties and New Ideas

In order to present the high level ideas behind our construction, we shall begin by describing Levin’s
trick and how Jain et al. build upon it to construct a PRF that makes fewer calls to the PRG.

1In fact with appropriate formalization Jain et. al. conjecture this.
2For clarity of exposition, we present our results only in the case when G has exponential hardness.

3

Background. Recall that the key idea behind Levin’s trick [Lev87] is to first hash the input bits
down using a universal one-way hash function h : {0, 1}u → {0, 1}v, and then applying the GGM
construction to the obtained hashed bits. The efficiency of the GGM construction depends on the
output length of this hash function. Now observe that that in order to use Levin’s trick, to obtain a
hardness preserving construction, one must set v = Θ(n). If v were to be o(n), then the probability
that two inputs xi and xj collide on the hash function’s output would be 2−o(n). In other words
F(xi) = F(xj) (since F(x) = GGMG(k, h(x))) and this would prevent us from achieving exponential
security. Hence we need that a hardness preserving construction of a PRF makes Θ(n) calls to the
underlying PRG.

The key idea of Jain et al. is to hash the bits using a hash function h1 to 2t bits anyway (t
is chosen to be log q, where q = 2

√
n is the bound on the number of queries that the adversary

can make to F)3 and then evaluate the GGM construction on it. Of course there will be collisions
and so they do not output the generated value directly. Instead they use the output in order to
derive a key for another hash function h2 which is then applied on the original un-hashed input.
The resulting value is the output. The derivation of the key from the output of the GGM function
involves stretching the output of the GGM function using the PRG. In particular, the output of
GGM is stretched by a factor of t so that it is large enough to serve as the seed for h2.

Roughly speaking if h1 and h2 are both t-wise independent hash functions, then Jain et al. can
argue the security of their scheme as long as the adversary makes less than q queries to the PRF.
The crucial idea is that since h1 is t-wise independent not too many inputs (more specifically no
more than t) can collide on the first hashing. Furthermore the few (up to t) that do happen to
collide on a specific value will ultimately lead to random outputs as h2 is also t-wise independent.
More formally, h1 is a t-wise independent hash functions, and therefore the probability that one
gets a t+1-wise collision after the first hashing (i.e., any t+1 of the q queries hash down to the same
value) is upper bounded roughly by 1

2t2
, which is exponentially small, when q ≥ 2

√
n. This implies

that with very high probability, at most t inputs will use the same seed for the t-wise independent
hash function h2 and hence the outputs will be pseudorandom.

Now, observe that the total number of calls that the above PRF construction makes to the
underlying PRG is Θ(t). This is because the GGM construction is executed on a t-bit input
(generated as the output of the hash function h1) which makes t calls to the underlying PRG. The
construction additionally makes t calls in deriving the key for h2 from the output of GGM.

Overview of our construction: new ideas. In order to reduce the number of calls in the above
construction, we need to reduce the number of calls that F makes in two places: the GGM part,
as well as the PRG stretch (to sample the t-wise independent hash function h2). We are interested
in the case when q = 2n

ε
, for 0 < ε < 1

2 and would like to obtain a construction that makes Θ(nε)
calls to the PRG. However in order to make just Θ(nε) to the PRG we need to reduce the output
length of the first hash function h1 to Θ(nε). Recall that the probability of a t+ 1-wise collision is
bounded by roughly 1

2t2
, which is sub-exponential (when ε < 1

2) for our setting. Another problem is
that far too many inputs to the F will collide in the key of h2 than what h2 is equipped to handle.
The only option seems to be to make the hash functions much more resilient to collisions, or in
other words increase the parameter t for both h1 and h2. That is, we use α-wise independent hash
functions h1 and h2 for some parameter α = ω(t). However this is fundamentally problematic since
the GGM part of the construction outputs n bits that need to be “stretched” to get a seed of length

3We consider only the case where q = 2
√
n in the discussion below, but the argument holds for q = 2n

ε

, for
1
2
≤ ε < 1.

4

Θ(αn) bits. This, unfortunately, would end up requiring ω(t) calls to G for stretching the output
of GGM from n bits to Θ(αn).

Our key idea here is to use approximate constructions of α-wise independent hash func-
tions [NN93, AGHP92, KJS97] for h1 and h2. The key advantage of these hash functions is that
they can be constructed using roughly Θ(mα) bits of randomness (where m is the output length),
instead of the Θ(nα) bits needed for perfect constructions (where n is the input length). Hence by
decreasing the output length we can obtain the desired level of resilience to collisions. This allows
us to obtain a tradeoff between the efficiency of the PRF and the length of the output it generates.

Even though our construction makes a seemingly simple tweak to the construction of Jain et
al. [JPT12], unfortunately their proof strategy does not work for us. The fundamental reason
behind this is that having a perfect t-wise independent hash function allows them to reduce an
adaptive distinguisher directly to a non-adaptive distinguisher. Intuitively speaking, this follows
from the fact that the outputs of the t-wise independent hash function are uniformly random
strings and hence when these values are used as the outputs of the PRF, they prove useless for
the adaptive distinguisher. Formally, this follows from a claim of Maurer [Mau02]. However, in
our setting, the responses are not uniform and the slight bias could help the adversary choose its
queries intelligently, triggering the events that ultimately allow it to distinguish the function from
random. This prevents us from using the results of Maurer [Mau02]. It is worth noting here,
that the problem of constructing adaptively secure pseudorandom functions from non-adaptive
pseudorandom functions [Mye04, Pie05, Pie06, CLO10, BH12] is a very important problem that
has still not been resolved completely.

For our construction, we prove security against adaptive distinguishers using a step-ladder ap-
proach. More specifically, consider an adaptive distinguisher that makes i queries to the PRF. Its
distinguishing advantage can be used to upper bound the statistical distance between the distribu-
tion of the responses to i adaptive queries and the distribution of i uniform strings. This statistical
difference gives us an upper bound on the advantage an adaptive distinguisher has in the choice
it makes for the i + 1th query over its non-adaptive counterpart. Given this we can evaluate the
distinguishing advantage of an adaptive distinguisher that makes i+ 1 adaptive queries. Carefully
applying this process repeatedly allows us to obtain a bound on the distinguishing advantage of an
adaptive distinguisher making q queries.

Finally, we remark that our various results are obtained by setting α and m (output length of
F) appropriately, according to the hardness of G and q.

Roadmap. We start by recalling the preliminary notions and definitions needed in Section 2.
Then we provide our construction in Section 3 and the proof of our main theorem in Section 4.
Finally we conclude in Section 5.

2 Preliminaries

In this section we recall and define some basic notions and setup notation. Let λ denote the security
parameter. We say that a function is negligible in the security parameter if it is asymptotically
smaller than the inverse of any fixed polynomial. Otherwise, the function is said to be non-negligible
in λ. We say that an event happens with overwhelming probability if it happens with a probability
p(λ) = 1− ν(λ) where ν(λ) is a negligible function in λ.

Notation. We denote values and bit strings by lower case letters and random variables by upper-
case letters. Sets are denoted by uppercase calligraphic letters. We use Un to denote the random

5

variable which takes values uniformly at random from the set of n bit long strings and Rn,m to
denote the set of all functions F : {0, 1}n 7→ {0, 1}m. For a set X , X t denotes the t’th direct
product of X , i.e., (X1, . . . ,Xt) of t identical copies of X and for a random variable X, X(t) denotes
the random variable which consists of t independent copies of X. Let x← X denote the fact that
x was chosen according to the random variable X and analogously let x ← X denote that x can
chosen uniformly at random from set X .

For random variables X0, X1 distributed over a set X , we use X0 ∼ X1 to denote that the
random variables are identically distributed, we use X0 ∼δ X1 to denote that they have a statistical
distance δ, i.e. 1

2

∑
x∈X | PrX0 [x] − PrX1 [x] |≤ δ, and finally we use X0 ∼(δ,s) X1 to denote that

they are (δ, s) indistinguishable, i.e. for all distinguishers D of size at most |D| ≤ s we have
| PrX0 [D(x)→ 1]− PrX1 [D(x)→ 1] |≤ δ.

2.1 Pseudorandom Functions

We recall the definitions of pseudorandom generators (PRG) and pseudorandom functions (PRF).
Subsequently we will describe the GGM construction of a pseudorandom function from a pseudo-
random generator.

Definition 1 (PRG [BM82, Yao82]) A length-increasing function G : {0, 1}n 7→ {0, 1}m where
m > n is a (δ, s)-hard pseudorandom generator if

G(Un) ∼(δ,s) Um

We say that G has σ bits of security if G is (2−σ, 2σ)-hard. G is exponentially hard if it has cn bits
of security for some c > 0, and G is sub-exponentially hard if it has cnε bits of security for some
c > 0, 0 < ε < 1.

Stretching a PRG. Let G : {0, 1}n → {0, 1}2n be a length doubling function. For e ∈ N, let
Ge : {0, 1}n → {0, 1}en be the function that takes an n bit string as input and expands it to an en
bit string using e−1 invocations of G. This can be done sequentially or via a more efficient parallel
computation of depth dlog ee. We now have the following lemma.

Lemma 1 As stated in [JPT12]. Let G be a (δ, s)-hard PRG, then Ge is a (e · δ, s− e · |G|)-hard
PRG.

Definition 2 (PRF [GGM86]) 4 A function F : {0, 1}` × {0, 1}n → {0, 1}m is a (q, δ, s)-hard
pseudorandom function (PRF) if for every oracle aided distinguisher D∗ of size |D∗| ≤ s making
at most q oracle queries

| Prk←{0,1}` [DF(k,·) → 1]− Prf←Rn,m [Df(·) → 1] |≤ δ

F has σ bits of security against q queries if F is (q, 2−σ, 2σ) secure. If q is unspecified then it is
assumed to be unbounded (the size 2σ of the distinguisher is a trivial upper bound on q).

4We use the specific definition of [JPT12].

6

The GGM Construction. Goldreich, Goldwasser and Micali [GGM86] gave the first construction
of a pseudorandom function from any length doubling PRG. Their construction is described below.
For any length doubling PRG G : {0, 1}m ← {0, 1}2m and n ∈ N, GGMG : {0, 1}m × {0, 1}n →
{0, 1}m is defined as a function that takes as input x along with a seed k. The output of the function
GGMG(k, x) is kx that can be obtained by recursive evaluation using kε = k and ka||0||ka||1 := G(ka)
(where kε denotes the empty string).

Proposition 1 (PRF [GGM86]) If G is a (δG, sG)-hard PRG, then for any n, q ∈ N, GGMG :
{0, 1}m × {0, 1}n → {0, 1}m is a (q, δ, s)-hard PRF where

δ = n · q · δG s = sG − q · n · |G|

2.2 Information theoretic tools

The construction of pseudorandom functions presented in this paper relies on some well studied
information theoretic tools. Next we recall these notions.

Definition 3 (α-wise independence) For `,m, n, α ∈ Z, a function h : {0, 1}` × {0, 1}n →
{0, 1}m is α-wise independent, if for every α distinct inputs x1, . . . , xα ∈ {0, 1}n and a random key
k ← {0, 1}` the outputs are uniform, i.e.

hk(x1)|| . . . ||hk(xα) ∼ U (α)
m

Proposition 2 For any α, n,m ≤ n there exists a α-wise independent hash function with key
length ` = n · α.

Definition 4 (Almost α-wise independence [NN93]) For `,m, n, α ∈ Z, a function h :
{0, 1}` × {0, 1}n → {0, 1}m is (δ, α)-wise independent, if for every α distinct inputs x1, . . . , xα ∈
{0, 1}n and a random key k ← {0, 1}` the outputs are statistically close to uniform, i.e.

hk(x1)|| . . . ||hk(xα) ∼δ U (α)
m

Proposition 3 ([AGHP92, KJS97]) For any α, n,m there exists a (δ, α)-wise independent hash
function with key length ` = O(mα+ log n

δ)5.

3 Our Construction

Our construction will use two parameters q, α. Recall that q represent the bound on the number
of queries to the PRF that the adversary is allowed to make. We will use t as a shorthand for the
value log q. On the other hand α is a parameter that will depend on the other parameters in the
system. Very roughly looking ahead α will need to increase as the desired level of security increases.

We use a (δ1, α)-wise independent hash function h1 : {0, 1}`1 × {0, 1}n → {0, 1}2t with appropriate
seed length `1 = O(tα + log n

δ1
). (cf. Proposition 3) We will also need a (δ2, α)-wise independent

hash function h2 : {0, 1}`2 × {0, 1}n → {0, 1}m with appropriate seed length `2 = O(mα+ log n
δ2

).

5To see that this is true, use Theorem 3 from [AGHP92] and consider the construction that outputs 2n ·m bits

which are δ-away (in L1 norm) from mα-wise independence using roughly mα+ 2 log(α log(2n·m)
2δ

) bits. This gives us
the desired hash function.

7

Input Output δ

n m = t2 2−n

n m = t
√
n 2−m

n n (t <
√
n) 2−t

2

n n (t ≥
√
n) [JPT12] 2n

Figure 1: Security obtained for different settings of parameters.

Let CG : {0, 1}`1+n × {0, 1}n → {0, 1}m be our PRF that on input a key k = k0||k1(where k0 ∈
{0, 1}`1 and k1 ∈ {0, 1}n) and x ∈ {0, 1}n, computes the output as:

C(k, x) = h2(G
2t(GGMG(k1, h1(k0, x))), x).

Theorem 1 (Main Theorem) If G is a (δG, sG)-hard PRG, then CG is a (q, δ, s, n,m)-secure
PRF where

δ ≤ 4 · q · log q · δG +
q2

2n
+

q2

2tα
+ q2 · 2tα(δ1 + q · δ2) + q · δ2

mα+ log
n

δ2
≤ ctn

where c > 0 is an appropriately chosen constant. Finally note seed length needed is O(tα+log n
δ1

+n)
and a total of Θ(t) calls are made to G.

s = sG − q · |CG| − 2q · t · |G|

Implications of Theorem 1. Now, suppose we want to obtain a hardness-preserving construc-
tion to obtain a PRF with c′n bits of hardness, then in order to obtain δ = 2−c

′n, we must set
tα = n. This means that m ≈ t2 (from the constraint mα + log nδ2 ≤ ctn); in other words we
obtain a hardness-preserving construction of a PRF that outputs n2ε bits. At the other end of
the spectrum, suppose we want the PRF to output n bits, then we must set α ≈ t, which gives
us a PRF with n2ε bits of hardness. To give a better perspective of the various results obtained
by setting the values of α and m appropriately, we give some examples for the choices of these
parameters in Figure 1.

4 Proof of Theorem 1

We prove Theorem 1 by considering the following sequence of hybrids H0,H1 . . . ,H4. In hybrid Hi
(for i ∈ {0, 1, . . . 4}) samples are generated according to the circuit Ci (described in the sequel). In
the first hybrid, C0 corresponds to the execution of C itself and in the last hybridH4, C4 corresponds
to the random function Rn,m.

- H0: This hybrid corresponds to actual evaluation of the function C. In other words C0(k, x) =
C(k, x) = h2(G

2t(GGMG(k1, h1(k0, x))), x). For any machine DC0 of size s and that makes q
queries to C0 let pD0 = Pr[DC0(·) = 1].

- H1: This hybrid is the same as the previous hybrid except that we use a random functionR2t,n

instead of the GGMG execution. More specifically, C1(k, x) = h2(G
2t(R2t,n(h1(k0, x))), x). For

any machine DC1 of size s and that makes q queries to C1 let pD1 = Pr[DC1(·) = 1].

8

Lemma 2 For every adversarial q-query distinguisher D of size s ≤ sG− 2q · t · |G| − q · |CG|
we have that |pD1 − pD0 | ≤ 2q · t · δG.

Proof. Assume |pD0 − pD1 | > 2q · t · δG then we construct a distinguisher D′ of size at most
s + q · |CG| which is equal to sG − 2q · t · |G| that distinguishes GGMG from R2t,n with a
distinguishing advantage > 2q · t · δG leading to a contradiction with Proposition 1. D′ has
access to an oracle O(·) that generates a sample according to GGMG(k1, ·) (for a random k1)
or according to R2t,n and it needs to distinguish among the two.

Now we describe our distinguisher D′. D′ samples a random seed k0 of appropriate length.
It executes D internally that makes queries for C. Consider a query x. Let y be the response
of O on the query h1(k0, x). D′ responds with the value h2(G

2t(y, x)) to D. Observe that the
responses of D′ to D correspond to evaluations of the circuit C0 if the oracle O(·) samples
according to the distribution GGMG(k1, ·) (for a random k1) and to evaluations of the circuit
C1 if the oracle samples according to R2t,n. Hence the success of D is distinguishing between
the two cases directly translates to the success of D′ is distinguishing GGMG from R2t,n. Note
that D′ makes q queries to O which is same as the number of queries D makes. Note that
the size of our distinguisher D′ is larger than the size of D by at most q · |CG|.

- H2: This hybrid is the same as the previous hybrid except that we use a ran-
dom function Rn, 2tn instead of the executing G2t. More specifically, C2(k, x) =
h2(Rn,2tn(R2t,n(h1(k0, x))), x). For any machine DC2 of size s and that makes q queries
to C2 let pD2 = Pr[DC2(·) = 1].

Lemma 3 For any adversarial q-query distinguisher D of size s = sG − 2q · t · |G| − q · |CG|
we have that |pD2 − pD1 | ≤ 2q · t · δG.

Proof. Assume |pD0 − pD1 | > 2q · t · δG for a distinguisher D of size s then we can construct a
distinguisher D′ of size at most s+q · |CG| which is equal to sG−2q · t · |G| that distinguishes a
q-tuple of samples of G2t(Un) from a q-tuple of samples of U2tn with a distinguishing advantage
> 2q · t · δG. Using a standard hybrid argument this distinguisher yields another distinguisher
D′′ that distinguishes between a single sample of G2t(Un) from a single sample of U2tn with
a distinguishing advantage > 2 · t · δG. This contradicts Lemma 1.

Now we describe our distinguisher D′. D′ gets as input a q-tuple (a1, a2 . . . aq) which has
samples either from G2t(Un) or from U2tn. D′ internally executes D and answers the oracle
queries of D by executing C1. However it uses ai instead of the generating values using G2t.
More specifically, it uses a fresh value of ai for every query, except for repeat queries. In
case of a repeat query it responds with the value that was returned previous (for the query
being repeated). If the input tuple consists of samples from G2t(Un) then the distribution
corresponds to the circuit C1. On the other hand if the samples are from U2tn then the
distribution corresponds to the circuit C2. Hence the success of D is distinguishing between
the two cases directly translates to the success of D′ in distinguishing q-tuple of G2t(Un) from
q-tuple of U2tn. Note that the size of our distinguisher D′ is larger than the size of D by at
most q · |CG|.

- H3: This hybrid is the same as the previous hybrid except that we use one random
function Rt,2nt instead of two functions Rn,2nt and R2t,n. More specifically, C3(k, x) =
h2(Rn,2nt(h1(k0, x)), x). For any machine DC3 of size s and that makes q queries to C3

let pD3 = Pr[DC3(·) = 1].

9

Lemma 4 For every adversarial q-query distinguisher D we have (unconditionally) that |pD3 −
pD2 | ≤

q2

2n .

Proof. Observe that C2 consists of two nested random functions f(·) = Rn,2nt(R2t,n(·))
and on the other hand C3 consists of one random function g(·) = R2t,2nt(·). Further note
that every time C2 (resp., C3) is called f(·) (resp., g(·)) is executed exactly once. Hence
the distinguishing advantage of the an unbounded q-query distinguisher D can be bounded
by the distinguishing advantage of an unbounded distinguisher (that makes q queries) in
distinguishing between f(·) and g(·).
Without loss of generality we assume that all the queries of the distinguisher are distinct. Let
E be the event that the q queries (all distinct among themselves) of the distinguisher are such
that all of the queries to the internal random function R2t,n(·) in f(·) are distinct. Observe
that conditioned on the event E the distributions generated by f(·) and g(·) are the same.
Hence the distinguishing advantage of an unbounded distinguisher (that makes q queries) in
distinguishing between f(·) and g(·) can be upper bounded by the probability of event E
failing to happen. This corresponds to the probability that q uniformly random values are

such that there is a collision among two values. This value is
(q2)
2n which is upper bounded by

q2

2n .

- H4: This hybrid corresponds to a random function. More specifically, C4(k, x) = Rn,m(x).
For any machine DC4 of size s that makes q queries to C4 let pD4 = Pr[DC4(·) = 1].

Lemma 5 For every adversarial q-query distinguisher D we (unconditionally) have that |pD4 −
pD3 | ≤

q2

2tα + q2 · 2tα(δ1 + q · δ2) + q · δ2.

Proof. We argue security using a step ladder approach. For an adaptive distinguisher D let
EDi be the event such that D succeeds in making adaptive queries x1, x2 . . . xi such that there
exists a subset I ⊆ [i] of size |I| = α + 1 such that h1(k0, xj) = h1(k0, xk) for all j, k ∈ I.
Intuitively speaking EDi is the event that D is able to force an α + 1-wise collision on the
output of the inner hash function in i queries that it makes. At this point we claim the
following lemma and prove it separately. This lemma will be used extensively in the rest of
the analysis.

Lemma 6 For every adversarial i-query distinguisher D we (unconditionally) have that
|Pr[DC3(·) = 1|¬EDi]− Pr[DC4(·) = 1|¬EDi]| ≤ i · δ2.

Proof. Consider a sequence of i + 1 hybrids – H0, H1 . . . Hi. In the hybrid Hi the adaptive
query xj for j ∈ [q] is answered as follows:

- If h1(k0, xj) ∈ {h1(k0, x1), . . . h1(k0, xi)} then return Rn,m(xj).

- Else return h2(Rn,2tn(h1(k0, xj)), xj).

We will next argue that for every i ∈ {0, 1, . . . i − 1} the statistical difference between the
hybrids Hi and Hi+1 is bounded by δ2. This directly implies the claimed lemma.

Now we will argue that any adaptive distinguisher D distinguishing between Hi and Hi+1 with
a probability greater that δ2 can be used to construct a distinguisher D′ that distinguishes

10

h2(k1, ·) (for a random seed k1) from Rn,m(·) with probability at least δ2 making at most α
adaptive queries. Now we describe our distinguisher D′O(·) where O(·) is either h2(k1, ·) (for
a random seed k1) or Rn,m(·). D′ internally executes D which makes q adaptive queries on
inputs x1, . . . xi. D

′ provides answers to the query xj for j ∈ [i] as follows:

- If h1(k0, xj) ∈ {h1(k0, x1), . . . h1(k0, xi)} then return Rn,m(xj).

- Else if h1(k0, xj) = h1(k0, xi+1) then return O(xj).

- Else return h2(Rn,2tn(h1(k0, x)), xj).

Observe that the view of D when O is h2(k1, ·) corresponds to the hybrid Hi. On the other
hand the view of D when O is Rn,m(·) corresponds to the hybrid Hi+1. Finally note since we
conditioning on the event that ¬EDi therefore D′ makes at most α adaptive queries to O(·).
Hence our claim follows.

We start by evaluating the probability Pr[EDi+1|¬EDi]. First, note that the probability, for the
i+ 1th query xi+1 made by adaptive D (if it was not provided the responses), to be such that
for a particular subset I ⊆ [i] of size |I| = α + 1 and h1(k0, xj) = h1(k0, xk) for all j, k ∈ I,
is 1

22·t·α + δ1. By Lemma 6 given ¬EDi we have that the statistical difference between the
responses actually provided and uniformly random values is i · δ2. Therefore we can claim
that give the responses the success probability of D can increase by at most i · δ2. Hence
we have that the probability that the xthi+1 query made by adaptive D (when it is actually
provided with the responses) is such that for a particular subset I ⊆ [i] of size |I| = α + 1
such that h1(k0, xj) = h1(k0, xk) for all j, k ∈ I collide is at most 1

22t·α + δ1 + iδ2. Taking

union bound over all (i+1)α+1

(α+1)! possible α+ 1-element subsets of the i+ 1 element set we have
that,

Pr[EDi+1|¬EDi] ≤ (i+ 1)α+1

(α+ 1)!
·
(

1

22tα
+ δ1 + iδ2

)
≤ 2(α+1)·log (i+1) ·

(
1

22tα
+ δ1 + iδ2

)
≤ 2tα+t ·

(
1

22tα
+ δ1 + qδ2

)
=
(q

2tα
+ 2tα · q · (δ1 + qδ2)

)
(1)

Now we will evaluate the probability Pr[¬EDq]

Pr[¬EDq] = Pr[¬EDq |¬EDq−1] Pr[¬EDq−1]
= (1− Pr[EDq |¬EDq−1]) Pr[¬EDq−1]

=

q−1∏
i=0

(1− Pr[EDi+1|¬EDi])

≥
q−1∏
i=0

(1− q

2tα
− 2tαq(δ1 + q · δ2))

≥ (1− q

2tα
− 2tαq(δ1 + q · δ2))q

≥ 1− q2

2tα
− q2 · 2tα(δ1 + q · δ2)

(2)

11

Finally we note that:

|Pr[DC3(·) = 1]− Pr[DC4(·) = 1]| ≤ |Pr[DC3(·) = 1|¬EDq] Pr[¬EDq] + Pr[DC3(·) = 1|EDq] Pr[EDq]

− Pr[DC4(·) = 1|¬EDq] Pr[¬EDq]− Pr[DC4(·) = 1|EDq] Pr[EDq]|

≤ |Pr[DC3(·) = 1|¬EDq]− Pr[DC4(·) = 1|¬EDq]|Pr[¬EDq]

+ |Pr[DC3(·) = 1|EDq]− Pr[DC4(·) = 1|EDq]|Pr[EDq]

≤ |Pr[DC3(·) = 1|¬EDq]− Pr[DC4(·) = 1|¬EDq]|+ Pr[EDq]

≤ q · δ2 +
q2

2tα
+ q2 · 2tα(δ1 + q · δ2)

(3)

This completes proof of the claimed lemma.

5 Conclusion

Pseudorandom functions (PRF) are one of the most fundamental primitives in cryptography, both
from a theoretical and a practical standpoint. However unfortunately, much of the known black-
box constructions from PRGs are inefficient. Recently, Jain, Pietrzak, and Tentes [JPT12] gave a
hardness-preserving construction of a PRF that makes only O(log q) calls to the underlying PRG
when q = 2n

ε
and ε ≥ 1

2 . This dramatically improves upon the efficiency of the GGM construction.
However, they explicitly left open the question of whether such constructions exist when ε < 1

2 . In
this work, we make progress towards answering this question. In particular we give constructions
of PRFs that make only O(log q) calls to the underlying PRG even when q = 2n

ε
for 0 < ε < 1

2 .
We leave it as an open problem to study if the parameters achieved in our construction are tight.

References

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construction of
almost k-wise independent random variables. Random Struct. Algorithms, 3(3):289–304,
1992.

[BH12] Itay Berman and Iftach Haitner. From non-adaptive to adaptive pseudorandom func-
tions. In TCC, pages 357–368, 2012.

[BM82] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudo random bits. In FOCS, pages 112–117, 1982.

[CLO10] Chongwon Cho, Chen-Kuei Lee, and Rafail Ostrovsky. Equivalence of uniform key
agreement and composition insecurity. In CRYPTO, pages 447–464, 2010.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications
of random functions. In Advances in Cryptology, Proceedings of CRYPTO ’84, Santa
Barbara, California, USA, August 19-22, 1984, Proceedings, pages 276–288, 1984.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

12

[Gol86a] Oded Goldreich. Towards a theory of software protection. In Advances in Cryptology
- CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, pages 426–439,
1986.

[Gol86b] Oded Goldreich. Two remarks concerning the goldwasser-micali-rivest signature scheme.
In Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986,
Proceedings, pages 104–110, 1986.

[JPT12] Abhishek Jain, Krzysztof Pietrzak, and Aris Tentes. Hardness preserving constructions
of pseudorandom functions. In TCC, pages 369–382, 2012.

[KJS97] Kaoru Kurosawa, Thomas Johansson, and Douglas R. Stinson. Almost k-wise indepen-
dent sample spaces and their cryptologic applications. In EUROCRYPT, pages 409–421,
1997.

[Lev87] Leonid A. Levin. One-way functions and pseudorandom generators. Combinatorica,
7(4):357–363, 1987.

[LR87] Michael Luby and Charles Rackoff. A study of password security. In Advances in Cryp-
tology - CRYPTO ’87, A Conference on the Theory and Applications of Cryptographic
Techniques, Santa Barbara, California, USA, August 16-20, 1987, Proceedings, pages
392–397, 1987.

[Lub96] Michael Luby. Pseudorandomness and cryptographic applications. Princeton computer
science notes. Princeton University Press, 1996.

[Mau02] Ueli M. Maurer. Indistinguishability of random systems. In EUROCRYPT, pages 110–
132, 2002.

[Mye04] Steven Myers. Black-box composition does not imply adaptive security. In EURO-
CRYPT, pages 189–206, 2004.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993.

[NR95] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel con-
struction of psuedo-random functions. In 36th Annual Symposium on Foundations of
Computer Science, Milwaukee, Wisconsin, 23-25 October 1995, pages 170–181, 1995.

[Pie05] Krzysztof Pietrzak. Composition does not imply adaptive security. In CRYPTO, pages
55–65, 2005.

[Pie06] Krzysztof Pietrzak. Composition implies adaptive security in minicrypt. In EURO-
CRYPT, pages 328–338, 2006.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In FOCS, pages 80–91, 1982.

13

