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Abstract—Usually a communication link is secured
by means of a symmetric-key algorithm. For that, a
method is required to securely establish a symmetric-
key for that algorithm. This old key establish-
ment problem is still relevant and of paramount
importance both in existing computer networks
and new large-scale ubiquitous systems comprising
resource-constrained devices. Identity-based pairwise
key agreement allows for the generation of a common
key between two parties given a secret keying material
owned by the first party and the identity of the
second one. However, existing methods, e.g., based
on polynomials, are prone to collusion attacks.

In this paper we discuss a new key establishment
scheme aiming at fully collusion-resistant identity-
based symmetric-key agreement. Our scheme, the
HIMMO algorithm, relies on two design concepts:
Hiding Information and Mixing Modular Operations.
Collusion attacks on schemes from literature cannot
readily be applied to our scheme; our security anal-
ysis further shows that HIMMO’s design principles
prevent an attacker from performing a number of at-
tacks. Also, the simple logic of the HIMMO algorithm
allows for very efficient implementations in terms of
both speed and memory. Finally, being an identity-
based symmetric-key establishment scheme, HIMMO
allows for efficient real-world key exchange protocols.

Keywords-Key distribution and establishment, poly-
nomials, identity-based cryptography

I. INTRODUCTION

This paper deals with the classical problem
of key establishment. As in previous works
[4],[8],[14], we focus on an identity-based (ID-
based) scheme for symmetric-key agreement be-
tween pairs of devices in a network. That is, each
node in the network has an identifier, and a Trusted
Third Party (TTP) provides it with secret keying
material - linked to the device identifier - in a secure

way. A node that wishes to communicate with
another node uses its own secret keying material
and the identity of the other node to generate a
common pairwise key.

Existing ID-based symmetric-key agreement
schemes are prone to collusion attacks: secret key-
ing material of various nodes can be combined
in order to obtain information on the secret key
generated by a pair of (other) nodes. This com-
bining can be performed by colluding legitimate
owner(s) of the nodes, or by an attacker who has
compromised some nodes and obtained their secret
keying material. Existing schemes [4],[8],[14] al-
low for efficient collusion attacks (see Section II),
which implies that to prevent successful attacks
with relatively few devices, much secret keying
material must be stored in each node, which may
be problematic in real-world applications since it
increases CPU and storage needs.

This paper discusses a new ID-based key
establishment scheme allowing for efficient
operation – with respect to both the amount of
stored keying material and the key computation
time, which is especially relevant for resource-
constrained devices – while it is based on
mathematical problems for which the collusion
attacks on the schemes from literature cannot
readily be applied. We hope that our scheme,
the HIMMO algorithm, and its underlying
design principles can be a step towards fully
collusion-resistant identity-based establishment of
symmetric-keys.

Definition 1 (Fully collusion-resistant): An
identity-based symmetric-key establishment scheme
is fully collusion-resistant if for any set of colluding
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nodes no bit of a key shared by non-colluding
nodes can be guessed with a probability higher
than 1/2 in polynomial time.

We believe that a crypto algorithm with this
property can find many applications. In particular,
HIMMO is attractive for scenarios with a trusted
central party managing a network of devices such
that the devices are resource-constrained and/or
time plays a key role during key establishment. The
reason is that the simplicity of HIMMO operation
(based on polynomials) makes it highly efficient.
Examples of applications with resource-constrained
devices to which HIMMO can be applied are wire-
less sensor networks, RFID tags, or NFC. More
specific examples are the 6LoWPAN and CoAP
protocols that are being standardized by IETF and
will allow for the so called IP-based Internet of
Things in which thousands of resource-constrained
devices will collect and exchange data with each
other over the Internet [7]. Currently CoAP man-
dates the usage of DTLS that can be configured to
work with a pre-shared key (PSK) as specified in
RFC 4279. HIMMO might be easly integrated there
so that the PSK is the one generated by HIMMO
and the PSK-hint is the HIMMO identifier. Appli-
cations with strict time requirements include car-to-
car communication and the setup of a secure call.
Car-to-car communication has strong authentication
needs, and moreover, authentication needs to be
performed in a very short period of time. The same
occurs for the setup of a secure call in which we
do not want to increase delays or drain the smart
phone batteries.

The rest of this paper is organized as follows. In
Section II we give an overview of related work.
Section III describes our HIMMO algorithm. In
Section IV we discuss the design principles, un-
derlying mathematical problems, and possible ways
of configuring the algorithm. Section V presents
the security analysis of HIMMO. We present our
conclusions in Section VI. Appendix A contains a
proof of Theorem 1, while Appendix B gives some
background on the lattice-theoretic results used in
Section V.

II. PREVIOUS IDENTITY-BASED
SYMMETRIC-KEY DISTRIBUTION SCHEMES

Matsumoto and Imai [8] give a nice description
of the key distribution problem, and provide a so-
lution that serves as a base for many other schemes
from literature. They propose that a TTP chooses

a secret function f(x, y) that is symmetric, that is,
f(x, y) = f(y, x). The variables x and y are taken
from a set of node identifiers I, and the output from
f is the key. The secret keying material for the node
with identifier η is a function KMη(x) = f(x, η)
which is such that KMη(η′) = f(η, η′) for all
η′ ∈ I. As f is symmetric, the keys generated by
two nodes for communicating with each other are
equal.1

In [4], Blundo et al. choose the secret function
f(x, y) to be a symmetric bi-variate polynomial
over a finite field of degree α in each variable;
the identifiers are considered as field elements as
well. Blundo et al. show that their scheme offers
information-theoretic security as long as an attacker
knows the secret keying material of α or less nodes.
However, α+1 colluding nodes can obtain the root
keying material by simple Lagrange interpolation.

In order to avoid the simple interpolation attack,
Zhang et al. [14] proposed a ”noisy” version of
the scheme of Blundo et al. [4]. Their basic idea
is to provide node η with a polynomial KMη(x)
that is ”close” to, but not exactly the same as
f(x, η). Nodes η and η′ can compute KMη(η′)
and KMη′(η) as before; these values are no longer
equal, but because they are close they can be used
to generate a shared key. We now describe the main
steps:
• The TTP chooses a random symmetric, poly-

nomial f ∈ Zp[x, y] of degree α in each
variable and a noise bound r with r < p.
It also chooses at random univariate ”noise”
polynomials g(y) and h(y) of degree α over
Zp. Next, it determines

N := {η ∈ Zp : g(η), h(η) ∈ [0, r]}

• Each node is given an identifier from N . For
each node η ∈ N , the TTP chooses a random
bit bη ∈ {0, 1} and provides node η the
univariate polynomial

KMη(x) = f(x, η) + bηg(x) + (1− bη)h(x).

• A node η wishing to communicate with node
η′ computes KMη(η′) and takes its `−r most
significant bits as key (where ` is such that
2`−1 < p ≤ 2`). It sends H(KMη(η′)) to
node η′, where H is a hash-function. Node η′

1Matsumoto and Imai in fact consider the more general
situation that any group of t nodes must generate a common
key; we restrict ourselves to the case t = 2.
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computes three numbers, namely the `−r most
significant bits of KMη′(η), of KMη′(η)+2r,
and of KMη′(η)−2r. Next it takes as key the
number for which the hash-value agrees with
the received hash-value H(KMη(η′)).

Albrecht et al. [1] designed an efficient collusion
attack on the scheme of Zhang et al. based on error-
correcting techniques, that works if the 4α+1 nodes
collude. They also provide an attack that works
with 3α colluding nodes, but has time complexity
O(r). Then, they suggested a generalized scheme
based on adding more noise:
• The TTP also chooses a natural number u

such that 4ur < p and, for each node η ∈
N , integers aη ,bη and cη such that aη, bη ∈
[−u, u] and cη ∈ [−ur, ur], and gives node η
the univariate polynomial:

KMη(x) = f(x, η) + aηg(x) + bηh(x) + cη.

Albrecht et al. also provided an attack on this
new cryptography protocol of time complexity
O(α3 + 8αu3), and requiring only α+ 3 compro-
mised nodes. Their attack consists of two steps. In
the first step, by means of linear algebra methods,
they recover the linear vector space generated by
the univariate polynomials g(x) and h(x). In the
second step, they use lattice reduction techniques
to recover f , knowing the polynomials g and h.

III. THE HIMMO ALGORITHM

In this section, we describe our HIMMO algo-
rithm for ID-based symmetric-key establishment
that aims at achieving the desired full collusion
resistance. It relies on two new design principles:

1) Hiding of information, e.g., by adding noise
that is completely independent and random,
for each node. This is similar to what is done
by Zhang et al. [14], but they have only
two possible noise contributions (the noise
polynomials g and h, see previous section).

2) Mixing of modular operations by using m
symmetric bi-variate polynomials with coef-
ficients in the integers modulo qi for gener-
ating the secret keying material.

A key difference with all previous
schemes [1], [4], [14] is that the modules
q1, . . . , qm are kept secret and are only known to
the TTP, not to the nodes. The nodes do know,
however, that each module differs a multiple of 2b

from a known constant N .

In our description, we use the following notation.
For each real x, we denote by bxc the value of x
rounded downwards to the closest integer, that is,

bxc = max{m ∈ Z | m ≤ x}.

For integer a and integer p ≥ 2, we denote by 〈a〉p
the remainder of dividing a by p. Stated differently,

0 ≤ 〈a〉p ≤ p− 1 and a ≡ 〈a〉p mod p.

Our ID-based symmetric-key establishment
scheme comprises three phases:

1. System initialization

The TTP selects four public positive integers m,
b, N and α satisfying:

2(α+2)b−1 < N ≤ 2(α+2)b.

The TTP also generates the following private
material:
• m distinct positive integers q1, . . . , qm of the

form qi = N − 2bβi where 1 ≤ βi ≤ 2b − 1;
• m symmetric bi-variate polynomials
f1(x, y), . . . , fm(x, y), all of degree at
most α in each variable, such that for
i = 1, . . . ,m, the polynomial fi is in
Zqi [x, y].

For 1≤ i ≤ m, we write

fi(x, y) =

α∑
j=0

fi,j(y)xj with

fi,j(y) ∈ Zqi [y] ⊂ Zqi [x, y].

2. Node registration

For each node η ∈ {1, . . . , 2b−1}, that wants to
register, the TTP selects α+1 random integers εη,j
(from now on called noise) satisfying the following
equation:

|εη,j | < 2(α+1−j)b−2, j = 0, . . . , α. (1)

The TTP provides node η with the secret keying
material coefficients KMη,0,KMη,1, . . . ,KMη,α,
defined as:

KMη,j =

〈
m∑
i=1

〈fi,j(η)〉qi + 2bεη,j

〉
N

. (2)
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3. Operational phase: key agreement

Node η generates its key with η′ as:

Kη,η′ =

〈〈
α∑
j=0

KMη,jη
′j

〉
N

〉
2b

(3)

With explicit examples, it can be shown that
Kη,η′ and Kη′,η are not necessarily equal. It can
be shown, however, that they are approximately
equal, as described in the following theorem. The
proof of Theorem 1 is deferred to Appendix A.

Theorem 1: Let 0 ≤ η, η′ ≤ 2b − 1. Then we
have that

Kη,η′ ∈ {〈Kη′,η + jN〉2b | −∆ ≤ j ≤ ∆},

where ∆ = 3m+ α+ 1.

In order that devices η and η′ agree on a common
key, an additional step is performed. In this step,
device η sends the value H(Kη,η′) to device η′,
where the functionH is such thatH(i) 6= H(Kη,η′)
for each potential key i (as indicated in Theorem 1)
different from Kη,η′ . In this way, η′ finds the
key Kη,η′ that is subsequently used to secure the
communication link. An example of such a function
H is a hash function like in [14].

IV. DESIGN PRINCIPLES OF HIMMO

As stated before, our HIMMO algorithm relies
on two principles, namely (i) hiding of information
and (ii) mixing of modular operations. Both prin-
ciples further exhibit the feature that only partial
knowledge on the used modules is available. This
is described in more detail below.

A. Hiding of information

This design concept corresponds to the noisy
polynomial interpolation problem of recovering
an unknown polynomial f(x) ∈ Zq1 [x] from
approximate values of f(η) at polynomially many
points η ∈ Zq1 , see [11] and [12]. The case of a
linear polynomial corresponds to the well known
Hidden Number Problem (HNP). Among other
applications, Boneh and Venkatesan in [5] found
nice links between the HNP and the security of
the Diffie-Hellman Key Exchange protocol.
This principle applies at two different levels in
HIMMO. First, in Equation 2 we see that for
each keying material coefficient KMη,j , parts of

the sum of the polynomial evaluations are hidden
by the noisy term 2bεη,j . In the specific case of
HIMMO for m = 1, this problem can be stated as
follows:

Problem 1: Let q1 be a positive integer such that
q1 = N − β12b where 2(α+2)b−1 < N ≤ 2(α+2)b

and 0 ≤ β1 < 2b. Suppose for many random values
η ∈ {0, 1, . . . , 2b − 1}, the values f(η) + εη2b

are given, where f(x) ∈ Zq1 [x] is an unknown
polynomial of known degree α, and εη is a jb-bits
noisy term (for some j ∈ {1, α+ 1}). The problem
consists in recovering the polynomial f(x) in
polynomial time.

Remark 1: The problem is further enhanced by
the fact that the attacker does not know q1; all he
knows is N and the form of q1.

Second, in Equation 3 only the b least significant
bits of the polynomial evaluation are used as the
key. The corresponding problem can be stated as
follows:

Problem 2: Let N be a positive integer
satisfying 2(α+2)b−1 < N ≤ 2(α+2)b. Suppose for
many random values η ∈ {0, 1, . . . , 2b − 1}, the
values 〈f(η)〉2b are given, where f(x) ∈ ZN [x]
is an unknown polynomial of known degree α.
The problem consists in guessing any bit of
〈〈f(η′)〉N 〉2b associated with another node η′ with
probability larger than 1/2.

In both cases, the aim is to hide some information
so that an attacker cannot recover the polynomial.
The main security issue with this design principle
is that the usage of a single polynomial does not
remove the underlying ring structure because the
generated key is approximately equal2 to the one
generated from the original polynomial:

Kη,η′ ≈ 〈〈f1(η, η′)〉q1〉2b =

〈〈f1(η′, η)〉q1〉2b ≈ Kη′,η

B. Mixing of modular operations (m ≥ 2)

In Equation 2, we see (for m ≥ 2) a mixing of
modular operations in the sum

∑m
i=1〈fi,j(η)〉qi .

A natural computational mathematical problem
arising from the above equation is the following.

2Equation 3 uses modulo N reductions, where β1 << N is
missing, while here all reductions are modulo q1.
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For each j = 1, . . . , α, recover m polynomials
fi,j(x) ∈ Zqi [x], i = 1, . . . ,m of degree at most α
from the values

∑m
i=1〈fi,j(η)〉qi at polynomially

many points η ∈ Zp, where p = min(q1, . . . , qm).
We have not found any results in the literature
related to this problem, and there are some
indications that it is a hard computational problem
as we will see later. A strategy to solve a weaker
version of this problem, namely to compute
the integer polynomial

∑m
i=1 fi,j(x) when the

positive integers qi are known, will be presented
in Subsection V-C.
For HIMMO the mixing of modular operations
problem can be written in an even more specific
manner as follows:

Problem 3: Let q1, . . . , qm be m distinct
positive integer numbers such that qi = N − βi2b,
where 2(α+2)b−1 < N ≤ 2(α+2)b and 0 ≤ βi < 2b.
Moreover, for i = 1, . . . ,m, let fi,j(x) ∈ Zqi [x]
have degree at most α. For η in S = {1, .., 2b−1 },
we define H(η) := 〈

∑m
i=1 〈fi,j(η)〉qi〉N . Given

a number Nc of pairs (η,H(η)), the problem
consists in guessing any bit of H(η′) associated to
a known input value η′ with a probability higher
than 1/2.

We observe that in Problem 3, each identifier
η is much smaller than N due to the specific
HIMMO construction.

Remark 2: Problem 3 is further enhanced
by the fact that the attacker does not know the
modules q1, . . . , qm; all he knows is that each qi
differs a b bit unknown integer βi multiple of 2b

from N .

In order to explain the idea behind this second
design principle, we consider a simple special case,
viz. that for 1 ≤ i ≤ m, we have that fi(x, y) =
Aix

αyα for some Ai ∈ {1, . . . , qi − 1}. Moreover,
we take N = 2b(α+2) − 1 and εη,α = 0. We write:

Aiη
α = R

(2)
i,η2b(α+2) +R

(1)
i,η2b +R

(0)
i,η ,

with 0 ≤ R
(0)
i,η ≤ 2b − 1, 0 ≤ R

(1)
i,η ≤ 2b(α+1) − 1,

and 0 ≤ R(2)
i,η ≤ 2αb−1. As qi = 2b(α+2)−βi2b−1,

the single non-zero coefficient KMη,α of node η
is given by:〈

m∑
i=1

〈fi,α(η)〉qi

〉
N

=

〈
m∑
i=1

〈Aiηα〉qi

〉
N

=

Now, calling

Qi =

⌊
R

(0)
i,η +R

(2)
i,η

2b

⌋
, Ri = 〈R(0)

i,η +R
(2)
i,η 〉2b ,

we have the following

〈
m∑
i=1

〈(
R

(1)
i,η + βiR

(2)
i,η

)
2b +

(
R

(0)
i,η +R

(2)
i,η

)〉
qi

〉
N

=

〈
m∑
i=1

〈(
R

(1)
i,η + βiR

(2)
i,η +Qi

)
2b +Ri

〉
qi

〉
N

≈ 3

〈
m∑
i=1

(
R

(1)
i,η + βiR

(2)
i,η +Qi

)
2b +Ri

〉
N

(4)

In this example, we observe that the modulo
computations affect the b(α + 1) most significant
bits of the keying material in a way that is depen-
dent on βi. By adding over i, these βi-dependencies
are mixed. We also see mixing in the b least sig-
nificant bits of the keying material, as they depend
on the sum of the most and least significant bits
of Aiηi. The nice aspect of the design is that the
components originating from different polynomials
fi(x, y) hide each other so that an attacker can only
observe the sum modulo N , learning nothing about
the individual components.

Thus, our HIMMO algorithm applies the second
design concept by using qi with such a form that
they introduce non-linear operations when the TTP
generates the secret keying material for node η from
the secret bi-variate polynomials. However, the
public modulus N and the secret moduli q1, . . . qm
share a structure that allows for the generation of
a b-bit key by means of Equation 3. Thus, the
smart part of the cryptoblock happens in the step
in which the TTP generates the keying material
shares from the secret root keying material, cre-
ating a non-linear keying material structure in the
most significant bits of the secret keying material
coefficients as shown in the specific example in
Equation 4. Later, during key establishment only
the common terms of qi, namely N , are used so
that a common key can be generated mod N , i.e.,
without requiring knowledge of the secret terms
βi. Thus, the resulting b-bit key combines the
contributions from all polynomials over different
rings:

3The effect of the reduction module qi due to carry propaga-
tion is limited due to the form of qi.
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TABLE I
USAGE OF THE DESIGN PRINCIPLES IN HIMMO

Protection of Hidding Information Mixing Modular Operations Secret Moduli?
Root keying material Yes Yes Yes, βj can be secret

Keying material Yes No No, N is public.

Kη,η′ ≈

〈
m∑
i=1

〈fi(η, η′)〉qi

〉
2b

=〈
m∑
i=1

〈fi(η′, η)〉qi

〉
2b

≈ Kη′,η

C. Usage of these design principles in HIMMO

The two above design principles are applied to
protect the root keying material and keying mate-
rial shares. Table I summarizes where the design
principles are applied and whether the module can
be kept secret or not.

V. SECURITY ANALYSIS

HIMMO aims at achieving the fully collusion-
resistant property by relying on Problem 1, Prob-
lem 2 and 3. In order to provide a clearer secu-
rity analysis, we first introduce the threat model
and classification of cryptanalysis methods on
collusion-resistant systems in subsection V-A. Spe-
cific approaches for the cryptanalysis of HIMMO
– summarized in Table II according to the defini-
tions presented in subsection V-A– are described
in the four subsequent subsections. In particular,
counting bounds (Section V-B) provides arguments
related to the minimum number of devices needed
to attack the root keying material and a keying
material share. Attacking the root keying material
(Section V-C) refers to a strategy suggested by
I. Shparlinski and M. Albrecht for theoretically
attacking the root keying material even for m ≥ 2.
Attacking a keying material share (Section V-D)
presents an approach in which an attacker can
try to attack the keying material share of a non-
compromised node. This approach is directly re-
lated to the Noisy Polynomial Interpolation Prob-
lem and existing results can be applied to assess
a secure configuration for HIMMO. Section V-E
discusses the feasibility of attacking the root keying
material for a very specific configuration (m = 1)
depending on the secrecy of q1. Section V-F sum-
marizes our findings.

A. Threat model and classification of cryptanalysis
methods

Throughout our analysis on collusion-resistant
systems, the TTP is considered to be secured. We
also consider the communication links between
pairs of devices to be secure so that an attacker
cannot derive the pairwise keys shared between
devices. We assume that an attacker can only
compromise the keying material shares associated
to nodes in a set Sc. In our classification, we
consider two criteria, namely (i) the goal of
the attacker and (ii) the impact level of a given
cryptanalysis approach.

We distinguish between three possible attack
goals:

1) Attacking the root keying material: In this
type of attack, the attacker aims to recover
the root keying material (or an equivalent
structure). If successful, this attack gives the
attacker full access to all keying material
shares and keys in the system as well.

2) Attacking a keying material: In this type
of attack, the attacker aims at recovering the
keying material share KMη(x) (or equivalent
structure) of node η. If successful, this attack
gives the attacker full access to all keys
associated to device η.

3) Attacking a key: In this type of attack vector,
the attacker aims at recovering the key Kη,η′

shared between a pair of non-compromised
devices.

When trying to perform the above actions, the
attacker might be more or less successful.

Cryptanalysis impact: refers to the actual im-
pact of a specific cryptanalysis method:

1) Theoretical cryptanalysis: we define a the-
oretical cryptanalysis method as an approach
that – theoretically - would allow an attacker
to gain some information related to the root
keying material, or keying material shares,
or keys shared between non-compromised
devices, but that either requires extra infor-
mation that is not available to the attacker or
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does not specify how the method would be
performed.

2) Low-severity cryptanalysis: we define a
low-severity practical cryptanalysis method
as an approach that can allow an attacker to
gain some information about the root keying
material, keying material shares, or pairwise-
keys shared between non-compromised nodes
from a set |Sc| of compromised nodes η. The
method is low-severity if HIMMO can be
configured with practical parameters (m, α, b,
etc) that prevent the attack from performing
the attack and still allow for an efficient
implementation of HIMMO.

3) High-severity cryptanalysis: we define a
high-severity practical attack as an approach
that given information from a set |Sc| of
compromised nodes η, leads to a degradation
of the security level of the root keying mate-
rial, keying material shares, or pairwise-keys
shared between non-compromised nodes. The
method has a high-severity impact if it fully
breaks HIMMO or potentially secure param-
eters (m, α, b, etc) would be too high to allow
for an efficient implementation of HIMMO.

B. Bounds on the number of compromised nodes
to retrieve the root keying material and the keying
material shares

In this short subsection we consider the mini-
mum amount of information required to recover
the set of m bi-variate polynomials that comprise
HIMMO’s root keying material or the keying ma-
terial share of a node.

In the scheme [4] defined by the bi-variate sym-
metric polynomial f(x, y) of degree α in each
variable, an attacker who compromises at most
α learns no information about any key that is
shared between non-compromised nodes. However,
an attacker who compromised α + 1 nodes can
use interpolation to recover the polynomial f(x, y)
and thus recover all the keys in the system. This
scheme is information theoretic secure. In the case
of HIMMO a trivial lower bound of colluding
nodes required to retrieve the root keying mate-
rial is m(α + 1), because an arbitrary univariate
polynomial g(X) of degree α with coefficient in
an integral domain is determined if and only if we
know α + 1 values g(η). A non-trivial bound is
more complicated because among other reasons (i)
HIMMO outputs only a part of the bits, (ii) the

moduli pj have some structure (only differ the term
βj , and (iii) the identifiers are only b bits long.

Similarly, for retrieving the keying material share
of an uncompromised node, at least α + 1 nodes
need to collide if the whole output is known. Since
only b bits of the polynomial are used as key and
N is (α + 2)b bits long, one may also argue that
approximately (α + 1)(α + 2) nodes need to be
compromised to recover a keying material share.

C. Attacking the root keying material with m ≥ 2

This attack is strongly related to Problem 3 in-
troduced in Subsection IV-B, and works as follows.
Compromise |Sc| nodes with identifiers η1, . . . , ηSc
to obtain the integers KMηk,j for k = 1, . . . , |Sc|
and j = 1, . . . , α. The attacker aims to recover
the polynomials fi(x, y) for i = 1, . . . ,m. This
is equivalent to recover the m(α + 1) univariate
polynomials fi,j(x) ∈ Zqi [x]. According to the
previous subsection, |Sc| should be greater than
m(α + 1). Now, for fixed j and k, there exists an
integer γ such that

KMηk,j =

m∑
i=1

〈fi,j(ηk)〉qi + 2bεηk,j − γN

Since N ≥ qi and |εη,j | < 2bα−2, we have that
0 < γ ≤ m. So, for fixed m the attacker could
remove γN , multiplying the time complexity with
(m+1)|Sc| complexity by trying all possible values
for the γ’s. Then, for fixed j, the attacker wants
to recover the univariate polynomials fi,j(x) ∈
Zqi [x], i = 1, . . . ,m from the |Sc| integers:

m∑
i=1

〈fi,j(ηk)〉qi + 2bεηk,j , k = 1, . . . , |Sc|. (5)

We do not have any clue how to solve this problem,
even if the positive integers qi are known.

For the weaker task of computing the integer
polynomial

∑m
i=1 fi,j(x) ∈ Z[x] from the above

equation (5) and assuming that qi are known, a
strategy was suggested by I. Shparlinski and M.
Albrecht during the Workshop on Mathematical
Cryptology WMC 2012 where a preliminary ver-
sion of HIMMO was presented. The basic idea
is based on the following remark. For every ηk,
k = 1, . . . , |Sc| we have
m∑
i=1

〈fi,j(ηk)〉qi =

m∑
i=1

fi,j(ηk)+2bεηk,j+

m∑
i=1

λij,kqi,
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TABLE II
CLASSIFICATION OF IDENTIFIED CRYPTANALYSIS METHODS TO HIMMO

HIMMO Threat Cryptanalysis impact Attack goal
Subsection V-B Theoretical Attack the root keying material

Attack a keying material
Subsection V-C Theoretical Attack the root keying material
Subsection V-D Low-severity Attack a keying material
Subsection V-E Low-severity Attack the root keying material

where λi,j are integer numbers whose absolute
value can be bounded. Thanks to the identifiers ηk
belong to a small set {1, . . . , 2b−1} we can easily
get at the following bound:

|λi,j | ≤ 2bα+1.

Then, we are in the typical conditions to apply
lattice reduction techniques. For simplicity’s sake
and without loss generality we suppose that m =
2. Consider the (2|Sc| + α)-dimensional lattice L
spanned by the rows of the following matrix:

q1 . . . 0 0 . . . 0 2b . . . 0

0
. . . 0 0 . . . 0 0 . . . 0

0 . . . q1 0 . . . 0 0 . . . 2b

q2 . . . 0 0 . . . 0 0 . . . 0

0
. . . 0 0 . . . 0 0 . . . 0

0 . . . q2 0 . . . 0 0 . . . 0
η1 . . . η|Sc| 2−b . . . 0 0 . . . 0
...

...
...

...
...

...
... . . .

...
ηα1 . . . ηα|Sc| 0 . . . 2−b 0 . . . 0


(6)

and the vectors ~t,~h ∈ R|Sc|+α+|Sc| = R2|Sc|+α as
follows,

~t = (〈f1,j(η1)〉q1 + 〈f2,j(η1)〉q2 + 2bεη1,j , . . . ,

〈f1,j(η|Sc|)〉q1 + 〈f2,j(η|Sc|)〉q2 + 2bεη|Sc|,j , 0, . . . ,

0, 0, . . . , 0),

~h = (〈f1,j(η1)〉q1 + 〈f2,j(η1)〉q2 , . . . ,
〈f1,j(η|Sc|)〉q1 + 〈f2,j(η|Sc|)〉q2 , 2

−bc1, . . . , 2
−bcα,

2bλ1j,k, . . . , 2
bλ1j,|Sc|)

where f1,j(x) + f2,j(x) =
∑α
i=1 cix

i, for k =
1, . . . , |Sc|.

It is expected that when |Sc| is large enough,
then with a high probability the solution of the
approximating Closest Vector Problem with known
target vector ~t and lattice L will be the unknown

vector ~h. However, this seems not to be the case
because the classical Minkowski’s theorem shows
the there is a small vector in the lattice, since the
volume of the lattice L is O(2(α+3)b|Sc|−bα)) and
‖~t − ~h‖ = O(|Sc|2(α+1)b). If the noise is small
enough, |Sc| and b are big enough implementation
shows that this kind of attack works. We refer to
Appendix B for further details.

Remark 3: If an attacker could solve this
problem, he would get some information that is
not present in the system. However, notice that it
is not clear that this would allow breaking the
cryptosystem because it only provides the added
value of all bi-variate polynomials, and no the
individual polynomial coefficients fi,j .

D. Attacking a keying material share

At the beginning of this section we have pro-
posed a classification of attacks depending on the
severity and the goal of the attacker. One of the
possible goals of the attacker was to attack a share.
The attacker is only interesting in getting the share
of a specific node η. This is related to Problem 2.
This subsection describes how this could be done
in HIMMO and discusses security parameters.
The attack works as follows: the attacker com-
promises |Sc| nodes with identifiers η1, . . . , η|Sc|
together with their shares, that is, he knows |Sc|
univariate polynomials Fηk(x) ∈ ZN [x], and aims
to compute the unknown univariate polynomial
Fη(x) =

∑α
i=1 aix

i ∈ ZN [x] for any node η 6=
ηk, k = 1, . . . , |Sc|. Then the attacker realizes that
the keys between the nodes can be easily converted
in the least significant bits of the evaluation of the
polynomial which correspond to the share in node
η.

So, this is the noisy polynomial interpolation
problem introduced in Subsection IV-A of recov-
ering the polynomial Fη(x) from the |Sc| values
〈Fη(ηk)〉2b for k = 1, . . . , |Sc|. Note that Prob-
lem 2 is tailored to Equation 2 while here we deal
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with the key generation step (Equation 3) in which
only b bits are outputted from the evaluation of an α
degree polynomial with b(α + 2) bits coefficients
in a b bits identifier. The ratio of outputted bits
and coefficient size is α + 2. Still, the conceptual
problem is basically the same, the attacker only
sees a part of the evaluation.

To analyze the severity of this attack we use
Theorem 8 from [11] and/or Theorem 5 from
[12] based also on lattice reduction techniques.
According to those papers, the proposed algorithm
has five main requirements to work:
• N is a prime number, although this can be

avoided using heuristic arguments,
• the identifiers are uniformly distributed in the

set {0, . . . , N − 1},
• the number of colluding nodes |Sc| is greater

than 2α
√
b,

• the quality of the approximation should be
good enough; this is true if α is O(

√
b), and

• we have to assume that 〈Fη(ηk)〉2b =
〈Fηk(η)〉2b , for k = 1, . . . , |Sc|.

Computer experiments confirm that the attack
does indeed work if |Sc| is large enough
and α <

√
b even if the identifiers are only

uniformly distributed in the much smaller range
{1, . . . , 2b − 1 }. However, if these conditions
are not fulfilled, the lattice reduction does not
provide a correct answer. This is a positive result
since it allows us to derive the expected order
of magnitude for HIMMO parameters so that
the above attacks do not work. It is an open
question if the fact that the HIMMO identifiers
are small affects the requirements on the HIMMO
parameters or can even allow for a better attack.
A more general open question about the noisy
polynomial reconstruction is posed in paper [3].

Independently of the above algorithm, and even
assuming that an attacker could find the perfect
algorithm to efficiently attack the system, there
exists still a reason why it is not going to work
in HIMMO. The reason is that the common key
generated between two nodes (the fifth condition
in the above list) can differ a value ∆ specified
in Theorem 1, that is, a priori, we can not assume
that:

〈Fη(ηk)〉2b = 〈Fηk(η)〉2b

Thus, the input for an algorithm as the one above
is noisy and makes that the attacker has to do a
search over all possible values for a generated key.

This would theoretically increase the number of
calls to the algorithm in an exponential way being
O(∆|Sc|). However, for small m, the actual is not
that bad for the attacker: experimental results show
that the probability distribution of (Kη,η′ −Kη′,η),
where the pair (η, η′) is taken at random, is very
concentrated around 0 for those small values of m.

E. Attacking the root keying material with m = 1
and secret q1

Section V-C shows that it is not trivial to attack
the root keying material if m ≥ 2. Section V-D
gives a first positive indication about the security
of HIMMO when dealing with an attack to a keying
material share.

This section shortly deals with an attack against
the root keying material in the case m = 1, that
is, Problem 1 in which the noise hides part of the
keying material coefficients. In this situation, there
is no mixing and a single bi-variate root keying
material is used to generate a keying material share
(a noisy polynomial) stored on a node. An attacker
can observe all bits of the polynomial except those
that are affected by the noise. It is fundamental
to remark that these are many more bits than in
the situation in Section V-D in which just b bits
where exposed, and thus, if q1 is known, we believe
that it is rather difficult to prevent an attacker
from performing an attack based on [11] and/or
[12] against the root keying material if enough
devices have been compromised. If q1 is secret, the
situation becomes interesting again. The results in
[13] and [6] can be applied for the case of a linear
polynomial (α = 1), even if q1 is secret. For non-
linear polynomials, existing attacks cannot directly
be applied to our scheme.

F. HIMMO security and design principles

The two design principles introduced in Sec-
tion IV are applied to HIMMO in such a way
that they can prevent an attacker from recovering
the root keying material or keying material shares
as described in the last subsections. It is worth
reviewing how this is done. HIMMO as any of
the predecessors includes the root keying mate-
rial, keying material shares, and keys. An attacker
can compromise several nodes and the associated
keying material shares. Given this keying material
shares there is a risk of the attacker recovering the
root keying material. Given keys there is a risk of
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TABLE III
HOW HIMMO PROTECTS AGAINST DIFFERENT TYPES OF ATTACK VECTORS

Protection against Relies on Requires at least Further improved by
Attacking a keying material share Hiding information α >

√
b or taking large m

|Sc| < 2α
√
b

Attacking the root keying material Hiding Information and m ≥ 2 making βi secret
Mixing Modular Operations

the attacker recovering keying material shares, or
even the root keying material.

HIMMO relies on the first design principle (see
Subsection IV-A) to prevent the attacker from re-
covering non-compromised keying material shares
from keys derived from compromised keying ma-
terial shares. An attacker can derive many b-bits
keys, and from them, he should be able to recover
a polynomial of degree α with coefficients of size
(α+ 2)b bits according to HIMMO’s specification.
Thus, if we increase α we do not only increase
the polynomial degree but also the ratio between
the number of bits that an attacker can see and the
size of the coefficients, namely b(α+2). This ratio
is, thus, α + 2 As discussed in Subsection V-D, if
α >
√
b, it seems to be difficult to attack HIMMO

even if an attacker captures |Sc| > 2α
√
b nodes.

The reader might ask himself why this first
principle is not sufficient to prevent an attacker
from recovering the root keying material from the
keying material shares (see Section V-E). This is
easy to understand if we observe the size of the
noise in Eq. 1, or alternatively the amount of bits
known by an attacker. Basically, the amount of
information available to an attacker is much higher
in this case. In other words, the ratio between
the number of bits that an attacker can see (the
keying material share) and the number of bits
to recover (the root keying material) is big and
actually close to 1/2 in average. Although keeping
q1 secret can indeed help, to solve this issue (see
Section V-E), we apply the second design principle
(see Subsection IV-B) to prevent an attacker from
attacking the root keying material from the keying
material shares. This corresponds to the analysis in
Subsections V-B and V-C.

The second and third columns in Table III sum-
marize the way HIMMO protects against different
types of attack vectors. Additionally, the fourth col-
umn indicates secondary protections. The difficulty
of attacking the keying material shares increases
for large values of m since this value (i) affects
the size of ∆ in Theorem 1 and (ii) experimental
results show that the probability distribution of

(Kη,η′ − Kη′,η) where the pair (η, η′) is taken
at random is more uniform in the range [−∆,∆]
for large m. Attacking the root keying material
becomes more difficult if the βi terms in the qi are
kept secret since this prevents even the construc-
tion of the lattice used in Section V-C. See also
Section V-E

VI. CONCLUSIONS

Our HIMMO algorithm addresses the old key
establishment problem in a different way bringing
many advantages. Operationally, it allows for direct
ID-based pairwise key establishment simplifying
protocol operation. Computationally, the design
concepts relying on polynomials allow for very fast
operation with minimal memory and energy needs.
These features make HIMMO very suitable for new
applications such , e.g., the Internet of Things.
From a security point of view, the design concepts
seem to be sound and existing attacks do not apply;
however, as the design concepts are fairly new,
further analysis is required. To this end, we have
introduced a framework for the security analysis
so that attacks on a collusion-resistant system such
as HIMMO can be classified according to their
goal and impact level. The first design concept in
HIMMO presents links to the noisy polynomial
interpolation problem, and thus, it might make
possible partial security analysis of our scheme
by reusing existing literature. This paper has done
a first step in this direction with positive results.
To the best of our knowledge, our second design
concept, mixing of the evaluation of polynomials
using different modules, has not been explored in
literature so far. Although suggested attacks do
not seem to work even applying lattice techniques,
more analysis is needed as well. The task of an
attacker with regard to both design concepts is
further complicated by the fact that he only has
partial knowledge on which modules have been
used.
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APPENDIX A: PROOF OF THEOREM 1
In this appendix, we provide a proof of Theo-

rem 1. In the proof, we rely on the fact that for
each integer a and each positive integer N we have
that

a = b a
N
cN + 〈a〉N . (7)

Lemma 1: Let a, b,N be integers, with N pos-
itive, then we have

〈a+ b〉N = 〈a〉N + 〈b〉N − λN,

for some integer λ ∈ {0, 1}.

Proof: Using (7), we have that

〈a+ b〉N = 〈〈a〉N + 〈b〉N 〉N = 〈a〉N + 〈b〉N −λN,

where λ =

⌊
〈a〉N + 〈b〉N

N

⌋
.

As 0 ≤ λ < 2 and λ is integer, the lemma follows.
�

Lemma 2: Let α, b, p,N and β be positive in-
tegers such that p = N − β2b, β < 2b

and 2(α+2)b−1 < N ≤ 2(α+2)b. Let h(X) =∑α
i=0 hiX

i be a polynomial with integer coeffi-
cients such that 0 ≤ hi ≤ p−1. If η ∈ {1, . . . , 2b−
1}, then,

〈h(η)〉p = 〈h(η)〉N + µ2b − λN,

for some integers µ, λ and with λ ∈ {0, 1, 2}.

Proof: It is clear that

h(η) = λ1p+ 〈h(η)〉p = λ2N + 〈h(η)〉N

with λ1 =
⌊
h(η)
p

⌋
and λ2 =

⌊
h(η)
N

⌋
. Hence,

〈h(η)〉p = 〈h(η)〉N + λ2N − λ1p
= 〈h(η)〉N + λ1(N − p) + (λ2 − λ1)N

= 〈h(η)〉N + 2bβλ1 + (λ2 − λ1)N

= 〈h(η)〉N + µ2b − λN.

where µ = βλ1 and λ = λ1 − λ2. Since N > p,
λ ≥ 0.
Moreover,we have that

λ = λ1 − λ2 ≤
h(η)

p
− λ2 ≤

h(η)

p
− h(η)

N
+ 1

and thus

λ = h(η)
2bβ

Np
+ 1.

We clearly have that

h(η) =

α∑
i=0

hiη
i <

α∑
i=0

p2ib < p
2(α+1)b

2b − 1
.

As a consequence, we have that λ < 2(α+2)b

N(2b−1) . From
the bounds on β and N , we infer that λ < 3. As λ
is an integer, it follows that λ ≤ 2.

Remark 4: Note that if βi < N
2b(α+2) (2b − 1),

then in Lemma 2 we have that λ ∈ {0, 1}.

We are now in a position to prove Theorem 1. By
definition,

Kη,η′ = 〈〈
α∑
j=0

KMη,j(η
′)j〉N 〉2b with

KMη,j =

m∑
i=1

〈fi,j(η)〉qi + 2bεη,j .

We write

φi,η(x) =

α∑
j=0

〈fi,j(η)〉qixj and

Fη(x) =

m∑
i=1

φi,η(x) + 2b
α∑
j=0

εη,jx
j .

Then
Kη,η′ = 〈〈Fη(η′)〉N 〉2b .

We introduce the following notation for conve-
nience,

φi,η(X) = 〈fi(X, η)〉qi =

α∑
j=0

〈gi,j(η)〉qiXj ,

where fi(X,Y ) =
∑α
j=0 gi,j(Y )Xj , where

gi,j(Y ) ∈ Fqi [Y ]. From this, it is clear that,

Fη(X) =

m∑
i=1

φi,η(X) + 2b
α∑
j=0

εjX
j .

PROOF OF THEOREM 1: First, we compute
the following

〈Fη(η′)〉N = 〈
m∑
i=1

φi,η(η′) + 2b
α∑
j=0

εj(η
′)j〉N =

=

m∑
i=1

〈φi,η(η′)〉N + 〈
α∑
j=0

2bεj(η
′)j〉N + λ1N
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for some integer λ with −m ≤ λ1 ≤ 0. Using the
upper bound on the ε’s we find

〈Fη(η′)〉N =
m∑
i=1

〈φi,η(η′)〉N + 2b
α∑
j=0

εj(η
′)j + λ2N,

with −m− 1

2
(α+ 1) ≤ λ2 ≤

1

2
(α+ 1).

By applying Lemma 2 we obtain that
m∑
i=1

〈φi,η(η′)〉N =

m∑
i=1

〈φi,η(η′)〉qi + λ3N + µ2b,

for some integers µ and λ3 with −2m ≤ λ3 ≤ 0.
We thus have that

Kη,η′ = 〈〈Fη(η′)〉N 〉2b = 〈
m∑
i=1

〈fi(η′, η)〉qi+λN〉2b .

for λ = λ2 + λ3 and so − 1
2 (α + 1) − 3m ≤ λ ≤

1
2 (α+ 1). Similarly,

Kη′,η = 〈〈Fη′(η)〉N 〉2b = 〈
m∑
i=1

〈fi(η, η′)〉qi+λ′N〉2b ,

for some integer λ′, with − 1
2 (α+ 1)− 3m ≤ λ′ ≤

1
2 (α+ 1).
As the fi’s are symmetric, we have proven Theo-
rem 1. �

APPENDIX B: MINKOWSKI’S THEOREM

We cite the next result from [9, Theorem 4].

Lemma 3: Suppose that L is a lattice of
determinant d in an n-dimensional vector space
Rn and S is a convex subset of Rn, symmetric
with respect the origin and with a volume greater
than 2nd, then S contains at least one lattice point
other than the origin.

For our case, it is just necessary to take,

S = {~x ∈ Rn | ‖~x‖ ≤ 2n
n
√
d},

So, the lattice contains at least one nonzero
element ~v. Indeed, the problem of studying the
minimum radius such that any lattice has a vector
inside a ball has been studied as the Hermite
constant. This has application to the following
problem that it is solved by Babai’s algorithm [2] .

Problem 4 (Approximating CVP): The approxi-
mating Closet Vector Problem (CVP) is defined

as follows. Given a target ~t and a lattice L of
dimension s, find a vector ~h ∈ L such that

‖~t− ~h‖ ≤ 2s/2 min
~u∈L
{‖~t− ~u‖}.

If the approximating CVP has a unique solution,
then no non-zero vector ~x ∈ L satisfies

‖~x‖ ≤ min
~u∈L
{‖~t− ~u‖}.

Indeed, if ~x ∈ L satisfies the above equation and ~h
satisfies

‖~t− ~h‖ = min
~u∈L
{‖~t− ~u‖},

then

‖~t− ~h− ~x‖ ≤ ‖~t− ~h‖+ ‖~x‖ ≤ 2 min
~u∈L
{‖~t− ~u‖}.
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