
An ultra-lightweight
ID-based pairwise key establishment scheme

aiming at full collusion resistance

Oscar Garćıa-Morchón1, Ronald Rietman1, Ludo Tolhuizen1,
Domingo Gómez-Pérez2, Jaime Gutiérrez2, and Santos Merino del Pozo2

1 Philips Group Innovation, Research, Eindhoven, The Netherlands
2 Univ. of Cantabria, Santander, Spain

Abstract. This paper introduces a new key establishment scheme aiming at
fully collusion-resistant identity-based symmetric-key agreement. In an identity-
based pairwise key agreement scheme, a Trusted Third Party (TTP) manages
the system and securely provides any node, e.g., Alice or Bob, with private
keying materials. Alice can generate a pairwise key with Bob given her own
secret keying material and Bob’s identity. The full collusion resistance property
would ensure that the scheme remains secure even if arbitrarily many devices
collude or are compromised.

Our scheme, the HIMMO algorithm, relies on two design concepts: Hiding In-
formation and Mixing Modular Operations. Hiding information is related to the
Noisy Interpolation Problem; the Mixing Modular Operations problem seems
to be a new hard problem. We describe our scheme, the security of its un-
derlying design principles and give order of magnitude estimations for secure
configuration parameters. For these parameters, we show that our prototypic
implementation of HIMMO on the 8-bit CPU ATmega128L can generate 128-
bit keys in less than 7 ms based on an algorithm fitting in 428 B and with secret
keying materials of size 656 B.

Keywords: ID-based symmetric-key generation, collusion resistance, mixing
modular operations, noisy interpolation problem.

1 Introduction

This paper deals with the classical problem of key establishment. We focus on an
identity-based (ID-based) scheme for symmetric-key agreement between pairs of devices
in a network. That is, each node in the network has an identifier, and a Trusted Third
Party (TTP) provides it with secret keying material - linked to the device identifier - in
a secure way. A node that wishes to communicate with another node uses its own secret
keying material and the identity of the other node to generate a common pairwise key.

The key distribution problem - as discussed in this paper - was first described by
Matsumoto and Imai [1]. They propose that a TTP chooses a secret function f(X,Y)
that is symmetric, that is, f(X,Y) = f(Y,X). Each node with identifier η receives a
secret keying material - a function - KMη(X) = f(X, η) such that KMη(η′) = f(η, η′)
for any other η′. In [2], Blundo et al. choose the secret function f(X,Y) to be a
symmetric bivariate polynomial over a finite field of degree α in each variable and show
that their scheme offers information-theoretic security if an attacker knows the secret
keying material of c colluding nodes whenever c ≤ α. If c ≥ α+1, an attacker can recover
f(X,Y) by means of Lagrange interpolation. Zhang et al. [3] proposed a “noisy” version

of [2] aiming at being fully-collusion resistant. This scheme was generalized and broken
by Albrecht et al. [4] in different ways including error-correcting and lattice techniques.
Their idea was to provide node η with a polynomial KMη(X) = f(X, η) + s1,ηp1(X) +
s2,ηp2(X) of degree α where p1(X) and p2(X) are two perturbation polynomials hiding
f(X, η) and s1,η, s2,η ∈ {−u − u + 1, . . . , u − 1, u}. The lattice attack in [4] has time
complexity O(α3 + 8αu3) and requires only α + 3 compromised nodes. It consists of
two steps. In the first step, by means of linear algebra methods, it recovers the linear
vector space generated by the perturbation polynomials. In the second step, it uses
lattice reduction techniques to recover f , knowing the perturbation polynomials.

This paper introduces a new ID-based key establishment scheme allowing for effi-
cient operation – with respect to both the amount of stored keying material and the
key computation time, which is especially relevant for resource-constrained devices –
while it is based on mathematical problems for which the collusion attacks on the
schemes from literature cannot readily be applied. To achieve the collusion resistance
property, we rely on two design principles based on two mathematical problems. Hid-
ing Information is related to the Noisy Interpolation Problem and used in HIMMO
during the key generation phase by outputing only part of a polynomial evaluation.
The Mixing Modular Operations problem seems to be a new mathematical problem to
the best of our knowledge. HIMMO uses it when the TPP generates the secret keying
material by combining polynomial evaluations in different rings such that modular op-
erations are mixed in a smart way, and thus structure is removed making interpolation
or lattice attacks rather complex, but still, allowing for ID-based key agreement. Our
security analysis and SW implementation show the feasibility of HIMMO that might
make possible scenarios as the one in which many devices running a small 8-bit CPU
can set-up 128-bit pairwise keys among each other requiring just 7 ms and 1 KB of
memory for both algorithm and keying material. Even if an attacker compromised very
many devices, the connections between the remaining devices would still be secure.

The rest of this paper is organized as follows. Section 2 describes the HIMMO
algorithm and its design principles and rationale. Section 3 presents the security anal-
ysis of HIMMO. Next we introduce our implementation and performance results in
Section 4. Section 5 discusses configuration parameters and compares with existing
methods. Finally, Section 6 concludes this paper.

2 The HIMMO algorithm

In HIMMO, the TTP is in charge of initializing and keeping secret the root keying
material that is used later for the generation of keying material shares for the nodes.
Each pair of nodes can generate a pairwise key based on their respective keying material
shares and identities. To ensure the full collusion resistance property, we have to avoid
two main types of attacks:

– Attack/recover the root keying material: from any set of keying material
shares or pairwise keys;

– Attack/recover a keying material share: given many compromised pairwise
keys.

HIMMO protects against these attacks by relying on two design principles: Mixing
Modular Operations and Hiding Information. Mixing modular operations refers to the
mixing of results – by adding over the integers or modulo N – obtained from different
polynomials in different rings. We have not found any results in the literature related

Table 1: Notation

Term Definition

bxc max{m ∈ Z | m ≤ x}
〈a〉q Integer x such that 0 ≤ x ≤ q − 1 and x ≡ a mod q
Zq Ring of integers modulo q, where each element is

identified with an integer in the range {0, . . . , q − 1}
Zq[X] Polynomial ring in the variable X with coefficients in Zq
N Public modulus
b Public size of the identifiers and pairwise keys
α Public polynomial degree (in each variable)
m Public number of bivariate polynomials comprising

the root keying material with m ≥ 2

η Public node identifier with η = 1, . . . , 2b − 1

βi Secret positive b-bit number with i = 1, . . . ,m

qi Secret moduli such that qi = N − βi2b with i = 1, . . . ,m
KM η(X) secret keying material function of node η
KM η,j KM η(X) =

∑α
j=0 KM η,jX

jwith KM η,j ∈ ZN [X]

fi(X,Y) i-th secret bivariate polynomial at the TTP

c number of colluding devices.

to this MMO Problem, but as we show later in Section 3, there are some indications
that it is a hard computational problem.

Mixing Modular Operations (MMO) Problem: Let m ≥ 2 and q1, . . . , qm and
N be different positive numbers. Let f1, . . . , fm be polynomials of degree at most α with
α ≥ 2 and integer coefficients. Defining h(η) = 〈

∑m
i=1〈fi(η)〉qi〉N , for η ∈ Z, the MMO

problem is to recover f1, . . . , fm, given m, α, N and c pairs (ηk, h(ηk))
Hiding Information corresponds to the Noisy Polynomial Interpolation Problem of

recovering an unknown polynomial f(X) ∈ Zq[X] from approximate values of f(η) at
polynomially many points η ∈ Zq, see [5] and [6]. In HIMMO, these approximations
are with respect to the LSBs.

Hiding Information (HI) Problem: Let KM (X) ∈ ZN [X] be a polynomial of
degree at most α, and let Kη = 〈〈KM (X = η)〉N 〉2b , the last b bits of KM (X = η)
modulo N . Reconstruct KM (X) based on c different pairs (η,Kη).

In the following, we first formally present HIMMO in Section 2.1; then we explain
how the above problems are applied to HIMMO in Section 2.2.

2.1 HIMMO Operation and Parameters

HIMMO Operation comprises three phases:
1. System initialization
The TTP selects four public positive integers m ≥ 2, α ≥ 2, b and N , an odd positive
integer of (α + 2)b bits. After this choice, the TTP generates the following private

material: m distinct positive integers q1, . . . , qm of the form qi = N − 2bβi where
1 ≤ βi ≤ 2b − 1; m symmetric bivariate polynomials f1(X,Y), . . . , fm(X,Y), all of
degree at most α in each variable, such that for i = 1, . . . ,m, the polynomial fi is in
Zqi [X,Y]. For 1≤ i ≤ m, we write

fi(X,Y) =

α∑
j=0

fi,j(Y)Xj with fi,j(Y) ∈ Zqi [Y] ⊂ Zqi [X,Y].

2. Node registration
For each node η ∈ {1, . . . , 2b−1} that wants to register, the TTP selects α+ 1 integers
εη,j (from now on called noise3) such that |εη,j | < 2(α+1−j)b−2 for j = 0, . . . , α. The
TTP provides node η with the secret keying material consisting of the coefficients
KM η,0,KM η,1, . . . ,KM η,α, defined as:

KM η,j =

〈
m∑
i=1

〈fi,j(η)〉qi + 2bεη,j

〉
N

. (1)

3. Operational phase: key agreement
Node η generates its key with node η′ from its keying material share as:

Kη,η′ =
〈
〈KM η(η′)〉N

〉
2b

=

〈〈
α∑
j=0

KM η,jη
′j

〉
N

〉
2b

(2)

Kη,η′ and Kη′,η are approximately equal, as described in Theorem 1 (proof in Ap-
pendix A) where the term 3m is due to the mixing of the m modulo reductions qi from
the m bivariate polynomials and N and the term α+ 1 is due to the noise addition.

Theorem 1 Let 0 ≤ η, η′ ≤ 2b − 1. Then we have that

Kη,η′ ∈ {〈Kη′,η + jN〉2b | −∆ ≤ j ≤ ∆},

where ∆ = 3m+ α+ 1.

Key agreement between devices η and η′ requires removing this small error. To
this end, device η sends the value H(Kη,η′) to device η′, where the function H is such
that H(i) 6= H(Kη,η′) for each potential key i (as indicated in Theorem 1) different
from Kη,η′ . In this way, η′ finds the key Kη,η′ that is subsequently used to secure the
communication link. An example of such a function H is a hash function like in [3].

2.2 Design Rationale

HIMMO applies the MMO problem by using secret modules qi with such a form that
they introduce non-linear operations when the TTP generates the secret keying mate-
rial for node η from the secret bivariate polynomials. The MMO problem protects then
HIMMO’s root keying material and keying material shares (Equation (1)) from being
recovered by an attacker from many colluding keying material shares. However, the
large public modulus N and the secret moduli q1, . . . qm share a structure that allows
for the generation of a much smaller b-bit key by means of Equation (2). This is the
HI problem that protects the secret keying materials of the devices from being recov-
ered by an attacker from many colluding pairwise keys. Thus, the resulting b-bit key
combines the contributions from all polynomials over different rings (MMO problem)
and is much smaller than N (HI problem):

Kη,η′ ≈

〈
m∑
i=1

〈fi(η, η′)〉qi

〉
2b

=

〈
m∑
i=1

〈fi(η′, η)〉qi

〉
2b

≈ Kη′,η.

3 The noise captures the removal of some bits of secret keying material coefficients, see Sec-
tion 4 for more details.

The above approximation is valid because in the HIMMO algorithm the first reduc-
tion during the keying material share generation is modulo {q1, . . . , qm} but the second
one is modulo N (Equation (2)). If we had a second reduction modulo {q1, . . . , qm},
the βi terms in qi might lead to a bit of carry that would impact in least significat bit.
This is the logic behind the term 3m in Theorem 1. Next, we state the general MMO
and HI problems for the specific parameters of HIMMO.

The MMO Problem in HIMMO protects the root keying material in Equation (1)
from being recovered from many compromised keying material shares. In order to
explain the effects of mixing, we consider a simple special case, viz. that for 1 ≤ i ≤ m,
we have that fi(x, y) = Aix

αyα for some Ai ∈ {1, . . . , qi − 1}. Moreover, we take

N = 2b(α+2) − 1 and εη,α = 0. We write: Aiη
α = R

(2)
i,η2b(α+2) +R

(1)
i,η2b +R

(0)
i,η with 0 ≤

R
(0)
i,η ≤ 2b−1, 0 ≤ R(1)

i,η ≤ 2b(α+1)−1, and 0 ≤ R(2)
i,η ≤ 2αb−1. As qi = 2b(α+2)−βi2b−1,

the single non-zero coefficient KM η,α =
〈∑m

i=1 〈fi,α(η)〉qi
〉
N

of node η is given by:

KM η,α =

〈
m∑
i=1

〈Aiηα〉qi

〉
N

=

〈
m∑
i=1

〈(
R

(1)
i,η + βiR

(2)
i,η

)
2b +

(
R

(0)
i,η +R

(2)
i,η

)〉
qi

〉
N

=

〈
m∑
i=1

〈(
R

(1)
i,η + βiR

(2)
i,η +

⌊
R

(0)
i,η +R

(2)
i,η

2b

⌋)
2b + 〈R(0)

i,η +R
(2)
i,η 〉2b

〉
qi

〉
N

≈ 4

〈
m∑
i=1

(
R

(1)
i,η + βiR

(2)
i,η +

⌊
R

(0)
i,η +R

(2)
i,η

2b

⌋)
2b + 〈R(0)

i,η +R
(2)
i,η 〉2b

〉
N

(3)

We observe that the modulo computations affect the b(α+ 1) most significant bits
of the keying material in a way that is dependent on βi. By adding over i, these βi-
dependencies are mixed. We also see mixing in the b least significant bits of the keying
material, as they depend on the sum of the most and least significant bits of Aiη

i. The
nice aspect of the design is that the components originating from different polynomials
fi(X,Y) hide each other so that an attacker can only observe the sum modulo N ,
learning nothing about the individual components. This makes (at least) difficult the
recovery of the root keying material.

The HI Problem appears in Equation 2 as only the b least significant bits of the
polynomial evaluation are used as the key. This principle prevents an attacker from
recovering the secret keying material function KM η(x) of a device η even if the attacker
knows many outputs (pairwise keys) of a device’s keying material. As we describe
in Section 3.2, an attacker might derive many b-bits keys from compromised keying
materials, and from them, he could try to recover a polynomial of degree α with
coefficients of size (α+2)b bits according to HIMMO’s specification. The HIMMO design
makes this difficult because if we increase α we do not only increase the polynomial
degree but also the ratio (α + 2) between the number of bits that an attacker can see
and the size of the coefficients, namely b(α+ 2), to recover.

4 The effect of the reduction module qi due to carry propagation is limited due to the form
of qi.

3 Security Analysis

In the following, we first analyze the minimum number of colluding devices required to
attack the root keying material and a keying material share in the next section. Then,
we analyze the feasibility of lattice-based cryptanalysis for attacking a keying material
share (Section 3.2) and the root keying material (Section 3.3).

3.1 Bounds on the number of colluding nodes tolerated by HIMMO

Tolerated number of colluding nodes - root keying material: In HIMMO, re-
constructing the root keying material from the keying material of a number of colluding
nodes amounts to solving α+ 1 instances of the MMO problem from Section 2.

The aim of the MMO problem is to reconstruct polynomials fi(x) ∈ Zqi [x] of degree

at most α, based on the observation of h(x) =
〈∑m

i=1 〈fi(x)〉qi
〉
N

for c different values

of x. We can offer the following heuristic argument why c must be at least m(α + 1)
to obtain a unique reconstruction.

If c = 0, we have no information, so that the number of possible reconstructions
is at most

∏m
i=1 q

α+1
i . It is less than that, because of two effects. Firstly, if qi is not

a prime number, the number of different functions 〈fi(x)〉qi is less than qα+1
i because

of degeneracies, e.g., 〈4x〉8 =
〈
4x3
〉
8
. Secondly, degeneracies occur in the sum over i,

because there exist polynomials fi(x) that vary so little over the domain {1, 2, . . . , 2b−
1}, that the modulo-qi operation does not affect them. If such functions are added in the
sum over i, only their sum matters, not the individual functions. These effects are hard
to quantify, but we do not expect them to fundamentally change our result. If we neglect
these effects, and further assume that the modulo operations uniformize h(x) over the
{0, 1, . . . , N − 1} and make its values for different x independent, it follows that each
observation reduces the number of reconstructions by a factor N . Hence the expected
number of reconstructions after c observations is

∏m
i=1 q

α+1
i /N c. This becomes of order

unity for c ∼ (α+ 1)
∑m
i=1 log(qi)/ log(N) ≈ m(α+ 1) where the latter approximation

holds because the qis and N all have the same order of magnitude in HIMMO. This is
also the range where the independence assumption must break down, since the number
of reconstructions must be at least 1.

Required number of colluding nodes to attack a node’s keying material:
Similarly, for retrieving the keying material share of an uncompromised node η, we
refer to the HI Problem. If the 〈KMη(η′)〉N were known, at least α + 1 nodes η′

need to collude to recover KMη(Z). Since only b of the dlog2(N)e = (α + 2)b bits of
〈KMη(x)〉N are exposed and taking into account that the identifiers are b bits long,
it is expected that at least c = (α + 1)(α + 2)/2 keys (colluding nodes) are needed to
recover KMη(X). Section 3.2 discusses this further.

3.2 Attacking a keying material share

This section considers an attack that aims to obtain the secret keying material function
KM η(X) of a node η. To this end, the attacker compromises c nodes with identifiers
η1, . . . , ηk, . . . ηc together with their shares KM ηk . For each ηk, the attacker can readily
obtain KM ηk(η). We assume that the attacker can also obtain 〈〈KM η(ηk)〉N 〉2b . We
thus are in the situation of Problem HI.

To analyze the severity of this attack we use Theorem 8 from [5] and Theorem
5 from [6] based on lattice techniques. The algorithm from these references has five
main requirements to work: First, N is a prime number (although this can be avoided
using heuristic arguments); Second, the identifiers are uniformly distributed in the set
{0, . . . , N − 1}; Third, the number of colluding nodes c is greater than 2α

√
b; Fourth,

the quality of the approximation should be good enough; this is true if α is O(
√
b), and

fifth, we have to assume that 〈KMη(ηk)〉2b = 〈KMηk(η)〉2b .
Computer experiments confirm that the attack does indeed work if c is large enough

and α <
√
b, even if the identifiers are only uniformly distributed in the much smaller

range {1, . . . , 2b−1}. However, if these conditions are not fulfilled, the lattice reduction
does not provide a correct answer. This is a positive result since it allows us to derive
the expected order of magnitude for HIMMO parameters. It is an open question if the
fact that the HIMMO identifiers are small affects the requirements on the HIMMO
parameters or can even allow for a better attack. A more general open question about
the noisy polynomial reconstruction is posed in paper [7].

Independently of the above results that already provide us secure parameters, this
approach cannot be applied always because the common key generated between two
nodes can differ a value ∆ specified in Theorem 1, i.e., the fifth condition in the above
list does not hold. This further decrease the performance of the above algorithm.

3.3 Attacking the root keying material

In this attack, the attacker compromises c nodes with identifiers η1, . . . , ηk, . . . , ηc and
obtains the integers KM ηk,j for k = 1, . . . , c and j = 0, 1, . . . , α. The attacker aims
to recover the root keying material, i.e., the polynomials fi(X,Y) for i = 1, . . . ,m
used in (1). This is the MMO Problem. We have studied this problem by means of
lattice techniques. The main result is that since the qis are secret, it seems infeasible
to construct any lattice to solve this problem because the qis are needed to construct
the lattice5.

Under the assumption that the qis are public, Appendix B describes a lattice con-
struction in which we show that recovering the m(α+ 1) polynomial coefficients of the

polynomials fi(X) from the value of h(X) =
〈∑m

i=1 〈fi(X)〉qi
〉
N

in c points corrspond-

ing to public identifiers {η1, . . . , ηk, . . . , ηc} is equivalent to finding vectors in a lattice
L that are, in the `∞-norm, close to a target vector. This technique can be applied α+1
times to recover all coefficients of the bivariate polynomials fi(X,Y) for i = 1, . . . ,m
comprising the root keying material.

This lattice L has dimension m(c+ α+ 1) and is a subset of R(m+1)c+m(α+1). The
latter dimension is the sum of the number of polynomial coefficients and the number
of modulo qi and modulo N operations in the resulting equations. The dimension of
the lattice itself is c less than that, because there are c equations.

We know from Section 3.1, that we need around c = m(α+1) compromised devices
in order to get the unique solution. If we construct the lattice with c < m(α+ 1), then
we can find many solutions that fit the equations in the compromised points, but that
do not fit other non-compromised devices.

There are aspects to consider: Firstly, the lattice cannot be constructed if the qis
are secret. Secondly, for c = m(α+ 1), the lattice dimension is m(m+ 1)(α+ 1) so by

5 Note that even for m = 1 the secrecy of the qis can make an attack infeasible. The work in
[8] shows that a polynomial of degree α = 1 can be recovered even if the module is secret.
Results for degree α > 1 are unknown.

taking m relatively large, the lattice becomes too big for practical applications. Thirdly,
the `∞-norm is required to ensure that all components in the minimization problem
are small; the usage of the Euclidean `2-norm does not provide satisfactory solutions
since it can lead to a wrong solution in which all components are small, except for one
that is too big.

4 Implementation

HIMMO’s design is done keeping in mind that we want to achieve very good perfor-
mance on small devices. The mixing of modular operations is performed at the TTP so
that it does not incur additional overhead on a device. Key generation consists of the
evaluation a polynomial module N and taking the b LSBs so that an attacker has to
deal with the HI Problem. A good choice for N is 2b(α+2)−1 because this simplifies the
implementation of modular reductions; still the differnt qi ensure the mixing of modular
operations at the TTP. In the following, we first present the optimized key generation
algorithm implemented on ATmega128L. Later, we describe the performance results.

4.1 Optimized HIMMO on ATmega128L

We have implemented HIMMO in the low-power 8-bit ATmega128L microcontroller
based on the AVR RISC architecture [9]. The ATmega128L has 32 8-bit general-purpose
registers (R0 to R31) of which six of them can be used in pairs as indirect address
registers (X=R27:R26, Y=R29:R28 and Z=R31:R30) [10]. The program code and the
initialized data are stored in a 128kB flash memory and the uninitialized data resides
in the 4kB internal SRAM. Possible clock frequency values are in the range 0-8MHz.
In addition, the ATmega128L has an on-chip 2-cycle multiplier which stores the 16-bit
result in the registers R0 (lower 8-bit word) and R1 (higher 8-bit word).

In Algorithm 1 we show the key generation algorithm which we have implemented
in the ATmega128L. The underlying method is the Horner’s Rule [11]. To compute
each intermediate value

〈Rj〉N = 〈Rj+1 × η′ + KM j〉N with j = α− 1, . . . , 0. (4)

without performing the modN reduction we take advantage of N ’s specific form, N =
2(α+2)b−1 and the small size of η. Thus, 〈Rj〉N = 〈Rj,1×2(α+2)b+Rj,0〉N ≈ Rj,1+Rj,0
where Rj,1 and Rj,0 are b and (α+2)b bits long, respectively. Note that the approxima-
tion comes from the fact that if both Rj,1 and Rj,0 are very big, then there might be a
bit of carry requiring a second reduction. This carry would lead to a difference of one.
The probability of this happening is obviously very low and can be easily solved during
key agreement phase (See Section 2.1). In the jth loop iteration of the algorithm, the
b LSB and the (j + 2)b MSB of Rj are handled in a different way. The (j + 2)b MSB
of Rj – in the algorithm temp – are multiplied by η and added to the (j + 1)b MSB of
the next coefficient KM η,j−1 (Line 5). The b MSB of Rj – in the algorithm key – are
multiplied by η and added to the b LSB of the next coefficient KM η,j−1 (Line 6). The
modular reduction happens when the value of key is updated with the contribution
of the MSB stored in temp after being shifted (j + 2)b bits and added to key (Line
7). Next, we show that we can use the noise εη,j in Equation 2 to reduce the storage
requirements. Indeed, let c0, c1, . . . , cα(b+2)−1 ∈ {0, 1} be such that

〈
m∑
i=1

〈fi,j(η)〉qi〉N =

(α+2)b−1∑
i=0

ci2
i.

We choose εη,j = −
∑b(α−j)−1
i=b ci2

i−b. Then clearly |εj | < 2b(α−j−1), so we can apply
Theorem 1 to bound the difference between generated key pairs. Moreover, for this
specific choice of εη,j , the binary representation of KMη,j has zeros in bit positions
b, b + 1, . . . , b(α − j) − 1. We need not store these zero bits, and use only the b LSBs
and the (j + 2)b MSBs of KMη,j in the computations.

Algorithm 1 Optimized key generation

1: INPUT: b, α, η′, KM η,j where j ∈ {0, . . . , α}
2: OUTPUT: 〈〈

∑α
j=0 KM η,jη

′j〉N 〉2b
3: key ⇐ 〈KM η,α〉2b
4: temp⇐ KM η,α

5: for j = α− 1 to 0 do
6: temp⇐ 〈 temp

2b
〉2(j+2)b

7: temp⇐ temp× η′ + KMη,j

(α−j)b
8: key ⇐ 〈key × η′〉2b + 〈KM η,j〉2b
9: key ⇐ 〈key + temp

(j+2)b
〉2b

10: end for
11: return key

Some additional implementation details are: the integer multiplications are per-
formed with the operand-scanning method; and the implementation is generic working
for several α and b configurations.

As described in Equation 2, HIMMO outputs a b bits long pairwise key between two
devices η and η′. CPU and memory needs can be further reduced if instead of taking
a large value for b, we compute a long key by concatenating several n b-bit keys, e.g. a
128 bits long key from 4 32-keys. This technique is applied in [12] to generate a 128-bit
key by concatenating 8 keys generated from polynomials in F216+1. Each of the n b-bit
keys is generated from a different keying material so, in the system initialization step,
the TTP has to generate n sets of m symmetric bi-variate polynomials of degree α.

With these optimizations and for any n · b bits key, b, α, and CPU word size, our

algorithm runs in time O
(
n
(

αb
WordSize

)2)
. Memory needs for the storage of keying

material are n b8
α2+7α+4

2 bytes and RAM needs are n (2α+7+n)
8 bytes.

4.2 Performance results

The algorithm has been implemented in assembly to allow fine-grained resource alloca-
tion and to avoid inefficiencies which the compiler could introduce. We consider three
different metrics: flash use (in bytes), RAM use (in bytes) and cycle count. In Table 2
we detail the results for n = 1 and different b and α.

The timings have been measured with the Atmel Studio 6 and the sizes are based
in the information reported by the toolchain employed to generate the binary files, in
this case the avr assembler 2.

5 Discussion

Secure configuration parameters: Based on the analysis in Section 3, we argue why
the HI and MMO Problems prevent an attack from launching the two main types of

Table 2: Performance evaluation of our implementation

Parameters
α 6 8 10 15 20
b 32 32 64 32 64 32 64 128 32 64 128

Flash [B]
Code 428 428 428 428 428 428 428 428 428 428 428

Keying material 164 248 496 348 696 668 1336 2672 1088 2176 4352
Total 592 676 924 776 1124 1096 1764 3100 1516 2604 4780

SRAM [B] Data 80 96 192 112 224 152 304 608 192 384 768

Performance
Cycles 12584 19468 63756 27696 91536 54146 181706 660026 88996 301476 1100836

ms@8MHz 1.57 2.43 7.97 3.46 11.44 6.77 22.71 82.50 11.13 37.69 137.61

attacks introduced Section 2 ensuring the full collusion resistance property. As for the
MMO Problem, Section 3.1 shows that an attacker needs at least c = m(α+1) colluding
devices to attempt to attack the root keying material. This is a good result since we
can configure HIMMO with an almost arbitrary high value of m without increasing the
resource needs for key establishment. Furthermore, Section 3.3 discusses that a lattice
cannot be constructed because the qis are unknown. Under the assumption that the
qis are known, we can relate the recovery of the root keying material to finding a close
vector in a lattice whose dimension grows with m2. With regard to the HI Problem,
Subsection 3.2 discusses that if α >

√
b, it seems to be difficult to attack HIMMO

even if an attacker captures c > 2α
√
b nodes. Since the performance of our algorithm

decreases with α2, it is better to compute a nb-bit key as the concatenation of n b-bit
keys generated from n HIMMO instances. From our security analysis, the most efficient
way of configuring HIMMO is with n = 4 HIMMO instances of b = 32-bits and α = 6.
With these settings O(232) nodes can be registered and the size of the generated keys
is 128 bits. This leads to a key computation time of 7 ms with an algorithm and keying
material size of 428 B and 656 B, respectively.

Related work: Table 3 compares our generic HIMMO implementation with a
polynomial scheme [2,12], the previous broken attempt of creating an scheme with
the full collusion resistance property [3] and pairings [13]. The results are taken from
those works when implemented and evaluated in the AVR ATmega128L MCU as in
our experiments. HIMMO’s performance is as the one of a polynomial scheme of de-
gree 40 with the advantage that HIMMO aims at full collusion resistance based on
the HI and MMO design concepts. Although Zhang’s scheme is broken, we observe
that HIMMO improves the performance of their design. We further compare HIMMO
with pairings [13] because HIMMO is also ID-based showing some related operational
features. We note that HIMMO is by far more efficient here.

Table 3: Performance comparison with related work

HIMMO Zhang et al. [3] Liu et al. [12]t = 40 Oliveira et al. [13]

CPU Cycles 2.5× 104 9.6× 105 4.0× 104 1.4× 107

Flash (bytes) 428 + 552 15005 416 + 656 38800

RAM (bytes) 88 325 20 512

6 Conclusions

This paper has presented HIMMO, a scheme allowing for ID-based pairwise key es-
tablishment, and its underlying design principles. We have argued that these design
principles, the HI and MMO Problems, can allow for good collusion resistance prop-
erties and very efficient implementations. As such, HIMMO can find application in
networks of resource-constrained devices, in systems in which timing is crucial, and the
combination of ID-based and full-collusion resistance properties can also bring opera-
tional advantages in traditional computer networks.

Further research is required to analyze the design principles, in particular the MMO
Problem, on which HIMMO relies. We have given indications of the hardness of this
problem, and how it can be applied to create a cryptosystem such as HIMMO. We
believe that many other cryptographic blocks/functionalities – such as the provided
example about secure broadcast – can be designed/enabled based on the MMO Problem
also with very good performance features.

References

1. T. Matsumoto and H. Imai, “On the key predistribution system: A practical
solution to the key distribution problem,” in A Conference on the Theory and
Applications of Cryptographic Techniques on Advances in Cryptology, ser. CRYPTO
’87. London, UK, UK: Springer-Verlag, 1988, pp. 185–193. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646752.704749

2. C. Blundo, A. D. Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung,
“Perfectly-secure key distribution for dynamic conferences,” in Proceedings of the 12th
Annual International Cryptology Conference on Advances in Cryptology, ser. CRYPTO
’92. London, UK, UK: Springer-Verlag, 1993, pp. 471–486. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646757.705531

3. W. Zhang, M. Tran, S. Zhu, and G. Cao, “A random perturbation-based scheme
for pairwise key establishment in sensor networks,” in Proceedings of the 8th
ACM international symposium on Mobile ad hoc networking and computing, ser.
MobiHoc ’07. New York, NY, USA: ACM, 2007, pp. 90–99. [Online]. Available:
http://doi.acm.org/10.1145/1288107.1288120

4. M. Albrecht, C. Gentry, S. Halevi, and J. Katz, “Attacking cryptographic schemes
based on ”perturbation polynomials”,” in Proceedings of the 16th ACM conference on
Computer and communications security, ser. CCS ’09. New York, NY, USA: ACM,
2009, pp. 1–10. [Online]. Available: http://doi.acm.org/10.1145/1653662.1653664

5. I. E. Shparlinski, “Sparse polynomial approximation in finite fields,” in Proceedings
of the thirty-third annual ACM symposium on Theory of computing, ser. STOC
’01. New York, NY, USA: ACM, 2001, pp. 209–215. [Online]. Available: http:
//doi.acm.org/10.1145/380752.380803

6. I. Shparlinski and A. Winterhof, “Noisy interpolation of sparse polynomials in finite
fields,” Appl. Algebra Eng., Commun. Comput., vol. 16, no. 5, pp. 307–317, Nov. 2005.
[Online]. Available: http://dx.doi.org/10.1007/s00200-005-0180-1

7. S. R. Blackburn, D. Gomez-Perez, J. Gutierrez, and I. E. Shparlinski, “Reconstructing
noisy polynomial evaluation in residue rings,” J. Algorithms, vol. 61, no. 2, pp. 47–59,
Nov. 2006. [Online]. Available: http://dx.doi.org/10.1016/j.jalgor.2004.07.002

8. J. Stern, “Secret linear congruential generators are not cryptographically secure,” in
Proceedings of the 28th Annual Symposium on Foundations of Computer Science, ser.
SFCS ’87. Washington, DC, USA: IEEE Computer Society, 1987, pp. 421–426. [Online].
Available: http://dx.doi.org/10.1109/SFCS.1987.51

9. Atmel, “8-bit AVR Microcontroller with 128K Bytes In-System Programmable
Flash,” http://www.atmel.com/Images/doc2467.pdf, June 2011. [Online]. Available:
http://www.atmel.com/Images/doc2467.pdf

10. ——, “8-bit AVR Instruction Set,” http://www.atmel.com/images/doc0856.pdf, July
2010. [Online]. Available: http://www.atmel.com/images/doc0856.pdf

11. D. E. Knuth, The art of computer programming, volume 2 (3rd ed.): seminumerical algo-
rithms. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

12. D. Liu, P. Ning, and R. Li, “Establishing pairwise keys in distributed sensor networks,”
ACM Trans. Inf. Syst. Secur., vol. 8, no. 1, pp. 41–77, Feb. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1053283.1053287

13. L. B. Oliveira, D. F. Aranha, C. P. L. Gouvêa, M. Scott, D. F. Ćımara, J. López,
and R. Dahab, “Tinypbc: Pairings for authenticated identity-based non-interactive key
distribution in sensor networks,” Comput. Commun., vol. 34, no. 3, pp. 485–493, Mar.
2011. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.2010.05.013

Appendix A: proof of Theorem 1

In this appendix, we provide a proof of Theorem 1. In the proof, we rely on the fact
that for each integer a and each positive integer N we have that

a = b a
N
cN + 〈a〉N . (5)

Lemma 1. Let a, b,N be integers, with N positive, then we have

〈a+ b〉N = 〈a〉N + 〈b〉N − λN

for some integer λ ∈ {0, 1}.

Proof. Using (5), we have that 〈a+ b〉N = 〈〈a〉N + 〈b〉N 〉N = 〈a〉N + 〈b〉N − λN where

λ =
⌊
〈a〉N+〈b〉N

N

⌋
. As 0 ≤ λ < 2 and λ is integer, the lemma follows. �

Lemma 2. Let α, b, p,N and β be positive integers such that p = N − β2b, β < 2b

and 2(α+2)b−1 < N ≤ 2(α+2)b. Let h(X) =
∑α
i=0 hiX

i be a polynomial with integer
coefficients such that 0 ≤ hi ≤ p− 1. If η ∈ {1, . . . , 2b − 1}, then

〈h(η)〉p = 〈h(η)〉N + µ2b − λN

for some integers µ, λ and with λ ∈ {0, 1, 2}.

Proof. It is clear that h(η) = λ1p + 〈h(η)〉p = λ2N + 〈h(η)〉N with λ1 =
⌊
h(η)
p

⌋
and

λ2 =
⌊
h(η)
N

⌋
. Hence,

〈h(η)〉p = 〈h(η)〉N + λ2N − λ1p = 〈h(η)〉N + λ1(N − p) + (λ2 − λ1)N

= 〈h(η)〉N + 2bβλ1 + (λ2 − λ1)N = 〈h(η)〉N + µ2b − λN.

where µ = βλ1 and λ = λ1 − λ2. Since N > p, λ ≥ 0.
Moreover,we have that

λ = λ1 − λ2 ≤
h(η)

p
− λ2 <

h(η)

p
− h(η)

N
+ 1

and thus

λ < h(η)
2bβ

Np
+ 1.

We clearly have that

h(η) =

α∑
i=0

hiη
i <

α∑
i=0

p2ib < p
2(α+1)b

2b − 1
, so λ <

2(α+2)bβ

N(2b − 1)
+ 1.

The bounds on β and N imply that λ < 3 and so, as λ is an integer, λ ≤ 2. �

Remark 1. Note that if βi <
N

2b(α+2) (2b− 1), then in Lemma 2 we have that λ ∈ {0, 1}.

We are now in a position to prove Theorem 1. By definition,

Kη,η′ = 〈〈
α∑
j=0

KM η,j(η
′)j〉N 〉2b with KM η,j =

m∑
i=1

〈fi,j(η)〉qi + 2bεη,j .

We write

φi,η(x) =

α∑
j=0

〈fi,j(η)〉qixj and Fη(x) =
m∑
i=1

φi,η(x) + 2b
α∑
j=0

εη,jx
j .

Then
Kη,η′ = 〈〈Fη(η′)〉N 〉2b .

We introduce the following notation for convenience,

φi,η(X) = 〈fi(X, η)〉qi =

α∑
j=0

〈gi,j(η)〉qi X
j ,

where fi(X,Y) =
∑α
j=0 gi,j(Y)Xj , where gi,j(Y) ∈ Fqi [Y]. From this, it is clear that

Fη(X) =

m∑
i=1

φi,η(X) + 2b
α∑
j=0

εjX
j .

Proof (Proof of Theorem 1). First, we compute the following

〈Fη(η′)〉N =

〈
m∑
i=1

φi,η(η′) + 2b
α∑
j=0

εj(η
′)j

〉
N

=

=

m∑
i=1

〈φi,η(η′)〉N + 〈
α∑
j=0

2bεj(η
′)j〉N + λ1N

for some integer λ with −m ≤ λ1 ≤ 0. Using the upper bound on the ε’s we find

〈Fη(η′)〉N =

m∑
i=1

〈φi,η(η′)〉N + 2b
α∑
j=0

εj(η
′)j + λ2N

with −m− 1

2
(α+ 1) ≤ λ2 ≤

1

2
(α+ 1).

By applying Lemma 2 we obtain that

m∑
i=1

〈φi,η(η′)〉N =

m∑
i=1

〈φi,η(η′)〉qi + λ3N + µ2b,

for some integers µ and λ3 with −2m ≤ λ3 ≤ 0. We thus have that

Kη,η′ =
〈
〈Fη(η′)〉N

〉
2b

=

〈
m∑
i=1

〈fi(η′, η)〉qi + λN

〉
2b

.

for λ = λ2 + λ3 and so − 1
2 (α+ 1)− 3m ≤ λ ≤ 1

2 (α+ 1). Similarly,

Kη′,η =
〈
〈Fη′(η)〉N

〉
2b

=

〈
m∑
i=1

〈fi(η, η′)〉qi + λ′N

〉
2b

,

for some integer λ′, with − 1
2 (α+ 1)− 3m ≤ λ′ ≤ 1

2 (α+ 1).
As the fi’s are symmetric, we have proven Theorem 1. �

Appendix B: equivalence of the MMO problem and a ‘close
vector problem’ in a lattice

In this appendix we show that the MMO problem defined in Section 2 is equivalent to
a close vector problem the moduli qi, 1 ≤ i ≤ m, are known.

From the identifiers η1, . . . , ηc of the compromised devices we build the Vander-
monde matrix V of size c× (α+ 1) as

V =


1 η1 η

2
1 · · · ηα1

1 η2 η
2
2 · · · ηα2

...
...

...
. . .

...
1 ηc η

2
c · · · ηαc

 .

The polynomial fi is defined by coefficients ri,k ∈ {0, 1, . . . , qi − 1}, 0 ≤ k ≤ α as
fi(x) =

∑α
k=0 ri,kx

k. We define the column vector ri = (ri,0, ri,1, . . . , ri,α)t.
The MMO problem can now be formulated as follows: given the vector h of which

the components are the function values in the identifiers, h = (h(η1),h(ηc))
t, find

integer vectors r1, . . . , rm of length α+ 1 such that

0 ≤ ri ≤ qi − 1

and

h =

〈
m∑
i=1

〈Vri〉qi

〉
N

=

m∑
i=1

(
Vri − qi

⌊
Vri
qi

⌋)
−N

∑m
i=1

(
Vri − qi

⌊
Vri
qi

⌋)
N


where the inequalities and modulo and rounding operations act component-wise.

Note that for any integer a and q with q > 0, ba/qc is equal to the unique integer
λ such that |(a/q) − λ − (q − 1)/(2q)| < 1/2. Similarly, for an integer vector a, ba/qc
is equal to the unique integer vector λ such that for each component it holds that
|ak/q − λk − (q − 1)/(2q)| < 1/2. The latter condition is equivalent to maxk |ak/q −
λk − (q − 1)/(2q)| < 1/2.

This motivates the following equivalent formulation of the MMO problem: given h,
find integer column vectors r1, . . . , rm of length α + 1 and λ0,λ1, . . . ,λm of length c
such that

h = −Nλ0 +

m∑
i=1

(−qiλi + Vri) , (6)

∣∣∣∣∣∣∣∣∑m
i=1 Vri − qiλi

N
− λ0 −

(N − 1)ec
2N

∣∣∣∣∣∣∣∣
∞
<

1

2
, (7)

and for 1 ≤ i ≤ m ∣∣∣∣∣∣∣∣Vri
qi
− λi −

(qi − 1)ec
2qi

∣∣∣∣∣∣∣∣
∞
<

1

2
(8)

and ∣∣∣∣∣∣∣∣riqi − (qi − 1)eα+1

2qi

∣∣∣∣∣∣∣∣
∞
<

1

2
. (9)

Here ec and eα+1 denote column vectors of length c and α + 1, respectively, of which
all components are equal to 1 and || · ||∞ denotes the `∞-norm of a vector, the max-
imum of the absolute values of its components. Inequalities (7) and (8) embody the
constraints that the vectors λ0, . . . ,λm are equal the result of the rounding operation,
while inequality (9) is equivalent to 0 ≤ ri ≤ qi − 1.

We concatenate the vectors −λi and ri into an integer column vector x of length
(m+ 1)c+m(α+ 1):

xt = (−λt
0,−λ

t
1, . . . ,−λ

t
m, r

t
1, . . . , r

t
m)t

and define a matrix A of size c× ((m+1)c+m(α+1)) as a horizontal concatenation of
m+ 1 instances of the c× c identity matrix Ic multiplied by N , resp. qi and m copies
of V:

A =
(
NIc q1Ic . . . qmIc V . . . V

)
,

so that equation (6) becomes
h = Ax. (10)

Furthermore we define a matrix B of size ((m+1)c+m(α+1))× ((m+1)c+m(α+1))
as the block matrix

B =



Ic
q1
N Ic . . .

qm
N Ic

1
NV . . . 1

NV
0 Ic · · · 0 1

q1
V · · · 0

...
...

. . .
...

...
. . .

...
0 0 · · · Ic 0 · · · 1

qm
V

0 0 · · · 0 1
q1

Iα+1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 1
qm

Iα+1


and the column vector u of length (m+ 1)c+m(α+ 1) as

ut =

(
N − 1

2N
et
c,
q1 − 1

2q1
et
c, . . . ,

qm − 1

2qm
et
c,
q1 − 1

2q1
et
α+1, . . . ,

qm − 1

2qm
et
α+1

)t

.

Now the inequalities (7), (8) and (9) are equivalent to the single inequality

||Bx− u||∞ <
1

2
. (11)

So finding a solution to the MMO problem is equivalent to finding an integer solution
of equation (10) that satisfies the constraint inequality (11).

Let x0 be an arbitrary integer solution to equation (10). Every integer solution x
of equation (10) can now be written as x = x0 + w, where Aw = 0. Substituting this
into equation (11), we obtain

||y − (u−Bx0)||∞ <
1

2
with y ∈ L,

where L is defined as

L =
{

Bw
∣∣∣w ∈ Z(m+1)c+m(α+1),Aw = 0

}
.

L is a discrete abelian subgroup of R(m+1)c+m(α+1), in other words, a lattice. The
dimension of the lattice is m(c+ α+ 1).

This shows that every solution x to the MMO problem can be mapped to a lattice
vector y = B(x− x0) that has `∞-distance less than 1/2 to the target vector u−Bx0

Note that the matrix B is invertible, which implies that the correspondence between
MMO solutions and close vectors is one-to-one.

All that remains is to find any solution of equation (10) that can play the role
of x0. That is particularly easy if there is a pair (N, qi) or (qi, qj) with gcd(N, qi) = 1
or gcd(qi, qj) = 1. We assume that this holds, and without loss of generality, we assume
that gcd(N, q1) = 1. Then there exist integers µ0 and µ1 such that µ0N + µ1q1 = 1. It
follows that the integer vector (µ0h

t, µ1h
t,0t

(m−1)c+m(α+1))
t satisfies equation (10).

