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Abstract. In this paper, we evaluate the security of lightweight block
ciphers PRESENT, Piccolo and LED against biclique cryptanalysis. To
recover the secret key of PRESENT-80/128, our attacks require 279.76

full PRESENT-80 encryptions and 2127.91 full PRESENT-128 encryp-
tions, respectively. Our attacks on Piccolo-80/128 require computational
complexities of 279.13 and 2127.35, respectively. The attack on a 29-round
reduced LED-64 needs 263.58 29-round reduced LED-64 encryptions. In
the cases of LED-80/96/128, we propose the attacks on two versions.
First, to recover the secret key of 45-round reduced LED-80/96/128, our
attacks require computational complexities of 279.45, 295.45 and 2127.45,
respectively. To attack the full version, we require computational com-
plexities of 279.37, 295.37 and 2127.37, respectively. However, in these cases,
we need the full codebook. These results are superior to known biclique
cryptanalytic results on them.
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1 Introduction

In Asiacrypt 2011, biclique cryptanalysis of AES was proposed [2]. To recover
the secret keys of the full AES-128/192/256, the authors applied this technique
to them in [2]. This is a kind of meet-in-the-middle attack such that bicliques
improve an efficiency. After the proposal of biclique cryptanalysis, it brings new
cryptanalytic techniques on block ciphers, which were known mainly in crypt-
analysis of hash functions. The most attractive point is that this approach does
not use related keys. Because of this property, many biclique cryptanalytic re-
sults on block ciphers were proposed [4, 5, 7, 8].

In this paper, we apply biclique cryptanalysis to the most popular lightweight
block ciphers PRESENT [3], Piccolo [9] and LED [6]. In [2], two concepts of bi-
cliques for AES were considered. One is the long-biclique and the other is the
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independent-biclique. We use the concept of independent-biclique. This is com-
posed of constructing bicliques from independent related-key differentials and
matching with precomputations. We find that a slow and limited diffusion of
the keyschedule and encryption process in the target algorithm leads to rela-
tively long bicliques with high dimension and an efficient matching check with
precomputations. As the results, our attacks can recover the secret key of target
algorithms with computational complexities smaller than an exhaustive search.

Our results are summarized in Table 1. In [1], biclique cryptanalysis of
PRESENT and LED-64/128 were proposed. In detail, the attack on a 28-round
reduced PRESENT-80 requires 260 chosen plaintexts and a computational com-
plexity of 279.54, and the attack on the full PRESENT-128 requires 256 chosen
plaintexts and a computational complexity of 2127.42. Compared with this result,
our attack on PRESENT-128 needs the smaller data complexity. In the case of
LED, the attack on a 31.5-round reduced LED-64 requires 256 chosen plaintexts
and a computational complexity of 263.4, and the attack on the full LED-128
requires 264 chosen plaintexts and a computational complexity of 2127.25. With
respect to the number of attack rounds, the attack result on LED-64 proposed
in [1] is better than ours. However, the authors considered LED-64 without the
postwhitening key.

On the other hand, biclique cryptanalysis of Piccolo-80/128 were proposed in
[10]. The attack on a 25-round reduced Piccolo-80 requires 248 chosen plaintexts
and a computational complexity of 278.95. Note that this is the attack result
on Piccolo-80 without the postwhitening key. In the case of a 28-round reduced
Piccolo-128, this attack requires 224 chosen plaintexts and a computational com-
plexity of 2126.79. Compared to these results, our attack results are superior to
them.

This paper is organized as follows. In Section 2, we describe the structures of
PRESENT, Piccolo and LED. In Section 3, we introduce briefly biclique crypt-
analysis. Biclique cryptanalysis on PRESENT, Piccolo and LED are proposed
in Section 4, 5 and 6, respectively. Finally, we give our conclusion in Section 7.

2 Description of PRESENT, Piccolo and LED

In this section, we present the structures of PRESENT, Piccolo and LED briefly.

2.1 PRESENT

PRESENT is a 64-bit block cipher with 80/128-bit secret keys and 31 iterative
rounds. According to the length of secret keys, we call this algorithm PRESENT-
80/128, respectively. PRESENT has the SPN structure and it is composed of
the round function and the postwhitening. Both versions of PRESENT have the
similar structure except the key schedule. In detail, PRESENT-80 takes a 64-bit
plaintext P = (P15, P14, · · · , P0) and the 80-bit secret key K = (k79, k78, · · · , k0)
as input values and generates a 64-bit ciphertext C = (C15, C14, · · · , C0). Sim-
ilarly, PRESENT-128 takes a 64-bit plaintext P and the 128-bit secret key
K = (k127, k126, · · · , k0) as input values and generates a 64-bit ciphertext C.
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Table 1. Summary of biclique cryptanalytic results on PRESENT, Piccolo and LED.

Target algorithm Rounds Data complexity Computational complexity Reference

PRESENT-80
28 260 279.54 [1]

Full(31) 223 279.76 This paper

PRESENT-128
Full(31) 256 2127.42 [1]

Full(31) 219 2127.81 This paper

Piccolo-80
25∗ 248 278.95 [10]

Full(25) 248 279.13 This paper

Piccolo-128
28 224 2126.79 [10]

Full(31) 224 2127.35 This paper

LED-64
31.5∗∗ 256 263.40 [1]

29 240 263.58 This paper

LED-80
45 232 279.45 This paper

Full(48) 264 279.37 This paper

LED-96
45 232 295.45 This paper

Full(48) 264 295.37 This paper

LED-128

Full(48) 264 2127.25 [1]

45 232 2127.45 This paper

Full(48) 264 2127.37 This paper

∗: Attack result on Piccolo-80 without the postwhitening key.

∗∗: Attack result on LED-64 without the postwhitening key.

As depicted in Fig. 1, there are three subfunctions involved in the round
function. The first subfunction is addRoundKey. At the beginning of round r,
a 64-bit input value Xr is XORed with a round key RKr = (RKr

15, · · · , RKr
0)

(r = 0, · · · , 30). The second subfunction is sBoxLayer. Sixteen identical 4 ×
4 S-boxes are used in parallel as a nonlinear substitution layer. In the third
subfunction, pLayer, a bit permutation is performed to provide diffusion. See [3]
for the detailed description of the round function.

The key schedule of PRESENT takes the 80/128-bit secret key and gener-
ates thirty two 64-bit round keys RKr and RK31 (r = 0, · · · , 30). Note that
RK31 is used for post-whitening. To generate 32 round keys, the key schedule
of PRESENT-80 conducts the following procedure. First, the 80-bit secret key
K = (k79, · · · , k0) is loaded to a 80-bit register SK = (sk79, · · · , sk0): ski = ki
(i = 0, · · · , 79). Then, SK is updated as follows.

1. (sk79, · · · , sk0) = (sk18, · · · , sk0, sk79, · · · , sk19).
2. (sk79, sk78, sk77, sk76) = Sbox[(sk79, · · · , sk76)].
3. (sk19, sk18, sk17, sk16, sk15) = (sk19, · · · , sk15)⊕ (r + 1).
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Fig. 1. Round function of PRESENT.

Applying the above procedure repeatedly, a 64-bit round key RKr consists of
the 64 leftmost bits of SK. That is, at round r, RKr is computed as follows.

RKr = (sk79, sk78, · · · , sk16).

The key schedule of PRESENT-128 is similar to that of PRESENT-80. After
loading the 128-bit secret key K = (k127, · · · , k0), a 128-bit register SK =
(sk127, sk126, · · · , sk0) is updated as follows.

1. (sk127, · · · , sk0) = (sk66, · · · , sk0, sk127, · · · , sk67).
2. (sk127, · · · , sk124) = Sbox[(sk127, · · · , sk124)].
3. (sk123, · · · , sk120) = Sbox[(sk123, · · · , sk120)].
4. (sk66, sk65, sk64, sk63, sk62) = (sk66, · · · , sk62)⊕ (r + 1).

Applying the above procedure repeatedly, RKr is computed as follows.

RKr = (sk127, sk126, · · · , sk64).

2.2 Piccolo

Piccolo-80/128 is a 64-bit block cipher and supports 80/128-bit secret keys. As
shown in Fig. 2, the structure of Piccolo-80/128 is a variant of generalized Feistel
network. Here, the number of rounds r is 25 for Piccolo-80 and 31 for Piccolo-
128. First, with a 64-bit plaintext P = (P0, P1, P2, P3) and a prewhitening key
(wk0, wk1), the input value I0 = (I0,0, I0,1, I0,2, I0,3) of round 0 is computed as
follows.

I0,0 = P0 ⊕ wk0, I0,1 = P1, I0,2 = P2 ⊕ wk1, I0,3 = P3.

To generate Ii+1 from Ii (i = 0, · · · , r − 2), each round is made up of a
function F and a 64-bit round permutation RP . Fig. 3-(a) presents the structure
of F function. Since our attack do not use the property of 4 × 4 S-box S and
4× 4 matrix M , we omit the descriptions of them in this paper. See [9] for the
detailed descriptions of them. As shown in Fig. 3-(b), a round permutation RP
takes a 64-bit input value X = (x0, x1, x2, x3) and generates a 64-bit output
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value Y = (y0, y1, y2, y3). Here, a 16-bit xi is divided into (xL
i , x

R
i ). A 64-bit

ciphertext C = (C0, C1, C2, C3) is generated as follows.

C0 = Ir−1,0 ⊕ wk2, C1 = F (Ir−1,0)⊕ Ir−1,1 ⊕ rk2r,

C2 = Ir−1,2 ⊕ wk3, C3 = F (Ir−1,2)⊕ Ir−1,3 ⊕ rk2r+1.

The keyschedule of Piccolo-80 is simple. First, the 80-bit secret key K is
computed as follows. Here, kj = (kLj , k

R
j ) (j = 0, 1, 2, 3, 4).

K = (k0, k1, k2, k3, k4).

Four whitening keys (wk0, wk1, wk2, wk3) and 25 round keys (rk2r, rk2r+1) are
generated as follows (r = 0, 1, · · · , 24). Here, (con80

2r, con
80
2r+1) is a 16-bit round

constant. See [9] for the detailed descriptions of them.

– Whitening key

wk0 = kL0 ∥kR1 , wk1 = kL1 ∥kR0 ,
wk2 = kL4 ∥kR3 , wk3 = kL3 ∥kR4 .

– Round key

(rk2r, rk2r+1) = (con80
2r, con

80
2r+1)⊕

 (k2, k3), (r mod 5) ≡ 0 or 2,
(k0, k1), (r mod 5) ≡ 1 or 4,
(k4, k4), (r mod 5) ≡ 3.

The keyschedule of Piccolo-128 is similar to that of Piccolo-80. By using the
128-bit secret key K = (k0, k1, · · · , k7), four whitening keys and 31 round keys
are generated as follows.

– Whitening key

wk0 = kL0 ∥kR1 , wk1 = kL1 ∥kR0 ,
wk2 = kL4 ∥kR7 , wk3 = kL7 ∥kR4 .

– Round key (i = 0, 1, · · · , 61)
• if ((i+ 2) mod 8 ≡ 0) then

(k0, k1, k2, k3, k4, k5, k6, k7) = (k2, k1, k6, k7, k0, k3, k4, k5).

• rki = k(i+2) mod 8 ⊕ con128
i .

Table 2 presents the partial secret keys used in each round key. For example,
in Piccolo-80, the round key (rk48, rk49) of round 24 includes the partial secret
key (k0, k1). See [9] for the detailed descriptions of them.
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Table 2. The partial secret key used in each round key of Piccolo.

Piccolo-80 Piccolo-128

Round i Partial secret key Round i Partial secret key

Prewhitening (kL
0 ∥kR

1 , k
L
1 ∥kR

0 ) Prewhitening (kL
0 ∥kR

1 , k
L
1 ∥kR

0 )

0 (k2, k3) 0 (k2, k3)

1 (k0, k1) 1 (k4, k5)
...

...
...

...

22 (k2, k3) 28 (k0, k7)

23 (k4, k4) 29 (k6, k3)

24 (k0, k1) 30 (k2, k5)

Postwhitening (kL
4 ∥kR

3 , k
L
3 ∥kR

4 ) Postwhitening (kL
4 ∥kR

7 , k
L
7 ∥kR

4 )

2.3 LED

LED is a 64-bit block cipher which supports 64/80/96/128-bit secret keys. The
number of rounds is 32 (LED-64) and 48 (LED-80/96/128). A 64-bit internal
state is treated as the following nibble matrix of size 4 × 4 where each nibble
represents an element from GF (24) with the underlying polynomial for field
multiplication given by x4 + x + 1. Here, I[i] is an i-th nibble value of I (i =
0, · · · , 15).

I =


I[0] I[1] I[2] I[3]
I[4] I[5] I[6] I[7]
I[8] I[9] I[10] I[11]
I[12] I[13] I[14] I[15]

 .

P step

4 rounds

step step C

P

K1

step

4 rounds

step step C

(a)

(b)

K1 K1 K1 K1 K1

K2 K1 K2 K1

Fig. 4. The encryption process of (a) LED-64 and (b) LED-80/96/128.

Fig. 4 presents the encryption process of LED-64 and LED-80/96/128, re-
spectively. The encryption process is described by using addRoundKey(I,K)
and step(I). In addRoundKey(I,K), nibbles of round key K are combined with
an internal state I. Note that there is no keyschedule. According to the length of
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secret keys, they are arranged in one or two matrices of size 4× 4 over GF (24).
In detail, the secret key K is repeatedly used without modification as follows.

– The 64-bit secret key K = (K[0],K[1], · · · ,K[15]):

K1 =


K[0] K[1] K[2] K[3]
K[4] K[5] K[6] K[7]
K[8] K[9] K[10] K[11]
K[12] K[13] K[14] K[15]

 .

– The 80-bit secret key K = (K[0],K[1], · · · ,K[19]):

K1∥K2 =


K[0] K[1] K[2] K[3]
K[4] K[5] K[6] K[7]
K[8] K[9] K[10] K[11]
K[12] K[13] K[14] K[15]




K[16] K[17] K[18] K[19]
0 0 0 0
0 0 0 0
0 0 0 0

 .

– The 96-bit secret key K = (K[0],K[1], · · · ,K[23]):

K1∥K2 =


K[0] K[1] K[2] K[3]
K[4] K[5] K[6] K[7]
K[8] K[9] K[10] K[11]
K[12] K[13] K[14] K[15]




K[16] K[17] K[18] K[19]
K[20] K[21] K[22] K[23]

0 0 0 0
0 0 0 0

 .

– The 128-bit secret key K = (K[0],K[1], · · · ,K[31]):

K1∥K2 =


K[0] K[1] K[2] K[3]
K[4] K[5] K[6] K[7]
K[8] K[9] K[10] K[11]
K[12] K[13] K[14] K[15]




K[16] K[17] K[18] K[19]
K[20] K[21] K[22] K[23]
K[24] K[25] K[26] K[27]
K[28] K[29] K[30] K[31]

 .

AddConstants

4 bits

SubCells Shi!Rows MixColumnsSerial

S S

S S

S S

S S

S S

S S

S S

S S

Fig. 5. Overview of a single round of LED.

The second operation step(I) consists of four rounds of the encryption pro-
cess. Each of these four rounds uses, in sequence, the operations AddConstants,
SubCells, ShiftRows and MixColumnsSerial as illustrated in Fig. 5.
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In AddConstants(AC), a round constant is defined as follows. At each round,
the six bits (rc5, rc4, rc3, rc2, rc1, rc0) are shifted one position to the left with
the new value to rc0 being computed as rc5⊕ rc4⊕1. The six bits are initialized
to zero, and updated “before” use in a given round. The constant, when used in
a given round, is arranged into an array as follows:

0 (rc5∥rc4∥rc3) 0 0
1 (rc2∥rc1∥rc0) 0 0
2 (rc5∥rc4∥rc3) 0 0
3 (rc2∥rc1∥rc0) 0 0

 .

The round constants are combined with an internal state, respecting array po-
sitioning, using bitwise exclusive-or.

In SubCells(SC), each nibble in an internal state I is replaced by the nibble
generated after using the following 4× 4 S-box used in PRESENT [3].

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 1 7 2

In ShiftRows(SR), row i of an internal state I is rotated i cell positions to
the left, for i = 0, 1, 2, 3.

In MixColumnsSerial(MC), each column of an internal state I is viewed
as a column vector and replaced by the column vector that results after post-
multiplying the vector by the following MDS matrix M .

M =


4 2 1 1
8 6 5 6
B E A 9
2 2 F B

 .

3 Biclique cryptanalysis

Biclique cryptanalysis is a kind of meet-in-the-middle attack. The main idea of
this attack is to construct bicliques on the target subcipher, and use this to
enhance the efficiency of computations.

First, the concept of biclique is as follows. Let f be a subcipher that maps
an internal state S to a ciphertext C: fK(S) = C. We consider 2d internal states
{S0, · · · , S2d−1}, 2d ciphertexts {C0, · · · , C2d−1} and 22d keys {K<i,j>}:

{K<i,j>} =

 K<0,0> K<0,1> · · · K<0,2d−1>
...

...
. . .

...
K<2d−1,0> K<2d−1,1> · · · K<2d−1,2d−1>

 . (1)

The 3-tuple [{Ci}, {Sj}, {K<i,j>}] is called a d-dimensional biclique, if

Ci = fK<i,j>(Sj) for all i, j ∈ {0, · · · , 2d − 1}. (2)

Biclique cryptanalysis consists of the following steps.
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1. [Preparation] Partition the whole key space into 2k−2d sets of 22d keys
each, where k is the size of secret key. Each key in a set is indexed as an
element of a 2d × 2d matrix like Equation (1): {K<i,j>}.

2. [Constructing bicliques] For each set of keys, build the structure {C0, · · · ,
C2d−1}, {S0, · · · , S2d−1}, {K<i,j>} satisfying Equation (2).

3. [Collecting data] Obtain plaintexts {Pi} from ciphertexts {Ci} through
the decryption oracle.

4. [Testing keys] The right key K maps a plaintext Pi to an intermediate Sj .
Thus, check

∃ i, j : Pi
K<i,j>−−−−−→

g
Sj , (3)

which proposes a key candidate. Here, g is a subcipher that maps a plaintext
P to an internal state S: gK(P ) = S. If the right key is not found in the
chosen key set, then choose another key set and repeat the above process.

3.1 Constructing bicliques from independent related-key
differentials

In [2], two methods to construct bicliques were proposed. One is to use indepen-
dent related-key differentials and the other is to interleave related-key differen-
tials. In this paper, we focus on the former, called the independent-biclique.

We consider two sets of 2d keys A = {K<i,0> | 0 ≤ i ≤ 2d − 1} and B =
{K<0,j> | 0 ≤ j ≤ 2d − 1} such that A ∩ B = {K<0,0>}. We assume that S0

is an intermediate string randomly chosen. Let K<0,0> maps S0 to a ciphertext

C0 with f , that is S0
K<0,0>−−−−−→

f
C0. Then, {Ci} and {Sj} are obtained by using

the following computations.

S0
K<i,0>−−−−−→

f
Ci and Sj

K<0,j>←−−−−−
f−1

C0.

Let ∆i = C0 ⊕ Ci, ∆
K
i = K<0,0> ⊕K<i,0>, ∇j = S0 ⊕ Sj and ∇K

j = K<0,0> ⊕

K<0,j>. Then, we can construct the ∆i-differential 0
∆K

i−−→ ∆i where a related-

key difference is ∆K
i , and the ∇j-differential ∇j

∇K
j−−→ 0 where a related-key

difference is ∇K
j .

If these two related-key differentials do not share active nonlinear components
for all i and j, the following relation is satisfied.

S0 ⊕∇j

K<0,0>⊕∆K
i ⊕∇K

j−−−−−−−−−−−−→
f

C0 ⊕∆i for all i, j ∈ {0, · · · , 2d − 1}.

3.2 Matching with precomputations

The matching with precomputations is an efficient method to check Equation
(3) in the attack procedure. Let v be a part of an internal state between {Pi}
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and {Sj}. v is called the matching variable. First, an attacker computes and
stores the followings in memory.

for all i ∈ {0, · · · , 2d − 1}, Pi
K<i,0>−−−−−→ −→v ,

for all j ∈ {0, · · · , 2d − 1}, ←−v K<0,j>←−−−−− Sj .

Then, for particular i and j, he checks the matching at v by recomputing only
those parts of the cipher which differ from the stored ones. The cost of recom-
putation depends on the diffusion properties of both internal rounds and the
keyschedule of the cipher.

4 Biclique cryptanalysis of PRESENT

In this section, we propose biclique cryptanalysis of PRESENT-80/128.

4.1 Biclique cryptanalysis of PRESENT-80

First, we explain how to construct a 4-dimensional biclique for round 28 ∼ 30 of
PRESENT-80. The partial secret keys used in (RK28, RK29, RK30, RK31) are
as follows.

– RK28: (k51, k50, · · · , k0, k79, k78, · · · , k68).
– RK29: (k70, k69, · · · , k7).
– RK30: (k9, k8, · · · , k0, k79, k78, · · · , k26).
– RK31: (k28, k27, · · · , k0, k79, k78, · · · , k45).

From the above relation, we found that varying (k58, k57, k56, k55) and (k37, k36,
k35, k34) gives bicliques for the attack on the full PRESENT-80. In detail, to con-
struct the ∆i-differential and the ∇j-differential, we consider (k58, k57, k56, k55)
and (k37, k36, k35, k34), respectively. Let f be a subcipher from round 28 to
round 30 (see Fig. 6). An attacker fixes C0 = 0 and derives S0 = f−1

K<0,0>
(C0).

The ∆i-differentials are based on the difference ∆K
i where the difference of

(k58, k57, k56, k55) is i and the other bits have zero differences. Similarly, the
∇j-differentials are based on the difference ∇K

j where the difference of (k37, k36,
k35, k34) is j and the other bits have zero differences. Since the ∆i-differential
affects only 23 bits of the ciphertext from Fig. 6, all ciphertexts can be forced
to share the same values in other bits. As a result, the data complexity does not
exceed 223.

Now we are ready to describe our attack on the full PRESENT-80. We rewrite
the full PRESENT-80 as follows. Here, g1, g2 and f are subciphers for round
0 ∼ 14, round 15 ∼ 27 and round 28 ∼ 30, respectively.

E : P −→
g1

V −→
g2

S −→
f

C.

We assume that the plaintext set {Pi} corresponding to a 3-round biclique is
obtained through the decryption oracle. Applying Equation (3) to g2 ◦ g1, an
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Fig. 6. 4-dimensional biclique for PRESENT-80.

attacker detects the right secret key by computing an intermediate variable v in
both directions.

Pi
K<i,j>−−−−−→

g1

−→v ?
=←−v K<i,j>←−−−−−

g−1
2

Sj . (4)

The attack procedure on the full PRESENT-80 is as follows.

1. [Precomputation] For all i = 0, · · · , 24 − 1(d = 4), an attacker computes
the most significant 4 bits of the output value of round 15 from Pi andK<i,0>

in the forward direction, and store it as −→v i, together with intermediate states
and round keys in memory (see Fig. 7). For all j = 0, · · · , 24−1, an attacker
computes the most significant 4 bits of the input value of round 16 from Si

and K<0,j> in the backward direction, and store it as ←−v j , together with
intermediate states and round keys in memory.

2. [Computation in the backward direction] In the backward direction,
an attacker should compute←−v j from Sj and K<i,j> for all i and j, and store
them in memory. Recomputations are performed according to red/blue lines
in Fig. 7, and the values on the other lines are reused from the precomputa-
tion table.

3. [Computation in the forward direction] In the forward direction, an
attacker should compute −→v i from Pi and K<i,j>. Recomputations are per-
formed according to red/blue lines in Fig. 7, and the values on the other
lines are reused from the precomputation table.

For each computed −→v , an attacker checks whether the corresponding key can-
didate K<i,j> satisfies Equation (4). If he finds such one, he should check the
matching on the whole input value of round 16 for K<i,j>, Pi and Sj . This
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matching step yields the right secret key K with a high probability. If a biclique
does not give the right secret key, an attacker should choose another biclique
and repeat the above procedure until the right secret key is found.
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Fig. 7. Recomputations in forward and backward directions for PRESENT-80.

A total computational complexity of our attack on PRESENT-80 is computed
as follows.

Ctotal = 2k−2d (Cbiclique + Cprecomp + Crecomp + Cfalsepos) . (5)

– k = 80 and d = 4.
– Cbiclique is a computational complexity of constructing a single biclique. In

our attack, it is 21.63
(
≈ 24+1 · (3/31)

)
full PRESENT-80 encryptions.

– Cprecomp is a computational complexity of preparing the precomputation
for the matching check in Equation (4). Applying it to our attack, it is
23.85

(
≈ 24 · (28/31)

)
full PRESENT-80 encryptions.

– Crecomp is a computational complexity of recomputing the internal vari-
able v 22d

(
= 28

)
times. In our attack, it is 27.53

(
≈ 22·4 · (22.31/31)

)
full

PRESENT-80 encryptions.
– Cfalsepos is a computational complexity caused by false positives, which have

to be matched on other bit positions. Since the matching check is performed
on four bits in our attack, Cfalsepos is 24

(
≈ 22·4−4

)
full PRESENT-80 en-

cryptions.

Hence, a computational complexity of our attack on the full PRESENT-80 is
computed as follows.

Ctotal = 279.86
(
≈ 280−2·4 (21.63 + 23.85 + 27.53 + 24

))
.



14 K. Jeong et al.

4.2 Biclique cryptanalysis of PRESENT-128

Since biclique cryptanalysis of the full PRESENT-128 is similar to that of the
full PRESENT-80, we briefly introduce our attack on the full PRESENT-128.

S
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S S S S S S S S S S S S S S S

RK
29

S S S S S S S S S S S S S S S S

RK
30

RK
31

C

S S S S S S S S S S S S S S S S

S

RK
27

S S S S S S S S S S S S S S S

Fig. 8. 4-dimensional biclique for PRESENT-128.

To recover the 128-bit secret key, we construct a 3-dimensional biclique for
round 27 ∼ 31 of PRESENT-128 as shown in Fig. 8. The partial secret keys used
in (RK27, RK28, RK29, RK30, RK31) are as follows.

– RK27: (k16, k15, · · · , k0, k127, k126, · · · , k81).
– RK28: (k83, k82, · · · , k20).
– RK29: (k22, k21, · · · , k0, k127, k126, · · · , k87).
– RK30: (k89, k88, · · · , k26).
– RK31: (k28, k27, · · · , k0, k127, k126, · · · , k93).

From the above relation, to construct the ∆i-differential and the ∇j-differential,
we consider (k19, k18, k17) and (k80, k79, k78), respectively. The ∆i-differential
affects only 19 bits of the ciphertext from Fig. 8. As a result, the data complexity
does not exceed 219.

We rewrite the full PRESENT-128 as follows. Here, g1, g2 and f are subci-
phers for round 0 ∼ 13, round 14 ∼ 26 and round 27 ∼ 30, respectively.

E : P −→
g1

V −→
g2

S −→
f

C.
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Fig. 9. Recomputations in forward and backward directions for PRESENT-128.
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As depicted in Fig. 9, the matching variable v is the least significant 4 bits of the
output value of round 13 (or the input value of round 14). Then, the complexities
of our attack are computed as follows (see Equation (5)).

– Computational complexity: 2127.81 full PRESENT-128 encryptions.

• k = 128 and d = 3.

• Cbiclique = 21.05
(
≈ 23+1 · (4/31)

)
full PRESENT-128 encryptions.

• Cprecomp = 22.8
(
23 · (27/31)

)
full PRESENT-128 encryptions.

• Crecomp = 25.43
(
22·3 · (20.88/31)

)
full PRESENT-128 encryptions.

• Cfalsepos = 22
(
22·3−4

)
full PRESENT-128 encryptions.

5 Biclique cryptanalysis of Piccolo

In this section, we explain key recovery attacks on the full Piccolo-80/128 by
constructing 8-dimensional bicliques.

5.1 Biclique cryptanalysis of Piccolo-80

As presented in Section 2.2, two 2-byte round keys are used at each round.
Each 2-byte round keys are generated by a 2-byte secret key ki (see Table 2).
From Table 2, we found that kL4 and kL2 give the construction of a 8-dimensional
biclique. Let f be a subcipher from round 19 to round 24. Then, as shown in
Fig. 10, we can construct an 8-dimensional biclique. The ∆i-differential affects
only 6 bytes of the ciphertext from Fig. 10. As a result, the data complexity does
not exceed 248.

We rewrite the full Piccolo-80 as follows. Here, g1, g2 and f are subciphers
for round 0 ∼ 9, round 10 ∼ 18 and round 19 ∼ 24, respectively.

E : P −→
g1

V −→
g2

S −→
f

C.

The matching variable v is an 8-bit IL10,3 of round 10 as shown in Fig. 11. Then,
the complexities of our attack are computed as follows (see Equation (5)).

– Computational complexity: 279.13 full Piccolo-80 encryptions.

• k = 80 and d = 8.

• Cbiclique = 26.94
(
≈ 28+1 · (6/25)

)
full Piccolo-80 encryptions.

• Cprecomp = 27.6
(
28 · (19/25)

)
full Piccolo-80 encryptions.

• Crecomp = 215.11
(
22·8 · (13.5/25)

)
full Piccolo-80 encryptions.

• Cfalsepos = 28
(
22·8−8

)
full Piccolo-80 encryptions.



Biclique Cryptanalysis of PRESENT, Piccolo and LED 17

Fig. 10. 8-dimensional biclique for Piccolo-80.
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Fig. 11. Recomputations in forward and backward directions for Piccolo-80.
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Fig. 12. 8-dimensional biclique for Piccolo-128.
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Fig. 13. Recomputations in forward and backward directions for Piccolo-128.
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5.2 Biclique cryptanalysis of Piccolo-128

To recover the 128-bit secret key of Piccolo-128, we consider kL6 and kL1 from
Table 2. Then, we can construct a 8-dimensional biclique for round 24 ∼ 30 as
shown in Fig. 12. The ∆i-differential affects only 3 bytes of the ciphertext from
Fig. 12. As a result, the data complexity does not exceed 224.

We rewrite the full Piccolo-128 as follows. Here, g1, g2 and f are subciphers
for round 0 ∼ 11, round 12 ∼ 23 and round 24 ∼ 30, respectively.

E : P −→
g1

V −→
g2

S −→
f

C.

As depicted in Fig. 13, the matching variable v is an 8-bit IL10,3 of round 12.
Then, the complexities of our attack are computed as follows (see Equation (5)).

– Computational complexity: 2127.35 full Piccolo-128 encryptions.
• k = 128 and d = 8.
• Cbiclique = 26.85

(
≈ 28+1 · (7/31)

)
full Piccolo-128 encryptions.

• Cprecomp = 27.63
(
28 · (24/31)

)
full Piccolo-128 encryptions.

• Crecomp = 215.33
(
22·8 · (19.5/31)

)
full Piccolo-128 encryptions.

• Cfalsepos = 28
(
22·8−8

)
full Piccolo-128 encryptions.

6 Biclique cryptanalysis of LED

We propose two versions of our attacks on LED. First, we present the attacks
on a 29-round reduced LED-64 and 45-round reduced LED-80/96/128. Then the
attacks on the full LED-80/96/128 are introduced.

6.1 Biclique cryptanalysis of reduced versions of LED

The attack procedures on 45-round reduced LED-80/96/128 are similar to that
on a 29-round reduced LED-64. Thus, we focus on the attack on a 29-round
reduced LED-64 in this subsection.

For a 29-round reduced LED-64, we consider (K[10],K[11]) and (K[2],K[3])
(see Section 2.3). Then, we can construct a 8-dimensional biclique for round
24 ∼ 28 (see Fig. 14). The ∆i-differential affects only 10 nibbles of the ciphertext
from Fig. 14. As a result, the data complexity does not exceed 240. We rewrite a
29-round reduced LED-64 as follows. Here, g1, g2 and f are subciphers for round
0 ∼ 12, round 13 ∼ 23 and round 24 ∼ 28, respectively.

E : P −→
g1

V −→
g2

S −→
f

C.

The matching variable v is the 4-bit input value I[0] of round 13 as shown in Fig.
15. Then, the complexities of our attack are computed as follows (see Equation
(5)).

– Computational complexity: 263.58 29-round reduced LED-64 encryptions.
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Fig. 14. 8-dimensional biclique for a 29-round reduced LED-64.

• k = 64 and d = 8.
• Cbiclique = 26.46

(
≈ 28+1 · (5/29)

)
29-round reduced LED-64 encryptions.

• Cprecomp = 27.73
(
28 · (24/29)

)
29-round reduced LED-64 encryptions.

• Crecomp = 215.44
(
22·8 · (19.69/29)

)
29-round reduced LED-64 encryp-

tions.
• Cfalsepos = 212

(
22·8−4

)
29-round reduced LED-64 encryptions.

The attacks on 45-round reduced LED-80/96/128 are explained in a similar
fashion. In these cases, we consider (K[16],K[17]) and (K[18],K[19]) (see Sec-
tion 2.3). Then, we can construct a 8-dimensional biclique for round 36 ∼ 44.
We rewrite 45-round reduced LED-80/96/128 as follows. Here, g1, g2 and f are
subciphers for round 0 ∼ 17, round 18 ∼ 35 and round 36 ∼ 44, respectively.

E : P −→
g1

V −→
g2

S −→
f

C.

The matching variable v is the 4-bit input value I[0] of round 18. Then, the
complexities of our attacks are computed as follows (see Equation (5)).

– Data complexity: 232 chosen plaintexts.
– Computational complexity: 279.45/295.45/2127.45 45-round reduced LED-80/

96/128 encryptions.
• k = 80/96/128 and d = 8.
• Cbiclique = 26.68

(
≈ 28+1 · (9/45)

)
45-round reduced LED-80/96/128 en-

cryptions.
• Cprecomp = 27.68

(
28 · (36/45)

)
45-round reduced LED-80/96/128 en-

cryptions.
• Crecomp = 215.3

(
22·8 · (27.69/45)

)
45-round reduced LED-80/96/128 en-

cryptions.
• Cfalsepos = 212

(
22·8−4

)
45-round reduced LED-80/96/128 encryptions.
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Fig. 15. Recomputations in forward and backward directions for a 29-round reduced
LED-64.
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6.2 Biclique cryptanalysis of the full LED

We found that it is possible to apply biclique cryptanalysis to the full LED-
80/96/128. Similarly to the attacks on 45-round reduced LED-80/96/128, we
consider (K[16], K[17]) and (K[18],K[19]) to construct a 8-dimensional biclique
for round 36 ∼ 47 as shown in Fig. 16. The ∆i-differential affects all nibbles of
the ciphertext from Fig. 16. As a result, this attack require the full codebook
(264 chosen plaintexts). We rewrite the full LED-80/96/128 as follows. Here,
g1, g2 and f are subciphers for round 0 ∼ 17, round 18 ∼ 35 and round 36 ∼ 47,
respectively.

E : P −→
g1

V −→
g2

S −→
f

C.

As depicted in Fig. 17, the matching variable v is the 4-bit input value I[0] of
round 18. Then, the complexities of our attacks are computed as follows (see
Equation (5)).

– Data complexity: 264 chosen plaintexts.
– Computational complexity: 279.37/295.37/2127.37 full LED-80/96/128 encryp-

tions.
• k = 80/96/128 and d = 8.
• Cbiclique = 27

(
≈ 28+1 · (12/48)

)
full LED-80/96/128 encryptions.

• Cprecomp = 27.58
(
28 · (36/48)

)
full LED-80/96/128 encryptions.

• Crecomp = 215.21
(
22·8 · (27.69/48)

)
full LED-80/96/128 encryptions.

• Cfalsepos = 212
(
22·8−4

)
full LED-80/96/128 encryptions.

7 Conclusion

In this paper, we proposed biclique cryptanalysis of lightweight block ciphers
PRESENT, Piccolo and LED. Our attack results are summarized in Table 1.
From this table, our results are superior to known biclique cryptanalytic results
on them.
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