
Impossible plaintext cryptanalysis and
probable-plaintext collision attacks of 64-bit

block cipher modes

David McGrew
mcgrew@cisco.com

Cisco Systems, Inc.

Abstract. The block cipher modes of operation that are widely used
(CBC, CTR, CFB) are secure up to the birthday bound; with a w-bit
block cipher, they are secure if w2w or fewer bits of data are encrypted,
and insecure above that bound. However, the detailed security proper-
ties close to this bound are not widely appreciated, despite the fact that
64-bit block ciphers are sometimes used in that domain. This work ad-
dresses the issue by describing and analyzing plaintext-recovery attacks
that are effective close to that bound. We describe possible-plaintext at-
tacks, which can learn unknown plaintext values that are encrypted with
CBC, CFB, or OFB. We also introduce impossible plaintext cryptanaly-
sis, which can recover information encrypted with CTR, and can improve
attacks against the aforementioned modes as well. These attacks work at
the birthday bound, or even slightly below that bound, when the target
plaintext values are encrypted under a succession of keys.

1 Introduction

A w-bit block cipher with a κ-bit key is an invertible function that maps
w-bit inputs to w-bit outputs, in which the mapping is pseudorandom
and different for each of the 2κ possible values of the key. Users of cryp-
tography appreciate the need for appropriately large keys, and in practice
κ = 128 is common and is recommended. However, there is less apprecia-
tion of the need for large block width w, and a decade after the adoption
of 128-bit block ciphers, the use of 64-bit block ciphers is still ongoing.

A block cipher encryption mode of operation is an algorithm for en-
crypting arbitrary-length plaintexts using a block cipher, which logically
breaks the plaintext into w-bit blocks, and processes these blocks using
the block cipher (and other operations such as bitwise exclusive-or).The
Cipher Block Chaining (CBC), Ciphertext Feedback (CFB), and Counter
(CTR) modes [5] are used in practice with 64-bit block ciphers such as
Triple-DES [27, 20], GOST 28147-89 [22], and KASUMI [26].

Theory advises against using a w-bit block cipher to encrypt more
than 2w/2 blocks with a single key; this is known as the birthday bound.
Triple-DES has parameters κ = 168 and w = 64, and GOST 28147-89 has
κ = 256 and w = 64. The key sizes of these ciphers imply strong security
goals, e.g. that an attacker cannot learn anything about the plaintext
without O(2112) or O(2256) operations. However, any 64-bit block cipher
in a conventional encryption mode of operation that processes gigabytes
of plaintext will give up some secret information; in short, a 64-bit block
cipher cannot meet its security goals when it is used at modern data rates.
We demonstrate this fact by describing attacks that recover information
about unknown plaintexts that take as few as O(235) operations.

Throughout this work we assume that the attacker can observe all
of the ciphertext, and assume that the attacker has some (incomplete)
knowledge about the plaintext. For instance, an attacker might know that
a particular plaintext consists of english-language HTML4 carried over
HTTP/1.1 [8], TCP [24], and IPv4 [23]. Through a careful analysis of the
protocols being encrypted, and observations of the lengths and order of
packets, an attacker can make many inferences about some parts of the
plaintext. The goal of the encryption system is to prevent the attacker
from leveraging this partial knowledge to learn other more sensitive parts
of the plaintext; for example, passwords like those used for HTTP Basic
Authentication [9]. Similar assumptions are valid for the encryption of
data at rest, i.e. disks, partitions, filesystems, files, file elements, and
database entries. The examples we draw on are from network security,
but our analysis applies to other uses of encryption as well.

1.1 Previous work

The fact that CBC, CFB, and CTR give away some information about
their plaintext after about 2w/2 blocks are encrypted is well established,
though to our knowledge no systematic way to exploit this vulnerability
has been described in the open literature. Collision attacks have long
been known, but in applied cryptography circles, they are considered
more in the context of hash functions, where they first appeared in the
literature [19]. Interestingly, there is no discussion of the birthday bound
for CBC, CFB, and CTR in the standard that specifies them [5] and in
the Handbook of Applied Cryptography [18].

Bellare et. al. introduced the concrete security analysis of block ci-
pher encryption modes with an investigation of CBC and CTR [1]. This
seminal work shows that the security of these modes reduces to the in-
distinguishability of the block cipher from a random permutation, and

that CBC and CTR are secure below the birthday bound; it did not ex-
plore how an attacker can exploit those modes when that bound is not
respected, or how practical security degrades close to that bound. Other
works have shown how cryptanalyts can exploit probabilistic informa-
tion about plaintexts. Bellovin studied probable plaintext in the Internet
protocol family [2] and McGrew and Fluhrer showed how some generic
key-recovery attacks can be effective on CTR even when the attacker’s
knowledge of the plaintext is probabilistic [16]. Mason et. al. [15] devel-
oped attacks that recover unknown plaintext from misused one-time-pad,
based on a statistical model of the plaintext and a dynamic programming
approach that identifies the most likely value of the plaintext by finding
the highest probability path through a hidden markov model. None of
these last three works consider the birthday bound.

In this note, we describe plaintext-recovery attacks against CBC,
CFB, and CTR modes that are effective close to the birthday bound.
Our attack on CBC and CFB is an application of the well known colli-
sion attack, while our impossible plaintext attacks against CTR have not
previously appeared. We also show how these attacks can be applied at,
or even slightly below the birthday bound, by continuing the attack across
a succession of distinct keys. We provide motivating examples from Inter-
net communications protocols to show that the attacks can be effective,
discuss the use of 64-bit block ciphers at modern data rates, and conclude
that 128-bit block ciphers have significant security advantages.

1.2 Notation

We let w denote the number of bits in the plaintexts and ciphertexts of
the block cipher. The plaintext and ciphertext consist of a sequence of
w-bit blocks Pi and Ci, respectively, for i = 1, 2, . . . , q. We also use the
convention that C0 is an initialization vector.

For for any set S ⊂ {0, 1}w and any element x ∈ {0, 1}w, we use S⊕x
to denote the set {x ⊕ s : s ∈ S}. For any sets S, T , #S denotes the
number of elements in S, and S/T denotes the set difference; x ∈ S/T iff
x ∈ S, x /∈ T . The direct product of two sets S, T is denoted as S × T =
{(s, t) : s ∈ S, t ∈ T}.

1.3 Modes

A block cipher mode of operation is a ways in which a fixed-width block
cipher can be used to encrypt arbitrary length data. In this note, we

consider the CFB, CBC, and CTR modes [5]. For i = 1, 2, . . . , q, the
plaintext and ciphertext are related as

Pi =

E−1(Ci)⊕ Ci−1 in CBC mode

E(Ci−1)⊕ Ci in CFB mode

E(i)⊕ Ci in CTR mode.

(1)

Without essential loss of generality, we assume that the number of bits in
the plaintext is a multiple of w, for clarity of exposition. We also neglect
the packetization of data and initialization vectors (other than C0) since
it is irrelevant to the analysis. We neglect details of how i is represented
as a w-bit string, which are also not relevant.

In each mode, there is a straightforward relation between a particular
plaintext block and a single invocation of the block cipher, which we use
in our attacks:

Ex =

Ci where x = Pi ⊕ Ci−1 in CBC mode

Cx ⊕ Px where x = Ci−1 in CFB mode

Cx ⊕ Px in CTR mode.

(2)

2 Collision attacks on CBC and CFB

The CBC and CFB modes of operation leak information about plaintext
when a collision in the w-bit block cipher input occurs. For these modes,
we denote as Ii the input to the block cipher encryption operation that
is associated with the ith plaintext:

Ii =

{
Ci in CBC mode

Ci−1 in CFB mode.
(3)

A collision is the event that Ii = Ij for some i 6= j; this event is easy to
observe, based only on the value of the ciphertext blocks. After a collision
is observed, the attacker learns a relationship between the values of Pi
and Pj :

Pi ⊕ Pj = ∆ij , where ∆ij =

{
Cj−1 ⊕ Ci−1 in CBC mode

Cj ⊕ Ci in CFB mode.
(4)

If the attacker has some knowledge of the plaintext, as is typical, then this
relationship provides them with additional information. If the attacker

knows all or part of Pi, the relationship allows them to infer all or part
of Pj . Likewise, Pi can be learned if Pj is known. If the attacker has
partial knowledge about both Pi and Pj , then Equation 4 increases the
knowledge about both values.

In most real-world scenarios, an attacker knows enough about the
plaintext to be able to exploit these relationships very effectively, though
doing so may require the use of specialized statistical methods. These
techniques are well understood and have been successfully applied to
cryptanalysis. The work of Mason et. al. [15] assumes plaintext relations
in the form of Equation 4, and is successful at automatically uncovering
the most likely plaintext values based only on a statistical language model
of the plaintext. To give an idea of how these methods work, we present
a motivating example. We suppose that the attacker knows that the first
two bytes of Pi are in the set { 0A00, AC10, C0A8 }, as would be the
case if that block starts with an IPv4 private address [25], and the first
two bytes of Pj contain ASCII data [4], and thus each of the first two
bytes of Pj is less than 80 (all numbers in hexadecimal). By comparing
the first two bytes of ∆ij to 80, the attacker can find the first two bytes
of Pi, and from that value, can find the first two bytes of Pj .

The following lemma shows the effectiveness of the collision attack,
using a simple plaintext model; the proof is in Appendix A.

Lemma 1. The expected number of bits of unknown plaintext that are
revealed in a collision attack with k blocks of known plaintext and u blocks
of unknown plaintext is wku

2w ≤ n
2 w
2w+2 , where n = k + u.

This model underestimates the data leakage, because it neglects the
fact that when the attacker learns the value of one plaintext block, she
may gain partial information about other plaintext blocks. Nonetheless,
it is useful for understanding the attack.

An efficient method of attack is detailed in Appendix B, which requires
O(n) operations on 2w-bit words, and O(n) storage. This attack is easy
to prosecute, and in fact the attacker’s computational cost is roughly the
same as that of the victim. In practice, storage costs will likely dominate
the cost of the attack, though a one terabyte disk costs less than $100 and
with 243 bits, is sufficient when w = 64. An attacker faced with a situation
in which n > 2

w
2
+1 but only m < n ciphertext blocks can be stored can

maximize their results with the strategy of discarding unknown-plaintext
blocks if u > k and discarding known-plaintext blocks otherwise.

2.1 Rekeying

Lemma 1 assumes that the block cipher key is unchanged, so that all
blocks are encrypted with the same key. The best mitigation against these
attacks (other than using a cipher with a larger value of w) is to rekey the
block cipher; that is, to use multiple keys, so as to limit the total amount
of data encrypted with any single key. Assume that the total number
of blocks to be encrypted is t, and that the number encrypted under a
single key is n. Then expected number of bits of information leakage is
tn w

2w+2 . This equation highlights the important relationship between the
total amount of data encrypted and the information leakage. If there is a
practical lower limit on the rate at which new keys can be established, that
determines the amount of information that a patient attacker can learn
from observing traffic across all keys. Note that since the computational
costs of the attack are less than the costs of the storage required, there is
not much additional incremental cost to the attacker.

3 Impossible plaintext cryptanalysis of CTR

Collision attacks do not work against CTR when it is used with a deter-
ministic nonce (as is conventional), because the there are no collisions in
the block cipher inputs. These attacks are also inapplicable to CTR-based
modes such as CCM [7] and GCM [6]. However, CTR does reveal infor-
mation about the plaintext when it is used beyond the birthday bound.
In this section, we introduce a plaintext-recovery attack against CTR
(and CTR-based modes) that uses impossible plaintexts; it tracks which
values of a particular plaintext block are possible, given the attacker’s
knowledge of other parts of the plaintext, and winnows out the correct
one. This method can also be used to improve the effectiveness of attacks
against other modes.

An attacker can make inferences about CTR-encrypted data as fol-
lows. From Equation 1 and because of the invertibility of E, the attacker
knows that E(i) 6= E(j) for any i 6= j, and thus

Pi 6= Pj ⊕ Ci ⊕ Cj . (5)

An attacker who knows Pj , and observes Ci and Cj , learns that a partic-
ular value of the plaintext is impossible.

3.1 Plaintext model

Before detailing attack techniques, we first establish a model for the plain-
text source. We let K denote a set of known plaintext blocks; for all i ∈ K,

the attacker knows the value of Pi. We assume that the attacker under-
stands (at least part of) the format of the plaintext, and we characterize
the attacker’s knowledge about the plaintext as follows. An unknown re-
peated value occurs when Pi = φ for all i ∈ R for some unknown value φ
and some set R of blocks. We say that the unknown value has repetition
r when #R = r. When an unknown plaintext value is information that
the attacker considers valuable and wants to discover, we call that value
a target. When it is data that is of no interest to the attacker, we call it
an incidental value. An incidental value can be used as a stepping stone
to learning target values. We denote as Φ = {φ1, φ2, . . . , φs} the set of
possible plaintext values; that is, the attacker knows that Pi = φ ∈ Φ for
all i ∈ R, but does not know the actual value of φ.

Unknown repeated values occur more often in real-world systems than
one might initially expect. For instance, every 1500 byte IPv4 packet
contains two four-byte addresses, and every IPv6 packet with the same
size contains two sixteen-byte addresses; as these values are constant for
a particular data flow, they present repeated values that comprise 0.5%
and 2.1% of those flows. When HTTP Basic Authentication [9] is used, a
username/password value is repeated in each HTTP request.

3.2 Inferences

Equation 5 provides a small amount of information about Pi, based on
knowledge of Pj . Collecting this knowledge across all of the known plain-
texts leads to the first part of the following lemma; collecting information
across each ciphertext Ci : i ∈ R, gives the second part.

Lemma 2. For any ciphertext block Ci : i /∈ K the corresponding plain-
text block Pi /∈ (E ⊕ Ci), where E = {E(j) : j ∈ K} = {Pj ⊕ Cj : j ∈ K}.
An unknown repeated value φ corresponding to the set R satisfies
φ /∈ E ⊕ Γ , where Γ = {Cj : j ∈ R}.

We estimate that an impossible plaintext attack against an unknown
repeated value with repetition r, a possible plaintext set of size #Φ = s,
and k = #E known plaintext blocks succeeds when kr ≥ (ln(s) + 1)2w.
This estimate is derived as follows. We make the heuristic assumption
that the elements of the set E×Γ are uniformly random and independent,
and then model the attack as the coupon collector’s problem [10], where
attacker seeks to find s − 1 coupons (possible plaintexts) by drawing kr
coupons uniformly at random (from E×Γ). Finding a coupon is equivalent
to eliminating a possible plaintext. After j possible plaintexts have been
collected, the number of draws required to collect the next one follows

a geometric distribution with p = 1 − j2−w, so the expected number of
draws needed to find the j+ 1th possible plaintext is 2w

2w−j . When s < 2w,
it is as if 2w − s coupons have already been found before the start of the
attack, so the total number of draws needed to eliminate all s−1 possible
plaintexts is

2w
2w−1∑
j=2w−s

1

2w − j
= 2w

[
1

s
+

1

s− 1
+ . . .+

1

2
+ 1

]
= 2w

s∑
i=1,

1

i
, (6)

from the linearity of expectations. The sum in the rightmost term is the
sth harmonic number; bounding this value [13] gives that the expected
number of draws needed to find all possible plaintexts is in between
(ln(s) + 1

2)2w and (ln(s) + 1)2w, and the estimate follows directly. See
Appendix C for further discussion.

3.3 Implementation

Two different attack approaches are shown in Algorithms 1 and 2. Al-
gorithm 1 uses a sieving method to eliminate the elements of Φ that are
impossible solutions. It loops over all of the elements of E ×R, and thus
takes rk operations on the set Φ. If a simple storage method is used to
hold Φ, then at least s bits of storage are needed. Algorithm 2 uses a
searching method, and loops over each of the elements of Φ × R, thus
taking rs operations and requiring only r + k storage. Both algorithms
are easily parallelizable, and can be used in situations in which the block
cipher key changes, as long as the repeated value is constant, since the
set Φ of possible plaintexts can be maintained across those key changes.
Of course, E needs to be recomputed for each new key.

Algorithm 1 (sieving, left) and Algorithm 2 (searching, right)
for ε ∈ E do

for i ∈ R do
remove Ci ⊕ ε from Φ

end for
end for
return Φ

for φ ∈ Φ do
for i ∈ R do

if Ci ⊕ φ ∈ E then
remove φ from Φ

end if
end for

end for
return Φ

Faster algorithms are possible when more than the minimum amount
of known plaintext is available; see Appendix D.

3.4 Hybrid algorithm

The seiving algorithm takes fewer computations whenever k < s, while
the searching algorithm takes fewer computations otherwise. The first
few passes of the seiving algorithm greatly reduce the size of the possible
plaintext set. Thus, a better attack strategy for when k < s is to use
the seiving algorithm until #Φ has been reduced in size enough so that
#Φ < k, then switch to the latter algorithm. An efficient hybrid algorithm
can be constructed by noting that E can be divided into two distinct sets
E = E1 ∪ E2, and E1 can be used in the seiving stage, while E2 is used in
the searching stage, without affecting the reliability of the algorithm at
finding the correct plaintext. In practice, the exact size of the set E1 need
not be known in advance, the attacker can count the number of remaining
possible plaintexts during the sieving stage, and adaptively choose when
to move the attack to the searching stage.

4 Discussion

Network data speeds grow exponentially (though not as fast as Moore’s
law) [21], and modern networks achieve speeds that were not in consid-
eration when the 64-bit block ciphers Triple-DES and GOST 28147-89
were conceived (in 1979 and 1989, respectively). One day is 86,400 sec-
onds. At high data rates, it is easy for a network encryption device to
exceed the birthday bound for 64-bit block ciphers in that length of time.
At one megabit per second, a data stream generates 15,625 64-bit blocks
per second, or 1.35 × 109 ' 230.3 blocks per day. At one gigabit per sec-
ond, a data stream generates about 240.3 blocks per day. At these data
rates, and a one-day key lifetime, the birthday bound is exceeded for 64-
bit block ciphers. Table 1 shows how much better the security of 128-bit
block ciphers is.

1 Megabit for one day 1 Gigabit for one day 1 Terabit for one day

w = 64 6.3 bits 6.3× 106 bits 6.3× 1012 bits
w = 128 1.7× 10−19 bits 1.7× 10−13 bits 1.7× 10−7 bits

Table 1: The expected number of bits leaked due to collisions, as per Lemma 1.

An implementation that uses manually installed keys in a 64-bit block
cipher is especially problematic, since it cannot avail itself of the rekeying
strategy of Section 2.1. When automated key management is used, there

may still be a risk that an attacker can prevent rekeying from taking place
by dropping the key establishment messages, and thus prolong the use of
a particular key. As a general rule, 64-bit block ciphers are inappropriate
for encrypting at high data rates, and 128-bit block ciphers are much
more suitable in such scenarios.

Arguably, the vulnerabilities exploited in this work are more rel-
evant to security practice than differential, linear, integral, algebraic,
and biclique cryptanalysis. The biclique attack on AES with 128-bit
keys, for instance, is an important recent advance in the cryptanalysis
of block ciphers [3]. Prosecuting that attack requires 288 chosen plain-
texts/ciphertexts and takes O(2126) operations, which is a million times
as much plaintext than that needed for collision attacks, and 262 times as
much computation. Furthermore, it suffices to observe the victim’s traffic,
without interacting with it, in order to prosecute the attacks described
in this note. In contrast, attacks based on differential, linear, integral,
algebraic, and biclique cryptanalysis typically require that the victim
compute the decryption of many ciphertexts, and/or the encryption of
many plaintexts, which have been chosen by the attacker. They are thus
much harder to perpetrate against real-world systems, most of which use
modes of operation like CBC, CFB, and CTR, in which the block ci-
pher inputs cannot be controlled by an attacker in a chosen-plaintext or
chosen-ciphertext attack.

Interestingly, the modern block cipher modes CCM and GCM are
specified only for use with 128-bit block ciphers, and consciously omit
smaller block sizes. They also define a maximum on the number of blocks
that can be encrypted with a single key. The specifications for the tra-
ditional modes accept any value of w, and do not include similar upper
bounds. This contrast no doubt reflects the heightened expectations that
the modern cryptography community has put onto new techniques, and
the newer standards are better because of it.

There are block cipher encryption modes that are secure beyond the
birthday barrier, such as Iwata’s CENC/CHM [11] and AE1 [12]. These
modes use slightly more than n block cipher invocations to encrypt n
blocks of plaintext, and are indistinguishable from random above the
birthday bound. For applications that are constrained to use 64-bit block
ciphers for some reason, these modes may be appealing; of course, the best
security would be provided by using one of these modes with a 128-bit
block cipher!

CTR is more difficult to attack than CBC or CFB; in real-world sce-
narios, it appears that CTR leaks information more slowly than the other

modes. This fact is evident from a comparison of Equations 4 and 5; an
attacker learns much more information from the equality Pi ⊕ Pj = ∆
than the inequality Pi ⊕ Pj 6= ∆ .

5 Conclusions

We show attacks against w-bit block ciphers in CBC, CFB, and CTR
modes that can recover an unknown plaintext values when the birthday
bound is not respected. These attacks are practical against w = 64-bit
block ciphers that are used at, or even slightly below, the birthday bound.
The collision-based attacks against CBC and CFB are straightforward
and relatively inexpensive to carry out against 64-bit block ciphers; the
impossible plaintext attacks against CTR are more involved, but are still
feasible. The only protection against these attacks is to stay well below
the birthday bound. 128-bit block ciphers provide substantially better
security than 64-bit ones, with the exception of scenarios in which all
encryption takes place at very low data rates and keys are changed often.

References

1. Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations
of Computer Science, pages 394–403, Miami Beach, Florida, October 19–22, 1997.
IEEE Computer Society Press.

2. Steven M. Bellovin. Probable plaintext cryptanalysis of the IP security protocols.
In ISOC Network and Distributed System Security Symposium – NDSS’97, San
Diego, California, USA, February 10–11, 1997. The Internet Society.

3. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
cryptanalysis of the full AES. In Advances in Cryptology – ASIACRYPT 2011,
Lecture Notes in Computer Science, pages 344–371. Springer, Berlin, Germany,
December 2011.

4. V.G. Cerf. ASCII format for network interchange. RFC 20, October 1969.

5. Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Methods
and Techniques. National Institute of Standards and Technology (NIST) Special
Publication SP 800-38A, 2001.

6. Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC. National Institute of Standards and Tech-
nology (NIST) Special Publication SP 800-38C, 2004.

7. Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The
CCM Mode for Authentication and Confidentiality. National Institute of Stan-
dards and Technology (NIST) Special Publication SP 800-38C, 2004.

8. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June
1999. Updated by RFCs 2817, 5785.

9. J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and
L. Stewart. HTTP Authentication: Basic and Digest Access Authentication. RFC
2617 (Draft Standard), June 1999.

10. Geoffrey Grimmett and David Stirzaker. Probability and Random Processes. Ox-
ford University Press, 1992.

11. Tetsu Iwata. New blockcipher modes of operation with beyond the birthday bound
security. In Matthew J. B. Robshaw, editor, Fast Software Encryption – FSE 2006,
volume 4047 of Lecture Notes in Computer Science, pages 310–327, Graz, Austria,
March 15–17, 2006. Springer, Berlin, Germany.

12. Tetsu Iwata. Authenticated encryption mode for beyond the birthday bound secu-
rity. In Serge Vaudenay, editor, AFRICACRYPT 08: 1st International Conference
on Cryptology in Africa, volume 5023 of Lecture Notes in Computer Science, pages
125–142, Casablanca, Morocco, June 11–14, 2008. Springer, Berlin, Germany.

13. G. Klambauer. Problems and propositions in analysis, 1979.

14. Donald E. Knuth. The art of computer programming, volume iii: Sorting and
searching. In The Art of Computer Programming, Volume III: Sorting and Search-
ing, 1973.

15. Joshua Mason, Kathryn Watkins, Jason Eisner, and Adam Stubblefield. A natural
language approach to automated cryptanalysis of two-time pads. In Ari Juels,
Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS
06: 13th Conference on Computer and Communications Security, pages 235–244,
Alexandria, Virginia, USA, October 30 – November 3, 2006. ACM Press.

16. David A. McGrew and Scott R. Fluhrer. Attacks on additive encryption of re-
dundant plaintext and implications on internet security. In Douglas R. Stinson
and Stafford E. Tavares, editors, SAC 2000: 7th Annual International Workshop
on Selected Areas in Cryptography, volume 2012 of Lecture Notes in Computer
Science, pages 14–28, Waterloo, Ontario, Canada, August 14–15, 2001. Springer,
Berlin, Germany.

17. Willi Meier and Othmar Staffelbach. Fast correltaion attacks on stream ciphers
(extended abstract). In C. G. Günther, editor, Advances in Cryptology – EURO-
CRYPT’88, volume 330 of Lecture Notes in Computer Science, pages 301–314,
Davos, Switzerland, May 25–27, 1988. Springer, Berlin, Germany.

18. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. The CRC Press series on discrete mathematics and its
applications. CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868,
USA, 1997.

19. Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances
in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science,
pages 218–238, Santa Barbara, CA, USA, August 20–24, 1990. Springer, Berlin,
Germany.

20. National Institute of Standards and Technology. FIPS PUB 46-3: Data Encryption
Standard (DES), October 1999.

21. Jakob Nielsen. Nielsen’s law of internet bandwidth (web page).
http://www.useit.com/alertbox/980405.html, 2010.

22. V. Popov, I. Kurepkin, and S. Leontiev. Additional Cryptographic Algorithms for
Use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R
34.11-94 Algorithms. RFC 4357 (Informational), January 2006.

23. J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated by
RFC 1349.

24. J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981.
Updated by RFCs 1122, 3168.

25. Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Address
Allocation for Private Internets. RFC 1918 (Best Current Practice), February
1996.

26. Technical Specification Group Services and 3G Security System Aspects. Specifica-
tion of the 3GPP Confidentiality and Integrity Algorithms; Document 2: KASUMI
Specification, V3.1.1 . 3rd Generation Partnership Project,, 2001.

27. W. Tuchman. Hellman presents no shortcut solutions to DES. IEEE Spectrum,
16(7):40–41, July 1979.

A Proof of Lemma 1

Proof. Assume that the set of all k ciphertexts corresponding to known
plaintexts is fixed; the probability that a single unknown ciphertext will
collide with a known plaintext is k

2w , under the reasonable assumption
that the ciphertexts are random1. Let X denote the random variable that
counts the number of collisions after r unknown ciphertexts have been
generated. There are exactly

(
r
x

)
distinct ways that x collisions can occur.

Thus X has a binomial distribution with probability k
2w and parameter

r. The expectation of X is therefore rk
2w (see for instance [10]) and the

main result follows from the linearity of the expectation operator.

B Collision attack

An efficient algorithm for finding all of the exploitable collisions present
in CBC and CFB modes of operation is presented in Algorithm 3, in
which K = {Ij : j ∈ K} is the set of block cipher inputs corresponding
to known plaintexts, and U = {Ii : i /∈ K} is the set of block cipher
inputs corresponding to unknown plaintexts. If a radix sort [14] is used,
a set of size u can be sorted in O(u) operations on w-bit words; then the
algorithm takes O(n) operations, and requires storage on the same order.

C Estimating the success probability of impossible
plaintext cryptanalysis

The elements of E × Γ are not, of course, uniformly and independently
random, but there is some evidence supporting our assumption of treating
them as though they are. The most important consideration is the size of

1 If the ciphertexts are not random, the cipher has an exploitable statistical defect.

Algorithm 3 Collision attack
sort K and U into ascending order
i← 1, j ← 1
while i < u, j < k do

if Kj > Ui then
i← i+ 1

else if Kj < Ui then
j ← j + 1

else
Pi = Pj ⊕∆ij

i← i+ 1, j ← j + 1
end if

end while

that set; our model implicitly assumes that it is at least as large as a set
of kr elements chosen uniformly at random. We consider the k×r matrix
M : Mij = εi⊕ γj . The elements of E , and the elements of Γ , are distinct
because of the invertibiltiy of the block cipher, and because of this, there
cannot be any collisions among the elements within each row, and each
column of M . Additionally, there can be at most one collision between
each pair of rows, and between each pair of columns. Therefore, in some
ways the structure of E × Γ avoids collisions that would reduce its size.
Interestingly, M is a rectangular sub-array of a latin square.

D Fast attacks using cosets

If the attacker has more known plaintext than the minimum required, it
may be possible to structure the attack in such a way that its computa-
tional cost is lower than previously described. This situation is similar to
that of fast correlation attacks on stream ciphers [17]. If E ′ ⊂ E is a linear
subspace of {0, 1}w, then E ′⊕γ is a coset of E ′. Each coset is distinct, that
is, for any distinct values γi, γj ∈ Γ , E ′⊕γi and E ′⊕γj are either identical
or distinct. Thus {0, 1}w = (E ′ ⊕ γ1) ∪ (E ′ ⊕ γ2) ∪ · · · ∪ (E ′ ⊕ γr), and the
correct plaintext is in the set ∪γ /∈ΓE ′ ⊕ γ, which has size 2w − kr′, where
r′ is the number of distinct cosets. It is easy to enumerate the elements of
this set with r linear operations on w-bit words. If there is an abundance
of known plaintext, then the attacker can exploit this fact by finding a
linear subspace E ′ of E .

