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Abstract. In a group signature scheme, group members are able to sign on behalf of the group. Since
the introduction of this cryptographic authentication mechanism, several schemes have been proposed
but only few of them enjoy a security in the standard model. Moreover, those provided in the standard
model suffer the recourse to non standard-assumptions, or the expensive cost and bandwidth of the
resulting signature.
We provide three practical group signature schemes that are provably secure in the standard model
under standard assumptions. The three schemes permit dynamic enrollment of new members while
keeping a constant size for both keys and group signatures, and they improve the state-of-the art by
several orders of magnitude.
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1 Introduction

Group signatures, introduced in 1991 by Chaum and Van Heyst [16] allow members of a group to anony-
mously sign messages on behalf of the whole group. However, to prevent abuses, the group is controlled by
a group manager that has the ability to open the group signature, i.e. to identify the signer of a message.
Group signatures have proved to be extremely useful in various applications, for example keycard access
to restricted areas, where it is necessary to secure areas to only employees of the group without tracking
individual employee’s movements.

Related works. Since their introduction, a great number of security properties that group signatures
should meet have been introduced until Bellare, Micciancio and Warinschi [5] provided appropriate definitions
and formalized the intuitive informal requirements of previous works. In fact, they proposed two properties
for static groups, namely full anonymity and full traceability, that captured all previous requirements. Full
anonymity requires that group signatures reveal no information about the signer, even in the presence of a
powerful adversary who has access to an opening oracle and to all users secret keys. Full traceablity requires
that the group manager is always able to identify the signer of a valid group signature or a member of the
coalition that issued it. Bellare, Shi and Zhang [6] extended these notions to dynamic groups and added
the notion of non-frameability, which requires that even a dishonest group manager and a coalition of group
members cannot falsely accuse an honest user of having issued some group signature.
Boneh and Shacham [10] proposed a weaker notion of anonymity, called selfless anonymity, where signers
can trace their own signatures. Further schemes ([11], [12]) introduced another weak version of anonymity,
namely the CPA-anonymity where the adversary does not have access to an opening oracle. As mentioned
in [7], this is a much more serious limitation because the opening functionality becomes virtually useless.

Most practical group signatures schemes ([7], [17]) that have been proposed are proven secure in the
random oracle model (ROM). Indeed, despite its inherent flaws ([14], [4]), the ROM compares much better
than the standard model with respect to efficiency. Ateniese et al. [3] gave an efficient group signature scheme
in the standard model but proved its security under non-standard assumptions. Moreover, the security proof
of anonymity (lemma A.2 of their paper) does not mention any access to opening oracles by the adversary
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and thus differs from the standard CCA-anonymity experiment. Actually, this CCA-anonymity seems hard
to reach since their group signatures are partially re-randomizable, so any adversary against the selfless
anonymity is able to re-randomize the first part of the challenge group signature and make an opening re-
quest on the result. In 2007, Groth [19] gave the first efficient realization, achieving full anonymity in the
standard model, where the size of group signatures is about 50 elements.

Our contributions. We propose three groups signatures schemes, proven secure in the standard model
under standard assumptions, that improve the size of group signatures and the number of pairings required
for the signature verification.
In our constructions, each user joining the group receives a certificate on a key while the group manager
receives some information allowing him to open the group signatures produced by this user. To produce a
group signature on a message, the user will use his key to sign, with a digital signature scheme, the message,
a randomized part of the certificate and the verification key of a strong one-time signature. Then he will
produce a non-interactive zero-knowledge proof (NIZK) to prove that the key used to sign the message is
certified. Finally, to prevent anyone else to randomize his group signature, the user will sign some of its
elements with the strong one-time signature scheme.
Our first group signature scheme, whose group signatures comprise only 22 group elements, achieves selfless
anonymity without the need for encryption. Indeed, the use of the Camenish-Lysyanskaya signature scheme
[13] makes it possible to disclose the digital signature on the message in the group signature, and thus to
decrease the cost and size of the non-interactive proof of knowledge. The scheme resorts however to a trusted
party to set up the system parameters. Moreover the cost of the opening algorithm is linear in the number
of members.
Our second group signature scheme overcomes the drawbacks of the first scheme but at the expense of a slight
increase in the size of the group signature (28 group elements). In fact, users certify now their verification
keys (instead of their siging keys), allowing the group manager to set up the system parameters and to
extract the identity of the group signature issuer using his extraction key. Since the verification keys are
group elements, we now require that our certificate scheme is structure-preserving [1], which explains the
extra-cost of the scheme.
Finally we propose a generic group signature scheme that generalizes Groth’s scheme, and which achieves
full anonymity. The construction makes use of an encryption scheme in order to be able to use any EUF-
CMA digital signature scheme, which increases the size/cost of the group signature. An instantiation of this
construction results in a group signature with 30 group elements.

We summarize in Figure the signature sizes (number of group elements), the verification costs (number of
pairings) and the opening cost (as a function of the number of participants, denoted r) of our contributions
(GS1, GS2, GS3) and compare them with the state of the art.

Scheme Signature size Verification cost Opening cost Standard model?

BCNSW [7] 5 2 O(r) No

DP [17] 9 1 O(1) No

Groth [19] 50 246 O(1) Yes

GS1 (Section 4) 22 73 O(r) Yes

GS2 (Section 5) 28 124 O(1) Yes

GS3 (Section 6) 30 92 O(r) Yes

Fig. 1. Comparison between group signatures performances

Outline of the paper. The rest of this paper is organized as follows. In section 2 we recall definitions of
the notions that we use in our schemes. Section 3 defines the syntax and the security model of a secure group
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signature scheme. Following sections present our group signature schemes. We defer the security proofs to
the appendix.

2 Preliminaries

In this section we recall some necessary bricks that will be used throughout the document, namely bilinear
maps, Camenisch-Lysyanskaya’s signatures, and signatures on committed values. Note that we defer in
Appendix A the recall of further primitives such as (one-time, structure-preserving) signatures, tag-based
encryption, and non-interactive proofs of knowledge.

2.1 Bilinear groups

Our constructions use cyclic groups of prime order that have a non-degenerate efficiently computable bilinear
map e. We use the following notations:

– G1,G2,GT are cyclic groups of prime order q.
– We write the group operations multiplicatively in each group.
– A bilinear map e : G1 ×G2 → GT has the following properties:

1. For all x ∈ G1, y ∈ G2 and a, b ∈ Zq we have e(xa, yb) = e(x, y)ab.
2. For x 6= 1G1

or y 6= 1G2
, e(x, y) 6= 1GT

.
3. e is efficiently computable.

The Symmetric External Diffie-Hellman (SXDH) assumption: We say SXDH holds in the bilinear
groups G1 and G2 if DDH is hard in both groups, where DDH (Decisional Diffie-Hellman) is the following
problem:

Given (g, ga, gb, gc) it is hard to decide whether c = ab mod q or random.

2.2 Camenisch-Lysyanskaya Signatures

Our group signature schemes make use of the pairing-based Camenish-Lysyankaya signature schemes [13]
(scheme A and scheme C in their paper), which are provably secure under the LSRW assumption [21].
The two schemes operate in three cyclic groups G1,G2 and GT of prime order q, equipped with a pairing
e : G1 ×G2 → GT , and two generators g ∈ G1 and g̃ ∈ G2.

Lysyanskaya-Sahai-Rivest-Wolf (LSRW) assumption:
Let g̃ ∈ G2, x̃ = g̃α, ỹ = g̃β and Ox̃,ỹ(.) be an oracle that, on input a value u ∈ Zq, outputs A =
(a, aβ , aα+uαβ) ∈ G

3
1 for a randomly chosen a ∈ G1. Then for all probabilistic polynomial time adversaries

A, the quantity ǫ is negligible:

ǫ = Pr[α, β ← Zq; x̃← g̃α, ỹ ← g̃β ; (u, a, b, c)← AOx̃,ỹ (x̃, ỹ) :

u /∈ Q ∧ a ∈ G1 ∧ b = aβ ∧ cα+uαβ ]

where Q is the set of queries asked by A to his oracle Ox̃,ỹ(.).

2.3 Re-randomizable signatures on committed values

Our constructions use i.e. digital signature schemes Σ with the following properties:

– The signature scheme is re-randomizable i.e. it admits a function SigRand such that for each signature
σ on a message m, SigRand(σ) = σ′, where σ′ is a valid signature on m and such that no probabilistic
polynomial time adversary A, with access to a signing oracle, is able, given a signature σ, to distinguish
a randomized version of σ from a signature on a random element of the message space.
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[Key generation] Choose α, β
R
←− Zd then compute X ← g̃α and Y ← g̃β

set pk ← {X,Y } and sk ← {α, β}.
[Signature on m] Choose a random a ∈ G1

and outputs : σ = (a, aβ , aα+mαβ)
[Verification] Given pk,m and σ = (a, b, c)

check if the following equations holds:
e(a, Y ) = e(b, g̃) and e(a,X).e(b,X)m = e(c, g̃)

Fig. 2. Camenisch-Lysyanskaya’s signature A

[Key generation] Choose α, β, zi
R
←− Zd then compute X ← g̃α, Y ← g̃β

and Zi ← g̃zi for 1 ≤ i ≤ l

set pk ← {X,Y, Zi}1≤i≤l and sk ← {α, β, zi}1≤i≤l.
[Signature on (m0, ...,ml)] Choose a random a ∈ G1

Ai = azi for 1 ≤ i ≤ l

b = aβ , Bi = (Ai)
β

c = aα+αβm0
l∏

i=1

Aαβmi

and outputs the signature σ = (a, {Ai}, b, {Bi}, c)
[Verification] Given pk,m and σ

check if the following verification equations holds:
e(a, Zi) = e(Ai, g̃)
e(a, Y ) = e(b, g̃) and e(Ai, Y ) = e(Bi, g̃)

e(a,X).e(b,X)m0
l∏

i=1

e(Bi, X)mi = e(c, g̃)

Fig. 3. Camenisch-Lysyanskaya’s signature C

– Σ admits an algorithm comSign to obtain signatures on committed values which, on input c (where
(c, r)← Commit(m)) and π ← POK{(m, r) : (c, r) = Commit(m)}(c), outputs σ such that
Σ.verify(σ, (m, r)) = 1.

We define EUF-CMA security the same way as the standard digital signature schemes (a re-randomizable
signature scheme cannot obviously reach the SEUF-CMA security). As shown in [13] the signature scheme
described in figure 3 is EUF-CMA secure and admits an efficient protocol (described in Fig. 4) for obtaining
signature on committed value. Moreover, using a proof similar to that of [7], this scheme is re-randomizable
if the DDH-assumption holds in G1.

3 Defining Group Signatures

3.1 Syntax

A group signature scheme consists of a set of users, identified by a unique index i, that can produce signatures
on behalf of the group. Users must interact with a certification authority and the group manager to join the
group. At the end of this interaction, each user obtains a signature key pair and the group manager obtains
some information that will allow him to identify the group signatures issuers. The syntax that we require is
as follows.

– Keygen(λ): This algorithm inputs a security parameter λ and outputs (gpk, skcert, skM ,Sreg,reg), where
gpk is the group public key, skcert is the issuer’s secret key, skM is the group manager’s secret key, Sreg
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Signer (input: sk, pk) User (input: m1,m2, ...,mk and pk)

Ui ← gzi for 1 ≤ i ≤ k
Ui−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

l
R
←− Zq

C ← gl
k∏

i=1

U
mi
i

π ← POK{(l,m1, ...,mk) : C = gl
k∏

i=1

U
mi
i }(C)

C, π
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

x
R
←− Zq

a← gx

Ai = azi for 1 ≤ i ≤ k

b = aβ , Bi = (Ai)
β

c = aαCxαβ

σ ← (a, {Ai}, b, {Bi}, c)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 4. Protocol for obtaining a CL signature C on committed values

is the group manager’s secret register and reg is a public register.

– Join(gpk, upki): The Join protocol is used to add a new user to the group. It consists of one interactive
protocol between the user and the issuer and another one between the user and the group manager. The
common inputs of this protocol is gpk and the user’s public key upki. The private input of the user is
uski whereas the private inputs of the issuer and the group manager are skcert and skM respectively.
As a result of the first interaction, the user obtains his group signing key ski, the verification key vki
and a certificate, σcert(i), proving membership of the group. Then he uses uski to compute σi, a digital
signature on vki. At the end of the second interaction, the group manager obtains and stores vki and σi

in Sreg[i] and publishes upki in reg[i].

– Sign(gpk, ski, σcert(i),m) : This algorithm inputs a message m, the user’s secret key and certificate and
outputs a group signature µ on m.

– Verify(gpk, µ,m) : This algorithm inputs a message m and a group signature µ and outputs 1 if µ is a
valid group signature on m, and 0 otherwise.

– Open(gpk,m, µ, skM ) : This algorithm inputs a message m, a group signature µ and the group manager’s
secret data skM and Sreg. If µ is a valid group signature on m from user i it returns a proof τ of this
statement and the identity i, else it returns ⊥.

– Judge(gpk,m, µ, i, τ) : This algorithm inputs a message m, a group signature µ, an identity i and a proof
of knowledge τ . It returns 1 if τ is a valid proof that µ is a group signature on m, issued by user i.
Otherwise it returns 0.

3.2 Security model

In this section we give the security definitions that we require for group signature schemes. We adhere to the
model defined by [6], except that we use the selfless anonymity notion from [10] instead of the full anonymity
for our first two group signature schemes. Informally, selfless anonymity, contrarily to full anonymity, does
not protect dishonest users, i.e. the adversary does not know the private keys of the identities he wishes to
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be challenged on. As in [7], we consider a setting with n users divided statically into sets HU and DU of
honest and dishonest users respectively ( i.e an honest user cannot be corrupted during the experiment).
This static division implies, by guessing the indices of ”target” users in the anonymity and non-frameability
experiment, security in the dynamic corruption case.
The security notions make use of the following oracles:

– OJoinUD(gpk, upki, skM ) is an oracle that executes the user’s side of the join protocol for the input user
i ∈ HU . This oracle will be used by an adversary playing the role of the corrupted group manager.

– OJoinDM (gpk, upki, uski) is an oracle that executes the join protocol with the honest group manager.
This oracle will be used by an adversary to register a corrupted user.

– OSign(i,m) is an oracle that accepts as input an identity i and a message m and returns a group signa-
ture µ if user i is honest and registered.

– OOpen(m,µ) inputs a message-signature pair (m,µ) and returns the result of the function call
Open(Sreg, skM , µ,m). We use the notation OOpen¬(m,µ) when the query (m,µ) is not allowed.

Correctness: We define the correctness of a group signature scheme through a game in which an adversary
is allowed to request a signature on some message by any of the honest group members. The adversary
wins if either the resulting signature does not pass the verification test, the signature is opened as if it were
produced by a different user, or the judging algorithm returns 0. The group signature scheme is correct if
for any adversary A and any security parameter λ (we keep this notation in the following experiments),
Pr[Expcorr

A (λ) = 1] is negligible in λ, where Expcorr
A (λ) is defined as follows:

1. HU ← {1..n}.
2. (gpk, skcert, skM )← Keygen(λ).
3. (ski, vki, σcert(i))← Join(gpk, skcert, skM ) for each user i ∈ HU .
4. (i,m)← AOSign,OOpen(gpk).
5. If i /∈ HU then return 0.
6. µ← Sign(ski,m).
7. If Verify(gpk,m, µ) = 0 then return 1.
8. If Open(Sreg, skM , µ,m) = (j, τ) and j 6= i then return 1.
9. If Judge(m,µ, τ, i) = 0 then return 1.

Anonymity: Informally, anonymity requires that group signatures do not reveal the signer’s identity. In the
selfless-anonymity game the adversary’s goal is to determine which of the two users generated the challenge
signature. The difference with the full anonymity of [6] consists in not giving the adversary A access to either
private key. As in [10] and [7] we define the selfless-anonymity experiment Expanon−b

A (λ) as follows:

1. DU ← A(λ).
2. HU ← {1..n} \ DU .
3. (gpk, skcert, skM )← Keygen(λ).
4. (ski, vki, σcert(i))← Join(gpk, skcert, skM ) for each user i ∈ HU .
5. (m, i0, i1)← A

OSign,OOpen,OJoinDM (gpk) with (i0, i1 ∈ HU).

6. µ← Sign(skib ,m) for b
R
←− {0, 1}.

7. b∗ ← AOSign,OOpen¬(m,µ),OJoinDM (gpk).
8. Return b∗.

We define Advanon−b
A (λ) = |Pr[b = b∗]− 1

2 |. The group signature scheme is anonymous if for any probabilistic
polynomial time adversary, this advantage is a negligible function of λ. In the full-anonymity experiment,
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we no longer require that i0, i1 ∈ HU , we then say that the group signature scheme is fully-anonymous.

Traceability: Traceability requires that no adversary is able to create a valid signature that cannot be
traced to some user already registered. We define the traceability experiment as follows:

1. DU ← {1..n}.
2. (gpk, skcert, skM )← Keygen(λ).
3. (m,µ)← AOOpen,OJoinDM (gpk).
4. If Verify(gpk,m, µ) = 1 and Open(Sreg, skM , µ,m) =⊥ then return 1.
5. Return 0.

We define Advtrace
A (λ) = Pr[Exptrace

A (λ) = 1]. The group signature scheme is traceable if for any proba-
bilistic polynomial time adversary, this advantage is a negligible function of λ.

Non-frameability: Informally, non-frameability requires that a cheating group manager cannot falsely
accuse an honest user of having signed a given message m. We define the non-frameability experiment as
follows:

1. DU ← A(λ).
2. HU ← {1..n} \ DU .
3. (gpk, skcert, skM )← Keygen(λ).
4. (ski, vki, σcert(i))← Join(gpk, skcert, skM ) for each user i ∈ HU .
5. (i,m, µ)← AOSign,OJoinUD (skM , gpk).
6. If i /∈ HU or Verify(gpk,m, µ) = 0 then return 0.
7. If m was queried to OSign then return 0.
8. If Judge(m,µ, τ, i) = 0 then return 0.
9. Return 1.

We define Advnf
A (λ) = Pr[Expnf

A (λ) = 1]. The group signature scheme is non-frameable if for any proba-
bilistic polynomial time adversary, this advantage is a negligible function of λ.

Remark: We can also define the strong non-frameability experiment in which the adversary’s goal is to
accuse an honest user of having created a given signature µ (we replace the line 7 by: if µ was produced by
OSign then returns 0).

4 A group signature without encryption

4.1 Description

The core of this group signature scheme is the combination of a re-randomizable signature scheme Σcert

and the signature scheme Σ1 described in Figure 2. We assume that the system parameters are set up by a
trusted party and that each user i has a key pair (uski, upki) for a signature scheme Σ0 where upki is public
and associated to i. At the end of the Keygen algorithm, the issuer receives skcert. When a new member joins
the group, he creates a key pair (ski, vki) for Σ1, then gets a certificate σcert(i) on ski (using the protocol
for obtaining signatures on committed values) and finally sends vki and a signature on it (using uski) to the
group manager who records it in his secret register Sreg. When making a group signature on a message m,
the member will first re-randomize his certificate and generate a key pair (skots, vkots) for a strong one-time
signature. Then he will use his secret key ski to sign the concatenation of m, the certificate and vkots and
give a non-interactive zero-knowledge proof of knowledge that the certificate is a valid signature on ski. To
prevent an adversary from randomizing the signature or the non-interactive proof, the user will sign them
with the strong one-time signature. We use the following notations to describe our group signature scheme:

Notations:
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– λ is the security parameter.
– G is a probabilistic polynomial time algorithm that, on input λ, generates (G1,G2,GT , e, g, g̃) where

g ∈ G1 and g̃ ∈ G2.
– KNI is a probabilistic polynomial time algorithm that, on input (G1,G2,GT , e, g, g̃), generates a common

reference string crs for the Groth-Sahai proof system.
– reg is a public register.
– Sreg is the secret register of the group manager.
– gpk is the group public key.

The algorithms defining our group signature scheme are described in figure 5.

Keygen(λ) Verify(m,µ)
gk ← G(λ) If VNI(crs, µ,m, π) = 1 ∧
crs← KNI(gk) Σots.verify(vkots, σots, a‖π) = 1
(skcert, pkcert)← Σcert.keygen(gk) then return 1
gpk ← (gk, pkcert, crs, reg) Else return 0.

Join(user: uski, issuer: skcert, group manager: Sreg) Open(Sreg,m, µ)
(ski, vki)← Σ1.Keygen(gk) If Verify(m,µ) = 0
σcert(i)← Σcert.comSign(skcert, Commit(ski), π) then return 0.
σi ← Σ0.sign(uski, vki) Parse µ as (m, vkots, σots, σ1, σcert, π)
Sreg[i]← (vki, σi) for vki in Sreg[i]:
reg[i] ← (i, upki) if Σ1.Verify(vki,m‖vkots‖σcert, σ1) = 1

return i and a proof τ .
Sign(ski, σcert(i),m) with τ ← POK{(vki, σi) :
σcert(i)← Σcert.sigRand(σcert(i)) Σ1.Verify(vki,m‖vkots‖σcert, σ1) = 1 ∧
(skots, vkots)← Σots.keygen Σ0.Verify(upki, vki, σi) = 1
(a, b, c)← Σ1.sign(ski,m‖vkots‖σcert(i)) }(m,µ, reg)
π ← POK{(ski) :

(a, b, c) = Σ1.sign(ski,m‖vkots‖σcert(i)) ∧ Judge(m,µ, τ, i)
σcert(i) = Σcert.sign(skcert, ski) If VNIZK(crs,m, µ, τ, i) = 1
}(m, (a, b, c), σcert(i)) return 1.

σots ← Σots.sign(skots, a‖π) Else return 0.
µ← (m, vkots, σots, (a, b, c), σcert(i), π)

Fig. 5. Group signature scheme 1

4.2 Security proofs

Theorem 1. If Σcert is a EUF-CMA secure signature scheme and (P, V ) is a sound zero-knowledge proof
system, then the group signature is fully traceable.

Theorem 2. If Σ0 and Σ1 are EUF-CMA secure signature schemes, Σots is a strong one-time signature
scheme and (P, V ) is a sound, zero-knowledge proof system, then the group signature scheme is strongly
non-frameable.

Theorem 3. If Σ0 and Σ1 are EUF-CMA secure signature schemes, Σots is a strong one-time signature
and (P, V ) is a sound, zero-knowledge proof system, then the group signature scheme is anonymous.

The proofs are provided in appendix B.
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4.3 A concrete realization

We instantiate this system with the Λsxdh setting which refers to the case of asymmetric pairings for which
the DDH assumption holds in both G1 and G2.
We use the CL signature scheme described in Fig. 3 for Σcert, the weakly secure Boneh-Boyen signature
scheme described in Fig. 8 for Σots and the structure-preserving signature described in Fig. 9 for Σ0.
We use the following notations to describe the proofs of knowledge:

Notations:

– (ski, pki)← ((αi, βi), (g̃
αi , g̃βi))

– (skcert, pkcert)← ((u, v, z1, z2), (U, V, Z1, Z2))

– (skM , pkM )← ((x1, x̃1, x2, x̃2), (X1, X̃1, X2, X̃2))
– σ1 ← (a1, b1, c1); σcert ← (a,A1, A2, b, B1, B2, c)
– η ← m‖vkots‖σcert

A group signature, (vkots, σots, (a, b, c), σcert(i)) involves 13 group elements, and a proof π of the following
equations (the variables are underlined):

e(a1, g̃)
βi = e(b1, g̃) (1)

(e(a1, g̃).e(b1, g̃)
η)αi = e(c1, g̃) (2)

e(c, g̃) = e(a, U).e(b, U)l .e(B1, U)αi .e(B2, U)βi (3)

where η is m‖vkots‖σcert and l is the randomness used by user i in the join stage to obtain signature on the
committed values αi and βi.
These equations involve 3 variables (αi, βi, l) and thus increase the size of the proof by 6 group elements.
Equations (1) and (2) proves that (a1, b1, c1) is a valid Camenisch-Lysyanskaya signature from user i on η.
These two equations cost 1 group element each. Equation (3) proves that the certificate is a valid signature
on αi and βi and costs 1 group element. The total size of the proof is then 9 group elements.

The total size of the group signature is thus 22 group elements, which amounts to 700 Bytes if we consider an
implementation using 256-bit groups sizes. Using naive computations, equation (1) needs for the verification
18 pairings, equation (2), 19 pairings and equation (3), 25 pairings. Checking the consistency of the certifi-
cate and of the one-time signature adds 11 pairings. The total cost of the Verify algorithm is then 73 pairings.

Remark: We can further reduce the size of the group signature if the group manager and the certificate
issuer are the same entity. Indeed, in the Join protocol we no longer need to use the hiding randomness l
which decreases both the size of the certificate and the size of the proof by two elements. The size of the
group signature is then 18 group elements.

5 A group signature without encryption and without trusted parties

5.1 Description

The main drawbacks of the previous scheme lie in requiring a trusted party to set up the system parameters,
and having the cost of the algorithm Open linear in the number of users. To solve these two problems, users
will now certify their verification keys (instead of their siging keys), allowing thus the group manager to set
up the system parameters and to use the extraction keys ek of the Groth-Sahai proofs to extract the identity
behind a group signature.

This construction is similar to the previous scheme except that we require a different signature scheme
for Σcert. We now assume that any digital signature σ, generated using Σcert on an arbitrary message m
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can be efficiently transformed in a reversible way to a pair (r, s) where r (r may be the empty string) is
information theoretically independent from m, i.e. there exists an algorithm Simulate that inputs Σcert.sk
and a message from the message space and outputs a string indistinguishable from r. We require further
the partial randomizability property for Σcert, i.e. Σcert admits two algorithms SigPrand0 and SigPrand1,
defined as follows:
For each signature σ → (r, s) on a message m:

– (r′, state)← SigPrand0(r)
– s′ ← SigPrand1(s, state)

where r′ is unlinkable to r and σ′ ← (r′, s′) is a valid signature on m.
We use the same notations as in the previous scheme to define in figure 6 the algorithms of our second group
signature scheme. XNI will be the extraction algorithm for the non-interactive Groth-Sahai proofs.

Keygen(λ) Verify(m,µ)
gk ← G(λ) If VNI(crs, µ,m, π) = 1 ∧
(crs, ek)← KNI(gk) Σots.verify(vkots, σots, a‖π) = 1
(skcert, pkcert)← Σcert.keygen(gk) then return 1
gpk ← (gk, pkcert, crs, reg) Else return 0.

Join(user: uski, issuer: skcert, group manager: Sreg) Open(Sreg, ek,m, µ)
(ski, vki)← Σ1.Keygen(gk) vki ← XNI(crs, µ)
σcert(i)← Σcert.sign(skcert, vki) If vki is registered in Sreg
σi ← Σ0.sign(uski, vki) return i and τ

Sreg[i]← (vki, σi) Else return ⊥
reg[i] ← (i, upki) with τ ← POK{(vki, σi) :

Σ1.Verify(vki,m‖vkots‖r
′, σ1) = 1 ∧

Sign(ski, σcert(i),m) Σ0.Verify(upki, vki, σi) = 1
(r, s)← σcert(i) }(m,µ, reg)
(r′, state)← SigPrand0(r)
s′ ← SigPrand1(s, state) Judge(m,µ, τ, i)
(skots, vkots)← Σots.keygen(λ) If VNIZK(crs,m, µ, τ, i) = 1
(a, b, c)← Σ1.sign(ski,m‖vkots‖r

′) return 1.
π ← POK{(vki, s

′) : Else return 0.
(a, b, c) = Σ1.sign(ski,m‖vkots‖r

′) ∧
(r′, s′) = Σcert.sign(skcert, vki)
}(m, (a, b, c), r′)

σots ← Σots.sign(skots, a‖π)
µ← (m, vkots, σots, (a, b, c), r

′, π)

Fig. 6. Group signature scheme 2

5.2 Security proofs

Theorem 4. If Σcert is a EUF-CMA secure signature scheme and (P, V ) is a sound zero-knowledge proof
system, then the group signature is fully traceable.

Theorem 5. If Σ0 and Σ1 are EUF-CMA secure signature schemes, Σots is a strong one-time signature
scheme and (P, V ) is a sound, zero-knowledge proof system, then the group signature scheme is strongly
non-frameable.
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Theorem 6. If Σ0 and Σ1 are EUF-CMA secure signature schemes, Σots is a strong one time signature
and (P, V ) is a sound, zero-knowledge proof system, then the group signature scheme is anonymous.

The proofs are provided in appendix C.

5.3 A concrete realization

We use the Λsxdh setting and the structure-preserving signature scheme described in Fig. 9 for Σcert. We
further use the weakly secure Boneh-Boyen signature scheme described in Fig 8 for Σots.
Using the same notations as in section 4 (with (X̃, Ỹ ) ← (g̃αi , g̃βi)) and [1], π is a proof of the following
equations:

e(a1, Y ) = e(b1, g̃) (1)

e(a1, X).e(b1, X)η = e(c1, g̃) (2)

e(gz, z
′)e(gr, r

′)e(s′, t′)e(g1, X)e(g2, Y ) = A (3)

e(hz, z
′)e(hu, u

′)e(v′, w′)e(h1, X)e(h2, Y ) = B (4)

where σcert ← (z′, r′, s′, t′, u′, v′, w′) and η ism‖vkots‖(s
′, t′, v′, w′). The authors of [1] proved that (s′, t′, v′, w′)

are information theoretically independant of the signature element z′ and (X,Y ).
These equations involve then 5 variables (X,Y, z′, r′, u′) and thus increase the size of the proof by 10 group
elements. Equations (1) and (2) prove that (a1, b1, c1) is a valid Camenisch-Lysyanskaya signature from user
i on η. These two equations costs 2 group elements each. Equation (3) and (4) prove that the certificate is
a valid signature on X and Y and cost 2 group elements each. The total size of the proof is then 18 group
elements.

A group signature, (vkots, σots, (a, b, c), (s
′, t′, v′, w′)) involves 10 group elements, the total size is thus 28

group elements, which amounts to 900 Bytes if we consider an implementation using 256-bit groups size.
Using naive computations, equation (1) involves 22 pairings, equation (2), 27 pairings and equation (3) and
(4), 37 pairings each. Verifying the one-time signature adds 1 pairing. The total cost of the Verify algorithm
is then 124 pairings.

6 A generic construction with encryption

6.1 Description

It is possible, using a tag-based encryption scheme Γ , to modify the first group signature scheme to construct
a generic scheme. This modification increases the size of the group signature but the new scheme reaches
the full anonymity. We now assume that Σ1 is an EUF-CMA secure digital signature scheme. The difference
with the first scheme is that the signature produced by Σ1 is now encrypted, using Γ , under the tag vkots.
The group manager owns the encryption secret key and is then able to decrypt the ciphertext and proceeds
as in the Open algorithm of the first scheme.

We assume that any digital signature σ, generated using Σ1 on an arbitrary message m can be efficiently
transformed in a reversible way to a pair (s, r) where r (r may be the empty string) reveals no information
about Σ1.vk, i.e. there exists an algorithm that inputs a key from the key space and outputs a string
indistinguishable from r. This technical detail will improve the efficiency of the construction as it will not
necessitate encrypting the entire signature σ.
The algorithms defining this new group signature are described in Figure 7.
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Keygen(λ) Verify(m,µ)
gk ← G(λ) If VNI(crs, µ,m, π) = 1 ∧
crs← KNI(gk) Σots.verify(vkots, σots, C‖π) = 1
(skcert, pkcert)← Σcert.keygen(gk) then return 1
(skM , pkM )← Γ.keygen(λ) Else return 0.
gpk ← (gk, pkcert, pkM , crs, reg)

Open(Sreg, skM ,m, µ)
Join(user: uski, issuer: skcert, group manager: Sreg) If Verify(m,µ) = 0
(ski, vki)← Σ1.Keygen(gk) then return 0.
σcert(i)← Σcert.comSign(skcert, Commit(ski), π) s← Γ.decryptskM

(vkots, C)

σi ← Σ0.sign(uski, vki) σ1 ← (r, s)
Sreg[i]← (vki, σi) for vki in Sreg[i]:
reg[i] ← (i, upki) if Σ1.Verify(vki,m‖vkots‖σcert, σ1) = 1

return i and a proof τ .
Sign(ski, σcert(i),m) with τ ← POK{(vki, σi, σ1) :
σcert(i)← Σcert.sigRand(σcert(i)) Σ1.Verify(vki,m‖vkots‖σcert, σ1) = 1 ∧
(skots, vkots)← Σots.keygen(λ) Σ0.Verify(upki, vki, σi) = 1
σ1 ← Σ1.sign(ski,m‖vkots‖σcert(i)) }(m,µ, reg)
(r, s)← σ1

C ← Γ.encryptpkM
(vkots, s) Judge(m,µ, τ, i)

π ← POK{(ski, s, l) : If VNIZK(crs,m, µ, τ, i) = 1
σ1 ← (r, s) return 1.
σ1 = Σ1.sign(ski,m‖vkots‖σcert(i)) ∧ Else return 0.
σcert(i) = Σcert.sign(skcert, (l, ski))
}(m, r, C, σcert(i))

σots ← Σots.sign(skots, C‖r‖π)
µ← (m, vkots, σots, r, C, σcert(i), π)

Fig. 7. Group signature scheme 3

6.2 Security proofs

Theorem 7. If Γ is an IND-st-wCCA secure tag-based encryption scheme, Σots is a strong one-time sig-
nature scheme and (P, V ) is a sound, zero-knowledge proof system, then the group signature scheme is fully
anonymous.

Theorem 8. If Σcert is a EUF-CMA secure signature scheme and (P, V ) is a sound zero-knowledge proof
system, then the group signature is fully traceable.

Theorem 9. If Σ0 and Σ1 are EUF-CMA secure signature schemes, Σots is a strong one-time signature and
(P, V ) is a sound, zero-knowledge proof system, then the group signature scheme is strongly non-frameable.

The proofs are provided in appendix C.

6.3 A concrete realization

We instantiate the construction with the following bricks:

1. The tag-based encryption scheme described in Figure 10 with G = G1.
2. The signature scheme described in Figure 2 for Σ1 and the signature scheme described in Figure 3 for

Σcert.
3. The structure-preserving signature scheme described in Fig. 9 for Σ0.
4. We use the weakly-secure Boneh-Boyen signature scheme descibed in Fig. 8 for Σots.
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In a group signature µ, (vkots, σots, r, C, σcert) involve 16 group elements and π is a proof for the following
equations (we use the notations of section 4 and C ← (C1, C2, C3, C4)):

(C1, C2, C3) = (gk, (Xvkots

1 X̃1)
k, (Xvkots

2 X̃2)
k) (1)

(e(a1, g̃).e(b1, g̃)
η)αi = e(C4, g̃) .e(X

−1
1 , g̃)k (2)

e(a1, g̃)
βi = e(b1, g̃) (3)

e(c1, g̃) = e(a, U).e(b, U)l .e(B1, U)αi .e(B2, U)βi (4)

where l is the randomness used by user i in the join stage to obtain signature on the committed value αi

and βi.
These equations involve 4 variables (αi, βi, l, k) and thus increase the size of the proof by 8 group elements.
Equations (1), (2) and (3) prove that r and the value encrypted in C is a valid Camenisch-Lysyanskaya
signature from user i on η. Equation (1) comprises three sub-equations which cost 1 group element each (lin-
ear equation). Equations (2) and (3) cost 1 group element each. Equation (5) proves that the certificate is
a valid signature on αi and βi and costs 1 group element. The total size of the proof is then 14 group elements.

The size of the group signature is thus 30 group elements, which amounts to 1 kB if we consider an imple-
mentation using 256-bit groups size, which is more compact that the realization in [19] where the total size
of the group signature is 50 elements.
We use naive the computation [8] for the proof verification. Equation (1) involves three sub-equations requir-
ing 16 pairing each. Equation (2) involves 4 pairings + 18 pairings for the proof verification. Equation (3)
requires 2 + 16 = 18 pairings and equation (4), 25 pairings. The verification cost for these equations is then
81 pairings but the Verify algorithm requires 11 more pairings (to check the consistency of the certificate
and the one-time signature). The total cost of the Verify algorithm is then 92 pairings.
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A Building Blocks

A.1 Digital signature schemes

A digital signature scheme Σ comprises three algorithms, namely the key generation algorithm keygen, the
signing algorithm sign, and the verification algorithm verify. The standard security notion for a signature
scheme is existential unforgeability under chosen message attacks (EUF-CMA), which was introduced in [18].
Informally, this notion refers to the hardness of, given a signing oracle, producing a valid pair of message
and corresponding signature such that message has not been queried to the signing oracle. There exists also
a stronger notion, SEUF-CMA (strong existential unforgeability under chosen message attack), which allows
the adversary to produce a forgery on a previously queried message, however the corresponding signature
must not be obtained from the signing oracle.

A.2 Boneh-Boyen’s weakly secure signature scheme

We recall in Fig. 8 the Boneh-Boyen’s weakly secure signature scheme [9], proven secure under the q-SDH
(Strong Diffie-Hellman) assumption:

The q-SDH assumption: Let G1 and G2 be two cyclic groups of prime order q, respectively generated by
g1 and g2. The q-SDH problem is stated as follows:

Given as input a (q + 3)-tuple of elements (g1, g
x
1 , g

x2

1 , ..., gx
q

1 , g2, g
x
2 ) ∈ G

q+1
1 ×G

2
2,

output a pair (c, g
1

x+c

1 ) ∈ Zq ×G1 for a freely chosen value c ∈ Zq \ {−x}.

We say that the (q, ǫ)-SDH assumption holds in (G1,G2) if no polynomial-time algorithm solves the q-SDH
problem with probability greater than ǫ.
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[Key generation] Select random generators g1 ∈ G1 and g2 ∈ G2.

Choose x
R
←− Zq then compute v ← gx2 and z ←∈ e(g1, g2).

set pk ← {g1, g2, v, z} and sk ← {x}.

[Signature on m] Return σ ← g
1

x+m

[Verification] Given pk,m and σ, check if the following verification equation holds:
e(σ, v.gm2 ) = z.
If the equality holds, or if σ = 1 and v.gm2 = 1, return 1.

Fig. 8. Boneh-Boyen weakly secure signature scheme

A.3 Structure preserving signature

We recall in Fig. 9 the digital signature scheme proposed by Abe et al [1], allowing to sign messages of n
group elements. The scheme was proved EUF-CMA secure under the q-SFP (Simultaneous Flexible Pairing)
assumption:

The q-SFP assumption: Let gz, hz, gr and hu be random generators of G1. Let (a, ã), (b, b̃) be random
pairs in G1 ×G2. For j = 1, .., q, let Rj = (z, r, s, tu, v, w) that satisfies:

e(a, ã) = e(gz, z)e(gr, r)e(s, t) and e(b, b̃) = e(hz, z)e(hu, u)e(v, w)

Given gz, hz, gr, hu, (a, ã), (b, b̃) and R1, ..., Rq it is hard to find (z∗, r∗, s∗, t∗, u∗, v∗, w∗) that fulfill the
previous relations under the restriction that z∗ 6= 1 and z∗ 6= z ∈ Rj for 1 ≤ j ≤ q.

[Key generation] g, gr, gu
R
←− G1 and g̃

R
←− G2.

γi, δi
R
←− Zq and gi ← gγi

r , hi ← hδi
u for i = 1, .., k.

γz, δz
R
←− Zq and gz ← gγz

r , hz ← hδz
u .

α, β
R
←− Zq and A← e(gr, g̃

α), B ← e(hu, g̃
β)

pk ← (gz, hz, gr, hu, {gi, hi}
k
i=1, A,B)

sk ← (α, β, γz, δz, {γi, δi}
k
i=1).

[Signature on (m1, ...,mk)] ζ, ρ, τ, φ, ω
R
←− Zq.

z ← g̃ζ , r ← g̃α−ρτ−γzζ
∏k

i=1
m

−γi
i , s← gρr , t← g̃τ

u← g̃β−φω−δzζ
∏k

i=1
m

−δi
i , v ← hφ

u, w ← g̃ω

Return σ ← (z, r, s, t, u, v, w)
[Verification] Check if the following verification equations hold:

A = e(gz, z)e(gr, r)e(s, t)
∏k

i=1
e(gi,mi).

B = e(hz, z)e(hu, u)e(v, w)
∏k

i=1
e(hi,mi).

Fig. 9. Structure preserving signature

A.4 Strong one-time signatures

Strong one-time digital signature schemes can be used to sign, at most, one message; otherwise, signatures can
be forged. A new public key is required for each message that is signed. They are, similarly to normal digital
signatures, defined by the key generation algorithm, the signing algorithm, and the verification algorithm.
We say the one-time signature is strong, if the adversary can neither forge a signature on different message
nor create a different signature on the message already signed.
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A.5 Tag-based encryption (TBE)

Tag-based encryption, also referred to as encryption with labels, was first introduced in [22]. In these schemes,
the encryption algorithm takes as input, in addition to the public key pk and the message m intended to be
encrypted, a tag t which specifies information related to the message m and its encryption context. Similarly,
the decryption algorithm takes additionally to the ciphertext and the private key the tag under which the
ciphertext was created. Security notions are then defined as usual except that the adversary specifies to his
challenger the tag to be used in the challenge ciphertext, and in case he (the adversary) is allowed to query
oracles, then he cannot query them on the pair formed by the challenge ciphertext and the tag used to
form it. There are also weakened security models for this type of encryption where the adversary specifies
the challenge tag before getting the parameters of the scheme, and during the game, he (the adversary) is
not allowed to query the allowed oracles w.r.t. the challenge tag; we talk in this case about selective tag
security. We specify in the following the formal definition of IND-st-wCCA security for tag-based encryption:

Let Γ be a tag-based encryption scheme scheme. Let further A denote a probabilistic polynomial time
algorithm. We write Adecrypt(sk ,.) to denote that A has access to oracle decrypt(sk , .). When a query q is
not allowed, we use the symbol ¬: Adecrypt

¬q(sk ,.). We define the experiment ExpIND−st−wCCA

A (λ) :

1. param ← setup(λ);
2. t← A(param);
3. (sk , pk)← Γ.keygen(param, λ);

4. (m0,m1)← A
decrypt

¬(−,t)(sk ,.)(pk);

5. b
R
←− {0, 1}; eb ← Γ.encryptpk (mb, t);

6. b⋆ ← Adecrypt
¬(−,t)(sk ,.)(eb);

7. If b = b⋆ return 1 else 0.

We define A’s advantage as Advind-st-wCCA

Γ,A (λ) =
∣∣∣Pr

[
Expind-st-wCCA

Γ,A (λ) = 1
]
− 1

2

∣∣∣ .
Given (t, qd) ∈ N

2 and ε ∈ [0, 1], A is called a (t, ε, qd)-ind-st-wCCA adversary against Γ if, running in time
t and issuing qd decryption queries, A has Advind−st−wCCA

Γ,A (λ) ≥ ε. The scheme Γ is said to be (t, ε, qd)-ind-
st-wCCA secure if no (t, ε, qd)-ind-st-wCCA adversary against it exists.

The Twin Diffie-Hellman problem was introduced in [15] as a slight modification to the original Diffie-
Hellman (DH) problem which is as hard as the ordinary DH problem, even given access to a corresponding
decision oracle. It is defined as follows.

Let G be a prime-order cyclic group generated by some g. Let dh further denotes the Diffie-Hellman
function (it inputs (X,Y ) ∈ G2 and returns Z such that (g,X, Y, Z) is Diffie-Hellman quadruple). The Twin
DH function is defined as follows:

2dh:
G3 → G2

(X1, X2, Y )→ (dh(X1, Y ), dh(X2, Y ))

Cash et al. define further a corresponding twin DH predicate:

2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2) := 2dh(X1, X2, Ŷ )
?
= (Ẑ1, Ẑ2).

Finally the Strong Twin Diffie-Hellman assumption states that distinguishing the two distributions
(X1, X2, Y, dh(X1, Y )) and (X1, X2, Y, Z) for random X1, X2, Y, Z ∈ G is hard even in the presence of a deci-
sion oracle for the predicate 2dhp(X1, X2,−,−,−) which on input (Ŷ , Ẑ1, Ẑ2)) returns 2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2).

Theorem 10. The DDH assumption holds if and only if the Strong Twin DDH assumptions holds.
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[Setup] Choose a group (G, ·) generated by g with prime order d.

[Key generation] Choose x1, x̃1, x2, x̃2

R
←− Zd then compute Xi ← gxi and X̃i ← gx̃i for i = 1, 2

set pk ← {Xi, X̃i}i=1,2 and sk ← {xi, x̃i}i=1,2.
[Encryption] For a message m ∈ G and a tag t ∈ Zd:

choose r
R
←− Zd,

compute c1 ← gr, c2 ← (Xt
1X̃1)

r, c3 ← (Xt
2X̃2)

r, and c4 = mXr
1 ,

set the ciphertext to (c1, c2, c3, c4).
[Decryption] Given a ciphertext c = (c1, c2, c3, c4) and a tag t:

check that c2 = c
tx1+x̃1
1 and that c3 = c

tx2+x̃2
1

if it is not the case, return ⊥, otherwise:

compute the plaintext as m← c4c
−x1
1 .

Fig. 10. TBE variant of the Modified Cramer-Shoup [15]

Proof. The proof is given in [15].

Theorem 11. The encryption scheme in Figure 10 is IND-st-wCCA secure under the Strong Twin Diffie-
Hellman assumption.

Proof. The proof is given in [2].

A.6 Non-interactive proofs of knowledge

Let R be an efficiently computable ternary relation. Given some gk we let L be the language consisting of
statements x that have a witness w so (gk, x, w) ∈ R.
As in [20], such a system is modeled by four probabilistic polynomial time algorithms: a setup algorithm
GNI , a common reference string (crs) generation algorithm KNI , a prover PNI and a verifier VNI . The setup
outputs a setup (gk, ek) (ek, the trapdoor, may be the empty string) that KNI takes as input to produce
the common reference string crs. The prover PNI takes as input (gk, crs, x, w) and produces a proof π. The
verifier takes as inputs (gk, crs, x, π) and outputs 1 if the proof is valid and 0 if rejecting the proof.
In the following, we use the notation POK{(w) : (gk, x, w) ∈ R}(gk, crs, x) for PNI(gk, crs, x, w).

A non-interactive proof should satisfy completeness which denotes that an honest prover is able to con-
vince an honest verifier whenever the statement belongs to the language and the prover holds a witness
testifying to this fact. A further required property is soundness which captures the inability of a cheating
prover P to convince the verifier V with an invalid statement.

Informally, a zero-knowledge proof is a proof that shows the statement is true without revealing anything
else. This is defined by having a simulator (S1, S2) whose first part, S1, outputs a simulated crs and a
simulation trapdoor t and whose second part, S2, simulates, using t, proofs for statements without knowing
the corresponding witnesses. Real proofs on a real crs have to be computationally indistinguishable from
simulated proofs on a simulated crs.

The Groth-Sahai (GS) proof system [20] gives efficient non-interactive zero knowledge (NIZK) and non-
interactive witness-indistinguishable (NIWI) proofs for algebraic statements involving elements in groups
equipped with a bilinear map e : G1 ×G2 ← GT (we assume that ), e.g.

A pairing-product equation over variables X1, . . . , Xm ∈ G1 and Y1, . . . , Yn ∈ G2

n∏

i=1

e(Ai, Yi) ·

m∏

i=1

e(Xi, Bi) ·

m∏

i=1

n∏

j=1

e(Xi, Yi)
γi,j = tT ,
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for constants A1, . . . , An ∈ G1, B1, . . . , Bm) ∈ G1, and Γ = (γi,j) 1 ≤ i ≤ m
1 ≤ j ≤ n

∈ Z
m×n
d , and tT ∈ GT .

A multi-scalar multiplication over variables y1, . . . , ym ∈ Zd and X1, . . . , Xm ∈ G1

n∏

i=1

Ayi

i ·
m∏

i=1

Xbi
i ·

m∏

i=1

n∏

j=1

X
yiγi,j

j = T,

for constants A1, . . . , An ∈ G1, b1, . . . , bm ∈ Zd, Γ ∈ Z
m×n
d , and T ∈ G1. A multi-scalar multiplication

equation over variables in G2 is defined analogously.
A quadratic equation over variables x1, . . . , xm and y1, . . . , yn in Zd

n∑

i=1

aiyi +

m∑

i=1

xibi +

m∑

i=1

n∑

j=1

γi,jxiyj = t,

For constants a1, . . . , an and b1, . . . , bm in Zd, constant matrix Γ ∈ Z
m×n
d , and t ∈ Zd.

The principle of the GS proof system consists in using the setup parameters and the common reference
string (CRS) to commit to the witness components, then generate proof elements that these values committed
to satisfy the equations underlying the statement to be proved. Note that proofs for pairing-product equations
are only (WI) when tT ∈ GT has no particular structure. They can be however transformed into ZK proofs
(at the expense of an additional cost) if tT is equal to 1GT

or its representation as a pairing product equation
is known.

The GS proof system could be instantiated under different (mild) assumptions, in particular the Λsxdh

setting which refers to the case of asymmetric pairings for which the DDH assumptions holds in both G1

and G2.

G1 G2 Zd

Variables x ∈ Zd, X ∈ G1 2 0 0
Variables y ∈ Zd, Y ∈ G2 0 2 0
Pairing product equations 4 4 0
- Linear equations:

∏n

i=1
e(Ai, Yi) = tT 2 0 0

- Linear equations:
∏n

i=1
e(Xi, Bi) = tT 0 2 0

Multi-scalar multiplication equations in G1 2 4 0
- Linear equations:

∏n

i=1
A

yi
i = T1 1 0 0

- Linear equations:
∏n

i=1
X

bi
i = T1 0 0 2

Multi-scalar multiplication equations in G2 4 2 0
- Linear equations:

∏n

i=1
Y

ai
i = T2 0 0 2

- Linear equations:
∏n

i=1
B

xi
i = T2 0 1 0

Quadratic equations in Zd 2 2 0
- Linear equations:

∑n

i=1
aiyi = t 0 0 1

- Linear equations:
∑m

i=1
xibi = t 0 0 1

Fig. 11. Cost of each variable and equation in terms of group elements from G1,G2, and Zd

B Security proofs of section 4

B.1 Proof of theorem 3

Proof. Let A be an adversary against the traceability with advantage ǫ, we construct R a reduction using
A that EUF-CMA breaks the underlying digital signature scheme Σcert.
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Naive computation Batch computation

Pairing product equations 5m+ 3n+ 16 m+ 2n+ 8

Multi-scalar multiplication equations in G1 8m+ 2n+ 14 min(2n+ 9, 2m+ n+ 7)

Multi-scalar multiplication equations in G2 8n+ 2m+ 14 min(2m+ 9, 2n+m+ 7)

Quadratic equations in Zd 8m+ 8n+ 12 2 min(m,n) + 8

Fig. 12. Number of pairings per proof verification (m and n refer to the number of different types of involved variables
- see [8])

[keygen] R runs the Keygen algorithm as usual, except that she does not run Σcert.keygen and gets the
issuer public key pkcert from her EUF-CMA challenger.
[opening queries] R proceeds as the standard algorithm.
[joining queries] When R receives a joining query, she uses her signing oracle to produce the user’s
certificate. Then, she proceeds as the standard algorithm to simulate the interaction between the group
manager and the new user.
[Final output] A returns an untraceable group signature µ on a message m, which contains a certificate
σcert on sk, the secret key used to sign with Σ1, such that sk 6= ski for all registered user i (else, the group
signature is traceable). Using the assumption that (P, V ) is a sound proof system, A has to forge a new
certificate on sk, and R will run the extractor on the NIZK proof π to get sk and returns the pair (sk, σcert)
to her challenger.
R EUF-CMA breaks the digital signature scheme Σcert with advantage ǫ.

B.2 Proof of theorem 4

Proof. Let A be an adversary against the non-frameability with advantage ǫ, we construct R a reduction
using A that EUF-CMA breaks the underlying digital signature scheme Σ1.

[keygen] R runs the Keygen algorithm as usual, except that she computes a simulated common reference
string crs. R chooses at random i ∈ HU and computes (upkj , uskj)← Σ0.keygen for j ∈ HU .
[joining queries] R has to simulate the user part of the join protocol with the group manager (simulated
by A). If j 6= i, R generates a key pair (pkj , skj) ← Σ1.keygen and proceeds as in the standard algorithm.
If j = i then R gets the verification key from her challenger and uses the simulated common reference string
to produce the proofs of knowledge.
[signing queries] R proceeds as the standard algorithm if j 6= i, else, she uses her signing oracle to produce
a signature and uses the simulated common reference string to produce the proofs of knowledge.
[Final output] A returns a group signature µ = (σots, vkots, σ1, σcert, π) on a message m and an identity j.
If j 6= i, then R aborts the experiment. Otherwise we proceed as follows We first assume that σ1 is a valid
signature w.r.t vkib . We distinguish the following two cases:

1. OSign oracle was already requested on (i,m), returning µ∗. Then there are two possibilities:
– vkots or σcert are different from those in µ∗, which implies that A successfully forge a new signature

σ1. Then, R forwards (m‖vkots‖σcert, σ1) to her challenger.
– σ1 or π are different from those in µ∗, then σ1 or π have been re-randomized and A has to forge a

new one-time signature Σots. Then A can be turned in an attacker against the security of Σots.
2. There were no oracle request on (i,m), then σ1 is a forged signature on m‖vkots‖σcert.

If σ1 is not a valid signature w.r.t vkib then A has produced a signature σ1 on m‖vkots‖t and a verifica-
tion key vk such that Σ1.Verify(vk,m‖vkots‖t, σ1) = 1 and wants to prove in the Judge algorithm that
vk is the verification key for user i. Then he has to prove knowledge of a signature σ0,i on vk such that
Σ0.Verify(upki, vk, σ0,i) = 1. Because of the soundness of the proof, it means that the adversary has pro-
duced a forgery on Σ0 and then, can be turned in an attacker against the EUF-CMA security of Σ0.
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Let m be the number of honest users, R is able to break the EUF-CMA security of Σ1 with advantage
1
m
ǫ. A’s advantage ǫ is then negligible.

B.3 Proof of theorem 5

Proof. Let A be an adversary against the anonymity with advantage ǫ, we construct R a reduction using A
against the DDH problem in G1.
R gets the DDH challenge (g, gx, gy, gz) from her challenger and has to decide whether z = xy or random.

[keygen] R runs K.keygen algorithm as usual and generates a pair (αi, βi) , for each honest user i. In the
experiment R will act as if ski = (αi, yβi), then has to generate a certificate σcert(i) on it. Let (u, v, z1, z2)
be the secret certificate key, R proceeds as follows:

(a,A1, A2, b, B1, B2, c)← (gρ, gρz1 , gρz2 , gv, gρvz1 , gρvz2 , au+uvrAuvαi

1 (gy)ρz2uvβi)

which is a valid signature on (αi, yβi) (for random ρ and r).
[joining queries] R proceeds as the standard algorithm.
[signing queries] Receiving a request OSign(i,m) from A, R proceeds as follows:

1. (skots, vkots)← Σots.keygen
2. σ ← Σcert.sigRand(σcert(i))
3. η ← m‖vkots‖σ
4. (a, b, c)← (gρ, (gy)ρβi , aαi (g

y)ραiβiη)
5. R simulates the proof π.
6. σots ← Σots.sign(skots, a‖π)
7. µ← (vkots, σots, (a, b, c), σ, π)

for a random ρ. The produced signature (a, b, c) is valid and R records (i,m, µ) then returns it to A.
[open queries] R distinguishes two cases:

– If the signature originates from a dishonest user, R proceeds as the standard algorithm.
– In case the signature was created on the behalf of an honest user then, because of the non-frameability

property of our scheme, the signature is a previous output of the OSign oracle. R looks in her record
and outputs the corresponding identity i with a simulated proof π′.

[Challenge] A sends m, i0, i1 to R who computes b ← {0, 1}. To produce a signature on behalf of user ib,
R proceeds as follows:

1. (skots, vkots)← Σots.keygen
2. σ ← Σcert.sigRand(σcert(ib))
3. (a, b, c)← (gx, (gz)βib , aαib (gz)αib

βib
η)

4. R simulates the proof π.
5. σots ← Σots.sign(skots, a‖π)
6. µ← (vkots, σots, (a, b, c), σ, π)

[Post challenge phase] R answers signing, joining and opening queries as previously.
[Final output] Finally, A outputs a bit b0. If b = b0 R returns 1, else she returns 0.

If (g, gx, gy, gz) is a DDH tuple, the group signature is valid, else µ is an element indistinguishable from
a random element in the group signature space since z is random, the certificate is generated with the re-
randomizable signature scheme Σcert and the proof is zero-knowledge. Let b∗ be the bit computed by the
challenger, then R’s advantage in breaking the DDH problem is:

Adv(R) = |Pr[b = b0 | b
∗ = 1].Pr[b∗ = 1] + Pr[b 6= b0 | b

∗ = 0].Pr[b∗ = 0]−
1

2
|

= |
1

4
+

ǫ

2
+

1

4
−

1

2
|

=
ǫ

2
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C Security proofs of section 5

C.1 Proof of theorem 6

Proof. Let A be an adversary against the traceability with advantage ǫ, we construct R a reduction using
A that EUF-CMA breaks the underlying digital signature scheme Σcert.

[keygen] R runs the Keygen algorithm as usual, except that she does not run Σcert.keygen and gets the
issuer public key pkcert from her EUF-CMA challenger.
[opening queries] R proceeds as the standard algorithm.
[joining queries] When R receives a joining query, she uses his signing oracle to produce the user’s certifi-
cate. Then, she proceeds as the standard algorithm to simulate the interaction between the group manager
and the new user.
[Final output] A returns an untraceable group signature µ on a message m, which contains a proof of
knowledge of a certificate σcert on vk, the verification key corresponding to the signature produced by Σ1,
such that vk 6= vki for all registered user i (else, the group signature is traceable). Using the assumption
that (P, V ) is a sound proof system, A has to forge a new certificate on vk, and R will run the extractor on
the NIZK proof π to get vk and σcert and returns the pair (vk, σcert) to her challenger.
R EUF-CMA breaks the digital signature scheme Σcert with advantage ǫ.

C.2 Proof of theorem 7

Proof. Let A be an adversary against the non-frameability with advantage ǫ, we construct R a reduction
using A that EUF-CMA breaks the underlying digital signature scheme Σ1.

[keygen]R runs the Keygen algorithm as usual, except that she chooses i ∈ HU and computes (upkj , uskj)←
Σ0.keygen for j ∈ HU .
[joining queries] R has to simulate the user part of the join protocol with the group manager (simulated
by A). If j 6= i, R generates a key pair (pkj , skj) ← Σ1.keygen and proceeds as in the standard algorithm.
If j = i then R gets the verification key vk from her challenger, signs it with uski, and sends vk and the
signature to A.
[signing queries] R proceeds as the standard algorithm if j 6= i, else, she uses her signing oracle to produce
the signature.
[Final output] A returns a group signature µ = (σots, vkots, σ1, r, π) on a message m and an identity j. If
j 6= i, then R aborts the experiment. Else we assume that σ1 is a valid signature w.r.t vk (else, as in the
previous scheme, it involves a forgery on Σ0). We distinguish the two following cases:

1. OSign oracle was already requested on (i,m), returning µ∗. Then there are two possibilities:
– vkots or r are different from those in µ∗, which implies that A successfully forge a new signature σ1.

Then, R forwards (m‖vkots‖r, σ1) to her challenger.
– σ1 or π are different from the one in µ∗, then σ1 or π has been re-randomized and A has to forge a

new one-time signature Σots. Then A can be turned in an attacker against the security of Σots.
2. There were no oracle request on (i,m), then σ1 is a forged signature on m‖vkots‖r.

Let m be the number of honest users, R is able to break the EUF-CMA security of Σ1 with advantage
1
m
ǫ. A’s advantage ǫ is then negligible.

C.3 Proof of theorem 8

Proof. Let A be an adversary against the anonymity with advantage ǫ, we construct R a reduction using A
against the DDH problem.
R gets the DDH challenge (g, gx, gy, gz) from her challenger and has to decide whether z = xy or random.
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[keygen] R runs K.keygen algorithm as usual, generates a pair (αi, βi) and computes ri ← Simulate(skcert)
for each honest user i. In the experiment R will act as if ski = (αi, yβi).
[joining queries] R proceeds as the standard algorithm.
[signing queries] Receiving a request OSign(i,m) from A, R proceeds as follows:

1. (skots, vkots)← Σots.keygen
2. r ← Simulate(skcert)
3. η ← m‖vkots‖r
4. (a, b, c)← (gρ, (gy)ρβi , aαi (g

y)ραiβiη)
5. R simulates the proof π.
6. σots ← Σots.sign(skots, a‖π)
7. µ← (vkots, σots, (a, b, c), r, π)

for a random ρ. The produced signature (a, b, c) is valid and R records (i,m, µ) then returns it to A.
[open queries] R distinguishes two cases:

– If the signature originate from a dishonest user, R proceeds as the standard algorithm.
– In case the signature was created on the behalf of an honest user then, because of the non-frameability

property of our scheme, the signature is a previous output of the OSign oracle. R looks in her record
and outputs the corresponding identity i with a simulated proof π′.

[Challenge] A sends m, i0, i1 to R who computes b ← {0, 1}. To produce a signature on behalf of user ib,
R proceeds as follows:

1. (skots, vkots)← Σots.keygen
2. σ ← Simulate(skcert)
3. η ← m‖vkots‖r
4. (a, b, c)← (gx, (gz)βi , aαi(gz)αiβiη)
5. R simulates the proof π.
6. σots ← Σots.sign(skots, a‖π)
7. µ← (vkots, σots, (a, b, c), r, π)

then simulates the proof π′.
[Post challenge phase] R answers signing, joining and opening queries as previously.
[Final output] Finally, A outputs a bit b0. If b = b0 R returns 1, else she returns 0.

If (g, gx, gy, gz) is a DDH tuple, the group signature is valid, else µ is an element indistinguishable from a
random element in the group signature space since z is random and r is information theoretically independent
from σcert and m. Let b∗ be the bit computed by the challenger, then R’s advantage in breaking the DDH
problem is:

Adv(R) = |Pr[b = b0 | b
∗ = 1].Pr[b∗ = 1] + Pr[b 6= b0 | b

∗ = 0].Pr[b∗ = 0]−
1
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D Security proofs of section 6

D.1 Proof of theorem 9

Proof. Let A be an adversary against the anonymity with advantage ǫ, we construct R a reduction using A
against the IND-st-wCCA security of Γ .
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[keygen] R gets the parameters of Γ , computes (skots, vkots) ← Σots.keygen and sends t∗ ← vkots to his
challenger. Then, she receives pk, the public key of Γ , and runs K.keygen algorithm as usual, except that
she sets pkM = pk and computes a simulated common reference string.
[{signing, joining} queries] R proceeds as the standard algorithms.
[opening queries] R runs Verify on the group signature. If it outputs 1, then she checks the tag t used for
encryption. If t 6= t∗, R uses her decryption oracle on C and then proceeds as the standard Open algorithm,
else, she returns ⊥. This simulation differs if t∗ = t, but this event appears for each query with probability
1

|T | (where T is the tag space) because A does not know t∗.

[Challenge] A sends m, i0, i1 to R who computes b0
R
←− {0, 1}, σcert ← Σcert.sigRand(σcert(ib0), σb ←

Σ1.sign(skib ,m‖t
∗‖σcert) and (rb, sb) ← σb for b ∈ {0, 1}. She sends s0 and s1 to her challenger who

computes b∗
R
←− {0, 1} and returns C∗, an encryption of sb∗ under the tag t∗. R sets r ← rb0 and uses the

simulated common reference string to produce the proof π, then computes σots ← Σots.sign(skots, C
∗‖r‖π)

and sends µ← (m, t∗, σots, r, C
∗, σcert, π) to A.

Recalling the properties of Σcert and Σ1, σcert is computationally indistinguishable from σcert(i0) or σcert(i1)
(we denote by ǫ0 the probability that A is able to distinguish σcert(i0) from σcert(i1), ǫ0 is negligible under
the DDH assumption) and r is indistinguishable from r0 or r1. Moreover, since the proof is zero-knowledge,
the distribution of this challenge is the same as in the full anonymity experiment.
[Post challenge phase] R can answer signing, joining and opening (with a tag different from t∗) queries
as previously. If the tag is t∗ then she returns ⊥. Indeed, to produce a valid group signature with the tag
t∗ = vkots, A has to forge a new signature σots because each modification on the challenge group signature
involves a different C∗ or a different proof π. Since Σots is a strong one-time signature, this event appears
with negligible probability.
[Final output] Finally, A outputs a bit b′ that R forwards to her challenger.

R’s behavior is the same as the challenger in the full anonymity experiment, his advantage in breaking
the IND-st-wCCA security of Γ is then (1− ǫ0)ǫ.

D.2 Proof of theorem 10

Proof. Let A be an adversary against the traceability with advantage ǫ, we construct R a reduction using
A that EUF-CMA breaks the underlying digital signature scheme Σcert.

[keygen] R runs the Keygen algorithm as usual, except that she does not run Σcert.keygen and gets the
issuer public key pkcert from her EUF-CMA challenger.
[opening queries] R proceeds as the standard algorithm.
[joining queries] When R receives a joining query, she uses his signing oracle to produce the user’s certifi-
cate. Then, she proceeds as the standard algorithm to simulate the interaction between the group manager
and the new user.
[Final output] A returns an untraceable group signature µ on a message m, which contains a certificate
σcert on sk, the secret key used to sign with Σ1, such that sk 6= ski for all registered user i (else, the group
signature is traceable). Using the assumption that (P, V ) is a sound proof system, A has to forge a new
certificate, and R will run the extractor on the NIZK proof π to get sk and returns the pair (sk, σcert) to
her challenger.
R EUF-CMA breaks the digital signature scheme Σcert with advantage ǫ.

D.3 Proof of theorem 11

Proof. Let A be an adversary against the non-frameability with advantage ǫ, we construct R a reduction
using A that EUF-CMA breaks the underlying digital signature scheme Σ1.
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[keygen] R runs the Keygen algorithm as usual, except that she computes a simulated common reference
string crs. R chooses i ∈ HU and computes (upkj , uskj)← Σ0.keygen for j ∈ HU .
[joining queries] R has to simulate the user part of the join protocol with the group manager (simulated
by A). If j 6= i, R generates a key pair (pkj , skj) ← Σ1.keygen and proceeds as in the standard algorithm.
If j = i then R gets the verification key from her challenger and uses the simulated common reference string
to produce the proofs of knowledge.
[signing queries] R proceeds as the standard algorithm if j 6= i, else, she uses her signing oracle to produce
a signature and uses the simulated common reference string to produce the proofs of knowledge.
[Final output] A returns a group signature µ on a message m and an identity j. If j 6= i, then R aborts the
experiment. Else we assume that σ1 is a valid signature w.r.t vk (else, as in the previous scheme, it involves
a forgery on Σ0). We distinguish the two following cases:

1. OSign oracle was already requested on (i,m), returning µ∗. Then there are two possibilities:
– vkots or σcert are different from those in µ∗, which implies that A successfully forge a new signature

σ1. Then, R forwards (m‖vkots‖σcert, σ1) to her challenger.
– C or π are different from those in µ∗, then C or π have been re-randomized and A has to forge a

new one-time signature Σots. Then A can be turned in an attacker against the security of Σots.
2. There were no oracle request on (i,m), then σ1 is a forged signature on m‖vkots‖σcert.

Let m be the number of honest users, R is able to break the EUF-CMA security of Σ1 with advantage 1
m
ǫ.

A’s advantage ǫ is then negligible.
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