
On the Security of TLS Renegotiation∗

Florian Giesen1 Florian Kohlar1 Douglas Stebila2

1 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Bochum, Germany

florian.giesen@rub.de, florian.kohlar@rub.de
2 Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia

stebila@qut.edu.au

November 7, 2012

Abstract

The Transport Layer Security (TLS) protocol is the most widely used security protocol on the
Internet. It supports negotiation of a wide variety of cryptographic primitives through different cipher
suites, various modes of client authentication, and additional features such as session resumption and
renegotiation. Despite its widespread use, only recently has the full TLS protocol been proven secure, and
only then a single ciphersuite family (TLS DHE DSS WITH 3DES EDE CBC SHA) with no additional features.
These additional features have been the cause of practical attacks on TLS. In 2009, Ray and Dispensa
demonstrated how TLS renegotiation allows an attacker to splice together its own session with that of
a victim, resulting in a man-in-the-middle attack on TLS-reliant applications such as HTTP. TLS was
subsequently patched with two defence mechanisms for protection against this attack.

We present the first formal treatment of renegotiation in secure channel establishment protocols. We
add optional renegotiation to the authenticated and confidential channel establishment model of Jager et
al., an adaptation of the Bellare–Rogaway authenticated key exchange model. We describe the attack of
Ray and Dispensa on TLS within our model. Although the two proposed fixes for TLS do not achieve our
strongest notion of security, they do achieve a weaker but still reasonable security notion, and TLS can
be easily adjusted to achieve that stronger level of security.

Keywords: Transport Layer Security (TLS), renegotiation, security models, key exchange

∗The research leading to these results has received funding from the European Community (FP7/2007-2013) under grant
agreement number ICT-2007-216646 - European Network of Excellence in Cryptology II (ECRYPT II) and the Australian
Technology Network–German Academic Exchange Service (ATN-DAAD) Joint Research Co-operation Scheme.

1

mailto:florian.giesen@rub.de
mailto:florian.kohlar@rub.de
mailto:stebila@qut.edu.au

Contents

1 Introduction 3
1.1 The TLS Renegotiation Issue . 4
1.2 Countermeasures Added to TLS . 4
1.3 Contributions and Outline . 5

2 Security Definitions for Multi-Phase and Renegotiable ACCE 6
2.1 Overview . 6
2.2 Execution Environment . 7
2.3 Security Definitions . 9

2.3.1 Confidentiality. 10
2.3.2 Secure multi-phase ACCE. 10
2.3.3 Secure renegotiable ACCE. 10
2.3.4 Weakly secure renegotiable ACCE. 11
2.3.5 Protocols without forward security. 11

3 Renegotiation (In)security of TLS 11
3.1 TLS without countermeasures is not a (weakly) secure renegotiable ACCE protocol 12

4 Renegotiation Security of TLS with SCSV/RIE Countermeasures 13
4.1 TLS ∗ with SCSV/RIE is not a secure renegotiable ACCE . 13
4.2 TLS DHE DSS with SCSV/RIE is a secure multi-phase ACCE 13

4.2.1 Proof of Lemma 1: εclient . 14
4.2.2 Proof of Lemma 1: εserver . 17
4.2.3 Proof of confidentiality . 19

4.3 Multi-phase secure TLS with SCSV/RIE is a weakly secure renegotiable ACCE 21

5 Renegotiation Security of TLS with a New Countermeasure 23

6 Conclusion 24

References 25

A Additional Definitions 26
A.1 Stateful Length-Hiding Authenticated Encryption (sLHAE) 26
A.2 The PRF-Oracle-Diffie-Hellman Assumption . 27

B Protocols without forward security 27
B.1 Model . 27
B.2 On renegotiation security of TLS RSA with SCSV/RIE . 28

C TLS Session Resumption 28

D TLS DHE DSS WITH 3DES EDE CBC SHA protocol with renegotiation extensions 29

E Generic TLS protocol with renegotiation extensions 30

2

1 Introduction

Authenticated key exchange (AKE) is an essential cryptographic protocol: it allows two parties to establish a
secure (confidential, authenticated, integrity-protected) channel over an insecure (public, unauthenticated,
adversary-controlled) connection. AKE protocols have been extensively studied in the literature. There
are several mathematical definitions of security for AKE, including the Bellare–Rogaway [BR94] and Blake-
Wilson–Johnson–Menezes models [BWJM97] and later variants such as the Canetti–Krawczyk [CK01] and
eCK models [LLM07].

The Transport Layer Security (TLS) protocol, the successor of the Secure Sockets Layer (SSL) protocol,
provides secure channel establishment on the Internet. It is commonly used to protect information sent via
the Hypertext Transfer Protocol (HTTP) on the web, and many other application layer protocols such as
email and file transfer. TLS consists of a handshake protocol, which is used to agree on security parameters,
establish a secret key, and authenticate the parties; and a record layer protocol, which is used to send
encrypted data.

Despite the importance of TLS, progress on formally modelling the security of TLS has been slow. It
turns out that a technicality of TLS prevents it from being proven secure in the standard AKE models listed
above: in AKE models, the session key must be indistinguishable from a random key of the same length.
However, the final handshake message of the TLS protocol is sent encrypted under the session key. As a
result, an adversary can distinguish the session key from a random key by checking the encryption of the
final handshake message. Some analyses [JKJ02, MSW08] have shown that a truncated form of the TLS
handshake protocol establishes secure keys. Others [GMP+08] deal with a substantially weaker security
requirement, namely unauthenticated key agreement. Krawczyk [Kra01] analyzed a variant of the TLS record
layer protocol.

Only very recently have analyses of unmodified TLS functionality appeared. Paterson et al. at ASI-
ACRYPT 2011 [PRS11] showed that TLS’s MAC-then-encode-then-encrypt record layer when used with CBC
encryption (with certain length restrictions) satisfies a notion called length-hiding authenticated encryption
(LHAE). Subsequently, at CRYPTO 2012 Jager et al. [JKSS12] gave the first full proof of the security of
(one ciphersuite of) unmodified TLS in a strong security model. Jager et al. introduced a variant of the
Bellare–Rogaway authenticated key exchange model, called authenticated and confidential channel estab-
lishment (ACCE). They proved that the TLS 1.2 protocol using the TLS DHE DSS WITH 3DES EDE CBC SHA

ciphersuite (which we shorten to TLS DHE DSS) is a secure ACCE protocol, under standard assumptions on
the cryptographic components. (We note an alternative modular approach to proving the full security of TLS
was recently given by Brzuska et al. [BFS+12].)

But TLS is not just a basic secure channel: it consists of hundreds of variants with many optional complex
functionalities. Alert messages report various error conditions. Previous sessions can be resumed with a
shortened handshake. As of May 2012, approximately 300 ciphersuites — combinations of cryptographic
primitives — have been standardized. Client authentication is optional, and can be certificate-based or
password-based. Various additional options can be specified via extensions and optional fields.

And most importantly for this paper, after a TLS handshake has been completed and transmission on
the record layer has started, parties can renegotiate the handshake, to (a) obtain a fresh session key, (b)
change cryptographic parameters, or (c) change authentication credentials. For example, if a client needs to
authenticate using a client certificate but wishes to not reveal her identity over a public channel, she could
first authenticate anonymously (or with pseudonymous credentials), then renegotiate using her real certificate;
since the renegotiation messages are transmitted within the existing record layer, the transmission of her
certificate is encrypted, and thus she obtains privacy for her identity. We will examine TLS renegotiation in
detail, especially in light of previously identified practical attacks related to TLS renegotiation.

Despite the utility of renegotiation in real-world protocols — beyond TLS, renegotiation, rekeying, or
reauthentication is also used in the Secure Shell (SSH) protocol, Internet Key Exchange version 2, the Tor
anonymity protocol, and others — there has been almost no research in the literature on the security of
protocols involving renegotiation, with the exception of a brief note on the TLS renegotiation attack by
Farrell [Far10] and the recent thesis of Gelashvili [Gel12], which uses the Scyther tool to automatically
identify the TLS renegotiation attack. Rekeying has been studied in the context of group key agreement for
applications such as mobile ad hoc networks, but without reference to AKE security models. Renegotiation
has been studied in the context of game theoretic protocols, but this does not apply to the provable security

3

Alice Eve Bob
(TLS server)

Bob
(application)

handshakeEB

record layerEB

m0 m0

handshakeAB

d
e
la
y
e
d

b
y
E
v
e

record layerAB

m1 m1 m0‖m1

Figure 1: Ray and Dispensa’s man-in-the-middle renegotiation attack on TLS-reliant applications

of cryptographic protocols.

1.1 The TLS Renegotiation Issue

All versions of TLS [DA99, DR06, DR08], and SSL v3 [FKK11] before it, support renegotiation. After the
initial handshake is completed and secure communication begins in the record layer, either party can request
renegotiation. The client can request renegotiation by sending a new ClientHello message in the current
record layer (i.e., encrypted under the current session key); the server can request renegotiation by sending a
HelloRequest message in the record layer, which triggers the client to send a new ClientHello message.

In November 2009, Ray and Dispensa [RD09] described a man-in-the-middle attack that exploits how
certain TLS-reliant applications — such as HTTP over TLS [Res00] — process data across renegotiations.
The attack is shown in Figure 1. The attacker Eve observes Alice attempting to establish a TLS session
with Bob. Eve delays Alice’s initial ClientHello and instead establishes her own TLS session with Bob and
transmits a message m0 over that record layer. Then Eve passes Alice’s initial ClientHello to Bob over
the Eve–Bob record layer. Bob views this as a valid renegotiation and responds accordingly; Eve relays the
handshake messages between Alice and Bob, who will eventually establish a new record layer to which Eve
has no access. Alice then transmits a message m1 over the Alice–Bob record layer.

This is not strictly speaking an attack on TLS but on how some applications process TLS-protected data.
It results from some applications, including HTTPS [RD09] and SMTPS [Zol09], concatenating m0 and m1

and treating them as coming from the same party in the same context. For example, if Eve send the HTTP
request m0 and Alice sends the HTTP request m1, where

m0 = “GET /orderPizza?deliverTo=123-Fake-St←↩ X-Ignore-This: ”

m1 = “GET /orderPizza?deliverTo=456-Real-St←↩ Cookie: Account=111A2B”

(where ←↩ denotes new-line character), then the concatenated request (across multiple lines for readability) is

m0‖m1 = “GET /orderPizza?deliverTo=123-Fake-St←↩
X-Ignore-This: GET /orderPizza?deliverTo=456-Real-St←↩
Cookie: Account=111A2B”

The “X-Ignore-This: ” prefix is an invalid HTTP header, and since this header, without a new line
character, is concatenated with the first line of Alice’s request, the HTTP server ignores the URL that Alice
requested and uses the URL that Eve requested. However, the following line, Alice’s account cookie, is still
processed. Hence Eve has been able to have the pizza delivered to herself but paid for by Alice.

1.2 Countermeasures Added to TLS

The immediate recommendation due to this attack was to disable renegotiation except in cases where it was
essential. Subsequently, the Internet Engineering Task Force (IETF) TLS working group developed RFC 5746
[RRDO10] to provide countermeasures to this attack, with the goal of applicability to all versions of TLS and

4

SSL 3.0. Two countermeasures were standardized: the Signalling Ciphersuite Value (SCSV), designed for
older implementations that incorrectly abort when seeing ClientHello and ServerHello extensions; and
the Renegotiation Information Extension (RIE), designed for that support ClientHello and ServerHello

extensions [BWNH+03]. These were adopted by major TLS implementation providers and web browsers and
servers, including Apache, Apple, Google, Microsoft, Mozilla, and OpenSSL. A diagram showing the message
flow for a generic TLS ciphersuite with SCSV/RIE countermeasures appears in Figure 5 in Appendix E.

Renegotiation Information Extension (RIE). With this countermeasure, each client or server always
includes a renegotiation information extension in its respective ClientHello or ServerHello message. This
extension contains one of three values. If the party is not renegotiating, then it includes a fixed “empty”
string which denotes that the party supports and understands the renegotiation extension, and the party
is in fact not renegotiating. If the party is renegotiating, then it includes the handshake/key confirmation
value from the previous handshake: the client sends the previous client verify data value while the server
sends the concatenation of the previous client verify data and server verify data values. Intuitively,
by including the verify data from the previous handshake, the parties can be assured that they have the same
view of the previous handshake, and thus the attack in Figure 1 is avoided.

Signalling Ciphersuite Value (SCSV). SCSV was designed to avoid interoperability problems with TLS
1.0 and SSL 3.0 implementations that did not gracefully ignore extension data at the end of ClientHello
and ServerHello messages. With SCSV, the client uses an alternative method in its initial handshare — an
extra, fixed, distinguished ciphersuite value (byte codes 0x00,0xFF) including in its ciphersuite list — to
indicate that it knows how to securely renegotiate. Old servers will ignore this extra value; new servers will
recognize that the client supports secure renegotiation, and the server will use the RIE in the remainder of
the session. In other words, the only difference between SCSV and RIE is in the ClientHello message of
the initial handshake: with RIE, the client sends an empty extension, whereas with SCSV the client sends a
distinguished value in the list of supported ciphersuites.

1.3 Contributions and Outline

Security model for renegotiable channel establishment protocols. In Section 2, we present a new
security model for renegotiable protocols. Since our goal is to analyze the security of TLS, we base our
model on that of Jager et al. [JKSS12] for authenticated and confidential channel establishment (ACCE)
protocols, rather than AKE security models, since TLS cannot be proven to be a secure AKE protocol. The
primary difference in our model for renegotiable protocols is that each party’s oracle (session) can have
multiple phases; each new phase corresponds to a renegotiation in that session, and can involve the same
or different long-term keys. Note that this is qualitatively different than simply having multiple sessions,
since short-term values from one phase of a protocol run may be used in the renegotiation for the next phase,
where as multiple sessions only reuse long-term values. Each oracle maintains a list of accept/reject, state,
and encryption/MAC keys for each phase. Like in TLS, our formalism allows control messages to be sent on
the encrypted channel.

The basic goals of a secure renegotiable ACCE protocol are that (a) the adversary should not be able to
read or inject messages on the encrypted channel, and (b) whenever parties successfully renegotiate, they
should have exactly the same view of all previous negotiations and all encrypted messages sent in all previous
phases of that session, even when values from previous phases have been compromised.

Analysis of TLS without and with SCSV/RIE countermeasures. Based on the TLS renegotiation
attack of Ray and Dispensa, we see in Section 3 that TLS without countermeasures is not secure in our
model for renegotiation. We subsequently show in Section 4 that TLS DHE DSS with the SCSV or RIE
countermeasures of RFC 5746 [RRDO10] is a weakly secure renegotiable ACCE protocol, where the adversary
is somewhat restricted in the previous secrets she is allowed to reveal; we note that this slightly weaker model
is still quite reasonable.

Our approach for proving the renegotiable security of TLS with SCSV/RIE countermeasures is modular.
We introduce an intermediate notion, a secure multi-phase ACCE (Defn. 4), where there is no link between
subsequent phases in a session, and show in Theorem 1 that TLS DHE DSS is a secure multi-phase ACCE,

5

meaning that the client verify data and server verify data values revealed in the RIE do not weaken
the ACCE security of the protocol. We then show in Theorem 2 that any TLS ciphersuite with SCSV/RIE that
is a secure multi-phase ACCE is also a weakly secure renegotiable ACCE. Although to date only TLS DHE DSS

has been proven ACCE-secure, it is plausible that many other TLS ciphersuites will be: our generic approach
will more easily allow proving the renegotiable ACCE security of TLS ciphersuites. Although ephemeral
Diffie–Hellman TLS ciphersuites are not currently as widely used as RSA key transport-based ciphersuites,
they are growing in use, for example with Google’s 2011 announcement that their default ciphersuite is
ephemeral elliptic curve Diffie–Hellman [Lan11]. We also describe how our approach to renegotiation could
be extended if and when ciphersuites without forward secrecy, such as RSA key transport, are shown
ACCE-like-secure.

New countermeasure for TLS. TLS with SCSV/RIE cannot meet our strongest notion of renegotiable
security, only the weaker notion described above. In the strong definition, even if the adversary learns the
session key of one phase, parties who later renegotiate still should detect any earlier message injections by
the adversary. Though the ability to learn sessions keys of phases while the protocol is still running makes
the adversary quite powerful, this may be realistic in scenarios with long-lived session keys, for example with
session resumption. We present in Section 5 a simple adjustment to the renegotiation information extension —
adding a fingerprint of the transcript of the previous phase’s record layer — so TLS can achieve this stronger
security notion.

2 Security Definitions for Multi-Phase and Renegotiable ACCE

In this section we describe what a multi-phase authenticated and confidential channel establishment (ACCE)
protocol is and our various renegotiation security notions. Our definition builds on the ACCE definition of
Jager et al. [JKSS12], which combined the Bellare–Rogaway model for authenticated key exchange [BR94]
with a stateful variant of Paterson et al.’s length-hiding authenticated encryption [PRS11], described in detail
in Appendix A.1.

Notation. If S is a set, then x
$← S denotes sampling a value x uniformly at random from S. x

$← A(y)
denotes the output x of the probabilistic algorithm A when run on input y and randomly chosen coins. AO(·)

means A is run with access to oracle O(·). The notation [1, n] denotes the set {1, 2, . . . , n}; phases[`] denotes
the `th entry in the array phases and |phases| denotes the number of entries in the array.

2.1 Overview

The first security notion, a secure multi-phase ACCE protocol, is a straightforward extension of the ACCE
model to allow multiple, independent phases per session; notably, we require essentially no link between
phases:

• An adversary breaks authentication if a party accepts in a phase where long-term keys have not been
corrupted, but no matching phase exists at the peer.

• An adversary breaks confidentiality/integrity if it can guess the bit b involved in a stateful length-hiding
authenticated encryption-type confidentiality/integrity experiment.

Our central security definition is that of a secure renegotiable ACCE protocol, which strengthens the
authentication notion to include renegotiation:

• An adversary breaks renegotiation authentication if a party accepts in a phase where long-term keys
have not been corrupted, but either no matching phase exists at the peer or some previous handshake
or record layer transcript does not match.

This captures the idea that parties should successfully renegotiate only when they have exact same view of
everything that happened before. We will see in Section 5 that, if TLS when combined with a countermeasure
we propose is a secure multi-phase ACCE protocol, then it is also a secure renegotiable ACCE protocol.

However, it is not possible to prove that TLS with the SCSV/RIE countermeasures is a secure renegotiable
ACCE protocol: as we will see in Section 3, the strong definition requires that the views of parties match
when successfully renegotiating, even when previous sessions’ long-term secret keys or session keys were

6

revealed. TLS’s SCSV/RIE countermeasures do not fully protect against the case when these secret values
are revealed.

As a result, we introduce the weaker, though still quite reasonable, notion of a weakly secure renegotiable
ACCE protocol, and prove in Section 3 that TLS DHE DSS with SCSV/RIE satisfies it:

• An adversary breaks weak renegotiation authentication if a party accepts in a phase with uncorrupted
long-term keys and session keys for each earlier phase were not revealed while that phase was active,
but either no matching phase exists at the peer or some previous handshake or record layer transcript
does not match.

However, we will also observe that RSA key transport-based ciphersuites do not satisfy this notion:
RSA key transport does not offer forward security, so corrupting long-term secret keys is effectively the
same as revealing session keys. Note that the ACCE definition of Jager et al. [JKSS12] requires forward
security, so RSA key transport-based ciphersuites could not be proven ACCE secure. It seems plausible that
a non-forward-secure ACCE-like notion could be defined in which RSA key transport-based ciphersuites are
secure, and we comment at the end of this section on corresponding renegotiable notions.

We proceed by describing the execution environment for adversaries interacting with multi-phase ACCE
protocols, then formally define the various security notions described above.

2.2 Execution Environment

Parties. The environment consists of npa parties, {P1, . . . , Pnpa}. Each party PA is a potential protocol
participant, and has a list of nke long-term key pairs (pkA,1, skA,1), . . . , (pkA,nke

, skA,nke
). We assume that

each party PA is uniquely identified by any one of its public keys pkA,∗. In practice, there may be other
identities that are bound to these public keys, e.g. by using certificates, but this is out of scope of this paper.

Sessions. Each party PA can participate in up to nse sessions, which are independent executions of the
protocol and can be concurrent or subsequent; all of a party’s sessions have access to the same list of its
long-term key pairs, as well as a trusted list of all parties’ public keys. Each session s ∈ [1, nse] is presented
to the environment as an oracle πsA. Each oracle πsA records in a variable πsA.d the oracle corresponding to
the intended communication partner, e.g. πsA.d = πtB .

Phases. Each session can consist of up to nph phases. Each phase consists of two stages: a pre-accept, or
“handshake”, stage, which is effectively an AKE protocol that establishes a session key and performs mutual
authentication; and a post-accept, or “record layer”, stage, which provides a stateful communication channel
with confidentiality and integrity. A list πsA.phases of different phase states is maintained; we sometimes use

the notation πs,`A for πsA.phases[`]. There can be at most nph phases per oracle. The last entry of πsA.phases
contains the state of the current phase, which may still be in progress. Each entry πsA.phases[`] in the log
contains:

• pk, the public key used by πsA in that phase,
• pk′, the public key that πsA observed used for the peer in that phase,
• ∆, a counter used to keep track of the current status of the protocol execution,
• α, either accept, reject, or ∅ (for in-progress),
• k, the encryption and/or MAC key(s) established by πsA in that phase,
• T , the transcript of all messages sent and received by πsA during the pre-accept stage of that phase,
• ρ ∈ {Client,Server}, indicating the role of the oracle,
• RT , the transcript of all ciphertexts sent and received in the post-accept phase by πsA encrypted under

the key established in that phase,
• b, a random bit sampled by the oracle at the beginning of the phase, and
• st, some additional temporary state (which may, for instance, be used to store ephemeral Diffie–Hellman

exponents for the handshake, or state for the sLHAE scheme for the record layer).

The internal state is initialized to d ← ∅, pk ← ∅, pk′ ← ∅, ∆ ← 1, α ← ∅, k ← ∅, T ← ∅, RT ← ∅,
b

$← {0, 1}, and st← ∅. When describing a protocol, we will enumerate the protocol messages. The oracles
keep track of the protocol execution by setting the counter state equal to the message number that the oracle
expects to receive next, and update the counter on each message sent (∆ ← ∆ + 1). Once a phase of a

7

protocol accepts (that is, an encryption key has been negotiated and authentication is believed to hold), then
α is set to accept. If the protocol rejects and the oracle wishes to discontinue operation, the counter ∆ can
be set to the special symbol reject. Whenever a new handshake initialization message is received, the oracle
adds a new entry to its phases list. Application data messages sent and received encrypted under a newly
established encryption key (e.g. messages sent in the TLS record layer) will be appended to variable RT in
the latest entry of the log. If handshake messages for the renegotiation of a new phase are encrypted under
the previous phase’s session key (as they are in TLS), those messages are appended to variable T in the new
entry of the phase log, not RT in the previous phase.

Remark 1. The introduction of multiple phases is the main difference compared to previous AKE and
ACCE models. We need to allow multiple authentications and key exchanges within one oracle to capture
the functionality of renegotiation. When limited to a single phase and when each party has only one
long-term key pair, our execution environment/security experiment is equivalent to the original ACCE model
of Jager et al. [JKSS12].

Adversarial interaction. The adversary interacts with oracles by issuing the following queries, which
allow her to control (forward/alter/create/drop) all communication on the public channel (Send), learn
parties’ long-term secret keys (Corrupt), learn session keys (Reveal), and control sending and receiving of
arbitrary messages on the encrypted record layer (Encrypt/Decrypt) using a stateful symmetric encryption
scheme StE (Appendix A.1).

• Send(πsA,m): The adversary can use this query to send any (plaintext) message m of its choosing
to (the current phase of) oracle πsA. The oracle will respond according to the protocol specification,
depending on its internal state. Some distinguished control messages have special behaviour:

– m = (newphase, pk) triggers an oracle to initiate renegotiation of a new phase (or new session if
first phase);

– m = (ready, pk) activates an oracle to await a new phase/session;

where for the above control messages, pk indicates the long-term public key pk the oracle should use in
the phase; the oracle returns ⊥ if it does not hold the secret key for pk. Since the control messages
do not specify the identity of the peer, this is instead learned during the run of the protocol: we are
using a post-specified peer model [CK02]. Delivery of encrypted messages in the post-accept stage are
handled by the Decrypt query below. For protocols such as TLS that perform renegotiation within the
encrypted channel, the oracle may reply with an error symbol ⊥ if it has at least one entry in phases

and m 6= (newphase, ·) or (ready, ·).
• Corrupt(PA, pk): Oracle π1

A responds with the long-term secret key skA,i corresponding to public key
pk = pkA,i of party PA, or ⊥ if there is no i such that pk = pkA,i. This is the weak corruption model,
meaning we do not allow the adversary to register rogue public keys.

• Reveal(πsA, `): Oracle πsA responds with the encryption/MAC key(s) for phase `, namely πsA.phases[`].k,
or ∅ if no such value exists.

• Encrypt(πsA, ctype,m0,m1, len, head): This query depends on the random bit b sampled by πsA at the
beginning of the current phase. It takes as input a content type ctype, messages m0 and m1, a length
len, and header data head. Content type control is used for handshake messages; in this case, we
require that m0 = m1 to avoid the adversary trivially guessing b by causing different protocol states
to emerge, for example by sending a valid handshake message as m0 and an invalid message as m1.
Content type data is used for record layer messages; in this case, one of the two messages (chosen based
on bit b) is encrypted for the adversary to distinguish. Encrypt maintains a counter u initialized to 0
and an encryption state ste, and proceeds as depicted in Figure 2.

• Decrypt(πsA, C,H): This query takes as input a ciphertext C and header data head. If πsA has not
accepted in the current phase, then it returns ⊥. Decrypt maintains a counter v and a switch diverge,
both initialized to 0, and a decryption state std, and proceeds as depicted in Figure 2. If the decryption
of C contains a control message, then the oracle processes the message according to the protocol
specification, which may include updating the state of the oracle and/or creating a new phase, and
returns any protocol response message to the adversary, which may or may not be encrypted according
to the protocol specification.

8

Encrypt(πsA, ctype,m0,m1, len, head): Decrypt(πsA, C, head):

1. u← u+ 1 1. v ← v + 1
2. If (ctype = control) and (m0 6= m1), then return ⊥ 2. (ctype‖m, std) = StE.Dec(k, head, C, std)

3. (C(0), st
(0)
e)

$← StE.Enc(k, len, head, ctype‖m0, ste) 3. If (v > u) or (C 6= Cv), then diverge← 1

4. (C(1), st
(1)
e)

$← StE.Enc(k, len, head, ctype‖m1, ste) 4. If (b = 1) and (diverge = 1), then m′ ← m
5. If (C(0) = ⊥) or (C(1) = ⊥), then return ⊥ 5. If ctype = control, then r′ ← protocol response for m

6. (Cu, ste)← (C(b), st
(b)
e) 6. Else r′ ← ⊥

7. Return Cu 7. Return (m′, r′)
where (k, b, diverge) = πsA.phases[`∗].(k, b, diverge) and `∗ = |πsA.phases|.

Figure 2: Encrypt and Decrypt oracles for the multi-phase/renegotiable ACCE security experiments.

The behaviour of the Decrypt oracle in this combined definition for confidentiality and integrity can be
somewhat difficult to understand. It extends that of stateful length-hiding authenticated encryption, for
which we give the definition and an explanation in Appendix A.1.

Matching Conversations. Bellare and Rogaway [BR94] introduced the notion of matching conversations
to help define correctness and security of an AKE protocol.

Definition 1 (Matching conversations). Let transcripts TA and TB be two sequences of messages sent and
received, in chronological order, by parties PA and PB respectively. We say that TA is a prefix of TB, if TA
contains at least one message, and the messages in TA are identical to and in the same order as the first
|TA| messages of TB. We say that transcripts TA and TB are matching conversations if (i) TB is a prefix of
TA and party PA has sent the last message(s), or (ii) TA is a prefix of TB and party PB has sent the last
message(s).

Remark 2. Matching conversations can also be seen as post-specified session identifiers. The asymmetry of
the definition — the fact that we have to distinguish which party has sent the last message — is necessary
since protocol messages may be sent sequentially. For instance, in the TLS handshake protocol (see Figure 4)
the last message the client sends is the ‘client finished’ message finC , and then it waits for the ‘server
finished’ message finS before acceptance. The server, however, sends finS after receiving finC . Therefore
the server has to accept without knowing whether its last message was received by the client correctly. Since
an active adversary may simply drop the last protocol message, we must accommodate this in the definition
of matching conversations.

2.3 Security Definitions

In the original security definition for ACCE protocols, security is defined by requiring that (i) the protocol is
a secure authentication protocol, thus any party πsA reaches the post-accept state only if there exists another
party πtB such that πsA has a matching conversation (in the sense of Def. 1) to πtB , and (ii) data transmitted
in the post-accept stage over a secure channel is secure (in a sense similar to sLHAE).

We extend this notion to include security when a session has multiple phases that can be renegotiated. We
will give several security definitions with different levels of security against renegotiation attacks, as described
in the introduction to Section 2.

Each security notion is formally described as a game played between an adversary A and a challenger C,
with the same overall setup but different winning conditions. In each game, the challenger implements the
collection of oracles {πsA : A ∈ [1, npa], s ∈ [1, nse]}. At the beginning of the game, the challenger generates
nke long-term key pairs (pkA,1, skA,1), . . . , (pkA,nke

, skA,nke
) for each party PA; we assume that, within a

party, all public key pairs are distinct. (That distinct parties have distinct key pairs comes as a consequence
of the protocol being secure.) The adversary receives all parties’ public keys as input. The adversary may
issue Send, Corrupt, Reveal, Encrypt, and Decrypt queries to the oracles; recall that Send allows the party to
control which public keys are used in which phases and when phases are renegotiated. Finally, the adversary
outputs a bit b′ and terminates.

Table 1 at the end of the section provides a comparative summary of the various security notions introduced
in this section, as well as a summary of the results on TLS that appear in the rest of this paper.

9

Definition 2 (Correct multi-phase ACCE). We say Π is a correct multi-phase ACCE protocol if, for all
oracles πsA with destination address πsA.d = πtB, and for all `, `′ ∈ [1, nph] for which πsA.phases[`].T is a
matching conversation to πtB .phases[`′].T , it holds that πsA.phases[`].α = accept.

2.3.1 Confidentiality.

All of our notions for secure ACCE protocols will require confidentiality/integrity of the post-accept stage
record layer in each uncorrupted phase. Intuitively, an adversary should not be able to guess the bit b used
in the Encrypt/Decrypt oracles in a phase where she has not impersonated the parties (i.e., corrupted the
long-term secret keys before the phase accepted) or revealed the session key of the party or its peer. As with
the ACCE notion of Jager et al. [JKSS12], this notion ensures forward security: corrupting long-term secret
keys after completion of a session should not impact confidentiality/integrity of messages.

Definition 3 (Confidentiality/integrity). Suppose an algorithm A with running time τ interacts with a
multi-phase ACCE protocol Π in the above execution environment and returns a tuple (A, s, `, b′). If

C1. πsA.phases[`].α = accept; and
C2. A did not query Corrupt(PA, π

s
A.phases[`].pk) before πsA accepted in phase `; and

C3. A did not query Corrupt(PB , π
s
A.phases[`].pk′) before πsA accepted in phase `, where πsA.d = πtB; and

C4. A did not query Reveal(πsA, `); and
C5. A did not query Reveal(πtB , `

′), where πtB = πsA.d is πsA’s intended communication partner, and `′ is any
phase for which πtB .phases[`′].T is a matching conversation to πsA.phases[`].T ; and

C6. |Pr [πsA.phases[`].b = b′]− 1/2| ≥ ε,
then we say that A (τ, ε)-breaks confidentiality/integrity of Π.

2.3.2 Secure multi-phase ACCE.

First we state a straightforward extension of the ACCE model to protocols with multiple phases, but with
essentially no security condition relating one phase to another. This definition captures the properties of TLS
without any renegotiation countermeasures, and will be used in our generic result in Section 4. Intuitively,
for this simplest notion of authentication, an adversary should not be able to cause a phase to accept unless
there exists a phase at the peer with a matching pre-accept handshake transcript, provided she has not
impersonated the parties (i.e., corrupted the long-term secret keys before the phase accepted).

Definition 4 (Secure multi-phase ACCE). Suppose an algorithm A with running time τ interacts with a
multi-phase ACCE protocol Π in the above execution environment and terminates. If, with probability at least
ε, there exists an oracle πsA with πsA.d = πtB and a phase ` such that

A1. πsA.phases[`].α = accept; and
A2. A did not query Corrupt(PA, π

s
A.phases[`].pk) before πsA accepted in phase `; and

A3. A did not query Corrupt(PB , π
s
A.phases[`].pk′) before πsA accepted in phase `, where πsA.d = πtB; and

M. there is no `′ such that πtB .phases[`′].T is a matching conversation to πsA.phases[`].T

then we say that A (τ, ε)-breaks authentication of Π.
A protocol Π is a (τ, ε)-secure multi-phase ACCE protocol if there exists no algorithm A that (τ, ε)-breaks

confidentiality/integrity (Def. 3) or authentication (as defined above) of Π.

2.3.3 Secure renegotiable ACCE.

We next strengthen the authentication notion to include renegotiation. Intuitively, an adversary should
not be able to cause a phase to accept unless there exists a phase at the peer with a matching pre-accept
handshake transcript and all previous phases’ handshake and record layer transcripts match, provided she
has not impersonated the parties in the current phase. We will show in Section 5 that TLS DHE DSS with our
proposed countermeasure satisfies this definition.

Definition 5 (Secure renegotiable ACCE). Suppose an algorithm A with running time τ interacts with a
multi-phase ACCE protocol Π in the above execution environment and terminates. If, with probability at least
ε, there exists an oracle πsA with πsA.d = πtB and a phase `∗ such that

10

A1–A3 as in Definition 4 with `∗, and either
M′(a) πtB .phases[`∗].T is not a matching conversation to πsA.phases[`∗].T or
M′(b) for some ` < `∗, πsA.phases[`].T‖RT 6= πtB .phases[`].T‖RT ;

then we say that A (τ, ε)-breaks renegotiation authentication of Π.
A protocol Π is a (τ, ε)-secure renegotiable ACCE protocol if there exists no algorithm A that (τ, ε)-breaks

confidentiality/integrity (Def. 3) or renegotiation authentication (as defined above) of Π.

2.3.4 Weakly secure renegotiable ACCE.

Unfortunately, the TLS DHE DSS ciphersuite, when combined with SCSV/RIE countermeasures, does not
satisfy Def. 5 because, as we will see in Section 4.1, revealing session keys in earlier phases allows the adversary
to change the messages on the record layer in earlier phases, but the SCSV/RIE countermeasure will not
detect this.

Of course, revealing earlier phases’ session keys while that phase is active and still expecting detection
when renegotiating later is a strong security property, and the lack of this property does not imply an attack
in most scenarios. This motivates a slightly weaker renegotiation notion: when previous phases’ session keys
are not revealed while that phase is active and the current phase’s long-term secret keys are not corrupted,
the adversary should not be able to cause a phase to accept unless there exists a phase at the peer with a
matching pre-accept handshake transcript and all previous phases’ handshake and record layer transcripts
match.

Definition 6 (Weakly secure renegotiable ACCE). Suppose an algorithm A with running time τ interacts
with a multi-phase ACCE protocol Π in the above execution environment and terminates. If, with probability
at least ε, there exists an oracle πsA with πsA.d = πtB and a phase `∗ such that all conditions from Def. 5, as
well as the following additional conditions are satisfied:

A4. A did not issue a Reveal(πsA, `) query before πsA accepted in phase `+ 1, for every ` < `∗, and
A5. A did not issue a Reveal(πtB , `) query before πsA accepted in phase `+ 1, for every ` < `∗;

then we say that A (τ, ε)-breaks weak renegotiation authentication of Π.
A protocol Π is a (τ, ε)-weakly secure renegotiable ACCE protocol if there exists no algorithm A that

(τ, ε) breaks confidentiality/integrity (Def. 3) or weak renegotiation authentication (as defined above) of Π.

Remark 3. While conditions A4 and A5 prohibit the adversary from revealing encryption keys of previous
phases while active for the purposes of breaking authentication, the confidentiality/integrity aspect of Def. 6
still places no such restriction on previous encryption keys being revealed.

2.3.5 Protocols without forward security.

The ACCE notion of Jager et al. [JKSS12] requires confidentiality/integrity of ciphertexts to hold even when
the long-term secret keys are corrupted after the handshake completes. As a result, RSA key transport-based
ciphersuites cannot be proven secure in this model: they do not have forward security, since corrupting the
long-term secret keys allows the adversary to compute the session key.

A non-forward-secure notion of renegotiable ACCE could be defined in which RSA key transport could be
proven secure. For renegotiation authentication, public keys used in phase ` should not be Corrupted while
the post-accept stage of phase ` is active, as the adversary could compute the session key and inject messages
undetectably. For confidentiality/integrity, public keys used in phase ` should never be Corrupted, as the
adversary could compute the session key and distinguish ciphertexts. A more detailed discussion appears in
Appendix B.1.

3 Renegotiation (In)security of TLS

In this section we discuss how the original TLS protocol, without SCSV/RIE countermeasures, fits into our
model, and show how the attack of Ray and Dispensa is captured in the model. A discussion on TLS session
resumption appears in Appendix C.

11

Secure
multi-phase

ACCE

Weakly secure
renegotiable

ACCE

Secure
renegotiable

ACCE
(Defn. 4) (Defn. 6) (Defn. 5)

Secure against Ray–Dispensa-type attack × X with query
restrictions A5,A6 X

Authentication
A2. Corrupt pk before acceptance not allowed not allowed not allowed
A3. Corrupt peer’s pk before acceptance not allowed not allowed not allowed
A4. Reveal session keys of previous phases while active allowed not allowed allowed
A5. Reveal session keys of previous phases while active allowed not allowed allowed
M. every phase that accepts has a matching handshake
transcript at some phase of the peer implied

M′(a) every phase that accepts has a matching
handshake transcript at the same phase of the peer implied implied

M′(a) when a phase accepts, handshake and record layer
transcripts in all previous phases equal those at the peer implied implied

Confidentiality/integrity (Defn. 3) implied implied implied

TLS ∗ without countermeasures — × (Sect. 3.1) × (Sect. 3.1)

TLS RSA with SCSV/RIE countermeasures ?1 × (App. B.2) / ?1 × (Sect. 4.1)

TLS DHE DSS with SCSV/RIE countermeasures X (Thm. 1) X (Cor. 1) × (Sect. 4.1)

TLS RSA with new (Sect. 5) countermeasure ?1 × (App. B.2) / ?1 × (App. B.2) / ?1

TLS DHE DSS with new (Sect. 5) countermeasure X (Thm. 3) X (Thm. 3) X (Thm. 3)

Table 1: Summary of security notions and results on TLS
1 TLS RSA key transport ciphersuites may be able to be shown secure under notions with suitable restrictions
on forward security; see discussion at end of Sect. 2.3.5 and Appendix B.

Jager et al. [JKSS12] in the full version [JKSS11, Fig. 3] described how to map TLS into the ACCE model.
We highlight a few components of that mapping, and the alterations due to our addition of renegotiation.

Oracles generally respond to Send, Encrypt, and Decrypt queries as specified by the TLS handshake and
record layer protocols. The Send control message m = (newphase, pk) when sent to a client causes the client
to send a new ClientHello message, and when sent to a server causes the server to send a new HelloRequest

message. For the Encrypt and Decrypt queries, we use a content type field ctype that corresponds to the
ContentType field of the TLSPlaintext datatype in the TLS record layer specification [DR08, §6.2.1]:
packets with ContentType=change cipher spec (20) or handshake (22) are considered in our model to
have ctype = control and packets with ContentType=application data (23) are considered in our model
to have ctype = data. We do not explicitly handle ContentType=alert (21) messages. The Reveal query
reveals the encryption and MAC keys derived from the master secret key, not the master secret key itself.

3.1 TLS without countermeasures is not a (weakly) secure renegotiable ACCE
protocol

Recall the TLS renegotiation attack by Ray and Dispensa [RD09], as described previously in Figure 1. The
attacker Eve observes Alice attempting to establish a TLS session with Bob. Eve delays Alice’s initial
ClientHello and instead establishes her own TLS session with Bob and transmits a message m0 over that
record layer. Then Eve passes Alice’s initial ClientHello to Bob over the Eve–Bob record layer. Bob views
this as a valid renegotiation and responds accordingly; Eve relays the handshake messages between Alice
and Bob, who will eventually establish a new record layer to which Eve has no access. Alice then transmits
a message m1 over the Alice–Bob record layer. Intuitively, this is a valid attack: Alice believes this is the
initial handshake, but Bob believes this is a renegotiated handshake.

Formally, this attack is captured in our weakly secure renegotiable ACCE model of Definition 6 as follows.
Assume Alice and Bob each have a single oracle instance, and Eve has carried out the above attack. Then
for Bob’s oracle π1

Bob, the value of `∗ is 2: the last entry in phases where Bob has a matching handshake
transcript to some handshake transcript in Alice’s oracle π1

Alice is the second (and last) phases entry. The

12

attacker has broken renegotiation authentication at both Alice and Bob’s instances. At Alice by satisfying
condition M′(a) (Alice’s first handshake transcript does not match Bob’s first handshake transcript), and at
Bob by satisfying both M′(a) (Bob’s second handshake transcript does not match Alice’s second handshake
transcript) and M′(b) (for every ` < 2, Bob’s `th handshake and record layer transcript does not match
Alice’s `th transcripts). Thus TLS without countermeasures is not a weakly secure or secure renegotiable
ACCE.

4 Renegotiation Security of TLS with SCSV/RIE Countermea-
sures

In this section we analyze the security of TLS with the SCSV/RIE countermeasures proposed in RFC 5746
[RRDO10]. We first see that the SCSV/RIE countermeasures are not enough to prove that TLS satisfies
our strongest notion, a secure renegotiable ACCE (Defn. 5), because revealing previous phases’ session keys
allows an attacker to manipulate the record layer and still have renegotiation succeed.

We will show our central result, that TLS DHE DSS is a weakly secure renegotiable ACCE, first by showing
that it is a secure multi-phase ACCE (Thm. 1) and then combining with a generic result (Thm. 2) that says
that any TLS ciphersuite that is a secure multi-phase ACCE when using SCSV/RIE is also a weakly secure
renegotiable ACCE when using SCSV/RIE.1 Even with SCSV/RIE, RSA key transport-based ciphersuites
are not weakly secure renegotiable ACCE protocols as they do not have forward secrecy (see Appendix B.2).

4.1 TLS ∗ with SCSV/RIE is not a secure renegotiable ACCE

Definition 5 requires that, even when the adversary can reveal previous phases’ session keys, the parties will
not successfully renegotiate if the attacker has manipulated the record layer. The SCSV/RIE countermeasures
do not protect against this type of adversary. They only provide assurance that handshake transcripts from
previous phases match exactly. TLS itself of course provides integrity protection for record layer transcripts
via the message authentication codes, but Definition 5 allows the adversary to reveal the encryption and
MAC keys of previous phases. Thus, an adversary who reveals the current encryption and MAC keys can
modify record layer messages but Alice and Bob will still successfully renegotiate a new phase (although the
adversary must not alter the number of messages sent, as the number of record layer messages sent in the
previous phase happens to be protected by SCSV and RIE countermeasures).

We emphasize that while this demonstrates a theoretical weakness in TLS renegotiation countermeasures
compared to our very strong security model, it does not translate into an attack on TLS renegotiation
countermeasures when intermediate phases’ encryption and MAC keys are not revealed.

4.2 TLS DHE DSS with SCSV/RIE is a secure multi-phase ACCE

We now aim to prove that the SCSV/RIE renegotiation countermeasures introduced in TLS are secure. We
will do so via two results. First, we will show that the specific ciphersuite TLS DHE DSS with renegotiation
information extensions (RIE) (shown in Figure 4) is a secure multi-phase ACCE protocol, meaning that the
inclusion of the RIE does not leak any damaging information. Then we will show generically that any TLS
protocol with RIE that is a secure multi-phase ACCE is also a weakly secure renegotiable ACCE protocol.

The theorem relies on the PRF-Oracle-Diffie–Hellman (PRFODH) assumption as used by Jager et al.
[JKSS12], the definition of which appears in Appendix A.2.

Theorem 1 (TLS DHE DSS with SCSV/RIE is a secure multi-phase ACCE). Let µ be the output length
of PRF and let λ be the length of the nonces rC and rS. Assume that the pseudo-random function PRF is
(τ, εprf)-secure, the signature scheme is (τ, εsig)-secure, the DDH-problem is (τ, εddh)-hard in the group G used
to compute the TLS premaster secret, and the PRFODH-problem is (τ, εprfodh)-hard with respect to G and
PRF. Suppose that the stateful symmetric encryption scheme is (τ, εsLHAE)-secure.

1It would be nice to prove that any secure ACCE protocol plus SCSV/RIE becomes a weakly secure renegotiable ACCE, but
we need to make the intermediate step through multi-phase ACCE to ensure that SCSV/RIE does not leak anything important
in that ciphersuite.

13

For any adversary that (τ ′, εtls)-breaks TLS DHE DSS in the sense of Definition 4 with τ ≈ τ ′ it holds that

εtls ≤ 4npansenph

(
npankeεsig +

5

4
εddh +

5

2
εprf +

1

4
εsLHAE + npansenph

(
1

2λ
+ εprfodh + εprf +

1

2µ

))
.

Recall that npa, nse, nph, and nke are the maximum number of parties, sessions per party, phases per session,
and keypairs per party, respectively.

The proof of Theorem 1 follows closely the proof of Jager et al. [JKSS12, Thm. 2] that TLS DHE DSS is a
secure ACCE protocol. The two key differences are as follows. First, we need to account for the additional key
exchanges that occur in multiple phases. Second, we need to ensure that including the RIE, which contains
finished values of previous phases, does not affect the security of the current phase. However, Jager et al. have
proved that a truncated TLS DHE DSS protocol, in which the Finished messages are sent in plain, provide
indistinguishable session keys. In the proof, we exchange the PRF used to derive the application keys with a
truly random function, thus the output does not leak any information about the input.

To prove Theorem 1, we follow the approach of Jager et al. [JKSS11] and divide the set of all adversaries
into two categories:

1. Adversaries that succeed in making an oracle accept maliciously. We call such an adversary an
authentication-adversary.

2. Adversaries that do not succeed in making any oracle accept maliciously, but which answer the
encryption/integrity challenge. We call such an adversary an encryption-adversary.

We prove Theorem 1 by the following two lemmas. Lemma 1 bounds the probability εauth that an
authentication-adversary succeeds, Lemma 2 bounds the probability εenc that an encryption-adversary
succeeds. Then we have

εtls ≤ εauth + εenc .

Lemma 1. For any adversary running in time τ ′ ≈ τ , the probability that there exists an oracle πsi that
accepts maliciously is at most

εauth ≤ 2npansenph

(
npankeεsig + εddh + 2εprf + npansenph

(
1

2λ
+ εprfodh + εprf +

1

2µ

))
where all quantities are defined as stated in Theorem 1.

Note that εauth ≤ εclient + εserver, where εclient is an upper bound on the probability that there exists an
oracle with ρ = Client that accepts maliciously in the sense of Definition 4, and εserver is an upper bound on
the probability that there exists an oracle with ρ = Server that accepts maliciously. We claim that

εclient ≤ npansenph
(
npankeεsig + npansenph

(
1

2λ
+ εprfodh + εprf +

1

2µ

))
εserver ≤ npansenph

(
npansenph

2λ
+ npankeεsig + εddh + 2εprf +

1

2µ

)
and thus

εauth ≤ εclient + εserver

≤ 2npansenph

(
npankeεsig + εddh + 2εprf + npansenph

(
1

2λ
+ εprfodh + εprf +

1

2µ

))
.

4.2.1 Proof of Lemma 1: εclient

Proof. We first show, that the probability that there exists an oracle with ρ = Client that accepts maliciously in
the sense of Definition 4 is negligible. The proof proceeds in a sequence of games, following [BR06, Sho04]. The
first game is the real security experiment. We then describe several intermediate games that modify the original
game step-by-step, and argue that our complexity assumptions imply that each game is computationally
indistinguishable from the previous one. We end up in the final game, where no adversary can break the
security of the protocol.

Let break
(1)
δ be the event that occurs when the first oracle that accepts maliciously in the sense of

Definition 4 with ρ = Client in Game δ.

14

Game 0. This game equals the multi-phase ACCE security experiment used in Section 2.2. Thus, for some
εclient we have

Pr[break
(1)
0] = εclient .

Game 1. In this game we add an abort rule. The challenger aborts if there exists any oracle πsi that
chooses a random nonce rC or rS in phase ` which is not unique. More precisely, the game is aborted if the
adversary ever makes a first Send query to an oracle πsi , and the oracle replies with random nonce rC or rS

such that there exists some other oracle πs
′,l′

i′ which has previously sampled the same nonce.
In total less than npansenph nonces rC and rS are sampled, each uniformly random from {0, 1}λ. Thus,

the probability that a collision occurs is bounded by (npansenph)22−λ, which implies

Pr[break
(2)
0] ≤ Pr[break

(2)
1] +

(npansenph)2

2λ
.

Note that now each oracle has a unique nonce rC or rS , which is included in the signatures. We will use this
to ensure that each oracle that accepts with non-corrupted partner has a unique partner oracle.

Game 2. We try to guess which client oracle will be the first oracle to accept maliciously and the phase in
which this happens. If our guess is wrong, i.e., if there is another (Client or Server) oracle that accepts before
or if they accept in a different phase, then we abort the game.

Technically, this game is identical, except for the following. The challenger guesses three random indices

(i∗, s∗, `∗)
$← [1, npa]× [1, nse]× [1, nph]. If there exists an oracle πsi that accepts maliciously in phase `, and

(i, j, `) 6= (i∗, j∗, `∗) and πsi has ρ 6= Client, then the challenger aborts the game. Note that if the first oracle πsi
that accepts maliciously has ρ = Client, then with probability 1/(npa · nse · nph) we have (i, j, `) = (i∗, j∗, `∗),
and thus

Pr[break
(2)
1] = nphnpanse Pr[break

(2)
2] .

Note that in this game the attacker can only break the security of the protocol if oracle πs
∗

i∗ is the first oracle
that accepts maliciously in phase ` and has ρ = Client; otherwise the game is aborted.

Game 3. Again the challenger proceeds as before, but we add an abort rule. We want to make sure that

πs
∗,`∗

i∗ receives as input exactly the Diffie–Hellman value TS that was selected by some other uncorrupted

oracle that received the nonce rC chosen by πs
∗,`∗

i∗ as first input (note that there may be several such oracles,
since the attacker may send copies of rC to many oracles).

Technically, we abort and raise event abortsig, if oracle πs
∗,`∗

i∗ ever receives as input a message m3 = certS
indicating intended partner Π = j and message m4 = (p, g, TS , σS) such that σS is a valid signature over
rC‖rS‖p‖g‖TS , but there exists no oracle πtj which has previously output σS . Clearly we have

Pr[break
(1)
2] ≤ Pr[break

(1)
3] + Pr[abortsig] .

Note that the experiment is aborted, if πs
∗,`∗

i∗ does not accept maliciously, due to Game 2. This means

that party Pj must not be corrupted when πs
∗,`∗

i∗ accepts (as otherwise πs
∗,`∗

i∗ does not accept maliciously). To
show that Pr[abortsig] ≤ nkenpa · εsig, we construct a signature forger as follows. The forger receives as input a

public key pk∗ and simulates the challenger for A. It guesses two indices φ1
$← [1, npa] and φ2

$← [1, nke], sets
pkφ1,φ2 = pk∗, and generates all long-term public/secret keys as before. Then it proceeds as the challenger in
Game 3, except that it uses its chosen-message oracle to generate a signature under pkφ1,φ2 when necessary.

If φ1 = j and the corresponding public key is pkj,φ2
, which happens with probability 1/(npanke), then the

forger can use the signature received by πs
∗,`∗

i∗ to break the EUF-CMA security of the signature scheme with
success probability εsig. Therefore we gain that Pr[abortsig]/(npanke) ≤ εsig; if Pr[abortsig] is not negligible,
then εsig is not negligible as well and we have

Pr[break
(1)
2] ≤ Pr[break

(1)
3] + npankeεsig .

Note that in Game 3 oracle πs
∗,`∗

i∗ receives as input a Diffie–Hellman value TS such that TS was chosen by
another oracle, but not by the attacker. Note also that there may be multiple oracles that issued a signature
σS containing rC , since the attacker may have sent several copies of rC to several oracles.

15

Game 4. In this game we want to make sure that we know the oracle πtj (and appropriate phase `t) which

will issue the signature σS that πs
∗

i∗ receives in phase `∗. Note that this signature includes the random nonce
rS , which is unique due to Game 1. Therefore the challanger in this game proceeds as before, but additionally

guesses three indices (j∗, t∗, `∗t)
$← [1, npa] × [1, nse] × [1, nph]. It aborts, if the attacker does not make a

Send-query containing rC to π
t∗,`∗t
j∗ and π

t∗,`∗t
j∗ responds in this phase with messages containing σS such that

σS is forwarded to πs
∗,`∗

i∗ .
We know that there must exist at least one oracle that outputs σS in some phase such that σS is forwarded

to πs
∗,`∗

i∗ , due to Game 3. Thus we have

Pr[break
(1)
3] ≤ npansenph Pr[break

(1)
4] .

Note that in this game we know exactly that oracle π
t∗,`∗t
j∗ chooses the Diffie–Hellman share TS that πs

∗

i∗ uses
to compute its premaster secret in phase `∗.

Game 5. Recall that πs
∗,`∗

i∗ computes the master secret as ms = PRF(T tcS , label1‖rC‖rS), where TS denotes

the Diffie–Hellman share received from π
t∗,`∗t
j∗ , and tc denotes the Diffie–Hellman exponent chosen by πs

∗

i∗,`∗t
.

In this game we replace the master secret ms computed by πs
∗

i∗,`∗t
with an independent random value m̃s.

Moreover, if π
t∗,`∗t
j∗ receives as input the same Diffie–Hellman share TC that was sent from πs

∗,`∗

i∗ , then we set

the master secret of π
t∗,`∗t
j∗ equal to m̃s. Otherwise we compute the master secret as specified in the protocol.

We claim that
Pr[break

(1)
4] ≤ Pr[break

(1)
5] + εPRFODH .

Suppose there exists an adversary A that distinguishes Game 5 from Game 4. We show that this implies an
adversary B that solves the PRFODH problem.

Adversary B outputs (label1‖rC‖rS) to its oracle and receives in response (g, gu, gv, R), where either

R = PRF(guv, label1‖rC‖rS) or R
$← {0, 1}µ. It runs A by implementing the challenger for A, and embeds

(gu, gv) as follows. Instead of letting πs
∗,`∗

i∗ choose TC = gtC for random tC
$← Zq, B defines TC := gu.

Similarly, the Diffie–Hellman share TS of π
t∗,`∗t
j∗ is defined as TS := gv. Finally, the master secret of πs

∗,`∗

i∗ is
set equal to R.

Note that πs
∗,`∗

i∗ computes the master secret after receiving TS from π
t∗,`∗t
j∗ , and then it sends m8 = TC .

If the attacker decides to forward m8 to π
t∗,`∗t
j∗ , then the master secret of π

t∗,`∗t
j∗ is set equal to R. If π

t∗,`∗t
j∗

receives TC′ 6= TC , then B queries its oracle to compute ms′ = PRF(T vC′ , label1‖rC‖rS), and sets the master

secret of π
t∗,`∗t
j∗ equal to ms′.

Note that in any case algorithm B knows the master secret of πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ , and thus is able to compute

all further protocol messages (in particular the finished messages finC and finS) and answer a potential

Reveal-query to π
t∗,`∗t
j∗ as required (note that there is no Reveal-query to πs

∗,`∗

i∗ , as otherwise the experiment
is aborted, due to Game 2). If R = PRF(guv, label1‖rC‖rS), then the view of A is identical to Game 4, while

if R
$← {0, 1}µ then it is identical to Game 5, which yields the above claim.

Game 6. In this game we replace the function PRF(m̃s, ·) used by πs
∗

i∗ in phase `∗ with a random function.

If π
t∗,`∗t
j∗ uses the same master secret m̃s as πs

∗,`∗

i∗ (cf. Game 5), then the function PRF(m̃s, ·) used by π
t∗,`∗t
j∗

is replaced as well. Of course the same random function is used for both oracles sharing the same m̃s. In
particular, this function is used to compute the Finished messages by both partner oracles.

Distinguishing Game 6 from Game 5 implies an algorithm breaking the security of the pseudorandom
function PRF, thus

Pr[break
(1)
5] ≤ Pr[break

(1)
6] + εprf .

16

Game 7. Finally we use that the full transcript of all messages sent and received is used to compute the
Finished messages, and that Finished messages are computed by evaluating a truly random function that

is only accessible to πs
∗,`∗

i∗ and (possibly) π
t∗,`∗t
j∗ due to Game 6. This allows us to show that any adversary

has probability at most 1
2µ of making oracle πs

∗,`∗

i∗ accept without having a matching conversation to π
t∗,`∗t
j∗ .

Thus, this game proceeds exactly like the previous game, except that the challenger now aborts if oracle

πs
∗,`∗

i∗ accepts without having a matching conversation to π
t∗,`∗t
j∗ . Thus we have Pr[break

(1)
7] = 0.

The Finished messages are computed by evaluating a truly random function Fm̃s, which is only accessible
to oracles sharing m̃s, and the full transcript containing all previous messages is used to compute the

Finished messages. If there is no oracle having a matching conversation to πs
∗,`∗

i∗ , the adversary receives no

information about Fm̃s(label3‖m1‖ · · · ‖m12). Therefore we have Pr[break
(1)
7] = 2−µ and

Pr[break
(1)
6] ≤ Pr[break

(1)
7] +

1

2µ
=

2

2µ
.

4.2.2 Proof of Lemma 1: εserver

Proof. We now show that the probability that there exists an oracle with ρ = Server that accepts maliciously

in the sense of Definition 4 is negligible. Let break
(2)
δ be the event that occurs when the first oracle that

accepts maliciously in the sense of Definition 4 with ρ = Server in Game δ.

Game 0. This game equals the ACCE security experiment described in Definition 4. Thus, for some εserver
we have

Pr[break
(2)
0] = εserver .

Game 1. In this game we add an abort rule. The challenger aborts, if there exists any oracle πsi that
chooses a random nonce rC or rS in phase ` which is not unique. With the same arguments as in Game 1 of
the first proof we have

Pr[break
(2)
0] ≤ Pr[break

(2)
1] +

(npansenph)2

2λ
.

Game 2. This game is identical, except for the following. The challenger guesses three random indices

(i∗, s∗, `∗)
$← [1, npa]× [1, nse]× [1, nph]. If there exists an oracle πs,`i that accepts maliciously, and (i, s, `) 6=

(i∗, s∗`∗) and πs,`i has ρ 6= Server, then the challenger aborts the game. Note that if the first oracle πs,`i that
accepts maliciously has ρ = Server, then with probability 1/(npansenph) we have (i, s) = (i∗, s∗), and thus

Pr[break
(2)
1] = (npansenph) · Pr[break

(2)
2] .

Note that in this game the attacker can only break the security of the protocol if oracle πs
∗,`∗

i∗ is the first
oracle that accepts maliciously and has ρ = Server; otherwise the game is aborted.

Game 3. The challenger proceeds as before, but we add an abort rule. We want to make sure that πs
∗,`∗

i∗

receives as input exactly the Diffie–Hellman value m8 = TC that was selected by some other uncorrupted
oracle.

Technically, we abort and raise event abortsig, if oracle πs
∗,`∗

i∗ ever receives as input a message m7 = certC
indicating intended partner Π = j and message m9 = σC = SIG.Sign(skC ,m1‖ . . . , ‖m8) such that σC is a
valid signature but there exists no oracle πtj which has previously output σC . Clearly we have

Pr[break
(2)
2] ≤ Pr[break

(2)
3] + Pr[abortsig] .

Note that the experiment is aborted if πs
∗,`∗

i∗ does not accept maliciously, due to Game 2. This means
that party Pj must not be corrupted when πs

∗

i∗ accepts. To show that Pr[abortsig] ≤ (npanke) · εsig, we

17

construct a signature forger as follows. The forger receives as input a public key pk∗ and simulates the

challenger for A. It guesses two indices φ1
$← [1, npa] and φ2

$← [1, nke], sets pkφ1,φ2
= pk∗, and generates all

long-term public/secret keys as before. Then it proceeds as the challenger in Game 3, except that it uses its
chosen-message oracle to generate a signature under pkφ1,φ2

when necessary.
If φ1 = j and the corresponding public key is pkj,φ2

, which happens with probability 1/(npanke), then the

forger can use the signature received by πs
∗,`∗

i∗ to break the EUF-CMA security of the signature scheme with
success probability εsig, so Pr[abortsig]/(npanke) ≤ εsig. Therefore if Pr[abortsig] is not negligible, then εsig is
not negligible as well and we have

Pr[break
(2)
2] ≤ Pr[break

(2)
3] + npankeεsig .

Note that in Game 3 oracle πs
∗,`∗

i∗ receives as input a Diffie–Hellman value TC such that TC was chosen in
some phase by another oracle, but not by the attacker. Note also that this phase of this oracle is unique,
since the signature includes the client nonce rC , which is unique due to Game 1. From now on we denote this

unique oracle and phase with π
t∗,`∗t
j∗ .

Note also that πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ share a premaster secret pms = T tSC = T tCS , where TC = gtC and TS = gtS

for random exponents tS and tC chosen by πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ , respectively.

Game 4. In this game, we replace the premaster secret pms = gtCtS shared by πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ with a

random value gr, r
$← Zq. The fact that the challenger has full control over the Diffie–Hellman shares TC and

TS exchanged between πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ , due to the modifications introduced in the previous games, provides

us with the ability to prove indistinguishability under the Decisional Diffie–Hellman assumption.

Technically, the challenger in Game 4 proceeds as before, but when πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ compute the premaster

secret as pms = gtCtS , the challenger replaces this value with a uniformly random value p̃ms = gr, r
$← Z∗p,

which is in the following used by both partner oracles.
Suppose there exists an algorithm distinguishing Game 4 from Game 3. Then we can construct an algorithm

B solving the DDH problem as follows. Algorithm B receives as input a DDH challenge (g, gu, gv, gw). The

challenger defines TC := gu and TS := gv for the Diffie–Hellman shares chosen by πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ , respectively.

Instead of computing the Diffie–Hellman key as in Game 3, it sets pms = gw both for the client and the
server oracle. Now if w = uv, then this game proceeds exactly like Game 3, while if w is random then this
game proceeds exactly like Game 4. Thus,

Pr[break
(2)
3] ≤ Pr[break

(2)
4] + εddh .

Note that in Game 4 the premaster secret of πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ is uniformly random and independent of TC and

TS . This will provide us with the ability to replace the function PRF(p̃ms, ·) with a truly random function in
the next game.

Game 5. In Game 5 we make use of the fact that the premaster secret p̃ms of πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ is chosen

uniformly at random, independently of TC and TS . We thus replace the value ms = PRF(p̃ms, label1‖rC‖rS)
with a random value m̃s.

Distinguishing Game 5 from Game 4 implies an algorithm breaking the security of the pseudorandom
function PRF, thus

Pr[break
(2)
4] ≤ Pr[break

(2)
5] + εprf .

Game 6. In this game we replace the function PRF(m̃s, ·) used by πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ with a random function.

Of course the same random function is used for both oracles πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ . In particular, this function is

used to compute the Finished messages by both partner oracles.
Distinguishing Game 6 from Game 5 again implies an algorithm breaking the security of the pseudorandom

function PRF, thus

Pr[break
(2)
5] ≤ Pr[break

(2)
6] + εprf .

18

Game 7. Finally we use that the full transcript of all messages sent and received is used to compute the
Finished messages, and that Finished messages are computed by evaluating a truly random function that is

only accessible to πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ due to Game 6. This allows us to show that any adversary has probability

at most 1/2µ of making oracle πs
∗,`∗

i∗ accept without having a matching conversation to π
t∗,`∗t
j∗ .

Thus, this game proceeds exactly like the previous game, except that the challenger now aborts if oracle

πs
∗,`∗

i∗ accepts without having a matching conversation to π
t∗,`∗t
j∗ . Therefore we have Pr[break

(1)
7] = 0.

The Finished messages are computed by evaluating a truly random function Fm̃s, which is only accessible
to oracles sharing m̃s, and the full transcript containing all previous messages is used to compute the

Finished messages. If there is no oracle having a matching conversation to πs
∗,`∗

i∗ , the adversary receives no
information about Fm̃s(label3‖m1‖ · · · ‖m10). Thus we have

Pr[break
(1)
6] ≤ Pr[break

(1)
7] +

1

2µ
=

1

2µ
.

Collecting probabilities of both previous sections yields Lemma 1. We obtain that

εauth ≤ εclient + εserver

≤ 2εauth + npansenph (εddh + 2εprf + εsLHAE)

≤ 4npansenph

(
npansenph

2λ
+ npankeεsig +

5

4
εddh +

5

2
εprf +

εsLHAE
4

+ npansenph

(
εprfodh + εprf +

1

2µ

))
.

4.2.3 Proof of confidentiality

Lemma 2. For any adversary A running in time τ ′ ≈ t, the probability that A answers the encryption-
challenge correctly is at most 1/2 + εenc with

εenc ≤ εauth + npansenph (εddh + 2εprf + εsLHAE) ,

where εauth is an upper bound on the probability that there exists an oracle that accepts maliciously in the
sense of Definition 4 (cf. Lemma 1) and all other quantities are defined as stated in Theorem 1.

Proof. Assume without loss of generality thatA always outputs (i, s, `, b′) such that all conditions in Property 2

of Definition 4 are satisfied. Let break
(4)
δ denote the event that b′ = b in Game δ, where b is the random bit

sampled by the Test-query, and b′ is either the bit output by A or (if A does not output a bit) chosen by

the challenger. Let Advδ := Pr[break
(4)
δ]− 1/2 denote the advantage of A in Game δ. Consider the following

sequence of games.

Game 0. This game equals the ACCE security experiment used in Definition 4. For some εenc we have

Pr[break
(3)
0] =

1

2
+ εenc =

1

2
+ Adv0 .

Game 1. The challenger in this game proceeds as before, but it aborts and chooses b′ uniformly random if
there exists any oracle that accepts maliciously in any phase in the sense of Definition 6. Thus we have

Adv0 ≤ Adv1 + εauth ,

where εauth is an upper bound on the probability that there exists an oracle that accepts maliciously in the
sense of Definition 4 (cf. Lemma 1).

Recall that we assume that A always outputs (i, s, `, b′) such that all conditions in Property 2 of Definition 4

are satisfied. In particular it outputs (i, s, `, b′) such that πs,`i accepts with intended partner Π = j, and Pj is

not corrupted. Note that in Game 1 for any such phase πs,`i there exists a unique partner phase πt,`tj such

that πsi .phases[`].T has a matching conversation to πtj .phases[`t].T , as the game is aborted otherwise.

19

Game 2. The challenger in this game proceeds as before, but in addition guesses indices (i∗, s∗, `∗)
$←

[1, npa] × [1, nse] × [1, nph]. It aborts and chooses b′ at random if the attacker outputs (i, s, `, b′) with
(i, s, `) 6= (i∗, s∗, `∗). With probability 1/(npansenph) we have (i, s, `) = (i∗, s∗, `∗), and thus

Adv1 ≤ npansenphAdv2 .

Note that in Game 2 we know that A will output (i∗, s∗, `∗, b′). Note also that πs
∗,`∗

i∗ has a unique partner

due to Game 1. In the sequel we denote with π
t∗,`∗t
j∗ the unique oracle and phase such that πs

∗,`∗

i∗ has a

matching conversation to π
t∗,`∗t
j∗ , and say that π

t∗,`∗t
j∗ is the partner of πs

∗,`∗

i∗ .

Game 3. The challenger in this game proceeds as before, but replaces the premaster secret pms of πs
∗,`∗

i∗

and π
t∗,`∗t
j∗ with a random group element p̃ms = gw, w

$← Zq. Note that both gu and gv are chosen by oracles

πs
∗

i∗ and π
t∗,`∗t
j∗ , respectively, as otherwise πs

∗,`∗

i∗ would not have a matching conversation to π
t∗,`∗t
j∗ and the

game would be aborted. Thus, both oracles compute the premaster secret as pms = guv. Let Ti∗,s∗,`∗ = gu

denote the Diffie–Hellman share chosen by πs
∗

i∗ in phase `, and let Tj∗,t∗,`∗t = gv denote the share chosen by

its partner πt
∗

j∗ in phase `t.
Suppose that there exists an algorithm A distinguishing Game 3 from Game 2. Then we can construct

an algorithm B solving the DDH problem as follows. B receives as input (g, gu, gv, gw). It implements the
challenger for A as in Game 2, except that it sets Ti∗,s∗,`∗ := gu and Tj∗,t∗,`∗t := gv, and the premaster secret

of πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ equal to pms := gw. Note that B can simulate all messages exchanged between πs

∗,`∗

i∗ and

π
t∗,`∗t
j∗ properly, in particular the finished messages using knowledge of pms = gw. Since all other oracles are

not modified, B can simulate these oracles properly as well.

If w = uv, then the view of A when interacting with B is identical to Game 2, while if w
$← Zq then it is

identical to Game 3. Thus,
Adv2 ≤ Adv3 + εddh .

Game 4. In Game 4 we make use of the fact that the premaster secret p̃ms of πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ is chosen

uniformly random. We thus replace the value ms = PRF(p̃ms, label1‖rC‖rS) with a random value m̃s.
Distinguishing Game 4 from Game 3 implies an algorithm breaking the security of the pseudorandom

function PRF, thus
Adv3 ≤ Adv4 + εprf .

Game 5. In this game we replace the function PRF(m̃s, ·) used by πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ with a random function

Fm̃s. Of course the same random function is used for both oracles (in their respective phases) πs
∗,`∗

i∗ and

π
t∗,`∗t
j∗ . In particular, this function is used to compute the key material as

KC→S
enc ‖KS→C

enc ‖KC→S
mac ‖KS→C

mac := Fm̃s(label2‖rC‖rS) .

Distinguishing Game 5 from Game 4 again implies an algorithm breaking the security of the pseudorandom
function PRF. Moreover, in Game 5 the adversary always receives a random key in response to a Test query,
and thus receives no information about b′, which implies Adv5 = 0 and

Adv4 ≤ Adv5 + εprf = εprf .

Note that in Game 5 the key material KC→S
enc ‖KS→C

enc ‖KC→S
mac ‖KS→C

mac of oracles πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ is uniformly

random and independent of all TLS handshake messages exchanged in the pre-accept phase.

20

Game 6. Now we use that the key material KC→S
enc ‖KS→C

enc ‖KC→S
mac ‖KS→C

mac used by πs
∗,`∗

i∗ and π
t∗,`∗t
j∗ in the

stateful symmetric encryption scheme uniformly at random and independent of all TLS handshake messages.
In this game we construct a simulator B that uses a successful ACCE attacker A to break the security of

the underlying sLHAE secure symmetric encryption scheme. By assumption, the simulator B is given access
to an encryption oracle Encrypt and a decryption oracle Decrypt. B embeds the sLHAE experiment by simply

forwarding all Encrypt(πs
∗,`∗

i∗ , ·) queries to Encrypt, and all Decrypt(π
t∗,`∗t
j∗ , ·) queries to Decrypt. Otherwise it

proceeds as the challenger in Game 5.
Observe that the values generated in this game are exactly distributed as in the previous game. We thus

have
Adv5 = Adv6 .

If A outputs a triple (i∗, s∗, `∗, b′), then B forwards b′ to the sLHAE challenger. Otherwise it outputs a random
bit. Since the simulator essentially relays all messages it is easy to see that an attacker A having advantage
ε′ yields an attacker B against the sLHAE security of the encryption scheme with success probability at least
1/2 + ε′.

Since by assumption any attacker has advantage at most εsLHAE in breaking the sLHAE security of the
symmetric encryption scheme, we have

Adv6 ≤ 1/2 + εsLHAE .

Addig up probabilities from Lemmas 1 and 2, we obtain that

εtls ≤ εauth + εenc

≤ 2εauth + npansenph (εddh + 2εprf + εsLHAE)

≤ 4npansenph

(
npankeεsig +

5

4
εddh +

5

2
εprf +

1

4
εsLHAE + npansenph

(
1

2λ
+ εprfodh + εprf +

1

2µ

))
which yields Theorem 1.

Note, that we do lose some tightness compared to the original ACCE proof of TLS DHE DSS : for the
authentication game, we additionally have to guess the phase in which the adversary makes an oracle
maliciously accept, and for the encryption game we also have to guess the phase to which we input the
challenge keys.

4.3 Multi-phase secure TLS with SCSV/RIE is a weakly secure renegotiable
ACCE

Theorem 2 (TLS with SCSV/RIE is a weakly secure renegotiable ACCE). Let Π be a TLS ciphersuite without
countermeasures, and let R(Π) denote the TLS ciphersuite with SCSV/RIE countermeasures, as transformed
according to Figure 5. If R(Π) is a (τ, εmp)-secure multi-phase ACCE protocol, and PRF is a (τ, εprf)-secure
pseudorandom function, then R(Π) is a (τ, ε)-weakly secure renegotiable ACCE, with ε = εmp + εprf .

Intuitively, the use of the RIE countermeasure guarantees that each party who renegotiates has the same
view of (a) whether they are renegotiating, and (b) which handshake is the ‘previous’ handshake. We can
chain these together to obtain the requirement for a secure renegotiable ACCE: parties who renegotiate have
the same view of all previous handshakes. If this is violated, either the non-renegotiable aspects of TLS have
been broken, or a collision has been found in the computation of the renegotiation indication extension.

Proof. Suppose A breaks the weak renegotiable ACCE security of the protocol R(Π). We will show that
either A directly breaks the multi-phase ACCE security of R(Π) or A can be used to construct another
algorithm that breaks either the security of the PRF or the multi-phase ACCE security of R(Π).

We approach the proof in three cases: either A has broken the confidentiality/integrity of the weakly
secure renegotiable ACCE, or A has broken the weak renegotiation authentication of the weakly secure
renegotiable ACCE, and the latter can happen by meeting either condition M′(a) or M′(b).

21

Confidentiality/integrity. Since the winning conditions for the confidentiality/integrity part of the
security game are the same for both definitions, every adversary who breaks confidentiality/integrity in the
weakly secure renegotiable ACCE security game for R(Π) directly breaks confidentiality/integrity in the
multi-phase ACCE security game for R(Π).

Authentication — M′(a). Suppose A wins the weak renegotiable ACCE security experiment for R(Π)
using condition M′(a). Either there is no ` at all such that πtB .phases[`].T matches πsA.phases[`∗].T , or
there is such an ` but ` 6= `∗.

First consider the case where there is no ` at all such that πtB .phases[`].T matches πsA.phases[`∗].T . That
meets condition M of Definition 4 for R(Π).

Now consider the case where there is an ` such that πtB .phases[`].T matches πsA.phases[`∗].T but ` 6= `∗.
Assume without loss of generality ` < `∗ (otherwise we could swap the oracles).

There must exist some value j ∈ [1, ` − 1] such that πsA.phases[`∗ − j].T 6= πtB .phases[` − j].T . In
particular, at worst j = `− 1, since in πtB ’s first phase its outgoing message m1 contains extC = empty but
πsA received a message m1 with extc 6= empty. Let j be minimal. Then πtB .phases[` − j + 1].T matches
πsA.phases[`∗ − j + 1].T . In particular, messages m1 of those two transcripts are equal, and so are messages

m2 of those two transcripts. Since RIE is being used, m1 and m2 contain fin
(−1)
C and fin

(−1)
S , and since

πs,`
∗−j+1

A accepted, both πs,`
∗−j+1

A and πt,`−j+1
B used the same fin

(−1)
C and fin

(−1)
S values. But at each

party, fin
(−1)
C and fin

(−1)
S are their hash (using a PRF) of the handshake transcripts from phases πs,`

∗−j
A

and πt,`−jB , and we know that these handshake transcripts are not equal. This means a collision has occurred
in PRF, which happens with negligible probability.

Thus, assuming PRF is secure and R(Π) is a secure multi-phase ACCE, no A can achieve conditions
M′(a) and A1–A5.

Authentication — M′(b). Now suppose A wins the weak renegotiable ACCE security experiment for R(Π)
using condition M′(b) but not M′(a). In particular, for every `′ < `∗, πsA.phases[`′].T = πtB .phases[`′].T
but there is some ` < `∗ such that πsA.phases[`].RT 6= πtB .phases[`].RT . Choose ` minimal. Let v be the
smallest index such that the vth ciphertext Cv of πsA.phases[`].RT is not equal to the vth ciphertext of
πtB .phases[`].RT .

Assume without loss of generality that Cv was received by πsA as the vth ciphertext but was not sent
by πtB as the vth ciphertext. (The alternative is that Cv was sent by πsA as the vth ciphertext but was not
received by πtB as the vth ciphertext. However, we could then focus on everything from πtB ’s perspective and
apply the same argument.)

This means that when A called Decrypt(πsA, Cv, head), if b = 0 then Decrypt returned (⊥, ·), whereas if
b = 1 then Decrypt returned (m′, ·) where m′ 6=⊥. Our simulator can thus output (A, s, `, b′) for its guess of
b′ as above, and this will equal b with probability at least ε, making condition C6 hold in Definition 4. We
need to show that conditions C1–C5 also hold for (A, s, `).

Since A wins the weak renegotiable ACCE experiment using condition M′(b), we have that A1–A5 all
hold. We want to show that, at the time that πsA accepted in phase `+ 1, conditions C1–C5 also hold for
(A, s, `).

• C1: A1 directly implies C1, since if πsA has rejected in any phase prior to `∗ then it would not have a
phase `∗.

• C2 and C3: Conditions A2 and A3 of Definition 6 do not imply that A did not ask Corrupt queries
prohibited by C2 and C3. However, we do have that πsA.phases[`].T = πtB .phases[`].T ; in other words,
A was not active in the handshake for phase `. Thus, A is equivalent to an adversary who did not ask
any Corrupt queries for public keys used in phase ` until after πsA accepts in phase `.

• C4: A4 directly implies C4, at the time that πsA accepted.
• C5: Since πsA chooses nonce rC (if a client) or rS (if a server) randomly, except with negligible

probability there is no `′ < ` such that πsA.phases[`′].T = πsA.phases[`].T . By A5, A did not issue
Reveal(πtB , `) before πsA accepted in phase `+ 1. Thus at the time that πsA accepted, A did not issue
Reveal(πtB , `

′) to any phase with πtB .phases[`′].T = πsA.phases[`].T , satisfying condition C5.

Thus, assuming R(Π) is a secure multi-phase ACCE no A can achieve conditions M′(b) and A1–A5.

22

We can combine Theorems 1 and 2 to obtain:

Corollary 1 (TLS DHE DSS with SCSV/RIE is a weakly secure renegotiable ACCE). Under the same
assumptions on the building blocks as in Theorem 1, TLS DHE DSS with SCSV/RIE countermeasures is a
weakly secure renegotiable ACCE protocol.

5 Renegotiation Security of TLS with a New Countermeasure

We now present a new TLS renegotiation countermeasure that provides integrity protection for the record
layer transcript upon renegotiation (even when previous phases’ session keys are leaked while the phase is still
active), thereby achieving the full security of Definition 5. This countermeasure is quite straightforward: by
including a hash of all record layer messages in the renegotiation information extension, parties can confirm
that they share the same view of their previous record layers.

The renegotiation information extension already contains a fingerprint of the previous phrase’s handshake

transcript via the client verify data (fin
(−1)
C) and server verify data (fin

(−1)
S) values. We modify the

renegotiation information extension to include an additional value, the fingerprint of the encrypted messages
sent over the previous phase’s record layer. In particular, if negotiating:

extC ← fin
(−1)
C ‖ PRF(ms(−1), label5‖H(RT (−1))) , (1)

where ms(−1) is the previous phase’s master secret, H is a collision-resistant hash function, and RT (−1) is
the party’s view of the previous phase’s record layer transcript. Appropriate checks are performed by the
server. With this additional information, the two parties will now not complete renegotiation unless they
have matching views of the record layer transcripts from the previous phase.

Remark 4. Note that the proof does not require the server to also send its view of the record layer transcript;
the server simply checks what it receives from the client and stops if it is not what it expects. The same
is actually true as well of the RIE countermeasure, and the proof of Theorem 2 would go through if only

extC contained fin
(−1)
S . However, if the security model is altered to allow Corrupts of the current phase’s

public keys but not Reveals of the previous phase’s session keys, then having both extC and extS include
each party’s view of the the transcript is required to achieve security.

In practice, it is not difficult to, on an incremental basis, compute hashes of the ciphertexts sent and
received over the record layer in that phase. In particular, it is not necessary to store all record layer messages
to input to the hash function all at once, as common programming APIs for hash functions allow the hash
value to be provided incrementally.2 We note that there may be additional implementation details to consider,
for example the need to distinguish the original renegotiation information extension from this augmented
renegotiation information extension using a different extension type value.

Theorem 3 (TLS with new countermeasure is a secure renegotiable ACCE). Let Π be a generic TLS cipher-
suite without countermeasures, and let R′(Π) denote the TLS ciphersuite with original RIE countermeasures
as in Figure 5 but using extC as in equation (1). If R′(Π) is a (τ, εmp)-secure multi-phase ACCE protocol, H
is a (τ, εh)-collision-resistant hash function, and PRF is a (τ, εprf)-secure pseudorandom function, then R′(Π)
is a (τ, ε)-secure renegotiable ACCE, where ε = εmp + εh + εprf .

The proof proceeds similarly to that of Theorem 2. The main difference is that, in one case, the removal of
restrictions A4 and A5 means we can no longer reduce down to a violation of confidentiality/integrity in the
multi-phase security of R′(Π), and instead have to rely on the new countermeasure to detect non-matching
record layer transcripts and reduce to the security of the PRF and hash function.

Proof. The proof proceeds similarly to that of Theorem 2. Suppose A breaks the renegotiable ACCE security
of the protocol R′(Π). We will show that either A directly breaks the multi-phase ACCE security of R′(Π)
or A can be used to construct another algorithm that breaks either the security of the PRF, the collision
resistance of H, or the multi-phase ACCE security of R′(Π).

2See for example OpenSSL’s API for SHA-1: a hash context is initialized with SHA1 Init, then the value to be hashed
is provided in chunks by multiple calls to SHA1 Update, then the final hash output is computed by SHA1 Final. http://www.

openssl.org/docs/crypto/sha.html

23

http://www.openssl.org/docs/crypto/sha.html
http://www.openssl.org/docs/crypto/sha.html

As before, we approach the proof in three cases: either A has broken the confidentiality/integrity of the
secure renegotiable ACCE, or A has broken the renegotiation authentication of the secure renegotiable ACCE,
and the latter can happen by meeting either condition M′(a) or M′(b). The first two cases, confidentiality
and authentication for M′(a), proceed exactly as in the proof of Theorem 2.

Authentication — M′(b). Suppose A wins the renegotiable ACCE security experiment for R′(Π) using
condition M′(b) but not M′(a).

When conditions A1–A5 hold, then the same argument as in the proof for case M′(b) of Theorem 2
still holds, in which case conditions C1–C6 hold and A can be used to break the confidentiality/integrity of
R′(Π) in the multi-phase ACCE experiment.

However, in the secure renegotiable ACCE experiment, the adversary is no longer constrained by conditions
A4 and A5, so it can make Reveal queries while the phase is active. This means that conditions C4 and
C5 are no longer satisfied, so we cannot reduce to the confidentiality/integrity of R′(Π) in the multi-phase
ACCE experiment when such Reveal queries are issued. Instead, we make use of the new countermeasure,
and apply an argument similar to that for case M′(a) of Theorem 2.

IfA wins using condition M′(b) but not M′(a), then, for every `′ < `∗, πsA.phases[`′].T = πtB .phases[`′].T .
But there is some ` < `∗ such that πsA.phases[`].RT 6= πtB .phases[`].RT . Choose ` maximal. Then
πtB .phases[` + 1].T matches πsA.phases[` + 1].T . In particular, messages m1 of those two transcripts are
equal, and so are messages m2 of those two transcripts. Since the new countermeasure is being used, m2

contains extC , which contains PRF(ms(−1), label5‖H(RT (−1))). Since πs,`+1
A accepted, both πs,`+1

A and πt,`+1
B

used the same value in extC . But at each party, this value is the value of the PRF applied to the hash of the
record layer transcripts from phases πs,`A and πt,`B , which we know are not equal. This means a collision has
occurred either in H or PRF, which happens with negligible probability.

Thus, assuming PRF is secure, H is collision-resistant, and R′(Π) is a secure multi-phase ACCE, no A
can achieve conditions M′(a) and A1–A3.

A straightforward adaptation of the proof of Theorem 1 can be used to show that TLS DHE DSS with the
new countermeasure is a secure multi-phase ACCE, since due to the security of the PRF and the master
secret an adversary cannot learn any information about the record layer transcript, even given the new extC
value. Combining that observation with Theorem 3:

Corollary 2 (TLS DHE DSS with new countermeasure is a secure renegotiable ACCE). Under the same
assumptions on the building blocks as in Theorem 1 and that H is a collision-resistant hash function,
TLS DHE DSS with the new countermeasure is a secure renegotiable ACCE protocol.

6 Conclusion

Although two-party protocols for establishing secure communication have been extensively studied in
the literature and are widely used in practice, this is the first work to consider the important issue of
renegotiation, in which parties update one or more aspects of their connection — their authentication
credentials, cryptographic parameters, or simply refresh their session key. The importance of correctly
implementing renegotiation was highlighted by the 2009 attack of Ray and Dispensa on how certain applications
process data from renegotiable TLS connections.

We have developed a formal model for describing the security of renegotiable cryptographic protocols,
focussing on authenticated and confidential channel establishment (ACCE) protocols. We have specifically
analyzed renegotiation in the TLS protocol, identifying the original attack of Ray and Dispensa in our model,
and then analyzing the security of the SCSV/RIE countermeasure as well as a new countermeasure that
provides security in the face of stronger adversaries.

Renegotiation, reauthentication, and rekeying are important features of many other applied cryptographic
protocols. Future applied work includes examining the security of rekeying in protocols such as SSH or IKEv2
in our model. Open theoretical questions include how to adapt our approach for defining secure renegotiation
to other primitives, in particular authenticated key exchange protocols. The overall security of TLS still has
many important open questions, including the security of other TLS ciphersuites, one-way authentication,
and the analysis of security when renegotiation from one ciphersuite to another. Given that attacks continue

24

to be found outside the core key agreement component of TLS, further research into modelling the security
of TLS in increasingly realistic scenarios is well-motivated.

Acknowledgements

The authors gratefully acknowledge helpful discussions with Colin Boyd, Jörg Schwenk, and Cas Cremers.

References

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions and an
analysis of DHIES. In David Naccache, editor, Topics in Cryptology – CT-RSA 2001, Lecture Notes in
Computer Science, volume 2020, pp. 143–158. Springer, April 2001. doi:10.1007/3-540-45353-9 12.

[BFS+12] Christina Brzuska, Mark Fischlin, Nigel P. Smart, Bogdan Warinschi, and Stephen C. Williams. Less is
more: Relaxed yet composable security notions for key exchange, 2012. eprint http://eprint.iacr.

org/2012/242. Cryptology ePrint Archive, Report 2012/242.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R. Stinson,
editor, Advances in Cryptology – CRYPTO’93, Lecture Notes in Computer Science, volume 773, pp.
232–249. Springer, August 1994. doi:10.1007/3-540-48329-2 21.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, Lecture Notes
in Computer Science, volume 4004, pp. 409–426. Springer, May / June 2006. doi:10.1007/11761679 25.

[BWJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols and their security anal-
ysis. In Michael Darnell, editor, 6th IMA International Conference on Cryptography and Coding, Lecture
Notes in Computer Science, volume 1355, pp. 30–45. Springer, December 1997. doi:10.1007/BFb0024447.

[BWNH+03] Simon Blake-Wilson, Magnus Nystroem, David Hopwood, Jan Mikkelsen, and Tim Wright. Transport
Layer Security (TLS) extensions, June 2003. url http://www.ietf.org/rfc/rfc3546.txt. RFC 3546.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels. In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001, Lecture Notes in
Computer Science, volume 2045, pp. 453–474. Springer, May 2001. doi:10.1007/3-540-44987-6 28.

[CK02] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based key-exchange protocol.
In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, Lecture Notes in Computer Science,
volume 2442, pp. 143–161. Springer, August 2002. doi:10.1007/3-540-46035-7 22. http://eprint.iacr.

org/2002/120/.

[DA99] Tim Dierks and Christopher Allen. The TLS protocol version 1.0, January 1999. url http://www.ietf.

org/rfc/rfc2246.txt. RFC 2246.

[DR06] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) protocol version 1.1, April 2006.
url http://www.ietf.org/rfc/rfc4346.txt. RFC 4346.

[DR08] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) protocol version 1.2, August 2008.
url http://www.ietf.org/rfc/rfc5246.txt. RFC 5246.

[Far10] Stephen Farrell. Why didn’t we spot that? IEEE Internet Computing, 14(1):84–87, Jan.–Feb. 2010.
doi:10.1109/MIC.2010.21.

[FKK11] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The Secure Sockets Layer (SSL) protocol version
3.0, August 2011. url http://www.ietf.org/rfc/rfc6101.txt. RFC 6101; republication of original
SSL 3.0 specification by Netscape of November 18, 1996.

[Gel12] Rati Gelashvili. Attacks on re-keying and renegotiation in key exchange protocols, April 2012. Bachelor’s
thesis, ETH Zurich.

[GMP+08] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and Jörg Schwenk. Universally
composable security analysis of TLS. In Joonsang Baek, Feng Bao, Kefei Chen, and Xuejia Lai, editors,
Second International Conference on Provable Security (ProvSec) 2008, Lecture Notes in Computer
Science, volume 5324, pp. 313–327. Springer, 2008. doi:10.1007/978-3-540-88733-1 22. Full version
available as http://eprint.iacr.org/2008/251.

[JKJ02] Jakob Jonsson and Burton S. Kaliski Jr. On the security of RSA encryption in TLS. In Moti Yung,
editor, Advances in Cryptology – Proc. CRYPTO 2002, Lecture Notes in Computer Science, volume
2442, pp. 183–199. Springer, 2002. doi:10.1007/3-540-45708-9 9.

25

http://dx.doi.org/10.1007/3-540-45353-9_12
http://eprint.iacr.org/2012/242
http://eprint.iacr.org/2012/242
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/BFb0024447
http://www.ietf.org/rfc/rfc3546.txt
http://dx.doi.org/10.1007/3-540-44987-6_28
http://dx.doi.org/10.1007/3-540-46035-7_22
http://eprint.iacr.org/2002/120/
http://eprint.iacr.org/2002/120/
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://dx.doi.org/10.1109/MIC.2010.21
http://www.ietf.org/rfc/rfc6101.txt
http://dx.doi.org/10.1007/978-3-540-88733-1_22
http://eprint.iacr.org/2008/251
http://dx.doi.org/10.1007/3-540-45708-9_9

[JKSS11] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE in the
standard model (full version). Cryptology ePrint Archive, Report 2011/219, 2011. http://eprint.iacr.
org/2011/219.

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE in
the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, Lecture Notes in Computer Science, volume 7417, pp. 273–293. Springer, August 2012.
doi:10.1007/978-3-642-32009-5 17.

[Kra01] Hugo Krawczyk. The order of encryption and authentication for protecting communications (or: How
secure is SSL?). In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, Lecture Notes in
Computer Science, volume 2139, pp. 310–331. Springer, August 2001. doi:10.1007/3-540-44647-8 19.

[Lan11] Adam Langley. Google online security blog: Protecting data for the long term
with forward secrecy, November 2011. http://googleonlinesecurity.blogspot.com/2011/11/

protecting-data-for-long-term-with.html.

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated key
exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec 2007: 1st International
Conference on Provable Security, Lecture Notes in Computer Science, volume 4784, pp. 1–16. Springer,
November 2007. doi:10.1007/978-3-540-75670-5 1.

[MSW08] Paul Morrissey, Nigel P. Smart, and B. Warinschi. A modular security analysis of the TLS handshake
protocol. In Josef Pieprzyk, editor, Advances in Cryptology – Proc. ASIACRYPT 2008, Lecture Notes
in Computer Science, volume 5350, pp. 55–73. Springer, 2008. doi:10.1007/978-3-540-89255-7 5. Full
version available as http://eprint.iacr.org/2008/236.

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does matter: Attacks
and proofs for the TLS record protocol. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances
in Cryptology – ASIACRYPT 2011, Lecture Notes in Computer Science, volume 7073, pp. 372–389.
Springer, December 2011. doi:10.1007/978-3-642-25385-0 20.

[RD09] Marsh Ray and Steve Dispensa. Renegotiating TLS, November 2009. http://extendedsubset.com/

Renegotiating_TLS.pdf.

[Res00] Eric Rescorla. HTTP over TLS, May 2000. url http://www.ietf.org/rfc/rfc2818.txt. RFC 2818.

[RRDO10] Eric Rescorla, Marsh Ray, Steve Dispensa, and Nasko Oskov. Transport Layer Security (TLS) rene-
gotiation indication extension, February 2010. url http://www.ietf.org/rfc/rfc5746.txt. RFC
5746.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint
Archive, Report 2004/332, Nov 2004. url http://eprint.iacr.org/2004/332.

[Zol09] Thierry Zoller. TLS & SSLv3 renegotiation vulnerability. Technical report, G-SEC, 2009. http:

//www.g-sec.lu/practicaltls.pdf.

A Additional Definitions

A.1 Stateful Length-Hiding Authenticated Encryption (sLHAE)

Length-hiding authenticated encryption (LHAE) was originally introduced by Paterson et al. [PRS11]. Here
we describe the variant stateful LHAE (sLHAE), stated by Jager et al. [JKSS12].

A stateful symmetric encryption scheme is a pair of algorithms StE = (StE.Enc,StE.Dec). Algorithm

(C, st′e)
$← StE.Enc(k, len, head,m, ste) takes as input a secret key k ∈ {0, 1}κ, an output ciphertext length

len ∈ N, some header data head ∈ {0, 1}∗, a plaintext m ∈ {0, 1}∗, and the current state ste ∈ {0, 1}∗, and
outputs a ciphertext C ∈ {0, 1}∗ and an updated state st′e. Algorithm (m′, st′d) = StE.Dec(k, head, C, std)
takes as input a key k, header data head, a ciphertext C, and the current state std ∈ {0, 1}∗, and returns an
updated state st′d and a value m′ which is either the message encrypted in C, or a distinguished error symbol
⊥ indicating that C is not a valid ciphertext. Both encryption state ste and decryption state std are initialized
to the empty string ∅. Algorithm StE.Enc may be probabilistic, while StE.Dec is always deterministic.

Definition 7. A stateful symmetric encryption scheme StE = (StE.Enc,StE.Dec) is (τ, εsLHAE)-secure, if
Pr[b = b′] ≤ εsLHAE for all adversaries A running in time at most τ in the following experiment:

26

http://eprint.iacr.org/2011/219
http://eprint.iacr.org/2011/219
http://dx.doi.org/10.1007/978-3-642-32009-5_17
http://dx.doi.org/10.1007/3-540-44647-8_19
http://googleonlinesecurity.blogspot.com/2011/11/protecting-data-for-long-term-with.html
http://googleonlinesecurity.blogspot.com/2011/11/protecting-data-for-long-term-with.html
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://dx.doi.org/10.1007/978-3-540-89255-7_5
http://eprint.iacr.org/2008/236
http://dx.doi.org/10.1007/978-3-642-25385-0_20
http://extendedsubset.com/Renegotiating_TLS.pdf
http://extendedsubset.com/Renegotiating_TLS.pdf
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc5746.txt
http://eprint.iacr.org/2004/332
http://www.g-sec.lu/practicaltls.pdf
http://www.g-sec.lu/practicaltls.pdf

1. Choose b
$← {0, 1} and k

$← {0, 1}κ, and set ste ← ∅ and std ← ∅.
2. Run b′

$← AEncrypt,Decrypt.

Oracle Encrypt(m0,m1, len, head) takes as input two messages m0 and m1 and a length len, and keeps a
counter i which is initialized to 0. Oracle Decrypt(C, head) takes as input a ciphertext C and header head,
and keeps a counter j and a switch diverge, both initialized to 0. Both oracles proceed as defined in Figure 3.

This behaviour of the Decrypt oracle in this combined definition for confidentiality and integrity can be
somewhat difficult to understand, so we give a brief explanation. From a high level, when b = 0, the adversary
always receives ⊥ from Decrypt queries. When b = 1, if the adversary successfully manipulates the integrity
of the scheme — either by injecting a new valid ciphertext or messing around with the order of ciphertexts
but still getting them to successfully decrypt — then Decrypt outputs the message m which is not equal to ⊥,
so the adversary learns that b = 1 not 0.

Note that diverge is stateful, so if it is ever set to 1 it remains 1. This allows the experiment to capture
the following property. Suppose the adversary calls Encrypt to get a (valid) ciphertext C1, then calls Decrypt
on an invalid ciphertext C ′1. Next, the adversary calls Encrypt to get another (valid) ciphertext C2, then calls
Decrypt on C2. Since the adversary previously called Decrypt on an invalid ciphertext, it should be that std
has ‘diverged’ and all future ciphertexts should not decrypt: thus if C2 does decrypt successfully, the scheme
should be considered insecure.

Encrypt(m0,m1, len, head): Decrypt(C, head):

1. i← i+ 1 1. j ← j + 1

2. (C(0), st
(0)
e)

$← StE.Enc(k, len, head,m0, ste) 2. (m, std) = StE.Dec(k, head, C, std)

3. (C(1), st
(1)
e)

$← StE.Enc(k, len, head,m1, ste) 3. If (j > i) or (C 6= Cj), then diverge← 1
4. If (C(0) = ⊥) or (C(1) = ⊥), then return ⊥ 4. If (b = 1) and (diverge = 1), then return m

5. (Ci, ste)← (C(b), st
(b)
e) 5. Else return ⊥

6. Return Ci

Figure 3: Encrypt and Decrypt oracles in the stateful LHAE security experiment.

A.2 The PRF-Oracle-Diffie-Hellman Assumption

The PRF-Oracle-Diffie-Hellman (PRFODH) assumption presented by Jager et al. [JKSS12] is a variant of
the ODH assumption introduced by Abdalla, Bellare and Rogaway [ABR01], adapted from hash functions
to PRFs. Jager et al. allow a single oracle query, in contrast to a polynomial number of queries as in the
original assumption [ABR01]. Abdalla et al. point out that the ODH assumption is heuristically reasonable:
in the random oracle model, the strong DH assumption implies the ODH assumption.

Let G be a group with generator g. Let PRF be a deterministic function PRF : G × {0, 1}∗ → {0, 1}µ.
Consider the following security experiment played between a challenger C and an adversary A.

1. The adversary A outputs a value m.
2. The challenger chooses u, v ∈ [1, q], sets z0 = PRF(guv,m) and samples z1 ∈ {0, 1}µ uniformly at

random. Then it tosses a coin b ∈ {0, 1} and returns (zb, g
u, gv) to the adversary.

3. The adversary may query a pair (X,m′) with X 6= gu to the challenger. The challenger replies with
PRF(Xv,m′).

4. Finally the adversary outputs a guess b′ ∈ {0, 1}.

Definition 8. We say that the PRFODH problem is (τ, εprfodh)-hard with respect to G and PRF, if for all
adversaries A that run in time τ it holds that |Pr [b = b′]− 1/2| ≤ εprfodh.

B Protocols without forward security

B.1 Model

The ACCE notion of Jager et al. [JKSS12] requires confidentiality/integrity of ciphertexts to hold even when
the long-term secret keys are corrupted after the handshake completes. As a result, RSA key transport-based

27

ciphersuites cannot be proven secure in this model: they do not have forward security, since corrupting the
long-term secret keys allows the adversary to compute the session key.

It is plausible that a non-forward-secure notion of ACCE could be defined in which an RSA key transport-
based ciphersuite could be proven secure. While that is beyond the scope of this document, we do comment
on how the notions we have introduced in this paper may be modified to consider protocols without forward
security.

For renegotiation authentication, public keys used in phase ` cannot be Corrupted while the post-accept
stage of phase ` is still active, as it could allow the adversary to compute the session key and thus inject
messages undetectably. One could add the following restrictions to Def. 6 to consider protocols without
forward security:

A6. A did not query Corrupt(PA, π
s
A.phases[`].pk) before πsA accepted in phase `+ 1, for every ` < `∗; and

A7. A did not query Corrupt(PB , π
s
A.phases[`].pk′) before πsA accepted in phase ` + 1, for every ` < `∗,

where πsA.d = πtB .

For confidentiality/integrity, public keys used in phase ` can never be Corrupted, as it could allow the
adversary to compute the session key and distinguish ciphertexts. One could replace the following restrictions
in Def. 3 to consider protocols without forward security:

C2′. A did not query Corrupt(PA, π
s
A.phases[`].pk); and

C3′. A did not query Corrupt(PB , π
s
A.phases[`].pk′).

B.2 On renegotiation security of TLS RSA with SCSV/RIE

As mentioned in Section 2, TLS ciphersuites without forward security, such as RSA key transport, cannot be
proven to be secure ACCE protocols, since the compromise of a party’s long-term secret key after the phase
accepts allows the adversary to compute the master secret. Hence RSA key transport-based ciphersuites
can also not be shown to be secure or weakly secure renegotiable ACCE protocols. However, it is plausible
that the ACCE definition can be modified to consider protocols without forward security, in which case RSA
key transport may be able to proven secure. In such a scenario, it should be possible to show that such
ciphersuites, when using SCSV/RIE, also satisfy a non-forward-secure notion of weak renegotiation security;
or when using the new countermeasure in Section 5, also satisfy a non-forward-secure notion of renegotiation
security.

C TLS Session Resumption

TLS allows parties to resume previous sessions [DR08, §F.1.4] without performing a full handshake. If the
client wishes to resume a previous session in a new handshake, it sends the session id from the previous
session in its ClientHello message, as well as new random nonces. If the server is willing to resume the
requested session, then the parties retrieve the master secret value used in previous sessions and use that
master secret, along with the new random nonces, to derive new session keys.

From a high-level perspective, session resumption can be viewed as a form of renegotiation, since short-term
values from the first handshake are used in subsequent handshakes. Thus, we can examine TLS session
resumption in the context of our various ACCE models, viewing the “resumed session” as a new phase of the
original session. We find that TLS session resumption does not satisfy our definition of a secure renegotiable
ACCE (Definition 5) but can be shown to be a secure multi-phase ACCE (Definition 4).

A secure renegotiable ACCE protocol requires that, upon successful renegotiation, both parties have the
same view of all previous handshake transcripts and record layer transcripts in that session. TLS session
resumption does not provide that guarantee. Since in TLS session resumption the new session keys are
always derived from the original master secret and new random nonces — but the master secret is never
updated — parties who resume multiple sessions use the same master secret in every resumption. As a result,
TLS session resumption makes no promises about the order in which multiple sessions were resumed, so an
adversary can cause parties to have different views of the order of the phases.

A secure multi-phase ACCE protocol requires that whenever a party successfully renegotiates, its peer
has some matching handshake transcript. It is straightforward to see TLS session resumption does provides
thi, assuming TLS is itself a secure ACCE.

28

D TLS DHE DSS WITH 3DES EDE CBC SHA protocol with renegotiation ex-
tensions

C S

(IC = pkC , skC)(IC = pkC , skC) (IS = pkS , skS)

rC
r←− {0, 1}λ1

extC ←

{
empty, if initial,

fin
(−1)
C , if reneg

m1 : rC , cs-list, extC

rS
r←− {0, 1}λ1

If extC 6= fin
(−1)
C → reject

extS ←

{
empty, if initial,

fin
(−1)
C ‖fin(−1)

S , if reneg

tS
r←− Zq, TS = gtS mod p

σS ← SIG.Sign(skS , rC ||rS ||p||g||TS)
m2 : rS , cs-choice, extS

m3 : certS

m4 : p, g, TS , σS

m5 : get-cert

m6 : done

If extS 6= fin
(−1)
C ‖fin(−1)

S → reject

If SIG.Vfy(pkS , σS , rC ||rS ||p||g||TS) = 0→ reject

tC
r← Zq, TC = gtC mod p

σC ← SIG.Sign(skC ,m1|| . . . ||m8)

pms← T tCS mod p

ms← PRF(pms, label1||rC ||rS)

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac ← PRF(ms, label2||rC ||rS)

finC ← PRF(ms, label3||m1|| . . . ||m10)

store fin
(−1)
C ← finC

m7 : certC

m8 : TC

m9 : σC

m10 : flagenc

m11 : (C11, ste) = StE.Enc(KC→S
enc ||KC→S

mac , `,H, finC , ste)

If SIG.Vfy(pkC , σC ,m1|| . . . ||m8) = 0→ reject

pms← T tSC mod p

ms← PRF(pms, label1||rC ||rS)

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac ← PRF(ms, label2||rC ||rS)

finS ← PRF(ms, label4||m1|| . . . ||m12)

store fin
(−1)
S ← finS

m12 : flagenc

m13 : (C13, ste) = StE.Enc(KS→C
enc ||KS→C

mac , `,H, finS , ste)

pre-accept stage

If finS 6= PRF(ms, label4||m1|| . . . ||m12)→ reject

store fin
(−1)
S ← finS

If finC 6= PRF(ms, label3||m1|| . . . ||m10)→ reject

store fin
(−1)
C ← finC

post-accept stage
StE.Enc(KC→S

enc ||KC→S
mac , `,H, data, ste)

StE.Enc(KS→C
enc ||KS→C

mac , `,H, data, ste)

Figure 4: TLS handshake for TLS DHE DSS WITH 3DES EDE CBC SHA ciphersuite with client authentication
and SCSV / RIE renegotiation countermeasures

29

E Generic TLS protocol with renegotiation extensions

C S

(IC = pkC , skC)(IC = pkC , skC) (IS = pkS , skS)

rC
r←− {0, 1}λ1

extC ←

{
empty, if initial,

fin
(−1)
C , if reneg

m1 : rC , cs-list, extC

rS
r←− {0, 1}λ1

If extC 6= fin
(−1)
C → reject

extS ←

{
empty, if initial,

fin
(−1)
C ‖fin(−1)

S , if reneg

keyexS ← . . .

m2 : rS , cs-choice, extS

m3 : certS

m4 : keyexS

m5 : get-cert

m6 : done

If extS 6= fin
(−1)
C ‖fin(−1)

S → reject

If ¬verify(keyexS)→ reject

keyexC ← . . .

σC ← SIG.Sign(skC ,m1|| . . . ||m8)

pms← . . .

ms← PRF(pms, label1||rC ||rS)

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac ← PRF(ms, label2||rC ||rS)

finC ← PRF(ms, label3||m1|| . . . ||m10)

store fin
(−1)
C ← finC

m7 : certC

m8 : keyexC

m9 : σC

m10 : flagenc

m11 : (C11, ste) = StE.Enc(KC→S
enc ||KC→S

mac , `,H, finC , ste)

If SIG.Vfy(pkC , σC ,m1|| . . . ||m8) = 0→ reject

pms← . . .

ms← PRF(pms, label1||rC ||rS)

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac ← PRF(ms, label2||rC ||rS)

finS ← PRF(ms, label4||m1|| . . . ||m12)

store fin
(−1)
S ← finS

m12 : flagenc

m13 : (C13, ste) = StE.Enc(KS→C
enc ||KS→C

mac , `,H, finS , ste)

pre-accept stage

If finS 6= PRF(ms, label4||m1|| . . . ||m12)→ reject

store fin
(−1)
S ← finS

If finC 6= PRF(ms, label3||m1|| . . . ||m10)→ reject

store fin
(−1)
C ← finC

post-accept stage
StE.Enc(KC→S

enc ||KC→S
mac , `,H, data, ste)

StE.Enc(KS→C
enc ||KS→C

mac , `,H, data, ste)

Figure 5: Generic TLS handshake protocol with SCSV / RIE renegotiation countermeasures

30

	Introduction
	The TLS Renegotiation Issue
	Countermeasures Added to TLS
	Contributions and Outline

	Security Definitions for Multi-Phase and Renegotiable ACCE
	Overview
	Execution Environment
	Security Definitions
	Confidentiality.
	Secure multi-phase ACCE.
	Secure renegotiable ACCE.
	Weakly secure renegotiable ACCE.
	Protocols without forward security.

	Renegotiation (In)security of TLS
	TLS without countermeasures is not a (weakly) secure renegotiable ACCE protocol

	Renegotiation Security of TLS with SCSV/RIE Countermeasures
	TLS_* with SCSV/RIE is not a secure renegotiable ACCE
	TLS_DHE_DSS_ with SCSV/RIE is a secure multi-phase ACCE
	Proof of Lemma 1: client
	Proof of Lemma 1: server
	Proof of confidentiality

	Multi-phase secure TLS with SCSV/RIE is a weakly secure renegotiable ACCE

	Renegotiation Security of TLS with a New Countermeasure
	Conclusion
	References
	Additional Definitions
	Stateful Length-Hiding Authenticated Encryption (sLHAE)
	The PRF-Oracle-Diffie-Hellman Assumption

	Protocols without forward security
	Model
	On renegotiation security of TLS_RSA_ with SCSV/RIE

	TLS Session Resumption
	TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA protocol with renegotiation extensions
	Generic TLS protocol with renegotiation extensions

