
Message-Locked Encryption and Secure Deduplication

Mihir Bellare1 Sriram Keelveedhi2 Thomas Ristenpart3

October 2012

Abstract

We formalize a new cryptographic primitive, Message-Locked Encryption (MLE), where the key
under which encryption and decryption are performed is itself derived from the message. MLE provides
a way to achieve secure deduplication (space-efficient secure outsourced storage), a goal currently
targeted by numerous cloud-storage providers. We provide definitions both for privacy and for a
form of integrity that we call tag consistency. Based on this foundation, we make both practical and
theoretical contributions. On the practical side, we provide ROM security analyses of a natural family
of MLE schemes that includes deployed schemes. On the theoretical side the challenge is standard
model solutions, and we make connections with deterministic encryption, hash functions secure on
correlated inputs and the sample-then-extract paradigm to deliver schemes under different assumptions
and for different classes of message sources. Our work shows that MLE is a primitive of both practical
and theoretical interest.

Keywords: Convergent encryption, deduplication, deterministic encryption.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported in part by NSF
grants CNS-0904380, CCF-0915675 and CNS-1116800.

2 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: sriramkr@cs.ucsd.edu. URL: http://www.cs.ucsd.edu/users/skeelvee/. Supported in
part by Bellare’s grants.

3 Department of Computer Sciences, University of Wisconsin–Madison, 1210 West Dayton Street, Madison, Wisconsin
53715, USA. Email: rist@cs.wisc.edu. URL: http://pages.cs.wisc.edu/~rist/. Supported in part by NSF grant
CNS-1065134 and generous gifts from RSA Labs and Microsoft.

1

Contents

1 Introduction 3
1.1 Background . 3
1.2 Definitions and Relations . 4
1.3 Practical Contributions . 5
1.4 Theoretical Contributions . 5
1.5 Further Remarks and Related Work . 7

2 Preliminaries 7

3 Message-Locked Encryption 8

4 Practical Contributions: The Security of Fast MLE Schemes 11

5 Theoretical Contributions: Constructions without ROs 13
5.1 Extract-Hash-Check . 13
5.2 Sample-Extract-Encrypt . 14

A Relations Between MLE Privacy Notions 19

B Proof of PRV$-CDA for CE, HCE1, HCE2, RCE 21

C Instantiations and Performance of CE, HCE2, and RCE 25

D Proof of Theorem 5.1 27

E Proof of Theorem 5.2 28

2

1 Introduction

We introduce an intriguing new primitive that we call Message-Locked Encryption (MLE). An MLE
scheme is a symmetric encryption scheme in which the key used for encryption and decryption is itself
derived from the message. Instances of this primitive are seeing widespread deployment and application
for the purpose of secure deduplication [1, 2, 4, 12, 17–19, 24, 26, 35, 37, 41, 45, 48], but in the absence of a
theoretical treatment, we have no precise indication of what these methods do or do not accomplish.

We provide definitions of privacy and integrity peculiar to this domain. Now having created a clear,
strong target for designs, we make contributions that may broadly be divided into two parts: (1) practical
and (2) theoretical. In the first category we analyze existing schemes and new variants, breaking some
and justifying others with proofs in the random-oracle-model (ROM) [10]. In the second category we
address the challenging question of finding a standard-model MLE scheme, making connections with
deterministic public-key encryption [5], correlated-input-secure hash functions [29] and locally-computable
extractors [3,36,46] to provide schemes exhibiting different tradeoffs between assumptions made and the
message distributions for which security is proven. From our treatment MLE emerges as a primitive that
combines practical impact with theoretical depth and challenges, making it well worthy of further study
and a place in the cryptographic pantheon. Below we begin with some background and then look more
closely at our contributions.

1.1 Background

To save space, commercial cloud storage services such as Google Drive [28], Dropbox [23] and bitcasa [12]
perform file-level deduplication across all their users. Say a user Alice stores a file M and Bob requests
to store the same file M . Observing that M is already stored, the server, instead of storing a second copy
of M , simply updates metadata associated to M to indicate that Bob and Alice both stored M . In this
way, no file is stored more than once, moving storage costs for a file stored by u users from O(u · |M |) to
O(u+ |M |) where the big-O notation hides implementation-dependent constants.

However, as users we may want our files to be encrypted. We may not want the storage provider to
see our data. Even if we did trust the provider, we may legitimately worry about errant employees or the
risk of server compromise by an external adversary. When users themselves are corporations outsourcing
their data storage, policy or government regulation may mandate encryption.

Conventional encryption, however, makes deduplication impossible. Say Alice stores not her file M
but its encryption CA under her password pwA. Bob would store CB, the encryption of M under his
password pwB. Two issues arise: (1) how the server is to detect that the data underlying the two
ciphertexts is the same, and (2) even if it can so detect, what can it store short of (CA, CB) that allows
both parties, based on their separate respective passwords, to recover the data from what is stored.
Standard IND-CPA encryption means even (1) is not possible. We might use some kind of searchable
encryption [5,15,44] but it is still not clear how to solve (2). Just storing Alice’s ciphertext, for example,
does not work because Bob cannot later decrypt it to recover the file, and visa versa.

Douceur et. al. (DABST) [22] proposed a clever solution called convergent encryption (CE). Alice
derives a key K = H(M) from her message M and then encrypts the message as C = E(K,M) =
E(H(M),M), where H is a cryptographic hash function and E is a block cipher. (They assume the
message is one block long.) The ciphertext is given to the server and the user retains K. Since encryption
is deterministic, if Bob starts from the same message he would produce the same key and ciphertext.
The server can now perform deduplication on the ciphertext C, checking, when it receives C, whether
or not it is already stored, and, if the latter, as before, not re-storing but instead updating meta-data to
indicate an additional owner. Both Alice and Bob can decrypt C since both have the same key K.

These ideas have been attractive enough to see significant usage, with CE or variants deployed in [2,
12, 17, 24, 26, 37, 41, 45, 48]. It is not however clear what precisely is the underlying security goal and
whether deployed schemes achieve it.

3

1.2 Definitions and Relations

We introduce Message-Locked Encryption (MLE) —so named because the message is locked, as it were,
under itself— with the goal of providing an encryption primitive that provably enables secure deduplica-
tion.

Syntax. As depicted in Figure 2, the key generation algorithm of an MLE scheme K maps a message
M to a key K. The encryption algorithm E takes input the key K and a message M and produces a
ciphertext C. The decryption algorithm D allows recovery of M from C given the key K. The tagging
algorithm T maps the ciphertext C to a tag T used by the server to detect duplicates. (Tag correctness
requires that tags corresponding to messages M1,M2 are likely to be the same iff M1,M2 are the same.)
All algorithms may depend on a parameter P but the latter is public and common to all parties including
the adversary, and thus is not a key.

Any MLE scheme enables deduplication of ciphertexts. CE is captured by our syntax as the MLE
scheme that lets K = H(M), C = E(K,M) and tag T = H(C).

MLE is trivially achieved by letting the key K equal the message M . (Set C = T = ε to the
empty string and have decryption simply return the key.) This degenerate solution is however useless for
deduplication since the client stores as K the entire file and no storage savings result. We rule it out by
requiring that keys be shorter than messages, ideally keys are of a fixed, short length.

Privacy. No MLE scheme can achieve semantic-security-style privacy in the spirit of [7, 27]. Indeed, if
the target message M is drawn from a space S of size s then an adversary, given an encryption C of M ,
can recover M in O(s) trials. (For each candidate M ′ ∈ S test whether D(K(M ′), C) = M ′ and if so
return M ′.) As with deterministic public-key encryption [5], we therefore ask for the best possible privacy,
namely semantic security when messages are unpredictable (have high min-entropy). Adapting definitions
from [5,6,8,16] we formalize a PRV-CDA notion where encryptions of two unpredictable messages should
be indistinguishable. (“cda” stands for “chosen-distribution attack” [6].) We also formalize a stronger
PRV$-CDA notion where the encryption of an unpredictable message must be indistinguishable from a
random string of the same length (cf. [43]).

These basic notions are for non-adaptive adversaries. We also have corresponding adaptive versions
PRV-CDA-A and PRV$-CDA-A. We show that PRV-CDA does not imply PRV-CDA-A but, interestingly,
that PRV$-CDA does imply PRV$-CDA-A. (See Figure 2 for a comprehensive relations summary.) Thus
PRV$-CDA emerges as the preferred target for designs because non-adaptive security is easier to prove
yet adaptive security is implied.

Tag consistency. Suppose client Alice has a message MA and client Bob has a different message MB.
Alice is malicious and uploads not an honest encryption of MA but a maliciously-generated ciphertext
CA such that, when Bob tries to upload CB, the server sees a tag match T (CA) = T (CB). (This does
not contradict the correctness requirement that tags are usually equal iff the messages are equal because
that holds for honestly-generated ciphertexts.) The server thus keeps only CA, deleting CB. Yet later,
when Bob downloads to get CA, the decryption is MA, not MB, meaning the integrity of his data has
been compromised.

This is a serious concern, and not mere speculation, for such “duplicate-faking” attacks have been
found on some CE variants [45]. We define tag consistency to rule out these types of integrity violations.
Notion TC asks that it be hard to create (M,C) such that T (C) = T (E(K(M),M)) but D(K(M), C)
is a string different from M . In words, an adversary cannot make an honest client recover an incorrect
message, meaning one different from the one it uploaded. Notion STC (“S” for “strong”) asks that it
additionally be hard to create (M,C) such that T (C) = T (E(K(M),M)) but D(K(M), C) = ⊥, meaning
an adversary cannot erase an honest client’s message. STC is strictly stronger than TC; we define both
because, as we will see, some schemes meet only the weaker, but still meaningful, TC version.

4

1.3 Practical Contributions

The definitional framework outlined above puts us in a position to rigorously assess —a decade after its
inception in [22]— the security of convergent encryption (CE). The task is complicated by the presence
and deployment of numerous variants of the basic CE idea. We address this by formulating two MLE
schemes, that we call CE and HCE1, that represent two major variants of CE and between them capture
the prominent existing schemes. They each make use of a RO hash function H and a deterministic
symmetric encryption scheme SE. CE with SE set to a blockcipher, for example, is the scheme of [22] and
HCE1 with SE as a blockcipher in counter mode with fixed IV is the scheme of the Tahoe FileSystem [48].

CE sets K = H(M), C = SE(K,M) and tag T = H(C), while HCE1 sets K = H(M), C =
SE(K,M)‖H(K) and T = H(K). The rationale for HCE1 is to offer better performance for the server
who can simply read the tag as the second part of the ciphertext rather than needing to compute it by
hashing the possibly long ciphertext. But we observe that HCE1 is vulnerable to duplicate faking attacks,
meaning it does not even achieve TC security. We have reported this attack to the developers of the
Tahoe FileSystem [48], who deemed it important enough that they propose to add patches.

We ask whether performance gains of the type offered by HCE1 over CE can be obtained without
loss in consistency, and offer as answers two new schemes, HCE2 and RCE. The former is as efficient as
HCE1. RCE however is even more efficient, needing just one concerted pass over the data to generate
the key, encrypt the message and produce the tag. On the other hand, HCE2 needs two passes, one
pass to generate the key and a second for encryption, while CE needs a third pass for producing the tag.
RCE achieves this via a novel use of randomization (all previous schemes were deterministic). Roughly
(see Figure 4), encryption picks a fresh random key L and then computes SE(L,M) and K = H(M)
in the same pass, finally placing an encryption of L under K, together with an appropriate tag, in the
ciphertext. We have implemented all three schemes and the results (cf. Section C) show that RCE does
indeed outperform the other two.

Figure 1 (table, first four rows) summarizes the findings of our security analysis of the four schemes.
Under standard assumptions on the deterministic symmetric encryption scheme SE (one-time real-or-
random ciphertext, or ROR, security as well as key-recovery security) and with H a RO, we show that
all four MLE schemes meet our strong privacy notion PRV$-CDA. The consistency findings are more
involved. As mentioned, HCE1 provides no tag consistency. The good news is that CE, HCE2 and RCE
all achieve TC security, so that an adversary cannot make a client recover a file different from the one she
uploaded. But only CE offers STC security, implying that the reduction in server cost offered by HCE1,
HCE2 and RCE comes at a price, namely loss of STC-security. The conclusion is that designers will need
to trade performance for strong tag consistency.

1.4 Theoretical Contributions

Is standard-model MLE possible? This emerges as the natural and most basic theoretical question in this
domain. Another question is, how does MLE relate to other (existing) primitives? MLE has in common
with Deterministic Public-Key Encryption (D-PKE) [5] and Correlated-input-secure Hash Functions (CI-
H) [29] a goal of privacy on unpredictable but possibly related inputs, so it is in particular natural to
ask about the relation of MLE to these primitives. The two questions are related, for showing that a
primitive X implies MLE yields a construction of an MLE scheme based on X. In exploring these questions
it is instructive to distinguish between D-MLE (where encryption is deterministic) and R-MLE (where
encryption may be randomized). The connections we now discuss are summarized by the picture on the
right side of Figure 1:

• D-PKE⇒ D-MLE: We show how to construct an MLE scheme from any D-PKE scheme that is PRIV-
secure in the sense of [5]. The first idea that may come to mind is to make public a public key pk
for the D-PKE scheme DE and MLE-encrypt M as DE(pk ,M). But this does not make sense because
sk is needed to decrypt and the latter is not derived from M . Our XtDPKE (“extract-then-D-PKE”
solution, specified and proven in Section 5, is quite different and does not exploit the decryptability

5

Scheme Model D/R
Privacy Integrity

PRV-CDA PRV$-CDA TC STC

CE RO D 3 3 3 3
HCE1 RO D 3 3 7 7
HCE2 RO D 3 3 3 7
RCE RO R 3 3 3 7

XtCIH STD D 3 3 3 3
XtDPKE STD D 3 7 3 3
XtESPKE STD R 3 7 3 3

SXE STD D 3 3 3 3

CI-H

D-MLE
(PRV$-CDA)

D-MLE
(PRV-CDA)

D-PKE

ES-PKE

R-MLE
(PRV$-CDA)

R-MLE
(PRV-CDA)

Figure 1: Left: For each MLE scheme that we construct, we indicate whether it is in the RO or standard
model; whether it is deterministic or randomized; and which security properties it is proven to possess.
The assumptions for XtCIH, XtDPKE and XtESPKE are, respectively, a CI-H function, a D-PKE scheme
and an ES-PKE scheme, while the others assume only a symmetric encryption scheme. Right: An arrow
X → Y means we can construct primitive Y from primitive X. Dark arrows are our results while light
arrows indicate trivial or known implications.

of DE at all. We apply a strong randomness extractor to M to get the MLE key K and then encrypt
M bit-by-bit, the encryption of the i-th bit M [i] being C[i] = DE(pk ,K‖i‖M [i]). Decryption, given
K, is done by re-encrypting, for each i, both possible values of the i-th message bit and seeing which
ciphertext matches C[i]. We assume a trusted generation of pk in which nobody retains sk . XtDPKE
has PRV-CDA privacy and provides STC (strong) tag consistency.

• CI-H⇔ D-MLE: Our XtCIH (“extract-then-CI-Hash”) scheme derives a D-MLE scheme from any CI-H
hash function [29] by using the latter in place of the D-PKE scheme in the above. XtCIH is PRV$-CDA
private while retaining STC consistency. Conversely, any PRV$-CDA D-MLE scheme can be used to
construct a CI-H hash function, making the primitives equivalent.

We believe these results are interesting as connections between prominent primitives. However, they
do not, right now, yield MLE schemes under standard assumptions because providing the required D-
PKE schemes or CI-H functions under such assumptions is still open and deemed challenging. Indeed,
Wichs [47] shows that secure D-PKE schemes or CI-H functions may not be obtained via blackbox
reductions from any assumption that may be modeled as a game between an adversary and a challenger.
We note that his result applies to D-MLE as well but, as far as we can tell, not to R-MLE. One potential
route to MLE with standard assumptions may thus be to exploit randomization but we are unaware of
how to do this beyond noting that XtDPKE extends to a R-MLE scheme XtESPKE based on any ES-PKE
(Efficiently Searchable PKE) scheme [5], a weaker primitive than D-PKE.

In the D-PKE domain, progress was made by restricting attention to special message distributions.
In particular D-PKE under standard assumptions have been achieved for independent messages or block
sources [8,14,16,25]. CI-H functions have been built for messages given by polynomials evaluated at the
same random point [29]. It is thus natural to ask whether we can obtain MLE under standard assumptions
for special message distributions. One might think that this follows from our D-PKE ⇒ D-MLE and
CI-H ⇒ D-MLE constructions and the known results on D-PKE and CI-H, but this is not the case
because our constructions do not preserve the message distribution.

The final contribution we mention here is MLE schemes under standard assumptions for certain
classes of message distributions . Our SXE (Sample-extract-encrypt) MLE scheme is inspired by locally-
computable extractors [3, 36, 46] and the sample-then-extract paradigm [40, 46]. The idea is to put a
random subset of the message bits through an extractor to get a key used to encrypt the rest of the bits,
and the only assumption made is a standard, ROR-secure symmetric encryption scheme.

6

1.5 Further Remarks and Related Work

Recall we introduced an indistinguishability-from-random notion PRV$-CDA for MLE and showed that it
implied its adaptive counterpart. This is of broader interest for the parent settings of deterministic and
hedged encryption. Here achieving adaptive security has been challenging [6]. We suggest that progress
can be made by defining and then targeting indistinguishability-from-random style definitions.

Mironov, Pandey, Reingold and Segev [39] suggest deduplication as a potential application of their in-
cremental deterministic public-key encryption scheme. But this will not work for multi-user deduplication
settings, since all users would have to share the secret key.

Recent work showed that client-side deduplication gives rise to side-channel attacks because users are
told if another user already uploaded a file [32]. MLE is compatible with either client- or server-side
deduplication (the latter prevents such side-channels). MLE targets a different class of threats than
proofs of ownership [31], which were proposed for deduplication systems in order to mitigate abuse of
services for surreptitious content distribution.

2 Preliminaries

Notations and Conventions. The empty string is denoted by ε. If x is a vector then |X| denotes the
number of components in x, x[i] denotes the i-th component, and x[i, j] = x[i] . . .x[j] for 1 ≤ i ≤ j ≤ |x|.
A (binary) string x is identified with a vector over {0, 1} so that |x| is its length, x[i] is its i-th bit and
x[i, j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. If S is a finite set then |S| denotes its size and s←$ S denotes
picking an element uniformly from S and assigning it to s. For i ∈ N we let [i] = {1, . . . , i}. We denote
by λ ∈ N the security parameter and by 1λ its unary representation.

Algorithms are randomized unless otherwise indicated. “PT” stands for “polynomial-time.” By
y ← A(x1, . . . ;R), we denote the operation of running algorithm A on inputs x1, . . . and coins R and
letting y denote the output. By y←$A(x1, . . .), we denote the operation of letting y ← A(x1, . . . ;R)
with R chosen at random. We denote by [A(x1, . . .)] the set of points that have positive probability of
being output by A on inputs x1, Adversaries are algorithms or tuples of algorithms. In the latter
case, the running time of the adversary is the sum of the running times of all the algorithms in the tuple.

The guessing probability GP(X) and min-entropy H∞(X) of a random variable X are defined via
GP(X) = maxx Pr[X = x] = 2−H∞(X). The conditional guessing probability GP(X |Y) and conditional
min-entropy H∞(X |Y) of a random variable X given a random variable Y are defined via GP(X |Y) =∑

y Pr[Y = y] · maxx Pr[X = x|Y = y] = 2−H∞(X |Y). By SD(X;Y) we denote the statistical distance
between random variables X and Y .

Game playing framework. For our security definitions and proofs we use the code-based game playing
framework of [11], though adopting some of the syntax and semantics of [42]. A game G (Figure 3, for
example) has a main procedure, and possibly other procedures. G begins by executing main, which runs
an adversary A after some initialization steps. A can make oracle calls to procedures permitted by G.
When A finishes executing, G performs further steps with A’s output to produce some output itself. We
denote by GA ⇒ y the event that an execution of G with A outputs y. We abbreviate GA ⇒ true as GA.
Boolean flags are assumed initialized to false and sets to ∅. The running time of the adversary A is a
function of λ defined as the total running time of the game with the adversary in expectation, including
the procedures of the game, and will be denoted by TA(·) when the game is clear from the context.

CR hashing. A family of hash functions H = (HK,H) is a pair of PT algorithms, the second determin-
istic. The key generation algorithm takes input 1λ and returns a hashing key Kh. The hashing algorithm
H takes Kh and a message M and returns its hash H ← H(Kh,M). We say that H is injective if the
function H(Kh, ·) is injective for every Kh. Let game CRH choose a key Kh←$HK(1λ), run an adversary
A(Kh), and check if A’s output of M,M ′ are such that M 6= M ′ and H(Kh,M) = H(Kh,M

′). Advan-
tage is defined as Advcr

H,A(λ) = Pr[CRA
H(λ)] and we say that H is CR-secure if Advcr

H,A(·) is a negligible
function for any PT A.

7

M KP K

EP C

DP M

TP T

PRV$-CDA

PRV-CDA

PRV$-CDA-A

PRV-CDA-A

Figure 2: Left: Depiction of syntax of MLE scheme MLE = (P,K, E ,D, T). The parameter generation
algorithm is not shown. Right: Relations between notions of privacy for MLE schemes. An arrow from
A to B means that any A-secure MLE scheme is also B-secure. A barred arrow means there is an A-secure
MLE scheme that is not B-secure.

3 Message-Locked Encryption

Syntax and correctness. An MLE scheme MLE = (P,K, E ,D, T) is a five-tuple of PT algorithms, the
last two deterministic — see Figure 2. On input 1λ the parameter generation algorithm P returns a public
parameter P . On input P and a message M , the key-generation algorithm K returns a message-derived
key K←$KP (M). On inputs P,K,M the encryption algorithm E returns a ciphertext C←$ EP (K,M).
On inputs P,K and a ciphertext C, the decryption algorithm D returns DP (K,C) ∈ {0, 1}∗ ∪ {⊥}. On
inputs P,C the tag generation algorithm returns a tag T ← TP (C). Associated to the scheme is a message
space MsgSpMLE that associates to any λ ∈ N a set MsgSpMLE(λ) ⊆ {0, 1}∗. We require that there is a
function Cl such that, for all λ ∈ N, all P ∈ [P(1λ)] and all M ∈ {0, 1}∗, any output of EP (KP (M),M)
has length Cl(P, λ, |M |), meaning the length of a ciphertext depends on nothing about the message other
than its length. The decryption correctness condition requires that DP (K,C) = M for all λ ∈ N, all
P ∈ [P(1λ)], all M ∈ MsgSpMLE(λ), all K ∈ [KP (M)] and all C ∈ [EP (K,M)]. The tag correctness
condition requires that there is a negligible function δ: N → [0, 1], called the false negative rate, such
that Pr[TP (C) 6= TP (C ′)] ≤ δ(λ) for all λ ∈ N, all P ∈ [P(1λ)] and all M ∈ MsgSpMLE(λ), where the
probability is over C←$ EP (KP (M),M) and C ′←$ EP (KP (M),M). We say that MLE is deterministic if
K and E are deterministic. We observe that if MLE is deterministic then it has perfect tag correctness,
meaning a false negative rate of 0.

Discussion. In the application to secure deduplication, the server publishes P and maintains a database
that we view as a table Da, initially everywhere ⊥. In the UPLOAD protocol, the client, having P,M ,
computes K←$KP (M) and C←$ EP (K,M). The client stores K securely. (It may do so locally or
store K encrypted under its password on the server, but the implementation is not relevant here.) It
sends C to the server. The latter computes T ← TP (C). If Da[T] = ⊥ then it lets Da[T] ← C. The
server provides the client with a filename or pointer that we may, for simplicity, just view as the tag
T . In the DOWNLOAD protocol, the client sends the server a tag T and the server returns Da[T]. If
Alice uploads M and Bob later does the same, tag correctness means that their tags will most likely
be equal and the server will store a single ciphertext on their behalf. Downloads will return to both
this common ciphertext C, and decryption correctness guarantees that both can decrypt C under their
respective (although possibly different) keys to recover M .

A trivial construction of an MLE scheme MLE = (P,K, E ,D, T) may be obtained by setting the
key to the message. In more detail, let P(1λ) = ε; let Kε(M) = M ; let Eε(M,M) = Tε(C) = ε;
let Dε(M,C) = M . This will meet the decryption and tag correctness conditions besides meeting the
security requirements (privacy and tag consistency) we will formalize below. However, this scheme is
of no use for deduplication because the client stores the entire file as the key and no storage savings
are gleaned. To avoid this kind of degenerate scheme, we insist that an MLE scheme have keys that
are shorter than the message. Formally, there must be a constants c, d < 1 such that the function that
on input λ ∈ N returns maxP,M Pr[|KP (M)| > d · |M |c] is negligible where the probability is over the

8

main PRV-CDAAMLE,M(λ)

P ←$ P(1λ)
b←$ {0, 1}
(M0,M1, Z)←$M(1λ)

For i = 1, . . . , |Mb| do
C[i]←$ EP (KP (Mb[i]),Mb[i])

b′←$A(P,C, Z)

Ret (b = b′)

main PRV$-CDAAMLE,M(λ)

P ←$ P(1λ) ; b←$ {0, 1}
(M, Z)←$M(1λ)

For i = 1, . . . , |M| do
C1[i]←$ EP (KP (M[i]),M[i])

C0[i]←$ {0, 1}|C1[i]|

b′←$A(P,Cb, Z)

Ret (b = b′)

main TCAMLE(λ) STCAMLE(λ)

P ←$ P(1λ) ; (M,C′)←$A(P)

If (M = ⊥) or (C′ = ⊥) then Ret false

T ←$ TP (EP (KP (M),M)) ; T ′←$ TP (C′)
M ′←$DP (KP (M), C′)

If (T = T ′) and (M 6=M ′) and (M ′ 6= ⊥) then

Ret true

Else Ret false

Figure 3: Games defining PRV-CDA, PRV$-CDA privacy and TC, STC tag consistency security of MLE
scheme MLE = (P,K, E ,D, T).

choices of K and the maximum is over all P ∈ [P(1λ)] and all M ∈ MsgSpMLE(λ). Particular schemes we
construct or analyze, however, do much better, with the key-length for most of them depending only on
the security parameter.

Our formulation of search via tag comparison enables fast search: the server can use the tag to index
directly into a table or perform a logarithmic-time binary search as in [5]. These requirements could be
relaxed to define MLE variants where search was allowed linear time (cf. [15]) or search ability was not
even provided. MLE does not appear easy to achieve even in the last case.

Privacy. As we noted in Section 1, no MLE scheme can provide privacy for predictable messages,
meaning ones drawn from a space of polynomial size, in particular ruling out classical semantic security.
We now formalize two notions of privacy for unpredictable messages.

A source is a PT algorithm M that on input 1λ returns (M0, . . . ,Mn−1, Z) where M0, . . . ,Mn−1
are vectors over {0, 1}∗ and Z ∈ {0, 1}∗. Here n ≥ 1 is a constant called the arity of the source.
(We will only consider n ∈ {1, 2}.) We require that all the vectors have the same length m(λ) for
some function m called the number of messages of the source. We require that there is a function len,
called the message length of the source, such that the string Mj [i] has length len(λ, i) for all i ∈ [m(λ)]
and all j ∈ {0, . . . , n − 1}. We require that Mj [i1] 6= Mj [i2] for all distinct i1, i2 ∈ [m(λ)] and all
j ∈ {0, . . . , n − 1}, meaning the entries of each vector are distinct. We refer to Z as the auxiliary
information. The guessing probability GPM of source M is defined as the function which on input
λ ∈ N returns maxi,j GP(Mj [i] |Z) where the probability is over (M0, . . . ,Mn−1, Z)←$M(1λ) and the
maximum is over all i ∈ [m(λ)] and all j ∈ {0, . . . , n − 1}. We say that M is unpredictable if GPM(·)
is negligible. (Meaning, messages are unpredictable given the auxiliary information. We do not require
that the components Mj [1], . . . ,Mj [m(λ)] of a vector are independent, just that each, individually, is
unpredictable.) We refer to − log(GPM(·)) as the min-entropy of the source. We say that M is MLE-
valid if Mj [i] ∈ MsgSpMLE(λ) for all λ ∈ N, all (M0, . . . ,Mn−1, Z) ∈ [M(1λ)], all i ∈ [m(λ)] and all
j ∈ {0, . . . , n− 1}.

In the games of Figure 3, “CDA” stands for “Chosen-Distribution Attack,” referring to the dis-
tribution on messages imposed by the source M, which in game PRV-CDA has arity 2 and in game
PRV$-CDA has arity 1. The source is assumed MLE-valid. If A is an adversary we let Advprv-cda

MLE,M,A(λ) =

2 · Pr[PRV-CDAA
MLE,M(λ)] − 1 and Advprv$-cda

MLE,M,A(λ) = 2 · Pr[PRV$-CDAA
MLE,M(λ)] − 1. We say that

MLE is PRV-CDA (resp. PRV$-CDA) secure over a class M of PT, MLE-valid sources if Advprv-cda
MLE,M,A(·)

(resp. Advprv$-cda
MLE,M,A(·)) is negligible for all PT A and all M ∈ M. We say that MLE is PRV-CDA

(resp. PRV$-CDA) secure if it is PRV-CDA (resp. PRV$-CDA) secure over the class of all PT, unpre-
dictable MLE-valid sources. PRV-CDA asks for indistinguishability of encryptions of two unpredictable
messages and is based on formalizations of deterministic [5,8,16] and hedged [6] PKE. PRV$-CDA is a new
variant, asking for the stronger property that encryptions of unpredictable messages are indistinguishable
from random strings, an adaption to this setting of the corresponding notion for symmetric encryption

9

from [43].

The source is not given the parameter P as input, meaning privacy is only assured for messages that
do not depend on the parameter. This is analogous to the restriction that messages do not depend on the
public key in D-PKE [5], and without this restriction, privacy is not possible. However, the adversary A
does get the parameter.

The notions here are non-adaptive in the sense that the distribution of the next message does not de-
pend on the previous ciphertext. In Appendix A we give corresponding adaptive definitions PRV-CDA-A
and PRV$-CDA-A, and prove the relations summarized in Figure 2. The one we highlight is that the
non-adaptive PRV$-CDA implies its adaptive counterpart. This is not true for PRV-CDA and makes
PRV$-CDA preferable to achieve.

Tag consistency. Consider the games of Figure 3 and let A be an adversary. Game TCMLE includes the
boxed statement, while STCMLE does not. We let AdvTC

MLE,A(λ) = Pr[TCA
MLE(λ)] and AdvSTC

MLE,A(λ) =

Pr[STCA
MLE(λ)]. We say that MLE is TC (resp. STC) secure if AdvTC

MLE,A(·) (resp. AdvSTC
MLE,A(·)) is

negligible.

Tag consistency (TC) aims to provide security against duplicate faking attacks in which a legitimate
message is undetectably replaced by a fake one. In such an attack we imagine the adversary A creating
and uploading C ′. Later, an honest client, holding M (the formalism allows A to pick M) computes
K←$KP (M) and uploads C←$ EP (K,M). The server finds that the tags of C and C ′ are equal and
thus continues to store only C ′. Later, the honest client downloads C ′ and decrypts under K. It expects
to recover M , but in a successful duplicate-faking attack it recovers instead some message M ′ 6= M . The
integrity of its data has thus been violated. TC security protects against this. Note that TC explicitly
excludes an attack in which M ′ = ⊥. Thus TC secure schemes may still admit erasure attacks, in which a
client can detect corruption but no longer be able to recover their message. STC (strong tag consistency)
aims to additionally provide security against erasure attacks. In terms of implications, STC implies TC
but TC does not imply STC.

Duplicate faking attacks are not just a theoretical concern. They were first discussed in [45], yet cur-
rently deployed schemes are still vulnerable, as we’ll see in the next section. Discussions with practitioners
suggest that security against them is viewed in as an important requirement in practice.

Given any TC secure scheme, we can prevent all of the attacks above by having a client, upon being
informed that her ciphertext is already stored, download it immediately and check that decryption yields
his message. If not, she complains. This however is not optimal, being expensive and complex and leading
to deduplication side-channels (cf. [32]).

If an MLE scheme is deterministic, letting the tag equal the ciphertext will result in a scheme that is
STC secure. (In a strong sense, for the advantage of even a computationally unbounded adversary is 0
in either case. We omit the simple proof.) This provides a relatively easy way to ensure resistance to
duplicate faking attacks, but the price paid is that the tag is as long as the ciphertext. CR-hashing the
ciphertext (still for a D-MLE scheme) preserves STC, but for efficiency other, less effective options have
been employed in practice, as we will see.

ROM. A RO [10] is a game procedure H that maintains a table H[·, ·], initially everywhere ⊥. Given a
query x, k with x ∈ {0, 1}∗ and k ∈ N, it executes: If H[x, k] = ⊥ then H[x, k]←$ {0, 1}k. It then returns
H[x, k]. As this indicates, the RO can provide outputs of any desired length. We will at times omit the
length when a single value is of import and that length is clear from context. In the ROM, both scheme
algorithms and the adversary will have access to H. However, in the privacy definitions, we do not give
the source access to H. This is to simplify our proofs. Our methods and proofs can be extended to handle
sources that query the RO.

10

4 Practical Contributions: The Security of Fast MLE Schemes

We investigate four MLE schemes, two that correspond to in-use schemes and two new schemes. Figure 4
provides pseudocode for all four schemes.

Ingredients. The schemes are built from a one-time symmetric encryption scheme and a hash function
family H = (HK,H). The former is a tuple SE = (SK,SE ,SD) of algorithms: key generation SK, on
input 1λ, outputs a key K of length k(λ); deterministic encryption SE maps a key K and plaintext M
to a ciphertext C; and deterministic decryption SD maps a key K and ciphertext C to a message M .
We require that Pr[SD(K,SE(K,M)) = M] = 1 for all λ ∈ N, all K ∈ [SK(1λ)], and all M ∈ {0, 1}∗.
We assume that there exists a function clSE such that for all λ ∈ N and all M ∈ {0, 1}∗ any output of
SE(K,M) has length clSE(λ, |M |). For simplicity we assume that H and SE are compatible: H(Kh,M)
outputs a message of length k(λ) for any Kh ∈ [HK(1λ)].

We require schemes that provide both key recovery security and one-time real-or-random security [43].
Let game KRSE, on input 1λ, run the adversary A. The latter can query at most once to an encryption
oracle Enc a message M to which the game replies with an encryption of M under a freshly chosen key
K. Adversary A outputs a bit string K ′ and wins if K ′ = K. Advantage is defined as Advkr

SE,A(λ) =

Pr[KRA
SE(1λ)] and we say that SE is KR-secure if Advror

SE,A(·) is a negligible function for any PT A.

Let game RORSE on input 1λ, first choose a random bit b, and then run the adversary A. Adversary A
can make multiple queries to an encryption oracle Enc, each query a plaintext M ∈ {0, 1}∗. If b = 1, then
Enc will first choose a random key K←$ SK(1λ) and return C ← SE(K,M). Note that each encryption
query chooses a fresh key. If b = 0, then Enc will just return a random bit string of length clSE(λ, |M |).
To win, the adversary should guess b. Advantage is defined as Advror

SE,A(λ) = 2 · Pr[RORA
SE(1λ)]− 1 and

we say that SE is ROR-secure Advror
SE,A(·) is a negligible function for any PT A.

The four schemes. The first scheme, that we simply call convergent encryption (CE), generalizes the
original scheme of DABST [22]. CE encrypts by hashing the message to generate a symmetric key K,
which is then used to encrypt the message using SE . Tags are computed by hashing the entire ciphertext.1

The second scheme, HCE1 (Hash-and-CE 1), is a popular variant of the CE scheme used in a number
of systems [18, 19, 24, 48]. Compared to CE, HCE1 computes tags during encryption by hashing the per-
message key and including the result in the ciphertext. Tag generation just extracts this embedded tag.
This offloads work from the server to the client and reduces the number of cryptographic passes needed
to encrypt and generate a tag from three to two.

HCE1 is vulnerable to attacks that break TC security, as first discussed in [45]. The attack is
straightforward: adversary A chooses two messages M 6= M ′, computes C ← SE(H(P,M),M ′) and
T ← H(P,H(P,M)), and finally outputs (M,C ‖T). This means an adversary, given knowledge of a
user’s to-be-stored message, can undetectably replace it with an arbitrary message of the adversary’s
choosing.

We suggest a new scheme, HCE2, that modifies HCE1 to include a mechanism that we refer to as
guarded decryption. Namely, during decryption, it checks the tag embedded in the ciphertext by recom-
puting the tag using the just-decrypted message. If the check fails, then ⊥ is returned. As we argue
below, this provably ensures TC security (but not STC).

In practice, the important operation is deriving the ciphertext and tag from the message. This involves
generating the key, followed by encryption and tag generation. CE requires three full cryptographic passes
to perform encryption and tag generation, while HCE1 and HCE2 require two. This is fundamental:
deterministic MLE schemes that output bits of ciphertext before processing most of the message will not
achieve PRV-CDA security.

The third scheme, Randomized Convergent Encryption (RCE), therefore takes advantage of random-
ization to give a version of HCE2 that can generate the key, encrypt the message, and produce the tag,
all together, in a single pass. RCE accomplishes this by first picking a random symmetric encryption key

1One could alternatively use the ciphertext itself as the tag, but this is typically not practical.

11

Scheme
Key generation Encrypt Tag generation Decrypt

KP (M) EP (K,M) TP (C) DP (K,C)

CE[SE,H]

Convergent
Encryption

K ← H(P,M)
Ret K

C ← SE(K,M)
Ret C

Ret H(P,C) Ret SD(K,C)

HCE1[SE,H]

Hash and CE
w/o tag check T ← H(P,K)

C ← SE(K,M)
Ret C ‖T

Parse C as C1 ‖T
Ret T

Parse C as C1 ‖T
M ← SD(K,C)
Ret M

HCE2[SE,H]

Hash and CE
w/ tag check

Parse C as C1 ‖T
M ← SD(K,C)
T ′ ← H(P,H(P,M))
If T ′ 6= T then ⊥
Ret M

RCE[SE,H]

Randomized
Convergent
Encryption

L←$ {0, 1}k(λ)
T ← H(P,K)
C1 ← SE(L,M)
C2 ← L⊕K
Ret C1 ‖C2 ‖T

Parse C as C1 ‖C2 ‖T
Ret T

Parse C as C1, C2, T
L← C2 ⊕K
M ← SD(L,C1)
T ′ ← H(P,H(P,M))
If T ′ 6= T then Ret ⊥
Ret M

Figure 4: MLE schemes built using symmetric encryption scheme SE = (SK,SE ,SD) and hash function
family H = (HK,H). All schemes inherit their message space from SE (typically {0, 1}∗), use as parameter
generation HK, and share a common key generation algorithm. HCE1 and HCE2 additionally use the
same encryption and tag generation algorithms.

L and then encrypting the message with L, and deriving the MLE key K in a single pass. Finally it
encrypts L using K as a one-time pad, and derives the tag from K. Like HCE2 it uses guarded decryption.

It is easy to verify decryption correctness. Tag correctness follows as the tags are all deterministic.

Privacy. We prove the PRV$-CDA security of the four schemes when modeling H as a RO. In Appendix B
we give a concrete-security statement together with proof that covers all four schemes. The following
theorem ends up an easy corollary.

Theorem 4.1. Let SE = (SK,SE ,SD) be a one-time symmetric encryption scheme with key length
k(·) and let H be a RO. Then if SE is both KR-secure and ROR-secure, the scheme XXX[SE,H] for
XXX ∈ {CE,HCE1,HCE2,RCE} is PRV$-CDA-secure. �

Tag consistency. We turn to security in the sense of tag consistency. As discussed in Section 3, any
deterministic scheme is STC-secure when tags are CR-hashes of the ciphertext. So too with CE. For
HCE2 and RCE, a straightforward reduction establishes the following theorem. We omit the details.

Theorem 4.2. Let SE = (SK,SE ,SD) be a one-time symmetric encryption scheme and H = (HK,H)
be a hash function family. If H is CR-secure then HCE2[SE,H] and RCE[SE,H] are TC-secure. �

HCE2 and RCE are not STC-secure, by the same attack as used against the TC security of HCE1. (The tag
check makes it so that decryption outputs M ′ = ⊥.) One could achieve STC security using non-interactive
zero-knowledge proofs [13], but this would obviate the speedups offered by the schemes compared to CE.
Finding fast, STC-secure schemes with O(1) tag generation is an interesting open problem surfaced by
our definitions and results above.

Discussion. The above schemes use a hash function family H. In practice, we might use SHA-256 or
SHA-3, and key them appropriately by choosing a uniform bit string to prepend to messages. Note that
SHA-256 is not indifferentiable from a RO [38]. We may also want to prove security for sources that
have access to the RO, a setting for which indifferentiability-based composition does not apply (cf., [42]).
In these cases one must perform direct proofs of security that account for the iterative structure of the
hash function. In Appendix C we explore various instantiations of the MLE schemes, including ones that

12

implement the hash function by way of a block cipher. This specifically yields MLE schemes entirely
built from AES, which provides efficiency benefits due to widespread hardware support for AES (i.e.,
AES-NI). We also report on performance there.

5 Theoretical Contributions: Constructions without ROs

We present a paradigm for constructing MLE schemes that we call Extract-Hash-Check. In particular
it yields standard model constructions of MLE-schemes from D-PKE schemes and CI-H hash functions.
We then present an MLE scheme based on a weaker assumption, namely any ROR symmetric encryption
scheme, for particular classes of sources, based on a method we call Sample-Extract-Encrypt. It also uses
an extractor.

5.1 Extract-Hash-Check

Overview. It is natural to aim to build MLE from a D-PKE scheme or a CI-H function because the
latter primitives already provide privacy on unpredictable messages. However, in attempting to build
MLE from these primitives, several problems arise. One is that neither of the base primitives derives the
decryption key from the message. Indeed, in both, keys must be generated upfront and independently of
the data. A related problem is that it is not clear how an MLE scheme might decrypt. CI-H functions
are not required to be efficiently invertible. D-PKE does provide decryption, but it requires the secret
key, and it is not clear how this can yield message-based decryption.

Our solution will in fact not use the decryptability of the D-PKE scheme, but rather view the latter
as providing a CI-H function keyed by the public key. We apply an extractor (its seed S will be in the
parameters of the MLE scheme) to the message M to get the MLE key K. Given S,M , this operation
is deterministic. The scheme encrypts the message bit by bit, creating from M = M [1] . . .M [|M |] the
ciphertext C = C[1] . . . C[|M |] in which C[i] is a hash of K‖〈i〉‖M [i]. (The key for the hash function is
also in the parameters.) To decrypt C[i] given K, hash both K‖〈i〉‖1 and K‖〈i〉‖0 and see which equals
C[i]. (This is the “check” part.) The proof of privacy relies on the fact that each input to each application
of the hash function will have a negligible guessing probability even given the parameters. The reduction
will take an MLE source and build a source for the hash function that itself computes K and produces
the inputs to the hash function. We now proceed to the details.

Ingredients. The first tool we need is a family of hash functions H = (HK,H). We define privacy
in the same manner as for MLE. Namely, game PRV-CDAH is the same as PRV-CDAMLE of Figure 3
except that it uses HK and H instead of P and E . Likewise for PRV$-CDAH. If A is an adversary we let
Advprv-cda

H,M,A (λ) = 2 ·Pr[PRV-CDAA
H,M(λ)]−1 and Advprv$-cda

H,M,A (λ) = 2 ·Pr[PRV$-CDAA
H,M(λ)]−1. We say

that H is PRV-CDA (resp. PRV$-CDA) secure if Advprv-cda
H,M,A (·) (resp. Advprv$-cda

H,M,A (·)) is negligible for all
PTM, A such thatM is unpredictable. The PRV-CDA formulation follows [5,8,29] while the PRV$-CDA
formulation follows [29].

The second tool we need is a family of extractors. This is a family Ext = {Extλ}λ∈N where
Extλ: {0, 1}s(λ) × {0, 1}`(λ) → {0, 1}k(λ) for each λ ∈ N. We refer to s, `, k as the seed, input and
output lengths respectively. We require that the map 1λ, S,X 7→ Extλ(S,X) be PT computable. For
all λ ∈ N and all random variables (X,Z), S,K we require that SD((S,Extλ(S,X), Z); (S,K,Z)) ≤√

2k(λ) ·GP(X |Z) under the following conditions: (X,Z), S,K are independent, S is uniformly dis-
tributed over {0, 1}s(λ), and K is uniformly distributed over {0, 1}k(λ). A construction with this guarantee
may be obtained via the (average-case version of the) Leftover Hash Lemma (LHL) [20,33].

Extract-Hash-Check construction. Let H = (HK,H) be a family of hash functions. Let Ext =
{Extλ}λ∈N be a family of extractors with seed length s, input length ` and output length k. Our construc-
tion associates to them the MLE scheme XHC[H,Ext] = (P,K, E ,D, T) whose constituent algorithms are
defined in Figure 5. The message space of this scheme is defined by MsgSp(λ) = {0, 1}`(λ) for all λ ∈ N.

13

P(1λ)

S←$ {0, 1}s(λ)

Kh←$HK(1λ)
Ret S‖Kh

KS‖Kh
(M)

K ← Extλ(S,M)

Ret K

ES‖Kh
(K,M)

For i = 1 to |M | do
C[i]← H(Kh,K‖〈i〉‖M [i])

Ret C

TS‖Kh
(C)

Ret C

DS‖Kh
(K,C)

For i = 1 to |C| do
If C[i] = H(Kh,K‖〈i〉‖1) then M [i]← 1

Else if C[i] = H(Kh,K‖〈i〉‖0) then M [i]← 0

Else Ret ⊥
Ret M

Figure 5: MLE scheme XHC[H,Ext] associated to hash family H = (HK,H) and extractor family
Ext = {Extλ}λ∈N.

We let 〈i〉 denote the encoding of i ∈ N as a λ-bit string. (We are assuming `(λ) ≤ 2λ for all λ ∈ N.) The
ciphertext C is a `(λ)-vector over {0, 1}∗.

This MLE scheme is deterministic, hence provides perfect tag correctness. It satisfies decryption
correctness as long as H is injective. (A weaker, computational decryption correctness condition is met if
H is not injective but is collision-resistant.) As a consequence of being deterministic and using ciphertexts
for tags, it also has unconditional consistency, namely perfect STC security. (We are, for simplicity, using
the ciphertext as the tag. For greater efficiency one could CR-hash it. STC would still hold, but now
computationally.) The main task is to prove privacy, which is done by the following, whose proof is in
Appendix D. Here, when MLE = XHC[H,Ext], we denote byMMLE the class of all PT, MLE-valid sources
M such that 2k(·) ·GPM(·) is negligible, where k is the output length of Ext.

Theorem 5.1. Let H = (HK,H) be a family of hash functions. Let Ext = {Extλ}λ∈N be a family of
extractors. Let MLE = XHC[H,Ext] be the MLE scheme associated to them via our Extract-Hash-Check
construction. Then (1) If H is PRV-CDA-secure then MLE is PRV-CDA-secure over MMLE , and (2) If
H is PRV$-CDA-secure then MLE is PRV$-CDA-secure overMMLE .

We can directly instantiate H by a CI-H function as defined in [29]. If DPKE = (DK,DE ,DD) is a
D-PKE scheme, we obtain a hash family H = (HK,H) as follows. Let HK(1λ) run DK(1λ) to get (pk , sk)
and return pk as the hash key. Let H(pk ,M) = DE(pk ,M). (We note that we must assume a trusted
setup which executes HK as shown and discards sk , for if the server knows sk it can break the scheme.
The parameters must be generated by a third party or via a secure computation protocol so that the
server does not learn sk .) If DPKE meets the PRIV-security condition of [5, 8] appropriately extended
to handle auxiliary inputs as above, then H will be PRV-CDA-secure. Note that this hash family is
injective. Finally we note that the construction can be adapted to turn an efficiently-searchable PKE
scheme [5] into an MLE scheme, but since the former may be randomized, the latter may be as well.
These constructions account for the schemes called XtCIH, XtDPKE and XtESPKE in the table of Figure 1
and the corresponding implication arrows in the picture.

D-MLE implies CI-H. Finally we justify the claim of Figure 1 that deterministic MLE implies CI-H.
(Combined with the above, this makes the primitives equivalent.) Given a deterministic MLE scheme
MLE = (P,K, E ,D, T) we define the family of hash functions H = (P,H) as follows. Algorithm H, given
key P and message M , lets K ← KP (M) and C ← EP (K,M), and returns C. (Both K and E are
deterministic by assumption.) It is easy to see that if MLE is PRV$-CDA-secure then so is H.

5.2 Sample-Extract-Encrypt

Overview. We now give a construction of an MLE scheme that relies only on a standard and weak
assumption, namely a one-time symmetric encryption scheme as defined in Section 4, which can be built
from any one-way function. The tradeoff is that the scheme only works for a limited class of sources.

Stepping back, if we are to consider special sources, the obvious starting point is uniform and inde-
pendent messages. Achieving MLE here is easy because we can use part of the message as the key to

14

Proj(M,T)

M1 ← ε ; i1 ← 0

For i = 1 to |T | do
If T [i] = 1 then i1 ← i1 + 1 ; M1[i1]←M [i]

Return M1

Merge(M1,M2, T)

M ← ε ; i1 ← 0 ; i2 ← 0

For i = 1 to |T |
If T [i] = 1 then i1 ← i1 + 1 ; M [i]←M1[i1]

Else i2 ← i2 + 1 ; M [i]←M2[i2]

Return M

P(1λ)

S←$ {0, 1}s(λ) ; U ←p(λ) {0, 1}n(λ)

Ret S‖U

KS‖U (M)

K ← Proj(M,U) ; Ret K

ES‖U (K,M)

L← Extλ(S, padλ(K))

M2 ← Proj(M,U)

C←$ SE(L,M2)

Ret C

DS‖U (K,C)

L← Extλ(S, padλ(K))

M2 ← SD(L,C)

M ← Merge(K,M2, U)

Ret M

Figure 6: Top: The Proj and Merge algorithms. Bottom: MLE scheme SXE[SE,Ext, p] associated to
symmetric encryption scheme SE = (SK,SE ,SD), extractor family Ext = {Extλ}λ∈N and p: N→ [0, 1].
The tag algorithm TS‖U (C) simply returns C.

encrypt the other part. The next obvious target is block sources, where each message is assumed to have
negligible guessing probability given the previous ones. D-PKE for such sources was achieved in [14]. We
might hope, via the above XHC construction, to thus automatically obtain MLE for the same sources, but
XHC does not preserve the block source restriction because the inputs to the hash function for different
bits of the same message are highly correlated.

Our Sample-Extract-Encrypt (SXE) construction builds an MLE scheme for certain classes of block
sources where a random subset of the bits of each message remains unpredictable even given the rest of
the bits and previous messages. For example, if a message has some subset of uniform bits embedded
within it. The scheme then uses a random subset of the message bits as a key, applies an extractor, and
then symmetrically encrypts the rest of the message.

Preliminaries. First, some notation. If T ∈ {0, 1}∗, we let hw(T) denote the Hamming weight of T
and T the bitwise complement of T . For T ∈ {0, 1}|M |, function Proj(M,T) of Figure 6 returns the
hw(T)-length string formed by selecting from M the coordinates i in which T [i] = 1. If q ∈ [0, 1] we let
U ←q {0, 1}n mean that we let U [i] = 1 with probability q and 0 with probability 1 − q, independently
for each i ∈ [n]. Note that the expected Hamming weight of U is then qn. Looking ahead, we will be
interested in sources for which one can “gather” sufficient min-entropy by randomly taking a subset of
message bits. The fraction q controls the bias with which we select any particular bit.

In this section, all sources have arity 1. Let M be a source with number of messages m and message
length len such that len(λ, i) = n(λ) for all λ, i ∈ N, meaning all messages M[1], . . . ,M[m(λ)] ∈ [M(1λ)]
have the same length n(λ). For p: N→ [0, 1] and λ ∈ N we let

GPM,p(λ) = max
i

GP(Proj(M[i], U) | (M[1], . . . ,M[i− 1],Proj(M[i], U), Z))

where the probability is over U ←p(λ) {0, 1}n(λ) and (M, Z) ← M(1λ) and the maximum is over all
i ∈ [m(λ)]. In other words, picking U at random from our p(λ)-biased distribution, we are measuring the
probability of guessing the projection of the i-th message onto U , given the other bits of the message as
well as the previous messages. We say that M is p-unpredictable if GPM,p(·) is negligible. Note that
a blocksource is a source that is 1-unpredictable. Considering smaller values of p thus relaxes the usual
blocksource requirement.

Some natural sources are, or can be shown to be, p-unpredictable for small p. One obvious example
is uniform messages. Short of that is any source that is sufficiently dense, meaning that a large enough
fraction of the message bits have high min-entropy conditioned on all other bits. A concrete example
would be sources that embed uniform bits in arbitrary locations within a message. For such a source, one
can use a Chernoff bound to show that it is a p-unpredictable source for a reasonable value of p related
to the density of the message.

15

The Sample-Extract-Encrypt construction. Let SE = (SK,SE ,SD) be a (deterministic) one-
time symmetric encryption scheme with key length k(·). Let Ext = {Extλ}λ∈N be a family of extractors
with seed length s, output length k and input length `. (We’ve assumed that the output length of Ext
is equal to the key length of SE.) We let n(·) = `(·)− 1. Let p: N → [0, 1]. Our construction associates
to them the MLE scheme SXE[SE,Ext, p] = (P,K, E ,D, T) whose constituent algorithms are defined in
Figure 6. Here we let padλ(K) = K‖1‖0n(λ)−|K| so that outputs of padλ are valid inputs for Extλ(S, ·).
The message space of this scheme is defined by MsgSp(λ) = {0, 1}n(λ) for all λ ∈ N.

This MLE scheme is deterministic, hence provides perfect tag correctness. It satisfies decryption
correctness due to the corrections of SE. Note that the scheme is not strictly non-trivial, since it could
be that hw(U) = n(λ). However, it is non-trivial in expectation whenever p(λ) < 1, since E[hw(U)] =
p(λ) · n(λ). As a consequence of being deterministic, and using ciphertext as the tag, it also has perfect
STC security. (We are, for simplicity, using the ciphertext as the tag. For greater efficiency one could
CR-hash it. STC would still hold, but now computationally.) The following theorem establishes privacy.
Here, when MLE = SXE[SE,Ext, p], we denote by MMLE the class of all PT, MLE-valid sources M such
that 2k(·) ·GPM,p(·) is negligible, where k is the output length of Ext. The proof is in Appendix E.

Theorem 5.2. Let SE = (SK,SE ,SD) be a one-time symmetric encryption scheme providing ROR
security. Let Ext = {Extλ}λ∈N be a family of extractors Let p: N → [0, 1]. Let MLE = SXE[SE,Ext, p]
be the MLE scheme associated to them via our Sample-Extract-Encrypt construction. Then MLE is
PRV$-CDA-secure overMMLE,p.

The key in this scheme has expected length p(·) ·n(·). If we increase p, we get security for a larger class of
sources at the cost of a larger key length, so the construction can be seen as trading key size for security.

Acknowledgments

The authors thank James Lentini for pointing out the STC attack against EMK; Ananth Raghunathan for
early discussions about convergent encryption; and the TahoeFS developers for informative discussions
regarding duplicate faking attacks in TahoeFS.

References

[1] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. Douceur, J. Howell, J. Lorch, M. Theimer, and
R. Wattenhofer. Farsite: Federated, available, and reliable storage for an incompletely trusted environment.
ACM SIGOPS Operating Systems Review, 36(SI):1–14, 2002. (Cited on page 3.)

[2] P. Anderson and L. Zhang. Fast and secure laptop backups with encrypted de-duplication. In Proc. of USENIX
LISA, 2010. (Cited on page 3.)

[3] Z. Bar-Yossef, O. Reingold, R. Shaltiel, and L. Trevisan. Streaming computation of combinatorial objects. In
Computational Complexity, 2002. Proceedings. 17th IEEE Annual Conference on, pages 133–142. IEEE, 2002.
(Cited on page 3, 6.)

[4] C. Batten, K. Barr, A. Saraf, and S. Trepetin. pStore: A secure peer-to-peer backup system. Unpublished
report, MIT Laboratory for Computer Science, pages 130–139, 2001. (Cited on page 3.)

[5] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In A. Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 535–552. Springer, Aug. 2007. (Cited on page 3, 4, 5, 6,
9, 10, 13, 14, 21.)

[6] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek. Hedged public-key
encryption: How to protect against bad randomness. In M. Matsui, editor, ASIACRYPT 2009, volume 5912
of LNCS, pages 232–249. Springer, Dec. 2009. (Cited on page 4, 7, 9, 21.)

[7] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption. In
38th FOCS, pages 394–403. IEEE Computer Society Press, Oct. 1997. (Cited on page 4.)

16

[8] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryption: Definitional equivalences
and constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
360–378. Springer, Aug. 2008. (Cited on page 4, 6, 9, 13, 14.)

[9] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography: The case of hashing and signing.
In Y. Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 216–233. Springer, Aug. 1994. (Cited on
page 25.)

[10] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993. (Cited on page 3, 10.)

[11] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer,
May / June 2006. (Cited on page 7, 22.)

[12] Bitcasa. Bitcasa, a file-storage and sharing service. http://www.bitcasa.com/. (Cited on page 3.)

[13] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications. In Proceedings of the
twentieth annual ACM symposium on Theory of computing, pages 103–112. ACM, 1988. (Cited on page 12.)

[14] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient
constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
335–359. Springer, Aug. 2008. (Cited on page 6, 15.)

[15] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword search. In
C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 506–522. Springer,
May 2004. (Cited on page 3, 9.)

[16] Z. Brakerski and G. Segev. Better security for deterministic public-key encryption: The auxiliary-input setting.
In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 543–560. Springer, Aug. 2011. (Cited on
page 4, 6, 9.)

[17] Ciphertite. Ciphertite data backup. http://www.ciphertite.com/. (Cited on page 3.)

[18] J. Cooley, C. Taylor, and A. Peacock. ABS: the apportioned backup system. MIT Laboratory for Computer
Science, 2004. (Cited on page 3, 11.)

[19] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: making backup cheap and easy. SIGOPS Oper. Syst.
Rev., 36:285–298, Dec. 2002. (Cited on page 3, 11.)

[20] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data. SIAM Journal on Computing, 38(1):97–139, 2008. (Cited on page 13.)

[21] Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging Merkle-Damg̊ard for practical applications. In A. Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 371–388. Springer, Apr. 2009. (Cited on page 25.)

[22] J. Douceur, A. Adya, W. Bolosky, P. Simon, and M. Theimer. Reclaiming space from duplicate files in a
serverless distributed file system. In Distributed Computing Systems, 2002. Proceedings. 22nd International
Conference on, pages 617–624. IEEE, 2002. (Cited on page 3, 5, 11.)

[23] Dropbox. Dropbox, a file-storage and sharing service. http://www.dropbox.com/. (Cited on page 3.)

[24] Flud. The flud backup system. http://flud.org/wiki/Architecture. (Cited on page 3, 11.)

[25] B. Fuller, A. O’Neill, and L. Reyzin. A unified approach to deterministic encryption: New constructions and a
connection to computational entropy. In R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 582–599.
Springer, Mar. 2012. (Cited on page 6.)

[26] GNUnet. GNU’s framework for secure peer-to-peer networking. https://gnunet.org/. (Cited on page 3.)

[27] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–
299, 1984. (Cited on page 4.)

[28] Google. Google drive, a file-storage and sharing service. http://drive.google.com/. (Cited on page 3.)

[29] V. Goyal, A. O’Neill, and V. Rao. Correlated-input secure hash functions. In Y. Ishai, editor, TCC 2011,
volume 6597 of LNCS, pages 182–200. Springer, Mar. 2011. (Cited on page 3, 5, 6, 13, 14.)

17

http://www.dropbox.com/
http://flud.org/wiki/Architecture
https://gnunet.org/
http://drive.google.com/

[30] S. Gueron. Advanced encryption standard (AES) instructions set. Intel Corporation, 25, 2008. (Cited on
page 25.)

[31] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg. Proofs of ownership in remote storage systems. In
Y. Chen, G. Danezis, and V. Shmatikov, editors, ACM CCS 11, pages 491–500. ACM Press, Oct. 2011. (Cited
on page 7.)

[32] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in cloud services: Deduplication in cloud storage.
Security & Privacy, IEEE, 8(6):40–47, 2010. (Cited on page 7, 10.)

[33] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function.
SIAM Journal on Computing, 28(4):1364–1396, 1999. (Cited on page 13.)

[34] J. Kilian and P. Rogaway. How to protect DES against exhaustive key search (an analysis of DESX). Journal
of Cryptology, 14(1):17–35, 2001. (Cited on page 25.)

[35] M. Killijian, L. Courtès, D. Powell, et al. A survey of cooperative backup mechanisms, 2006. (Cited on page 3.)

[36] C.-J. Lu. Hyper-encryption against space-bounded adversaries from on-line strong extractors. In M. Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages 257–271. Springer, Aug. 2002. (Cited on page 3, 6.)

[37] L. Marques and C. Costa. Secure deduplication on mobile devices. In Proceedings of the 2011 Workshop on
Open Source and Design of Communication, pages 19–26. ACM, 2011. (Cited on page 3.)

[38] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reductions, and
applications to the random oracle methodology. In M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages
21–39. Springer, Feb. 2004. (Cited on page 12.)

[39] I. Mironov, O. Pandey, O. Reingold, and G. Segev. Incremental deterministic public-key encryption. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 628–644. Springer,
Apr. 2012. (Cited on page 7.)

[40] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and System Sciences,
52(1):43–52, 1996. (Cited on page 6.)

[41] A. Rahumed, H. Chen, Y. Tang, P. Lee, and J. Lui. A secure cloud backup system with assured deletion and
version control. In Parallel Processing Workshops (ICPPW), 2011 40th International Conference on, pages
160–167. IEEE, 2011. (Cited on page 3.)

[42] T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Limitations of the indifferentiability
framework. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506. Springer,
May 2011. (Cited on page 7, 12, 25.)

[43] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation for efficient
authenticated encryption. In ACM CCS 01, pages 196–205. ACM Press, Nov. 2001. (Cited on page 4, 10, 11.)

[44] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In 2000 IEEE
Symposium on Security and Privacy, pages 44–55. IEEE Computer Society Press, May 2000. (Cited on page 3.)

[45] M. Storer, K. Greenan, D. Long, and E. Miller. Secure data deduplication. In Proceedings of the 4th ACM
international workshop on Storage security and survivability, pages 1–10. ACM, 2008. (Cited on page 3, 4, 10,
11.)

[46] S. P. Vadhan. On constructing locally computable extractors and cryptosystems in the bounded storage
model. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 61–77. Springer, Aug. 2003. (Cited
on page 3, 6.)

[47] D. Wichs. Barriers in cryptography with weak, correlated and leaky sources. Cryptology ePrint Archive,
Report 2012/459, 2012. http://eprint.iacr.org/. (Cited on page 6.)

[48] Z. Wilcox-O’Hearn and B. Warner. Tahoe: The least-authority filesystem. In Proceedings of the 4th ACM
international workshop on Storage security and survivability, pages 21–26. ACM, 2008. (Cited on page 3, 5,
11.)

18

http://eprint.iacr.org/

A Relations Between MLE Privacy Notions

We first define the adaptive versions of PRV-CDA and PRV$-CDA, and then go on to show the relations
between PRV-CDA, PRV$-CDA and their adaptive versions, as described in Figure 2. We first generalize
sources to take inputs.

A source with input is a PT algorithmM that on input 1λ and a string d returns (M0, . . . ,Mn−1, Z)
where M0, . . . ,Mn−1 are vectors over {0, 1}∗ and Z ∈ {0, 1}∗. As before n ≥ 1 is called the arity of the
source. We require that

• all the vectors have the same length m(λ), for some function m called the number of messages;

• there is a function len, called the message length of the source, such that the string Mj [i] has length
len(λ, i) for all i ∈ [m(λ)] and all j ∈ {0, . . . , n− 1}; and

• Mj [i1] 6= Mj [i2] for all distinct i1, i2 ∈ [m(λ)] and all j ∈ {0, . . . , n − 1}, meaning the entries of each
vector are distinct.

These requirements are as before for sources (without inputs). As before, we refer to Z as the auxiliary
information.

The guessing probability GPM of source with input M is defined as the function which on input
λ ∈ N returns maxi,j,dGP(Mj [i] |Z) where the probability is over (M0, . . . ,Mn−1, Z)←$M(1λ, d) and
the maximum is over all i ∈ [m(λ)], all j ∈ {0, . . . , n− 1} and all d ∈ {0, 1}∗. (The domain for the latter
being infinite, the max here is interpreted as a sup and it is an implicit assumption that for a source-with-
input to be valid, this sup must exist.) As compared to a source (without input) the important point
here is that we maximize over d as well, so only the coins underlying the execution of M can contribute
to the guessing probability. We refer to − log(GPM(·)) as the min-entropy of M. We say that M is
unpredictable if GPM(·) is negligible. We say thatM is MLE-valid if Mj [i] ∈ MsgSpMLE(λ) for all λ ∈ N,
all (M0, . . . ,Mn−1, Z) ∈ [M(1λ, d)], all i ∈ [m(λ)], all j ∈ {0, . . . , n− 1} and all d ∈ {0, 1}∗.
Adaptive privacy notions. Let MLE = (P,K, E ,D, T) be an MLE scheme and M be MLE-valid.
The adaptive chosen distribution attack games PRV-CDA-AMLE,M and PRV$-CDA-AMLE,M for MLE are
detailed in Figure 7. For the former M will have arity one and for the latter, arity two. In these games,
the adversary A can make multiple, adaptive queries to its Enc oracle, specifying each time an input d for
M. It can then ask for the parameter with a reveal query, after which no further Enc queries are allowed.
We define advantage as Advprv-cda-a

MLE,M,A(λ) = 2 · Pr[PRV-CDA-AA
MLE,M(λ)] − 1 and Advprv$-cda-a

MLE,M,A (λ) =

2 · Pr[PRV$-CDA-AA
MLE,M(λ)] − 1. We say that MLE is PRV-CDA-A (resp. PRV$-CDA-A) secure over

a class M of PT, MLE-valid sources if Advprv-cdaa
MLE,M,A(·) (resp. Advprv$-cdaa

MLE,M,A(·)) is negligible for all PT

A and all M ∈ M. We say that MLE is PRV-CDA-A (resp. PRV$-CDA-A) secure if it is PRV-CDA-A
(resp. PRV$-CDA-A) secure over the class of all PT, unpredictable MLE-valid sources.

Relations between the notions. We have introduced four notions: PRV-CDA,PRV$-CDA,
PRV-CDA-A and PRV$-CDA-A. Figure 2 states the relations between the four notions. The two trivial
implications are that security in the adaptive sense implies security in the corresponding non-adaptive
sense: PRV-CDA-A⇒ PRV-CDA and PRV$-CDA-A⇒ PRV$-CDA. (The double-arrow notation meaning
security in the left sense implies security in the right.) We now show through a series of propositions the
other implications and separations. Most are simple; we start with the most interesting and useful, that
PRV$-CDA⇒ PRV$-CDA-A. In the following, let MLE = (P,K, E ,D, T) be an MLE scheme.

Proposition A.1. If MLE is PRV$-CDA secure, then it is PRV$-CDA-A secure.

Proof. We prove the above proposition by showing that for every adversary A and sourceM, there exists
another adversary B and source M′ such that for any λ ∈ N

Advprv$-cda-a
MLE,M,A (λ) ≤ qe(λ) ·Advprv$-cda

MLE,M′,B(λ) ,

where function qe is a bound on the number of encryption queries made by A. Moreover, M′ has the
same guessing probability as M, and TM′ = O(TM), and TB = O(TA).

19

main PRV-CDA-AAMLE(λ)

P ←$ P(1λ) ; b←$ {0, 1} ; done← false

b′←$AEnc(1λ) ; Ret (b = b′)

Reveal

done← true ; Ret P

Enc(d)

If done then Ret ⊥
(M1,M2, Z)←$M(1λ, d)

For i = 1, . . . , |Mb+1| do
C[i]←$ EP (KP (Mb+1[i]),Mb+1[i])

Ret C, Z

main PRV$-CDA-AAMLE(λ)

P ←$ P(1λ) ; b←$ {0, 1} ; done← false

b′←$AEnc(1λ) ; Ret (b = b′)

Reveal

done← true ; Ret P

Enc(d)

If done then Ret ⊥
(M, Z)←$M(1λ, d)

For i = 1, . . . , |M| do
C1[i]←$ EP (KP (Mb+1[i]),Mb+1[i]);C0[i]←$ {0, 1}|C1[i]|

Ret Cb, Z

Figure 7: The PRV-CDA-A and PRV$-CDA-A games.

We use a hybrid argument. Consider game H with behavior intermediate between PRV$-CDA-A with
b = 0 and with b = 1. In H, a random g←$ [qe(λ)] and b←$ {0, 1} are chosen. Up to the g-th encryption
query, the adversary gets random bits as replies. The g-th query gets real ciphertexts or random bits
depending on b being 1 or 0. Further queries get real ciphertexts as replies. From a standard hybridization
argument, it follows that

Pr[HA(λ)] ≥ 1

qe(λ)
Advprv$-cdaa

MLE,M,A(λ).

Consider adversary B which simulates A on game H as follows. Let M′ be the algorithm that chooses
random coins R and g ∈ qe(λ) and simulates A up to the g-th encryption query by using bits from R to
supply for the randomness required by A. When A makes a query to Enc, then B runs M with fresh
random coins from R to get M, Z and replies to A with random bits (from R) for ciphertexts, along with
Z. When A makes its g-th encryption query dg, then M′ evaluates M(d) on fresh random coins — not
from R — and outputs the resulting vector of plaintexts M and side information Z,R, g.

Now, consider the PRV$-CDA game withM′ as the source. Importantly, the side information output
by M′, which includes the random bits R, does not reduce the conditional entropy of the output M of
M(dg) as the coins used to run M(dg) to get M were picked at random, not using R. The PRV$-CDA
game then invokes adversary B(P,C, Z,R, g), where C is either an encryption of M or a vector of random
bits, depending on the choice of the bit b in the CDR game. This bit b actually corresponds to the bit in
the H game as well. Adversary B then continues to run A with the same random coins R. A continues
to make Enc queries which are now handled by B which replies to them since it knows the parameter P .
When A makes a reveal query and B releases the parameter. Finally A finishes execution and outputs a
bit b which is echoed by B. We have

Pr[HA(λ)] = Pr[PRV$-CDAB
MLE,M′(λ)].

Moreover, the sum of the running times of M′ and B are both proportional to the running time of A,
which includes the running time of M on the inputs provided by A. This proves the proposition.

Security in the PRV$-CDA sense also implies security in the PRV-CDA sense, with sources of compa-
rable entropy.

Proposition A.2. If MLE is PRV$-CDA secure, then it is PRV-CDA secure.

Proof. We can prove this proposition by showing that for every adversary A, for every source M, there
exists another adversary B, and another source M′ with GPM(·) = GPM′(·) such that

AdvPRV$-CDA
MLE,M′,B(λ) ≥ 1

2
AdvPRV-CDA

MLE,M,A(λ),

20

for all λ ∈ N and TB = O(TA), and TM′ = O(TM), from which the proposition follows immediately.
Towards that, consider source M′ which picks a random bit b, runs M to get M0,M1, Z, and returns
Mb, (Z, b). Clearly,M′ has the same guessing probability asM and the running time ofM′ is proportional
to M, depending on implementation constants. Adversary B runs A with Z to get b′, and returns 1 if
b = b′ and 0 otherwise. The relation between the advantages follows.

A similar argument can be used to show the adaptive equivalent, PRV$-CDA-A⇒ PRV-CDA-A. The
following proposition shows that the converse is not true: PRV-CDA 6⇒ PRV$-CDA.

Proposition A.3. There exists a scheme MLE′ that is PRV-CDA secure but not PRV$-CDA secure.

Proof. Assume there exists an PRV-CDA secure MLE = (P,K, E ,D, T). Then, on top of MLE, we build
another scheme MLE′ = (P,K, E ′,D′, T) such that (1) for every adversary A and source M there exists

another adversary B running in comparable time with Advprv-cda
MLE,M,B(λ) = Advprv-cda

MLE′,M,A
(λ), for all λ ∈ N;

and (2) there exists an efficient adversary C such that Advprv$-cda
MLE′,M,C

(λ) ≥ 1
2 for all λ ∈ N, for all sources

M.

Let MLE′ be such that E ′ runs E on its inputs and appends a 0-bit to the resulting ciphertext, and D′
chops off the trailing bit of its ciphertext input and returns the result of D on the result. Given adversary
A, adversary B simply appends a 0-bit to its input ciphertexts and runs A. Adversary C outputs 1 if the
last bit of the first component of its input ciphertext is 0 and it outputs 0 otherwise.

The adaptive analogue PRV-CDA-A 6⇒ PRV$-CDA-A follows from a similar proposition and proof
as above. The following proposition shows that PRV-CDA 6⇒ PRV-CDA-A as one-time security does
not imply adaptive security in the PRV-CDA-A sense. The proof follows from results for deterministic
encryption [5] and hedged encryption [6] which rule out public-key dependent security.

Proposition A.4. There exists a scheme MLE′ which is PRV-CDA secure but not PRV-CDA-A secure.

Proof. We prove the proposition by taking an PRV-CDA-secure MLE scheme MLE, and modifying it so
that it is still PRV-CDA secure, but no longer PRV-CDA-A secure. Specifically, we show that for every
adversary A and source M there exists another adversary B running in comparable time with

AdvPRV-CDA
MLE,M,B(λ) = AdvPRV-CDA

MLE′,M,A(λ),

for all λ ∈ N and there exists an efficient adversary C and source M′ with GPM′(·) ≤ 2GPM(·) such

that Advprv-cdaa
MLE′,M′,C(λ) ≥ 1/2, for all λ ∈ N. Consider the MLE scheme MLE′ such that E ′ runs E on its

inputs and appends the parameter P to the ciphertext returned by E . D′ chops off the trailing parameter
P of its ciphertext input and returns the result of D on the result. Given adversary A, adversary B, when
invoked with parameter P , ciphertext vector C and side-information Z, simply appends the parameter
to each element of C and calls 0-bit to its input ciphertexts and runs A, echoing its output. In the
PRV-CDA-A game, adversary C receives the parameter after the first query to Enc, and it can provide
this parameter to M′, which can now generate parameter-dependent messages. Now, we can show that
M′ can fix one or more bits of the tag, and thus communicate a single bit to the adversary. We omit
the details, noting that this scenario of insecurity when the source has the parameter is similar to others
arising in deterministic encryption [5] and hedged encryption [6] which rule out public-key dependent
security in these settings.

B Proof of PRV$-CDA for CE, HCE1, HCE2, RCE

We state a concrete security version of Theorem 4.1; the latter is a corollary of the concrete version.

21

Theorem B.1. Let SE be a symmetric encryption scheme with key length k(·) and let H be a random
oracle. Let XXX ∈ {CE,HCE1,HCE2,RCE} be constructed using SE and H. For any sourceM with min-
entropy µ(·) and number of messages m(·) and any adversary A making q(·) queries to H, there exists
adversaries B1, B2 such that for all λ ∈ N

Advprv$-cda
XXX,M,A(λ) ≤ qm ·Advkr

SE,B1
(λ) + 2 ·Advror

SE,B2
(λ) +

4m2

2k
+
qm

2µ

where q = q(λ), µ = µ(λ), m = m(λ), and k = k(λ). The running time of adversary B1 and B2 are each
at most TA + TM + cq(λ), where c is a small implementation-dependent constant. B2 makes at most m
queries to its oracle. �

Proof. We prove the theorem for the case of RCE; the case of HCE2 proceeds similarly. The PRV$-CDA
security of HCE2 implies immediately both the security of HCE1 and the security of CE, the latter by
way of a straightforward reduction. In this setting, where M does not have access to H, the parameter
is unnecessary, and so we omit it in the rest of the proof.

Let PRV$-CDA1RCE,M be the PRV-CDARCE,M game with b = 1 and let PRV$-CDA0RCE,M be the
PRV$-CDARCE,M game with b = 0. A standard argument yields

Advprv$-cda
RCE,M,A(λ) = Pr

[
PRV$-CDA1ARCE,M(1λ)

]
− Pr

[
PRV$-CDA0ARCE,M(1λ)

]
.

Let m = m(λ), k = k(λ), q = q(λ), and µ = µ(λ). The first game G1 (Figure 8) is identical to
PRV$-CDA1RCE,M. Note that while the loop in main does not check if H[M[i]] was already defined by a
previous iteration, but this does not change the implementation of a random oracle H because all sources
ensure that M[i] 6= M[j] for i 6= j. The game sets a flag bad, however, should a value K[i] collide with
a value K[j] or M[j] for j < i. Game G2 removes the boxed statement after bad. The two games are
identical-until-bad, and so from the fundamental lemma of game-playing [11],

Pr
[

GA
1

]
≤ Pr

[
GA

2

]
+ Pr

[
GA

2 sets bad
]
.

Because K[i] are chosen uniformly and independently of M, we can bound the probability of bad being
set via a union bound, giving that Pr[GA

2 sets bad] ≤ 4m2/2k.

Game G3 defers updating of the table H with regards to the points K[i] and T[i] until they are needed
due to a query to H. This change is invisible to the adversary, and we have Pr[GA

2] = Pr[GA
3]. Game

G3 sets a flag bad or bad′ should such an H query occur. Game G4 removes the boxed statements of G3,
which occur after bad or bad′ is set. Games G3 and G4 are identical-until-bad or bad′ and so

Pr
[

GA
3

]
≤ Pr

[
GA

4

]
+ Pr [G4 sets bad] + Pr

[
G4 sets bad′

]
.

In game G5, we change the way in which K[i] is selected. Now, C2[i] is sampled uniformly, and K[i] is
set to be C2[i]⊕L[i]. This, in particular, makes the ciphertexts in C independent of the symmetric keys
in L. We have that Pr[GA

4] = Pr[GA
5] as well as Pr[GA

4 sets bad] = Pr[GA
5 sets bad] and Pr[GA

4 sets bad′] =
Pr[GA

5 sets bad′].

In game G6 we defer the computation of K[i] values and the setting of bad or bad′ until after A
finishes execution. We have that Pr[GA

5] = Pr[GA
6] as well as Pr[GA

5 sets bad] = Pr[GA
6 sets bad] and

Pr[GA
5 sets bad′] = Pr[GA

6 sets bad′].

We now bound in game G6 the probability that bad′ is set, which corresponds to the adversary A
querying one of the K[i] values. The adversary doing so reveals the symmetric key L[i] associated to that
query, by way of C2[i] ⊕K[i]. Let B1 be KRSE adversary that works as shown in Figure 8. It guesses
a hash query j∗ and an encryption index i∗. After A finishes executing, it outputs L = C2[i

∗] ⊕X[j∗]
should |Xj∗ | = k. A hybrid argument gives that

Pr
[

GA
6 sets bad′

]
≤ qm ·Advkr

SE,B1
(λ) .

Game G7 (Figure 9) is the same as G6 except that the setting of bad′ is dropped, and so Pr[GA
6] = Pr[GA

7]
as well as Pr[GA

6 sets bad] = Pr[GA
7 sets bad] Game G8 adds adds the boxed statement, replacing the

22

main G1 , G2

(M, Z)←$M(1λ)

For i = 1, . . . ,m

L[i]←$ {0, 1}k

C1[i]← SE(L[i],M[i])

K[i]←$ {0, 1}k

H[M[i]]← K[i]

C2[i]← L[i]⊕K[i]

T[i]←$ {0, 1}k

If H[K[i]] 6= ⊥ then

bad← true ; T[i]← H[K[i]]

H[K[i]]← T[i]

C[i]← C1[i] ‖C2[i] ‖T[i]

b′←$AH(C, Z) ; Ret b′

proc. H(X) // G1, G2

If H[X] 6= ⊥ then Ret H[X]

Y ←$ {0, 1}k ; H[X]← Y ; Ret Y

main G3 , G4

(M, Z)←$M(1λ)

For i = 1, . . . ,m

L[i]←$ {0, 1}k

C1[i]← SE(L[i],M[i])

K[i]←$ {0, 1}k

C2[i]← L[i]⊕K[i]

T[i]←$ {0, 1}k

C[i]← C1[i] ‖C2[i] ‖T[i]

b′←$AH(C, Z) ; Ret b′

proc. H(X)

For i = 1, . . . ,m

If X = M[i] then

bad← true ; Ret K[i]

If X = K[i] then

bad′ ← true ; Ret T[i]

If H[X] 6= ⊥ then Ret H[X]

Y ←$ {0, 1}k ; H[X]← Y ; Ret Y

main G5

(M, Z)←$M(1λ)

For i = 1, . . . ,m

L[i]←$ {0, 1}k

C1[i]← SE(L[i],M[i])

C2[i]←$ {0, 1}k

K[i]← C2[i]⊕ L[i]

T[i]←$ {0, 1}k

C[i]← C1[i] ‖C2[i] ‖T[i]

b′←$AH(C, Z) ; Ret b′

proc. H(X)

For i = 1, . . . ,m

If X = M[i] then bad← true

If X = K[i] then bad′ ← true

If H[X] 6= ⊥ then Ret H[X]

Y ←$ {0, 1}k ; H[X]← Y ; Ret Y

main G6

(M, Z)←$M(1λ)

For i = 1, . . . ,m

L[i]←$ {0, 1}k

C1[i]← SE(L[i],M[i])

C2[i]←$ {0, 1}k

T[i]←$ {0, 1}k

C[i]← C1[i] ‖C2[i] ‖T[i]

b′←$AH(C, Z)

For i = 1, . . . ,m

K[i]← C2[i]⊕ L[i]

If M[i] ∈ X then bad← true

If K[i] ∈ X then bad′ ← true

Ret b′

proc. H(X)

X ← X ∪ {X}
If H[X] 6= ⊥ then Ret H[X]

Y ←$ {0, 1}k ; H[X]← Y ; Ret Y

adversary BEnc
1 :

(M, Z)←$M(1λ)

i∗←$ [1 ..m] ; j∗←$ [1 .. q]

For i = 1, . . . ,m

If i = i∗ then

C1[i]← Enc(M[i])

Else

K[i]←$ {0, 1}k

C1[i]← SE(K[i],M[i])

C2[i]←$ {0, 1}k

T[i]←$ {0, 1}k

C[i]← C1[i] ‖C2[i] ‖T[i]

b′←$AH(C, Z)

If |X[j∗]| = k then

Ret C2[i
∗]⊕X[j∗]

Ret ⊥

proc. H(X)

j ← j + 1 ; X[j]← X

If H[X] 6= ⊥ then Ret H[X]

Y ←$ {0, 1}k ; H[X]← Y ; Ret Y

Figure 8: Games used in the proof of Theorem 4.1.

23

main G7 , G8

(M, Z)←$M(1λ)

For i = 1, . . . ,m

L[i]←$ {0, 1}k

C1[i]← SE(L[i],M[i])

C1[i]←$ {0, 1}clSE(λ,len(λ,i))

C2[i]←$ {0, 1}k

T[i]←$ {0, 1}k

C[i]← C1[i] ‖C2[i] ‖T[i]

b′←$AH(P,C, Z)

For i = 1, . . . ,m

If M[i] ∈ X then bad← true

Ret b′

proc. H(X)

X ← X ∪ {X}
If H[X] 6= ⊥ then Ret H[X]

Y ←$ {0, 1}k ; H[X]← Y ; Ret Y

adversary BEnc(1λ):

(M, Z)←$M(1λ)

For i = 1, . . . ,m

C1[i]← Enc(M[i])

C2[i]←$ {0, 1}k

T[i]←$ {0, 1}k

C[i]← C1[i] ‖C2[i] ‖T[i]

b′←$AH(C, Z)

bad← 0

For i = 1, . . . ,m

If M[i] ∈ X then bad← 1

c←$ {0, 1}
If c = 0 then Ret b′

If c = 1 then Ret bad

proc. H(X)

X ← X ∪ {X}
If H[X] 6= ⊥ then Ret H[X]

Y ←$ {0, 1}k ; H[X]← Y ; Ret Y

Figure 9: Games used in the proof of Theorem 4.1.

symmetric encryption ciphertext with random bits.

We now upper bound the transition from G7 to G8 by reducing to an RORSE adversary B2. The
adversary is shown in Figure 9. It executes exactly GA

7 except that it uses its own Enc oracle to generate
C1[i] ciphertexts and it computes its output differently, randomly choosing whether to return b′ or bad.
(Here bad is set to 0 or 1 as opposed to true or false so B2 can output the value of the flag as its return
value.) We have that

Advror
SE,B2

(λ) = Pr
[

RORB2
SE

]
=

1

2

(
Pr
[

RORB2
SE | c = 1

]
+ Pr

[
RORB2

SE | c = 2
])

. (1)

We investigate each conditional probability in the sum in turn. Let ROR1SE (resp. ROR0SE) be the
RORSE game but with the challenge bit b set to 1 (resp. 0). Then

Pr
[

RORB2
SE | c = 0

]
= Pr

[
ROR1B2

SE ⇒ 1 | c = 0
]
− Pr

[
ROR0B2

SE ⇒ 1 | c = 0
]

= Pr
[

GA
7

]
− Pr

[
GA

8

]
Likewise we have that

Pr
[

RORB2
SE | c = 1

]
= Pr

[
ROR1B2

SE ⇒ 1 | c = 1
]
− Pr

[
ROR0B2

SE ⇒ 1 | c = 1
]

= Pr
[

GA
7 sets bad

]
− Pr

[
GA

8 sets bad
]

By rearranging and substituting into Equation (1) we get that

Pr
[

GA
7

]
+ Pr

[
GA

7 sets bad
]

= Pr
[

GA
8

]
+ Pr

[
GA

8 sets bad
]

+ 2 ·Advror
SE,B2

(λ) .

In game G8, the choice of M is independent of the generation of C. We can therefore apply the min-
entropy of M in order to bound the probability that any hash query by A equals P ‖M[i] for some i.
Specifically, a union bound gives that

Pr
[

GA
8 sets bad

]
≤ qm

2µ
.

Moreover, G8 implements for A exactly the oracles of the PRV$-CDA0RCE experiment.

24

MD[E](M)

Y[0]← 0n ; B← split(pad(M,k), k) ; `← |B|
For i = 1, . . . , ` do Y[i]← E(B[i],Y[i− 1])⊕Y[i− 1]

Ret Y[`]

split(M,k)

For i = 1, . . . , b|M |/kc do B[i]←M [ik, (i+ 1)k]

B[b|M |/kc+ 1]←M [b|M |/kck, |M |] ; Ret B

CTR[E](K,M)

B← split(M,n) ; `← |B|
For i = 1, . . . , `− 1 do C[i]← E(K, 〈i〉n)⊕B[i]

X ← E(K, 〈`〉n) ; C[`]← B[`]⊕X[0, |B[`]|]
Ret C

pad(M,k)

`← k(b|M |/kc+ 1)− k ; Ret M ‖ 1 ‖ 0` ‖ 〈|M |〉k

Figure 10: The Merkle-Damgard transform MD[E] : {0, 1}∗ → {0, 1}n over (k, n)-block cipher E in
Davies-Meyer mode for messages of length < 2k, and CTR[E], the counter mode of operation of E. If
` ∈ N, then 〈`〉n denotes an n-bit encoding of `.

C Instantiations and Performance of CE, HCE2, and RCE

Block-cipher-only MLE. We define variants of CE,HCE1,HCE2,RCE that rely solely on a block cipher,
such as AES. This has significant efficiency benefits given the widespread hardware support for AES. A
block cipher is a map E: {0, 1}n × {0, 1}n → {0, 1}n for which E(K, ·) = EK(·) is a permutation with
inverse D(K, ·) = DK(·). Both E and D must be efficiently computable. We have for simplicity assumed
that the key size and block size are equal. This is true of AES, and one can extend the constructions
below to other cases.

In Figure 10 we define the hash function MD[E] with output length n bits and the one-time symmetric
encryption algorithm CTR[E]. The former is the Merkle-Damgard with strengthening transform applied
to the Davies-Meyer compression function using E. The latter is standard CTR mode with a fixed IV.
We define the MLE scheme RCE[E] = (P,K, E , T ,D) via the algorithms below. A diagram is shown in
Figure 11. The scheme CE[E] is derived from RCE[E] by: (1) setting L = 0n, using C2 as the symmetric
key for CTR[E], and not including C2 in the ciphertext; and (2) having tag generation hash the ciphertext
by E(MD[E](M), P). Scheme HCE2[E] is the same except that encryption uses as key for CTR[E] the
value C2 and C2 is not included in the ciphertext. The PRV$-CDA security of these variants can be shown
in the ideal cipher model [34] using a proof that uses the preimage-awareness [21] of MD[E] together with
an adaptation of the proof techniques used in the analysis of deterministic encryption schemes given
in [42]. We omit it for the sake of brevity. The STC and TC security of the schemes are analogous to the
results in Section 4.

Speed comparisons. We implemented the schemes

• XXX[CTR[AES128],H] for XXX ∈ {CE,HCE2,RCE} and H ∈ {SHA256, SHA512}
• XXX[E] for XXX ∈ {CE,HCE2,RCE} and E ∈ {AES128,AES256}
using OpenSSL version 1.0.0, with AES-NI [30] turned on for both AES128 and AES256. We measured
the encryption performance when processing 4KB inputs. (Larger sizes have performance that degrades as
expected due to inputs not fitting into the CPU cache.) The tests were performed with a warm cache (prior
to the timings, the inputs were accessed several times) on an x86-64 Intel Core i7-970 processor clocking
at 3.2 GHz; the test machine had 12GB of memory. The compiler, kernel and operating system on the
machine were gcc-4.6, Linux kernel 3.0.0-13 and Ubuntu 11.04 respectively. The programs were compiled
with the -O3 -march=native flags to produce optimized code and -msse4 flag to enable support for
Streaming SIMD instructions. Processor frequency scaling was turned off while running the experiments.
The system was otherwise idle during the tests, and we used the rdtsc instruction of the x86 instruction
set to measure time. Figure 12 lists the measured performance, in cycles per byte, of the various MLE
schemes. In terms of absolute performance, the fastest among the schemes, RCE[AES256] can encrypt a
4KB input and generate the tag in just over 8 microseconds. On the other hand, the CE instantiation
with AES256 spends about 15 microseconds to generate the ciphertext and tag.

25

E

E

M[1]

L

...E

E

C [1]
1

C [2]
1

...

E

E

C [l]
1

K

E

C
2

P E

T

P

E

10*<nl>M[2] M[l]

0
n

0 1
n-1

<1> <2> <l>

P(1λ)
P ←$ {0, 1}n ; Ret P

KP (M)

K ← MD[E](M) ; Ret K

EP (K,M)

L←$ {0, 1}n

C1 ← CTR[E](L,M)

C2 ← L⊕ E(K,P)

T ← E(K,P⊕0n−11)

Ret (C1, C2, T)

DP (K, (C1, C2, T))

L← C2 ⊕ E(K,P)

M ← CTR[E](L,C1)

K′ ← MD[E](M)

If E(K′, P⊕0n−11) = T then Ret M

Else Ret ⊥
Figure 11: Top: Concerted single-pass key generation and encryption of a message of length `n using in
RCE[E] for a block cipher E. A notch indicates the key input to the block cipher. The message blocks
are M [1], . . . ,M [n], and the ciphertext is ((C1[1], . . . , C1[n]), C2, T). The red shaded region corresponds
to the hashing step and the green shaded region corresponds to CTR mode. Bottom: The algorithms
defining MLE scheme RCE[E]. The tag algorithm TP (C1, C2, T) simply returns T .

CE variant Operation
Choice of H

SHA256 SHA512 AES128 AES256

CE
K

21.1 12.1 7.5 5.3
HCE2 21.1 12.1 7.5 5.3
RCE 21.1 12.1 7.5 5.3

CE
E

1.2 1.2 1.2 1.2
HCE2 1.4 1.3 1.3 1.3
RCE 1.4 1.3 1.3 1.3

CE
T

21.1 12.1 7.5 5.3
HCE2 – – – –
RCE – – – –

CE
K + E + T

43.4 25.4 16.3 11.8
HCE2 22.5 13.6 8.9 6.6
RCE 22.3 13.3 8.7 6.5

CE
D

1.2 1.2 1.2 1.2
HCE2 22.5 13.6 8.9 6.6
RCE 22.3 13.3 8.7 6.5

Figure 12: Performance of CE instantiations in cycles per byte. The SHA256, SHA512, AES128,
and AES256 columns relay performance of XXX[CTR[AES128], SHA256], XXX[CTR[AES128], SHA256],
XXX[AES128], and XXX[AES256], respectively, for XXX ∈ {CE,HCE2,RCE}. The operation K + E + T
is the total time for key generation, encryption and tag generation. The – symbol in tag operation
performance indicates that a negligible amount of computation is needed to get the tag. The lowest
cycles per byte for each of the operations is in bold.

26

main G1(λ)

S←$ {0, 1}s(λ) ; Kh←$HK(1λ) ; b←$ {0, 1} ; (M, Z)←$M(1λ)

For i = 1, . . . , |M| do
M ←M[i] ; K ← Extλ(S,M) ; `← |M | ; M1 ‖ . . . ‖M` ←M

For j = 1 to ` do C1
j ← H(Kh,K ‖ j ‖Mj) ; C

0
j ←$ {0, 1}|C

1
j |

C[i]← (Cb1, . . . , C
b
`)

b′←$A(S,Kh,C, Z)

Ret (b = b′)

Adversary B(Kh,C, (Z
′, S))

Return A(S,Kh,C, Z
′)

M′(1λ)
S←$ {0, 1}s(λ) ; (M, Z)←$M(1λ)

i′ ← 0

For i = 1, . . . , |M| do
M ←M[i] ; K ← Extλ(S,M)

`← |M | ; M1 ‖ . . . ‖M` ←M

For j = 1 to ` do

M′[i′]← K ‖ j ‖Mj

i′ ← i′ + 1

Ret M′, (Z, S)

Figure 13: Game G1, adversary A and source M′ for Theorem 5.1.

D Proof of Theorem 5.1

As per the theorem statement, let H = (HK,H) be a family of hash functions and let Ext = {Extλ}λ∈N
be a family of extractors. Let `(·) be the input length and k(·) the output length of Ext. Below we let
XHC = XHC[H,Ext]. Below we concentrate on the second part of the theorem (PRV$-CDA); the proof
of the first part (PRV-CDA) proceeds in a similar fashion. Sources below are always therefore of arity
one.

The following lemma relates the PRV$-CDA advantage of an adversary A against XHC[Extλ,H] to
the PRV$-CDA advantage of a H adversary B.

Lemma D.1. Let M be an XHC-valid source with message number m(·) and message lengths `(·). Let
A be an adversary. Then there exists a H-valid sourceM′ and adversary B such that for all λ ∈ N

Advprv$-cda
XHC,M,A(λ) ≤ Advprv$-cda

H,M′,B (λ) .

Moreover, M′ is such that GPM′(λ) ≤ 2−k(λ) +
√

2k(λ) ·GPM(λ); its message number is m′(λ) =
m(λ) · `(λ); and the length of each message it outputs is k(λ) + 1 + dlog2(`(λ))e. The running time of
adversary B is TB = O(TA+m(·)`(·)tH(·)), and the running time ofM′ is TM′ = O(TM+m(·)tExtλ(·))
where tH and tExtλ are bounds on running times of of H and Extλ. �

Proof. Consider game G1, source M′ and adversary B of Figure 13. Game G1 is the PRV$-CDAXHC

game and so it follows that

Advprv$-cda
XHC,M,A(λ) = 2 · Pr

[
GA1 (λ)

]
− 1.

Adversary B plays the PRV$-CDAH,M′ game by running A. The sourceM′ first picks a random extractor
key S, then runsM to get M and then runs each component of M through Extλ with S to get the MLE
keys K. In the next step, it splits each M component into individual bits and prepends them with the
appropriate MLE key and index to get m(λ)`(λ) messages of the form K[i] ‖ 〈j〉 ‖M[i][j] for j ∈ [`(λ)]
for i ∈ [m(λ)]. Then, M′ outputs these messages along with auxiliary information Z of M and S.
As B plays the PRV-CDA game, depending on the bit b in the game, either the hashes corresponding
to M, or random strings are provided to B, and this corresponds to getting XHC ciphertexts for M,
or random bits. Thus, B simulates G1 for A with the bit of its PRV$-CDA game playing the role of
the bit in G1. Finally, when A finishes and outputs a bit, B also exits, echoing that bit. We have
Pr[GA1 (λ)] = Pr[PRV$-CDAB

H,M′(λ)] and hence

Advprv$-cda
H,M′,B (λ) = 2 · Pr

[
GA1
]
− 1 = Advprv$-cda

XHC,M,A(λ).

Now, we relate M′ and M, by observing that S is picked at random, it follows from the properties of

27

main G1(λ)

S←$ {0, 1}k(λ) ; U ←p(λ) {0, 1}n(λ)

g←$m(λ) ; b←$ {0, 1} ; M, Z←$M(1λ)

For i = 1, . . . , |M| do
M1 ← Proj(M[i], U) ; M2 ← Proj(M[i], [n(λ)] \ U)

K ← Extλ(S,M1)

If i < g + b then C[i]← SE ′K,M2)

If i = g and b = 1 then C[i]← SE(K,M2)

If i = g and b = 0 then C[i]←$ {0, 1}|SE(K,M2)|

If i > g then C′ ← SE(K,M2) ; C[i]←$ {0, 1}C
′

b′←$A(S||U,C, Z) ; Ret (b = b′)

main G2

S←$ {0, 1}k(λ) ; U ←p(λ) {0, 1}n(λ)

g←$m(λ) ; b←$ {0, 1} ; M, Z←$M(1λ)

For i = 1, . . . , |M| do
M1 ← Proj(M[i], U) ; M2 ← Proj(M[i], [n(λ)] \ U)

K ← Extλ(S,M1)

If i < g + b then C[i]← SE(K,M2)

If i = g and b = 1 then C[i]← SE(K,M2)

If i = g and b = 0 thenK′←$ {0, 1}ks ; C[i]← SE(K′,M2)

If i > g then C[i]←$ {0, 1}|SE(K,M2)|

b′←$A(S||U,C, Z) ; Ret (b = b′)

Figure 14: Games for Theorem 5.2.

Extλ that for a randomly picked K←$ {0, 1}k(λ)

GP(Extλ(S,M[i]) || j ||M[i][j]|S,Z) ≤ GP(K|S,Z) + SD((S,Extλ(S,M[i]), Z); (S,K,Z))

≤ 1

2k(λ)
+
√

2k(λ)GP(M[i]|Z) ≤ 1

2k(λ)
+
√

2k(λ)GPM(λ)

for all i ∈ [`(λ)], for all i ∈ [m(λ)]. This completes the proof of the lemma.

To finish the proof of the theorem in the PRV$-CDA case, we note that GPM′(·) is negligible when

2k(·) ·GPM(·) is negligible. In turn, Advprv$-cda
H,M′,B (·) is negligible for all PT B and hence Advprv$-cda

XHC,M,A(·)
is negligible for all PT A.

E Proof of Theorem 5.2

Proof. Game G1 of Figure 14 is a hybrid between the PRV$-CDA with b = 0 and b = 1, with the code
of SXE and M. We have

Pr[GA1 (λ)] ≥ 1

m(λ)
AdvPRV$-CDA

SXE[Ext,SE,p],M,A(λ).

Game G2 is like G1, but makes a modification in how the ciphertext corresponding to the switching value
g is treated. Specifically, it picks a random g←$ [m(λ)], creates the first g − 1 ciphertexts and later
m(λ)− g ciphertexts as in G1, but the g-th ciphertext is set to an encryption of the g-th plaintext under
a random key, if b = 0, as opposed to a random string as in G1.

The difference between G1 and G2 can be bounded by a simple single key ROR adversary B which
runs the hybrid, and handles its switching ciphertext as follows. It flips a random bit b, and if b = 1,
it runs the extractor on the g-th input to get the key and encrypts the g-th message under this key. If
b = 0, then it forwards the g-th message to its Enc oracle. Depending on whether the bit in the ROR
game is 0 or 1, adversary A is simulated either in G1 or G2. Moreover, B never makes more than one
query to its Enc oracle. We have, (|Pr[GA1 (λ)]− Pr[GA2 (λ)]|)/2 = Adv1-ror

SE,B(λ) for all λ ∈ N.

In game G2, the difference between the settings of b = 0 and b = 1 is in how the key for g-th plaintext
is derived. If b = 0, the extractor output is used, and if b = 1 then a random key is chosen. Importantly,
this is the last plaintext for which the game replies with a real encryption; subsequent components of C

28

are simply random strings. We have

Pr[GA2 (λ)] ≤ SD((SE(K,Proj(Mg, [n(λ)] \ U)),M1, . . . ,Mg−1, Z, S),

(SE(Extλ(S,Proj(Mg, U)),Proj(Mg, [n(λ)] \ U)),M1, . . . ,Mg−1, Z, S))

≤ SD(K,Proj(Mg, [n(λ)] \ U),M1, . . . ,Mg−1, Z, S),

(Extλ(S,Proj(Mg, U))),Proj(Mg, [n(λ)] \ U),M1, . . . ,Mg−1, Z, S)).

In the above probabilities, U ←p(λ) {0, 1}n(λ). The source M is such that

GPM,p(λ) = max
i

GP(Proj(M[i], U) | (M[1], . . . ,M[i− 1],Proj(M[i], [n(λ)] \ U), Z)) = 2−k(λ)ν(λ),

where ν is some negligible function. Applying that Ext is an extractor, the above statistical distance is

bounded by
√

2k(λ)GPM,p(λ) =
√
ν(λ). Putting these together, we have

AdvPRV$-CDA
SXE[Ext,SE,p],M,A(λ) ≤ m(λ)(

√
ν(λ) + Adv1-ror

SE,B(λ)).

Since both the quantities on the right are negligible and A and M are PT algorithms, the PRV$-CDA
advantage of A is negligible and SXE[Ext,SE, p] is PRV$-CDA secure for these types of sources.

29

	Introduction
	Background
	Definitions and Relations
	Practical Contributions
	Theoretical Contributions
	Further Remarks and Related Work

	Preliminaries
	Message-Locked Encryption
	Practical Contributions: The Security of Fast MLE Schemes
	Theoretical Contributions: Constructions without ROs
	Extract-Hash-Check
	Sample-Extract-Encrypt

	Relations Between MLE Privacy Notions
	Proof of PRV$-CDA for CE, HCE1, HCE2, RCE
	Instantiations and Performance of CE, HCE2, and RCE
	Proof of Theorem 5.1
	Proof of Theorem 5.2

