
1

Secure Outsourced Attribute-based Encryption
Jin Li, Jingwei Li, Xiaofeng Chen, Chunfu Jia and Duncan S. Wong

Abstract—Attribute-Based Encryption (ABE) is a promis-
ing cryptographic primitive which significantly enhances the
versatility of access control mechanisms. Due to the high
expressiveness of ABE policies, the computational complexities
of ABE key-issuing (by Attribute Authorities (AAs)) and
decryption (by eligible users) are getting prohibitively high.
Despite that the existing Outsourced ABE solutions are able
to offload some intensive computing tasks to a third party,
for example, a cloud, so to relieve the local burden of eligible
users during decryption, the high computational complexity
of the key-issuing at the AAs has yet to be addressed, while
an ABE system will continue to grow with more users being
included, and with the user revocation being considered in
practice which will trigger more key (re-)issuing.

Aiming at tackling the challenges above, for the first time,
we propose a Secure Outsourced ABE system, which not
only supports secure outsourced decryption, but also provides
secure outsourced key-issuing. Unlike the current outsourced
ABE systems, our new method offloads all access policy
and attribute related operations in the key-issuing process
or decryption to a Key Generation Service Provider (KGSP)
and a Decryption Service Provider (DSP), respectively, leaving
only a constant number of simple operations for the AAs and
eligible users to perform locally. Furthermore, we show that
both outsourcing processes (to KGSP and to DSP) are secure,
namely, the KGSP and the DSP would not be able to recover
the keys or decrypt the ciphertexts, respectively.

In addition, we consider the scenario that a KGSP or DSP
may be dishonest and could maliciously generate some in-
correct returning values rather than following the outsourced
operations. Therefore, in this paper, we also propose another
ABE construction which allows the AAs and eligible users to
check the correctness of outsourced operations in an efficient
way. The security of the construction is analyzed under
a recently formalized model called Refereed Delegation of
Computation (RDoC).

Index Terms—Attribute-based encryption, access control,
outsourcing computation, cloud computing, checkability

I. INTRODUCTION

As a novel public key primitive, Attribute-Based En-
cryption (ABE) [1] has attracted much attention in the
research community. In ABE system, users’ private keys
and ciphertexts are labeled with sets of descriptive attributes

Jin Li is with the School of Computer Science, Guangzhou University,
China, e-mail: lijin@gzhu.edu.cn.

Jingwei Li and Chunfu Jia are with the College of Information Techni-
cal Science, Nankai University, China, e-mail: lijw@mail.nankai.edu.cn,
cfjia@nankai.edu.cn.

Xiaofeng Chen is with the State Key Laboratory of Integrated
Service Networks (ISN), Xidian University, Xi’an, China, e-mail:
xfchen@xidian.edu.cn.

Duncan S. Wong is with the Department of Computer Science, City
University of Hong Kong, China, e-mail: duncan@cityu.edu.hk.

and access policies respectively, and a particular key can de-
crypt a particular ciphertext only if associated attributes and
policy are matched. Until now, there are two kinds of ABE
having been proposed: Key-Policy Attribute-Based En-
cryption (KP-ABE) and Ciphertext-Policy Attribute-Based
Encryption (CP-ABE). In KP-ABE, the access policy is
assigned in private key, whereas, in CP-ABE, it is specified
in ciphertext.

Recently, as the development of cloud computing, users’
concerns about data security are the main obstacles that
impedes cloud computing from widely adopted. These
concerns are originated from the fact that sensitive data
resides in public cloud, which is maintained and operated
by untrusted Cloud Service Provider (CSP). ABE provides
a secure way that allows data owner to share outsourced
data on untrusted storage server instead of trusted server
with specified group of users. This advantage makes the
methodology appealing in cloud storage that requires secure
access control for a large number of users belonging to
different organizations.

Nevertheless, one of the main efficiency drawbacks of
ABE is that the computational cost during decryption phase
grows with the complexity of the access formula. Thus,
before widely deployed, there is an increasing need to
improve the efficiency of ABE. To address this problem,
outsourced ABE, which provides a way to outsource in-
tensive computing task during decryption to CSP without
revealing data or private keys, was introduced [2][3]. It has
a wide range of applications. For example, in the mobile
cloud computing consisting of mobile devices or sensors
as information collection nodes, user terminal (e.g. mobile
device) has limited computation ability to independently
finish basic encryption or decryption to protect sensitive
data residing in public cloud. Outsourced ABE allows
user to perform heavy decryption through “borrowing”
the computation resources from CSP. Therefore, with this
paradigm, the computation/storage intensive tasks can be
performed even by resource-constrained users.

Beyond the heavy decryption outsourced, we observe
that the attribute authority has to deal with a lot of heavy
computation in a scalable system. More precisely, the
attribute authority has to issue private keys to all users,
but yet generation of private key typically requires large
modular exponentiation computation, which grows linearly
with the complexity of the predicate formula. When a large
number of users call for their private keys, it may overload
attribute authority. Moreover, key management mechanism
key revocation in particular, is necessary in a secure and
scalable ABE system. In most of existing ABE schemes, the
revocation of any single private key requires key-update at
attribute authority for the remaining unrevoked keys which

2

share common attributes with the one to be revoked. All of
these heavy tasks centralized at authority side would make
it become the efficiency bottleneck in the access control
system.

A. Contribution

Aiming at eliminating the most overhead computation
at both attribute authority and user sides, we propose an
outsourced ABE scheme not only supporting outsourced
decryption but also enabling delegating key generation. In
this construction, we introduce a trival policy controlled
by a default attribute and use an AND gate connecting the
trival policy and user’s policy. During key-issuing, attribute
authority can outsource computation through delegating the
task of generating partial private key for user’s policy to a
Key Generation Service Provider (KGSP) to reduce local
overhead. Moreover, the outsourced decryption is realized
by utilizing the idea of key blinding. More precisely, user
can send the blinded private key to a Decryption Service
Provider (DSP) to perform partial decryption and do the
complete decryption at local. Following our technique,
constant efficiency is achieved at both attribute authority
and user sides.

In addition, we observe that when experiencing commer-
cial cloud computing services, the CSPs may be selfish
in order to save its computation or bandwidth, which
may cause results returned incorrectly. In order to deal
with this problem, we consider to realize checkability on
results returned from both KGSP and DSP, and provide
a security and functionality enhanced construction, which
is provable secure under the recent formulized Refereed
Delegation of Computation (RDoC) model. Out technique
is to make a secret sharing on the outsourcing key for KGSP
and let k parallel KGSPs utilize their individual share to
generate partial private keys. After that an additional key
combination phase is performed at authority side to avoid
malicious collaboration between at most k − 1 KGSPs
and users. Moreover, we use the idea of “ringer” [4] and
appending redundancy to fight against the dishonest actions
of KGSPs and DSP. As far as we know, this is the first time
considering the checkability of outsourced ABE.

B. Related Work

The notion of ABE, which was introduced as fuzzy
identity-based encryption in [1], was firstly dealt with by
Goyal et al. [5]. Two different and complementary notions
of ABE were defined in [5]: KP-ABE and CP-ABE. A
construction of KP-ABE was provided in the same paper
[5], while the first CP-APE construction supporting tree-
based structure in generic group model is presented by
Bethencourt et al. [6]. Accordingly, several constructions
supporting for any kinds of access structures were provided
[7][8][9]. Concerning revocation of ABE, a delegatable
revocation is proposed in [10] to achieve scalable and fine-
grained access control.

To reduce the load at local, it always desires to deliver
expensive computational tasks outside. Actually, the prob-
lem that how to securely outsource different kinds of ex-
pensive computations has drew considerable attention from
theoretical computer science community. Atallah et al. [11]
presented a framework for secure outsourcing of scientific
computations such as matrix multiplication and quadrature.
Nevertheless, the solution used the disguise technique and
thus leaded to leakage of private information. Atallah and
Li [12] investigated the problem of computing the edit
distance between two sequences and presented an effi-
cient protocol to securely outsource sequence comparison
with two servers. Furthermore, Benjamin and Atallah [13]
addressed the problem of secure outsourcing for widely
applicable linear algebraic computations. Nevertheless, the
proposed protocols required the expensive operations of
homomorphic encryption. Atallah and Frikken [14] further
studied this problem and gave improved protocols based
on the so-called weak secret hiding assumption. Recently,
Wang et al. [15] presented efficient mechanisms for secure
outsourcing of linear programming computation.

We note that though several schemes have been intro-
duced to securely outsource kinds of expensive computa-
tions, they are not suitable for reliving ABE computational
overhead of exponentiation at user side. To achieve this
goal, the traditional approach is to utilize server-aided tech-
niques [16][17][18]. However, previous work are oriented
to accelerating the speed of exponentiation using untrusted
servers. Directly utilizing these techniques in ABE will not
work efficiently. Another approach might be to leverage
recent general outsourcing technique or delegating com-
putation [19][20][21][22][23] based on fully homomorphic
encryption or interactive proof system. However, Gentry
[23] has shown that even for weak security parameters on
“bootstrapping” operation of the homomorphic encryption,
it would take at least 30 seconds on a high performance ma-
chine. Therefore, even if the privacy of the input and output
can be preserved by utilizing these general techniques, the
computational overhead is still huge and impractical.

Another two related work similar to us are [3] and [2].
In [2], a novel paradigm for outsourcing the decryption of
ABE is provided while in [3] the authors presented the
Privacy Preserving CP-ABE (PP-CP-ABE) scheme which
allows to securely outsource both decryption and encryption
to third party service providers. Compared with our work,
the two lack of the consideration on the eliminating the
overhead computation at attribute authority. Additionally,
we consider a security and functionality enhanced construc-
tion enalbing checkability on returned results from CSPs.

C. Organization
This paper is organized as follows. In Section II we

describe some preliminaries. In Section III, we present
the system model and security definition. The proposed
construction and its security and efficiency analysis are
presented in Section IV. In Section V, we consider a
both security and functionality enhanced construction under
RDoC model. Finally, we draw conclusion in Section VI.

3

Acronym Description

AA attribute authority
KGSP key generation service provider
DSP decryption service provider
SSP storage service provider

TABLE I
NOTATIONS USED IN THIS PAPER

Fig. 1. System Model for Outsourced ABE Scheme

II. PRELIMINARY

In this section, we define the notations used in this paper
and review some cryptographic background.

A. Notations

The notations used in this paper are listed in TABLE I.

B. Cryptographic Background

In this paper, we use the bilinear pairings on elliptic
curves. We now give a brief review on the property of
pairing and the candidate hard problem that will be used.

Definition 1 (Bilinear Map): Let G,GT be cyclic
groups of prime order q, writing the group action
multiplicatively. g is a generator of G. Let e : G×G → GT

be a map with the following properties:
• Bilinearity: e(ga1 , g

b
2) = e(g1, g2)

ab for all g1, g2 ∈ G,
and a, b ∈R Zq;

• Non-degeneracy: There exists g1, g2 ∈ G such that
e(g1, g2) ̸= 1, in other words, the map does not send
all pairs in G×G to the identity in GT ;

• Computability: There is an efficient algorithm to com-
pute e(g1, g2) for all g1, g2 ∈ G.

Definition 2 (DBDH Problem): The Decision Bilinear
Diffie-Hellman (DBDH) problem is that, given g, gx, gy ,
gz ∈ G for unknown values x, y, z ∈R Zq , and T ∈R GT ,
to decide if T = e(g, g)xyz .

We say that the (t, ϵ)-DBDH assumption holds in G if
no t-time algorithm has probability at least 1

2 +ϵ in solving
the DBDH problem for non-negligible ϵ.

III. SYSTEM MODEL AND SECURITY DEFINITION

A. System Model

We present the system model for outsourced ABE
scheme in Fig. 1. Compared with the model for typical
ABE, a KGSP and a DSP are additionally involved.

• KGSP is to perform aided key-issuing computation to
relieve AA load in a scale system when a large number
of users make requests on private key generation and
key-update.

• DSP is to finish delegated expensive operations to
overcome the disadvantage that the decryption phase
in typical ABE requires a large number of overload
operations at U.

Following the custom in [2], we denote (Ienc, Ikey) as
the input to encryption and key generation. In CP-ABE
scheme, (Ienc, Ikey) = (A, ω) while that is (ω,A) in KP-
ABE, where ω and A are attribute set and access structure,
respectively. Then, based on the proposed system model,
we provide algorithm definitions as follows.

• Setup(λ) : The setup algorithm takes as input – a
security parameter λ. It outputs a public key PK and
a master key MK.

• KeyGeninit(Ikey,MK) : For each user’s private key
request, the initialization algorithm for delegated key
generation takes as input – an access policy (or at-
tribute set) Ikey and the master key MK. It outputs
the key pair (OKKGSP, OKAA).

• KeyGenout(Ikey, OKKGSP) : The delegated key gen-
eration algorithm takes as input – the access structure
(or attribute set) Ikey and the key OKKGSP for KGSP.
It outputs a partial transformation key TKKGSP.

• KeyGenin(Ikey, OKAA) : The inside key generation
algorithm takes as input – the access structure (or
attribute set) Ikey and the key OKAA for attribute
authority. It outputs another partial transformation key
TKAA.

• KeyBlind(TK) : The transformation key blinding
algorithm takes as input – the transformation key
TK = (TKKGSP, TKAA). It outputs a private key
SK and a blinded transformation key T̃K.

• Encrypt(M, Ienc) : The encryption algorithm takes as
input – a message M and an attribute set (or access
structure) Ienc to be encrypted with. It outputs the
ciphertext CT .

• Decryptout(CT, T̃K) : The delegated decryption al-
gorithm takes as input – a ciphertext CT which was
assumed to be encrypted under the attribute set (or
access structure) Ienc and the blinded transformation
key T̃K for access structure (or attribute set) Ikey.
It outputs the partially decrypted ciphertext CTpart if
γ(Ikey, Ienc) = 1, otherwise outputs ⊥, where γ(·, ·)
is a predicate predefined.

• Decrypt(CTpart, SK) : The decryption algorithm
takes as input – the partially decrypted ciphertext
CTpart and the private key SK. It outputs the original
message M .

B. Security Definition

In this work, we assume that all the entities except AA
are “honest-but-curious”. More precisely, they will follow
our proposed protocol but try to find out as much private
information as possible based on their possessions. The

4

Fig. 2. Adversary Model for Outsourced ABE Scheme

adversary model described in Fig. 2 is considered. More
precisely, since KGSP and U respectively owns the knowl-
edge of OKKGSP for KGSP and user’s private key, they are
considered as active attackers which are allowed to collude
with DSP and SSP to launch harmful attack separately.
Following this consideration, two types of adversaries are
categorized.

• Type-I adversary defined as a group of curious users
colluding with SSP and DSP, is able to potentially
access private keys for all the corrupted users, all the
ciphertext stored at SSP, all the blinded transformation
keys stored at DSP, etc, and aims to decrypt ciphertext
intended for users not in the group.

• Type-II adversary defined as KGSP colluding with
SSP and DSP, is able to potentially access all the keys
for KGSP, all the ciphertexts stored at SSP, all the
blinded transformation keys stored at DSP, etc, and
aims to decrypt any ciphertext.

Having this intuition, we follow the Replayable Chosen
Ciphertext Attack (RCCA) security in [24][2] to define
RCCA security for our setting in Fig. 3. We point out that
the security game for type-I adversary is similar to that in
[2] which shares the same delegated decryption paradigm
with ours.

Denote Ai as type-i adversary for i = I, II. Their advan-
tages in attacking the outsourced ABE scheme E is mea-
sured by the probability AdvRCCA

E,Ai
(λ) =

∣∣Pr[bi = b′i]− 1
2

∣∣
respectively.

Definition 3 (RCCA Security): An outsourced CP-ABE
or KP-ABE scheme with delegated key generation and
decryption is secure against replayable chosen-ciphertext
attack if all polynomial time adversaries have at most a
negligible advantage in the RCCA security game for both
type-I and type-II adversaries.

Finally, beyond the RCCA security, we also specify
that, i) An ABE scheme with delegated key generation
and decryption is CPA-secure (or secure against chosen-
plaintext attack) if no polynomial time adversary has non-
negiligible advantage in modified games for type-I and
type-II adversaries respectively, in which the OM (·) in both
phase 1 and phase 2 is removed; ii) An ABE scheme
with delegated key generation and decryption is secure
in selective model if no polynomial time adversary has
non-negiligible advantage in modified games for type-I
and type-II adversaries respectively, in which the I∗enc
submission is advanced to an additional init stage before
setup.

IV. PROPOSED CONSTRUCTION

A. Access Structure

Definition 4 (Access Structure): Let {P1, . . . , Pn} be a
set of parties. A collection A ⊆ 2{P1,P2,...,Pn} is monotone
if ∀B,C : if B ∈ A and B ⊆ C then C ∈ A.
An access structure (or monotone access structure) is a
collection (or monotone collection) A of non-empty subsets
of {P1, P2, . . . , Pn}. The sets in A are called authorized
sets.

Furthermore, we could define the predicate γ(·, ·) as
follows.

γ(ω,A) =

{
1 if ω ∈ A
0 otherwise

(1)

In this paper, the role of the party is taken by the
attributes. Thus, the access structure A will contain the
authorized sets of attributes. Specifically, our construction
supports for access structure described as A = {ω ⊆ U :
|ω ∩ ω∗| ≥ d} where U is the attribute universe, ω and ω∗

are attribute sets and d is a predefined threshold value.
For simplicity, we will take user’s attribute set to input

to key generation instead of his access structure which is
different from our definition in section III.A. We note that
such substitution is trival since user is easy to compute his
access structure with the individual attribute set. Further-
more, we deliver the decision for access control to γ(·, ·)
and redefine such predicate as follows.

γd(ω, ω
∗) =

{
1 if |ω ∩ ω∗| ≥ d

0 otherwise
(2)

B. Intuition for Proposed Construction

The challenge for constructing outsourced ABE scheme
is the realization of delegated key generation and decryp-
tion.

• To outsource private key generation, we utilize a
hybrid key policy Policy = PolicyKGSP ∧PolicyAA in
proposed construction, where ∧ is an AND gate con-
necting two sub-policies PolicyKGSP and PolicyAA.
PolicyKGSP is for the request attribute set which will
be performed at KGSP while PolicyAA is a trival
policy controlled by AA. The reason that we say it
is trival is that a single default attribute θ is appended
with each request attribute set, which has no effect on
the global access control policy. Using this trick, we
are allowed to randomly generate an outsourcing key
(which is OKKGSP in our construction) to delegate
partial key generation operation to KGSP without
master or private key leakage.

• To outsource decryption, we make use of the idea in
[3] by choosing a random “blinding factor” (which is t
in our construction) to produce blinded transformation
key which is able to be sent to DSP to perform decryp-
tion partially instead of private key itself. This skill
allows us to delegate partial decryption operation to
DSP without private key or original message leakage.

5

RCCA Security Game for Type-I Adversary
Setup. Challenger runs Setup(λ) and gives PK to adversary.
Phase 1. Challenger initializes an integer j = 0, an empty table T and an empty set D to provide adversary with
the oracles below.

• O
T̃K

(Ikey): The challenger sets j = j + 1 and runs key generation (including key blinding) completely for
Ikey to obtain SK, TK,OKKGSP and T̃K. After storing the entry (j, Ikey, SK,OKKGSP) in T , return T̃K.

• OSK(i): The challenger checks whether the entry (i, Ikey, SK, ·) exists in T . If so, set D = D ∪ {Ikey} and
return SK, otherwise return ⊥.

• OM (i, CT): Suppose the ciphertext CT is encrypted under Ienc. The challenger checks whether (i, Ikey, SK, ·)
exists in T and γ(Ikey, Ienc) = 1. If so, perform decryption completely on CT and return original message
M ; otherwise return ⊥.

Challenge. Adversary submits two messages M0 and M1 as well as I∗enc satisfying γ(Ikey, I
∗
enc) ̸= 1 for all

Ikey ∈ D. Challenger picks bI ∈R {0, 1}, encrypts MbI under I∗enc and returns the resulting ciphertext CT ∗.
Phase 2. Phase 1 is repeated with the restrictions: i) Adversary cannot issue query OSK(i) resulting in a value
Ikey with γ(Ikey, I

∗
enc) = 1. ii) Adversary cannot issue query OM (·) resulting M0 or M1.

Guess. Adversary outputs a guess b′I of bI.

RCCA Security Game for Type-II Adversary
Setup. Challenger runs Setup(λ) and gives PK to adversary.
Phase 1. Challenger initializes an integer j = 0, an empty table T and an empty set D to provide adversary the
oracles below.

• O
T̃K

(Ikey): It is identical to O
T̃K

(Ikey) for type-I adversary.
• OOKKGSP(i): The challenger checks whether the entry (i, Ikey, SK,OKKGSP) exists in T . If so return

(OKKGSP, TK), otherwise return ⊥.
• OM (i, CT): It is identical to OM (i, CT) for type-I adversary.

Challenge. Adversary submits two messages M0 and M1 as well as I∗enc. Challenger picks bII ∈R {0, 1}, encrypts
MbII under I∗enc and returns the resulting ciphertext CT ∗.
Phase 2. Phase 1 is repeated with the restriction that adversary cannot issue query to OM (·) resulting M0 or M1.
Guess. Adversary outputs a guess b′II of bII.

Fig. 3. Security Games for Type-I and Type-II Adversaries

C. Construction

Before providing our construction, we define the La-
grange coefficient ∆i,S for i ∈ Zq and a set S of elements
in Zq: ∆i,S =

∏
j∈S,j ̸=i

x−j
i−j . Our scheme is based on ABE

in [1] which shares the same access formula. The message
space for our construction is GT . Actually, using a map-
to-point function, we can extend it to support for message
space consisting of {0, 1}∗. The construction in detail is
shown as follows.

• Setup(λ) : First, define the attributes in universe U as
elements in Zq . For simplicity, let n = |U| and we can
take the first n elements in Zq (i.e. 1, 2, . . . , n mod q)
to be the universe. Next, select a generator g ∈R G
and an integer x ∈R Zq , and set g1 = gx. Then, pick
elements g2, h, h1, . . . , hn ∈R G. Finally, output the
public key PK = (g, g1, g2, h, h1, . . . , hn) and the
master key MK = x.

• KeyGeninit(ω,MK) : For each user’s private key
request on ω, select x1 ∈R Zq and set x2 = x −
x1 mod q. Finally output OKKGSP = x1 as the
outsourcing key for KGSP and OKAA = x2 for
attribute authority itself.

• KeyGenout(ω,OKKGSP) : Randomly select a d − 1

degree polynomial q(·) such that q(0) = x1. Then,
for each i ∈ ω, choose ri ∈R Zq , and compute
di0 = g

q(i)
2 · (g1hi)

ri and di1 = gri . Finally, output
TKKGSP = ({di0, di1}i∈ω).

• KeyGenin(ω,OKAA) : Select rθ ∈R Zq and compute
dθ0 = gx2

2 · (g1h)rθ and dθ1 = grθ . Finally, output
TKAA = (dθ0, dθ1).

• KeyBlind(TK = (TKKGSP, TKAA)) : Select t ∈R

Zq , and compute T̃K = ({dti0, dti1}i∈ω∪{θ}). Finally,
output SK = (t, TK) and T̃K.

• Encrypt(M,ω′) : Firstly, select a random number
s ∈R Zq . Then, compute C0 = M · e(g1, g2)s,
C1 = gs, Eθ = (g1h)

s and Ei = (g1hi)
s for

i ∈ ω′. Finally, publish the ciphertext as CT =
(ω′ ∪ {θ}, C0, C1, {Ei}i∈ω′∪{θ}).

• Decryptout(CT, T̃K) : Suppose that a ciphertext CT
is encrypted under an attribute set ω′ and we have
a blinded transformation key T̃K for attribute set ω,
which satisfies the restriction that γd(ω, ω′) = 1. Then,
outsourced decryption proceeds as follows. Firstly, an
arbitrary d-element subset set S ⊆ ω ∩ ω′ is selected.
Then, the partially decrypted ciphertext is computed
as follows.

6

CTpart =
e(C1, d

t
θ0)

∏
i∈S e(C1, d

t
i0)

∆i,S(0)

e(dtθ1, Eθ)
∏

i∈S e(dti1, Ei)∆i,S(0)

= e(g, g2)
stx2e(g, g2)

st
∑

i∈S q(i)∆i,S(0)

= e(g, g2)
stx2e(g, g2)

stx1

= e(g1, g2)
st (3)

• Decrypt(CTpart, SK) : Completely decrypt the ci-
phertext as follows.

C0

(CTpart)
1
t

=
M · e(g1, g2)s

[e(g1, g2)st]
1
t

=
M · e(g1, g2)s

e(g1, g2)s
= M (4)

D. Efficiency Analysis

We compare our scheme with the original ABE [1]
and the state-of-the-art [2][3] in TABLE II. We use EXP
to denote a multi-based exponentiation operation in G
and P the pairing operation. We assume one multi-based
exponentiation multiplies up to 2 single-based exponen-
tiations and takes roughly the same time as single-based
exponentiations. ω and d denotes the attribute set and
threshold value respectively.

To the best of our knowledge, the outsourced key gen-
eration in ABE has not been considered before and our
scheme is the first construction achieving this property.
Following our terminology, the number of exponentiations
in the group G for AA is reduced to two, while in other
ABE schemes [1][2][3], it is linear with the number of
attributes in the request set (i.e. 2|ω|). Actually in our
construction, the exponentiation computation is delivered
to KGSP and requester. More precisely, after obtaining
the transformation key from AA, the requester must spend
|ω| + 1 exponentiations on generating private key and
blinded transformation key. We think it is reasonable that
AA delivers some computations back to users because such
modification would reduce AA load and make it respond
to a large number of users’ requests in time.

In decryption, a trick similar to [2][3] is used in our
scheme and the three schemes achieve the identical effi-
ciency: all the pairing operations are delivered to DSP and
the computational cost of decryption for user is constant,
only one exponentiation operation. Whereas the original
ABE scheme [1] requires 2d pairing as well as 2d expo-
nentiation operations for a single decryption, where d is the
threshold value.

Concerning on the communication complexity in our
scheme, user has to send a private key request to AA and
receive 2|ω| + 2 elements in G. Furthermore, he is able
to send blinded transformation key (as well as 2|ω| + 2
elements in G) to DSP to perform partially decryption in
future. In general, an element in G is set to be 160-bit
long for 280 security. The data transferred among the cloud
service providers, AA and user is tens of KBs at most,
which can be processed efficiently.

E. Security Analysis

Theorem 1: The outsourced ABE scheme is indistin-
guishable secure against chosen-plaintext attack in selective
model under DBDH assumption.

Proof: For the purpose of proving the security of
our scheme, we should show that it is secure againt both
type-I and type-II adversaries. It is noted that the main
difference between type-I and type-II adversary is the
oracles provided. Specifically, type-I adversary is provided
with OSK(·) while challenger gives OOKKGSP(·) to type-
II adversary. Thus, we will utilize a bit b to denote this
difference (i.e., if b = 0, adversary is provided with
OSK(·); and otherwise with OOKKGSP(·)) and attempt to
provide a single simulation against both of type-I and type-
II adversaries.

Assume that an adversary A has advantage ϵ in attacking
the proposed outsourced ABE scheme in the sense of CPA
security for selective model, we will build a simulator S
that uses A as a sub-algorithm to solve the DBDH problem
with a non-negligible probability. Therefore, in this analysis
our main task is to provide a correct simulation of the real
game between a challenger and an adversary A.

Suppose the challenger flips a fair binary coin µ outside
of SI’s view. If µ = 0, SI is given (X = gx, Y = gy, Z =
gz, T = e(g, g)xyz); otherwise, (X = gx, Y = gy, Z =
gz, T = e(g, g)v) for random x, y, z, v ∈ Zq . SI is asked
to output a value µ′ as the guess for µ. We provide the
simulation as follows.

Init. The simulator S runs A and receives the challenge
attribute set ω∗.

Setup. Simulator S assigns the public key as follows. It
sets g1 = X, g2 = Y and h = g−1

1 g−α where α ∈R Zq .
For i ∈ ω∗, it randomly selects αi ∈R Zq and sets hi =
g−1
1 gαi . For i /∈ ω∗, it randomly selects αi ∈R Zq and

sets hi = gαi . Finally, S sends the public key PK =
(g, g1, g2, h, h1, . . . , hn) to A where n is the number of
attributes in universe.

Phase 1. S initializes an integer j = 0 and an empty table
T to provide A several oracles as follows.

• O
T̃K

(ω): S sets j = j + 1 and answers A’s query in
one of the following ways.

– If b = 0, A is a type-I adversary. In this case,
S selects x2 ∈R Zq and attempts to simulate
TKKGSP = ({di0, di1}i∈ω) as follows. Define
three sets Γ,Γ′ and S with Γ = ω∩ω∗, |Γ′| = d−
1,Γ ⊆ Γ′ ⊆ ω and S = Γ′ ∪ {0}. Then, for each
i ∈ Γ′, compute (di0, di1) = (gτi2 (g1hi)

ri , gri)
where τi, ri ∈R Zq . For each attribute i ∈ ω−Γ′,
the simulator set ri = −y∆0,S(i)+r′i and obtains
di0 = g

∑
j∈Γ′ ∆j,S(i)τj−(x2+αi)∆0,S(i)

2 (g1hi)
r′i

and di1 = g
−∆0,S(i)
2 gr

′
i), where r′i ∈R Zq .

The intuition behind these assignments is that
q(i) =

∑
j∈Γ′ ∆j,S(i)q(j) +∆0,S(i)q(0) and we

are implicitly choosing a random d − 1 degree
polynomial q(·) by choosing its value for the d−1
points randomly as q(i) = τi for i ∈ Γ′, in

7

Schemes Key generation (AA) Key generation (KGSP) Decryption (U) Decryption (DSP)

original ABE [1] 2|ω|EXP – 2dP+2dEXP –
outsourced ABE in [2] 2|ω|EXP – EXP 2dP+2dEXP
outsourced ABE in [3] 2|ω|EXP – EXP 2dP+2dEXP
outsourced ABE in this paper 2EXP 2|ω|EXP EXP 2dP+2dEXP

The symbol ‘–’ denotes that this property is not considered in the corresponding scheme.
TABLE II

EFFICIENCY COMPARISON

addition to having q(0) = x − x2. Next, S runs
TKAA = KeyGenin(ω, x2) and KeyBlind(TK =

(TKKGSP, TKAA)) to obtain SK and T̃K. After
adding the entry (j, ω, SK, ·) into T , return T̃K.

– Otherwise, A is type-II adversary. S selects
x1 ∈R Zq and computes TKKGSP =
KeyGenout(ω, x1). Meanwhile, it is to simu-
late (dθ0, dθ1) = (gx−x1

2 (g1h)
rθ , grθ) by set-

ting rθ = xy
α and computing (dθ0, dθ1) =

(g−x1
2 , g

xy
α). Next, pick t = 1

y and obtain
T̃K = {dti0, dti1}i∈ω∪{θ}. After adding the entry
(j, ω, SK = (t, TK), x1) into T , return T̃K.

• OSK : This oracle is only provided with type-I adver-
sary (i.e. b = 0). Upon receiving i, if there is an entry
(i, ω, SK, ·) with |ω ∩ ω∗| ≥ d in T , S returns SK.

• OOKKGSP(i): This oracle is only provided with type-II
adversary (i.e. b = 1). Upon receiving i, if there is an
entry (i, ω, SK, x1) in T , S returns x1.

Challenge. The adversary A will submit two chal-
lenge messages M0 and M1 to S. The simulator flips
a fair binary coin ν and returns an encryption of
Mν . The ciphertext is simulated as CT ∗ = (ω∗ ∪
{θ},MνT, g

z, g−zα, {gzαi}i∈ω∗). We note that: i) If µ = 0,
then T = e(g, g)xyz . If we let s = z, then we have
C0 = MνT = Mνe(g, g)

xyz = Mνe(g1, g2)
z, C1 =

gz, Eθ = g−zα = (g1g
−1
1 g−α)z = (g1h)

z and Ei =
gzαi = (g1g

−1
1 gαi)z = (g1hi)

z for i ∈ ω∗. Therefore,
the ciphertext is random encryption of the message Mν

under the attribute set ω∗. ii) Otherwise, if µ = 1, then
T = e(g, g)v. We then have C0 = Mνe(g, g)

v. Since v
is random, C0 will be a random element in GT from A’s
view and the encrypted message contains no information
about Mν .
Phase 2. Phase 1 is repeated with the restriction that A
cannot issue private key query on ω in the case b = 0,
where |ω ∩ ω∗| ≥ d.
Guess. A will submit a guess ν′ of ν. If ν′ = ν the
simulator S will output µ′ = 0 to indicate that it was given
a DBDH-tuple otherwise it will output µ′ = 1 to indicate
it was given a random 4-tuple.

In the case where µ = 1, A has no information about ν.
Therefore, we have Pr[ν ̸= ν′|µ = 1] = 1

2 . Since S guesses
µ′ = 1 when ν ̸= ν′, we have Pr[µ′ = µ|µ = 1] = 1

2 .
If µ = 0, then the adversary sees an encryption of Mν . It

has an advantage ϵ in this situation by definition. Therefore,
we have Pr[ν = ν′|µ = 0] = 1

2 +ϵ. Since S guesses µ′ = 0
when ν = ν′, we have Pr[µ′ = µ|µ = 0] = 1

2 + ϵ.

Fig. 4. Application in Hybrid Cloud Setting

The overall advantage of S in the DBDH game is
1
2Pr[µ

′ = µ|µ = 0] + 1
2Pr[µ

′ = µ|µ = 1] − 1
2 =

1
2 (

1
2 + ϵ) + 1

2
1
2 − 1

2 = 1
2ϵ.

Finally, we note that though our construction is CPA-
secure, it is allowed to be extended to the stronger RCCA-
security guarantee by using simulation-sound NIZK proofs
[25]. Alternatively, if we are willing to use random oracle,
then we can use standard techniques such as the Fujisaki-
Okamoto transformation [26].

F. Practical Consideration

As illustrated in Fig. 4, we can consider to utilize
our construction in hybrid clouds. More precisely, KGSP
is maintained as a private cloud with high trust to deal
with sensitive information, but leaving SSP and DSP as
public cloud to provide public storage and computation
service respectively. Actually, this type of hybrid setting
has become more and more attractive as many organizations
are moving to the public cloud due to its benefit of highly
available and scalable resources but still want to store and
process the critical data in the private cloud.

As shown in Fig. 5, we provide the working process of
proposed construction for outsourced key generation and
decryption.

In the outsourced key generation shown in Fig. 5(a), AA
and KGSP are allowed to parallelly perform computation
to produce partial transformation key for customized and
default attributes. Specifically, after producing the key pair
(OKKGSP, OKAA) with KeyGeninit(ω,MK), two individ-
ual phase can be executed simultaneously. i) At KGSP,
OKKGSP is involved to generate partial transformation
key for customized attribute set ω. ii) At AA, OKAA is
involved to generate the other partial transformation key
for default attribute θ. The parallel computation is benefit
for improving efficiency in key generation for ABE system.

In the outsourced decryption shown in Fig. 5(b), user
firstly fetches ciphertext from SSP and computes the inter-

8

KGSP AA U

(a) Outsourced Key Generation

DSP U SSP

(b) Outsourced Decryption

Fig. 5. Outsourced Key Generation and Decryption

section subset S locally. Therefore, only a partial ciphertext,
blinded transformation key and intersection subset need
to be delivered to DSP to perform partial decryption.
Alternatively, it allows another scenario, in which after
key generation user directly sends his attribute set ω and
corresponding blinded transformation key T̃K to DSP to be
stored. In this case, the DSP performs a role as proxy, who
can automatically retrieve ciphertexts that user is interested
in and forward to him partially decrypted one. The DSP
could be the user’s mail server, or the same entity along
with SSP in cloud environment.

V. ANOTHER CONSTRUCTION WITH CHECKABILITY

We observe that in the commercial cloud computing,
for saving computation or bandwidththe, CSPs may be
selfish to execute only a fraction of delegated operation
and return result incorrectly. The dishonest action of CSPs
may cause users obtain incorrect keys or messages. We
also point out that our first construction provides provable
secrecy in the sense that KGSP is maintained as a private
cloud with high trust. By this, we mean that an untrusted

KGSP is able to collaborate with user to fake private key
to enhance his “power”. More precisely, Suppose a user
and the KGSP collude together. They are able to obtain
OKKGSP = x1 and {dθ0, dθ1} corresponding to this user.
With this possession, they can generate TK ′

KGSP for target
attribute set ω′ and joint it with {dθ0, dθ1} to obtain the
faked TK ′ . Using this one, ciphertext satisfied by ω′ can
be decrypted.

Therefore, in this section, aiming at providing checka-
bility as well as reducing the trust on KGSP, we propose
another construction under the widely used RDoC model.

A. Outsourced ABE in Refereed Delegation of Computation
Model

RDoC model originates from the model of refereed
games in [27], and is later formalized in [18][28]. In RDoC
model, the client is able to interact with multiple servers and
it has a right output as long as there exists one server that
follows the proposed protocol. One of the most advantages
of RDoC over traditional model with single server is that
the security risk on the single server is reduced to multiple

9

Fig. 6. Adversary Model for Outsourced ABE under RDoC

servers involved in. As the result of both the practicality and
utility, RDoC model recently has been widely utilized in the
literature of outsourced computation [18][28][29][30][14].

To reduce the trust on KGSP, we will consider the out-
sourced ABE system in RDoC model, in which k KGSPs
cooperatively work together to provide AA with the key
generation service (k−1 are malicious at most). In this case,
as the adversary model illustrated in Fig. 6, an additional
collusion between user and at most k−1 malicious KGSPs
is allowed. Then, the two types adversaries defined in
Section III.B are semi-merged together and able to obtain
OKKGSP[i] for malicious KGSP[i], private keys for all the
corrupted users, all the blinded transformation keys stored
at DSP and so on, where i = 1, 2, . . . , k − 1.

Having this intuition above, we can redefine the security
definition of our setting for RDoC model. The challenger
will maintain the table T , set D and integer j to provide the
adversary with three type of oracles (if RCCA is considered
OM (·) should be added).

• OOKKGSP(Ikey, b): Challenger sets j = j+1 and runs
key generation (including key blinding) completely for
Ikey to obtain SK, {OKKGSP[i]}ki=1 and T̃K. After
adding the entry (j, Ikey, SK, {OKKGSP[i]}ki=1, T̃K)
into T , return {OKKGSP[i]}ki=1,i̸=b.

• O
T̃K

(i): The challenger checks whether the entry
(i, Ikey, SK, {OKKGSP[j]}kj=1, T̃K) exists in T , if so
return T̃K; otherwise return ⊥.

• OSK(i): The challenger checks whether the entry
(i, Ikey, SK, {OKKGSP[j]}kj=1, T̃K) exists in T , if so
set D = D ∪ {Ikey} and return SK, otherwise return
⊥.

B. Intuition for Proposed Construction

For simplicity, we only consider and provide the second
construction with two KGSPs. The key challenge for our
second construction exists in two folds.

• One is how to prevent from the collusion between
the user and the malicious KGSP. Our solution is to
intelligently extend the hybrid policy trick in the first
construction. Specifically, in addition to building an
AND gate between PAA and PKGSP, we introduce a
(2, 2)-secret sharing on PKGSP and make each KGSP
only know its own share OKKGSP[i] for i = 1, 2. In
this sense, even if user collude with a KGSP and obtain
{OKKGSP[i]} for i = 1 or 2, he cannot recover the

secret (which is actually x1 in our construction) to
serve the devil.

• The other is how to detect the dishonest action from
KGSPs and DSP beyond collusion. To fight against it,

– we extend the idea of “ringer” [4] to our setting
to convince that KGSPs do indeed perform all the
computations that were outsourced to them. More
precisely, AA generates a random value (d− 1)-
degree polynomial qRG(·) and sends it along with
qKGSP[i](·) in a random order to KGSP[i]. Each
KGSP generates partial transformation key using
both qRG(·) and qKGSP[i](·), and AA detects the
dishonest action by checking all the partial trans-
formation key computed from qRG(·) (to make
sure that all the honest KGSPs will obtain the
same result from OKRG in a honest computation,
the random values {ri} for qRG(·) should be
selected by AA in advance).

– In addition, we detect the dishonest action of a
malicious DSP by adding redundancy. Specifi-
cally, we can require that all the users in the sys-
tem agree on a redundancy 0k (i.e., a k-length 0
bit string) and append it with original message in
each encryption. Then, after performing complete
decryption to obtain the plaintext, the user can
detect the dishonest action of DSP by checking
the redundency.

C. The Construction under RDoC Model

We provide our second construction with two KGSPs as
follows.

• Setup(λ) : It is similar to the same algorithm in
our previous construction but an integer k should
be agreed in public key. Specifically, the PK =
{g, g1, g2, h, h1, . . . , hn, k} and MK = x are output.

• KeyGeninit(ω,MK) : For each user’s private key
request on ω, AA picks x11, x12 ∈R Zq and sets
OKKGSP[1] = x11, OKKGSP[2] = x12 and OKAA =
x2 = x−x11−x12 mod q. Next, select (d−1)-degree
random polynomials qKGSP[1](·) and qKGSP[2](·) with
the restrictions: i) let ω′ be any (d − 1)-element
subset of ω, qKGSP[1](i) = qKGSP[2](i) for each
i ∈ ω′; ii) qKGSP[1](0) = x11; iii) qKGSP[2](0) =
x12. Thirdly, to enable convincing the dishonest ac-
tion of KGSPs later, select another random poly-
nomial qRG(·). Furthermore, for each i ∈ ω, pick
rKGSP[1],i, rKGSP[2],i, rRG,i ∈R Zq with the restriction
that rKGSP[1],j = rKGSP[2],j where j ∈ ω′. Finally,
AA sends (S[1]REAL, SRG) and (S[2]REAL, SRG)
to KGSP[1] and KGSP[2] respectively, where the
pair S[j]REAL = (qKGSP[j](·), {rKGSP[j],i}i∈ω) and
SRG = (qRG(·), {rRG,i}i∈ω) for j = 1, 2. We empha-
size that in the both communications S[·]REAL and
SRG should be sent in random orders to avoid KGSPs
knowing which one is really to be computed for partial
transformation key.

10

• KeyGenout(S[j]REAL, SRG) : KGSP[j] generates par-
tial transformation key for both qKGSP[j](·) and
qRG(·). More precisely, KGSP[j] computes

TKKGSP[j] = ({d[j]i0, d[j]i1}i∈ω)

where d[j]i0 = g
qKGSP[j](i)
2 (g1hi)

rKGSP[j],i , d[j]i1 =
grKGSP[j],i and

TKRGj = ({d[RGj]i0, d[RGj]i1})

where d[RGj]i0 = g
qRG(i)
2 (g1hi)

rRG,i , d[RGj]i1 =
grRG,i , and sends (TKKGSP[j], TKRGj) to AA in its
receiving order.

• KeyGenin(ω,OKAA) : Similar to the same algorithm
described in our basic construction, AA selects rθ ∈R

Zqand computes dθ0 = gx2
2 · (g1h)rθ and dθ1 = grθ .

Finally output TKAA = ({dθ0, dθ1}).
• KeyCheck(TKKGSP[1], TKRG1 , TKKGSP[2], TKRG2) :

AA checks that both KGSPs produce the correct
outputs, i.e., d[1]j0 = d[2]j0, d[1]j1 = d[2]j1 for
all j ∈ ω′ and d[RG1]i0 = d[RG2]i0, d[RG1]i1 =
d[RG2]i1 for all i ∈ ω. After that, continue to combine
the partial transformation key together by computing
di0 = d[1]i0 · d[2]i0 and di1 = d[1]i1 · d[2]i1 for all
i ∈ ω. Finally output the complete transformation key
TK = ({di0, di1}i∈ω∪{θ}).

• KeyBlind(TK) : It is identical to the same algo-
rithm in our previous construction and outputs SK =
(t, TK) and T̃K.

• Encrypt(M,ω′) : User firstly appends the message M
to be encrypted with a redundancy 0k to obtain MT =
M ||0k where || is the concatenation of string. Then,
the rest is identical to the same algorithm in the first
construction but to encrypt MT . Finally, output CT =
(ω′ ∪ {θ},MT e(g1, g2)

s, gs, {g1hi}i∈ω′ , g1h).
• Decryptout(CT, T̃K) : It is identical to the same algo-

rithm in previous construction and outputs CTpart =
e(g1, g2)

st.
• Decrypt(CTpart, SK) : It is identical to the same

algorithm in previous construction except that the
dishonest action of DSP should be detected through
checking redundancy. Specifically, by executing the
decryption algorithm in previous construction, MT

is obtained. The user continues to check whether
a redundancy 0k is appended with MT . If so (i.e.,
MT = M ||0k), M is obtained through truncation;
otherwise, a dishonest action of DSP is detected.

D. Analysis

Our second construction has almost the same efficiency
with the first one. Specifically, in key-issuing, though
another key combination operation is required at attribute
authority side, it costs mutiplications for |ω| times, which
is negligible using the modern devices.

Then, we provide the security analysis below.
Theorem 2: The second construction is secure against

chosen-plaintext attack in the sense of the security defini-
tion modified in Section V.A under DBDH assumption.

Proof: Similar to theorem 1, we will build a simulator
S as follows.

Init. S runs A and receives the challenge set ω∗.
Setup. S sets g1 = X, g2 = Y and h = g−1

1 g−α for α ∈R

Zq . For i ∈ ω∗, hi = g−1
1 gαi where αi ∈R Zq . For i /∈ ω∗,

hi = gαi where αi ∈R Zq . Finally, S sends the public
key PK = (g, g1, g2, h, h1, . . . , hn) to A where n is the
number of attributes in universe.
Phase 1. S initializes an integer j = 0 and an empty table
T to provide A oracles as follows.

• OOKKGSP(ω, b): S firstly selects x2, x1b ∈R Zq ,
and randomly picks a (d − 1)-degree polynomial
qKGSP[b](·) with qKGSP[b](0) = x1b. S continues to
compute the partial transformation keys TKKGSP[b] =

({gqKGSP[b](i)
2 (g1hi)

rKGSP[b],i , grKGSP[b],i}i∈ω) for
KGSP[b] and TKAA = (gx2

2 (g1h)
rθ , grθ) for

AA, where rKGSP[b],i, rθ ∈R Zq for each i ∈ ω.
Furthermore, define three sets Γ,Γ′ and S with
Γ = ω ∩ ω∗, |Γ′| = d − 1,Γ ⊆ Γ′ ⊆ ω and
S = Γ′ ∪ {0}. S sets rKGSP[1−b],i = −y∆j,S(0) + r′i
where r′i ∈R Zq , and simulates TKKGSP[1−b] =
({d[1− b]i0, d[1− b]i1}i∈ω):
1) For each attribute i ∈ Γ′, set d[1 − b]i0 =
gτi2 (g1hi)

rKGSP[1−b],i and d[1 − b]i1 = grKGSP[1−b],i ,
where τi = qKGSP[b](i) and rKGSP[1−b],i = rKGSP[b],i.
2) For each attribute i ∈ ω − Γ′, set d[1 −
b]i0 = g

∑
j∈Γ′ ∆j,S(i)τj−(x2+x1b+αi)∆j,S(0)

2 · (g1hi)
r′i

and d[1− b]i1 = g−y∆j,S(0)+r′i .
S furthermore computes TK = ({di0, di1}i∈ω∪{θ})
where di0 = d[b]i0·d[1−b]i0 and di1 = d[b]i1·d[1−b]i1
for i ∈ ω. After setting j = j+1 and adding the entry
(j, ω, ·, x1b, x1(2−b), ·) into T , return x1b.

• O
T̃K

(i): The challenger checks whether the entry
(i, ω, ·, OKKGSP[1], OKKGSP[2], ·) exists in T , if so
pick t = t′

y where t′ ∈R Zq and compute T̃K =

{dti0, dti1}i∈ω∪{θ}. After complete this entry, return
T̃K. If no such entry exists, return ⊥.

• OSK(i): If there exists an entry in the form
of (i, ω, ·, OKKGSP[1], OKKGSP[2], ·) in T satisfying
γd(ω, ω

∗) = 0, it is identical to O
T̃K

(i) to simulate
the key blinding procedure but returns SK. Otherwise,
return ⊥.

Challenge. A will submit two challenge messages M0 and
M1 to S. The simulator flips a random coin ν and returns
an encryption of Mν . The ciphertext is simulated as CT ∗ =
(ω∗ ∪ {θ},MνT, g

z, g−zα, {gzαi}i∈ω∗).
Phase 2. Phase 1 is repeated with the restriction that A
cannot issue query on ω to OSK(·) where γd(ω, ω

∗) = 1.

Guess. A will submit a guess ν′ of ν. If ν′ = ν the
simulator S will output µ′ = 0 to indicate that it was given
a DBDH-tuple otherwise it will output µ′ = 1 to indicate
it was given a random 4-tuple.

Similar to the proof of theorem 1, the overall advantage
of S in the DBDH game is 1

2Pr[µ
′ = µ|µ = 0]+ 1

2Pr[µ
′ =

µ|µ = 1]− 1
2 = 1

2ϵ.

11

Scheme Advanced construction Construction in [3] Construction in [2]

outsourced key generation
√

× ×
outsourced decryption

√ √ √

checkability
√

× ×

TABLE III
FUNCTIONALITY COMPARISON

E. Functionality Comparison
Beyond outsourced key generation and decryption, the

checkability on KGSP is supported in our second con-
struction. Specifically, since KGSP[1] (or KGSP[2]) cannot
distinguish the outsourced private key generation from the
two outsourced tasks. If KGSP[1] (KGSP[2]) fails during
any execution of KeyGenout(·), it will be detected with
probability d−1+|ω|

2|ω| which is not less than 1
2 . In addition,

through appending redundancy, the dishonest action of DSP
can be easily detected in our construction.

We provide a functionality comparison between our
second construction and other outsourced ABE in TABLE
III.

VI. CONCLUSION

In this paper, for the first time, we provide an outsourced
ABE scheme simultaneously supporting outsourced key-
issuing and decryption. With the aid of KGSP and DSP,
our scheme achieves constant efficiency at both authority
and user sides. In addition, we provide a trust-reduced
construction with two KGSPs which is secure under re-
cently formulized RDoC model. Unlike the state-of-the-
art outsourced ABE, checkability is supported by this
construction.

REFERENCES

[1] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in
Advances in Cryptology - EUROCRYPT 2005, ser. Lecture Notes
in Computer Science, R. Cramer, Ed. Springer Berlin / Heidelberg,
2005, vol. 3494, pp. 457–473.

[2] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the de-
cryption of ABE ciphertexts,” in Proceedings of the 20th USENIX
conference on Security, ser. SEC’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 34–34.

[3] Z. Zhou and D. Huang, “Efficient and secure data storage operations
for mobile cloud computing,” Cryptology ePrint Archive, Report
2011/185, 2011.

[4] P. Golle and I. Mironov, “Uncheatable distributed computations,” in
Proceedings of the 2001 Conference on Topics in Cryptology: The
Cryptographer’s Track at RSA, ser. CT-RSA 2001. London, UK,
UK: Springer-Verlag, 2001, pp. 425–440.

[5] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” in
Proceedings of the 13th ACM conference on Computer and com-
munications security, 2006, pp. 89–98.

[6] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in IEEE Symposium on Security and Privacy
2007, may 2007, pp. 321–334.

[7] L. Cheung and C. Newport, “Provably secure ciphertext policy
ABE,” in Proceedings of the 14th ACM conference on Computer
and communications security, ser. CCS ’07, 2007, pp. 456–465.

[8] T. Nishide, K. Yoneyama, and K. Ohta, “Attribute-based encryp-
tion with partially hidden encryptor-specified access structures,” in
Applied Cryptography and Network Security, ser. Lecture Notes in
Computer Science, S. Bellovin, R. Gennaro, A. Keromytis, and
M. Yung, Eds. Springer Berlin / Heidelberg, 2008, vol. 5037, pp.
111–129.

[9] J. Li, K. Ren, B. Zhu, and Z. Wan, “Privacy-aware attribute-
based encryption with user accountability,” in Information Security,
ser. Lecture Notes in Computer Science, P. Samarati, M. Yung,
F. Martinelli, and C. Ardagna, Eds. Springer Berlin / Heidelberg,
2009, vol. 5735, pp. 347–362.

[10] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in Pro-
ceedings of the 29th conference on Information communications,
ser. INFOCOM’10. Piscataway, NJ, USA: IEEE Press, 2010, pp.
534–542.

[11] M. J. Atallah, K. Pantazopoulos, J. R. Rice, and E. E. Spafford,
“Secure outsourcing of scientific computations,” in Trends in Soft-
ware Engineering, ser. Advances in Computers, M. V. Zelkowitz,
Ed. Elsevier, 2002, vol. 54, pp. 215 – 272.

[12] M. J. Atallah and J. Li, “Secure outsourcing of sequence compar-
isons,” International Journal of Information Security, vol. 4, pp. 277–
287, 2005.

[13] D. Benjamin and M. J. Atallah, “Private and cheating-free outsourc-
ing of algebraic computations,” in Proceedings of the 2008 Sixth
Annual Conference on Privacy, Security and Trust, ser. PST ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 240–245.

[14] M. J. Atallah and K. B. Frikken, “Securely outsourcing linear algebra
computations,” in Proceedings of the 5th ACM Symposium on Infor-
mation, Computer and Communications Security, ser. ASIACCS ’10.
New York, NY, USA: ACM, 2010, pp. 48–59.

[15] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing
of linear programming in cloud computing,” in IEEE International
Conference on Computer Communications (INFOCOM), 2011, pp.
820–828.

[16] K. Bicakci and N. Baykal, “Server assisted signatures revisited,” in
Topics in Cryptology - CT-RSA 2004, ser. Lecture Notes in Computer
Science, T. Okamoto, Ed. Springer Berlin / Heidelberg, 2004, vol.
2964, pp. 1991–1992.

[17] M. Jakobsson and S. Wetzel, “Secure server-aided signature gener-
ation,” in Public Key Cryptography, 2001, pp. 383–401.

[18] S. Hohenberger and A. Lysyanskaya, “How to securely outsource
cryptographic computations,” in Theory of Cryptography, ser. Lec-
ture Notes in Computer Science, J. Kilian, Ed. Springer Berlin /
Heidelberg, 2005, vol. 3378, pp. 264–282.

[19] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating
computation: interactive proofs for muggles,” in Proceedings of the
40th annual ACM symposium on Theory of computing, ser. STOC
’08. New York, NY, USA: ACM, 2008, pp. 113–122.

[20] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proceedings of the 41st annual ACM symposium on Theory of
computing, ser. STOC ’09. New York, NY, USA: ACM, 2009, pp.
169–178.

[21] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in Ad-
vances in Cryptology - CRYPTO 2010, ser. Lecture Notes in Com-
puter Science, T. Rabin, Ed. Springer Berlin / Heidelberg, 2010,
vol. 6223, pp. 465–482.

[22] K.-M. Chung, Y. Kalai, F.-H. Liu, and R. Raz, “Memory delegation,”
in Advances in Cryptology - CRYPTO 2011, ser. Lecture Notes in
Computer Science, P. Rogaway, Ed. Springer Berlin / Heidelberg,
2011, vol. 6841, pp. 151–168.

[23] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” in Advances in Cryptology - EUROCRYPT
2011, ser. Lecture Notes in Computer Science, K. Paterson, Ed.
Springer Berlin / Heidelberg, 2011, vol. 6632, pp. 129–148.

[24] R. Canetti, H. Krawczyk, and J. Nielsen, “Relaxing chosen-
ciphertext security,” in Advances in Cryptology - CRYPTO 2003,
ser. Lecture Notes in Computer Science, D. Boneh, Ed. Springer
Berlin / Heidelberg, 2003, vol. 2729, pp. 565–582.

[25] A. Sahai, “Non-malleable non-interactive zero knowledge and adap-

12

tive chosen-ciphertext security,” in 1999. 40th Annual Symposium on
Foundations of Computer Science, 1999, pp. 543–553.

[26] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” in Proceeding of the 19th Annual
International Cryptology Conference on Advances in Cryptology, ser.
Lecture Notes in Computer Science, M. Wiener, Ed. Springer Berlin
/ Heidelberg, 1999, vol. 1666, pp. 537–554.

[27] U. Feige and J. Kilian, “Making games short (extended abstract),” in
Proceedings of the twenty-ninth annual ACM symposium on Theory
of computing, ser. STOC ’97. New York, NY, USA: ACM, 1997,
pp. 506–516.

[28] R. Canetti, B. Riva, and G. Rothblum, “Two protocols for delegation
of computation,” in Information Theoretic Security, ser. Lecture
Notes in Computer Science, A. Smith, Ed. Springer Berlin /
Heidelberg, 2012, vol. 7412, pp. 37–61.

[29] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New algorithms
for secure outsourcing of modular exponentiations,” in Computer
Security ESORICS 2012, ser. Lecture Notes in Computer Science,
S. Foresti, M. Yung, and F. Martinelli, Eds. Springer Berlin /
Heidelberg, 2012, vol. 7459, pp. 541–556.

[30] R. Canetti, B. Riva, and G. N. Rothblum, “Practical delegation of
computation using multiple servers,” in Proceedings of the 18th ACM
conference on Computer and communications security, ser. CCS ’11.
New York, NY, USA: ACM, 2011, pp. 445–454.

	Introduction
	Contribution
	Related Work
	Organization

	Preliminary
	Notations
	Cryptographic Background

	System Model and Security Definition
	System Model
	Security Definition

	Proposed Construction
	Access Structure
	Intuition for Proposed Construction
	Construction
	Efficiency Analysis
	Security Analysis
	Practical Consideration

	Another Construction with Checkability
	Outsourced ABE in Refereed Delegation of Computation Model
	Intuition for Proposed Construction
	The Construction under RDoC Model
	Analysis
	Functionality Comparison

	Conclusion
	References

