
Practical Covertly Secure MPC for Dishonest Majority
– or: Breaking the SPDZ Limits
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Abstract. SPDZ (pronounced “Speedz”) is the nickname of the MPC protocol
of Damgård et al. from Crypto 2012. In this paper we both resolve a number
of open problems with SPDZ; and present several theoretical and practical im-
provements to the protocol. In detail, we start by designing and implementing a
covertly secure key generation protocol for obtaining a BGV public key and a
shared associated secret key. We then construct both a covertly and actively se-
cure preprocessing phase, both of which compare favourably with previous work
in terms of efficiency and provable security.
We also build a new online phase, which solves a major problem of the SPDZ
protocol: namely prior to this work preprocessed data could be used for only one
function evaluation and then had to be recomputed from scratch for the next eval-
uation, while our online phase can support reactive functionalities. This improve-
ment comes mainly from the fact that our construction does not require players
to reveal the MAC keys to check correctness of MAC’d values.

1 Introduction

For many decades multi-party computation (MPC) had been a predominantly theoretic
endeavour in cryptography, but in recent years interest has arisen on the practical side.
This has resulted in various implementation improvements and such protocols are be-
coming more applicable to practical situations. A key part in this transformation from
theory to practice is in adapting theoretical protocols and applying implementation tech-
niques so as to significantly improve performance, whilst not sacrificing the level of se-
curity required by real world applications. This paper follows this modern, more prac-
tical, trend.

Early applied work on MPC focused on the case of protocols secure against passive
adversaries, both in the case of two-party protocols based on Yao circuits [18] and that
of many-party protocols, based on secret sharing techniques [5, 9, 22]. Only in recent
years work has shifted to achieve active security [16, 17, 21], which appears to come at
vastly increased cost when dealing with more than two players. On the other hand, in the
real applications active security may be more stringent than one would actually require.
In [2, 3] Aumann and Lindell introduced the notion of covert security; in this security
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model an adversary who deviates from the protocol is detected with high (but not nec-
essarily overwhelming) probability, say 90%, which still translates into an incentive on
the adversary to behave in an honest manner. In contrast active security achieves the
same effect, but the adversary can only succeed with cheating with negligible probabil-
ity. There is a strong case to be made, see [2, 3], that covert security is a “good enough”
security level for practical application; thus in this work we focus on covert security,
but we also provide solutions with active security.

As our starting point we take the protocol of [13] (dubbed SPDZ, and pronounced
Speedz). In [13] this protocol is secure against active static adversaries in the standard
model, is actively secure, and tolerates corruption of n− 1 of the n parties. The SPDZ
protocol follows the preprocessing model: in an offline phase some shared randomness
is generated, but neither the function to be computed nor the inputs need be known; in
an online phase the actual secure computation is performed. One of the main advan-
tages of the SPDZ protocol is that the performance of the online phase scales linearly
with the number of players, and the basic operations are almost as cheap as those used
in the passively secure protocols based on Shamir secret sharing. Thus, it offers the
possibility of being both more flexible and secure than Shamir based protocols, while
still maintaining low computational cost.

In [11] the authors present an implementation report on an adaption of the SPDZ
protocol in the random oracle model, and show performance figures for both the offline
and online phases for both an actively secure variant and a covertly secure variant. The
implementation is over a finite field of characteristic two, since the focus is on providing
a benchmark for evaluation of the AES circuit (a common benchmark application in
MPC [21, 10]).

Our Contributions: In this work we present a number of contributions which extend
even further the ability the SPDZ protocol to deal with the type of application one is
likely to see in practice. All our theorems are proved in the UC model, and in most cases,
the protocols make use of some predefined ideal functionalities. We give protocols im-
plementing most of these functionalities, the only exception being the functionality that
provides access to a random oracle. This is implemented using a hash functions, and
so the actual protocol is only secure in the Random Oracle Model. We back up these
improvements with an implementation which we report on.

Our contributions come in two flavours. In the first flavour we present a number of
improvements and extensions to the basic underlying SPDZ protocol. These protocol
improvements are supported with associated security models and proofs. Our second
flavour of improvements are at the implementation layer, and they bring in standard
techniques from applied cryptography to bear onto MPC.

In more detail our protocol enhancements, in what are the descending order of im-
portance, are as follows:

1. In the online phase of the original SPDZ protocol the parties are required to reveal
their shares of a global MAC key in order to verify that the computation has been
performed correctly. This is a major problem in practical applications since it means
that secret-shared data we did not reveal cannot be re-used in later applications. Our
protocol adopts a method to accomplish the same task, without needing to open the



underlying MAC key. This means we can now go on computing on any secret-
shared data we have, so we can support general reactive computation rather than
just secure function evaluation. A further advantage of this technique is that some
of the verification we need (the so-called “sacrificing” step) can be moved into the
offline phase, providing additional performance improvements in the online phase.

2. In the original SPDZ protocol [11, 13] the authors assume a “magic” key generation
phase for the production of the distributed Somewhat Homomorphic Encryption
(SHE) scheme public/private keys required by the offline phase. The authors claim
this can be accomplished using standard generic MPC techniques, which are of
course expensive. In this work we present a key generation protocol for the BGV
[6] SHE scheme, which is secure against covert adversaries. In addition we generate
a “full” BGV key which supports the modulus switching and key switching used
in [15]. This new sub-protocol may be of independent interest in other applications
which require distributed decryption in an SHE/FHE scheme.

3. In [11] the modification to covert security was essentially ad-hoc, and resulted in
a very weak form of covert security. In addition no security proofs or model were
given to justify the claimed security. In this work we present a completely different
approach to achieving covert security, we provide an extensive security model and
provide full proofs for the modified offline phase (and the key generation protocol
mentioned above).

4. We introduce a new approach to obtain full active security in the offline phase. In
[13] active security was obtained via the use of specially designed ZKPoKs. In this
work we present a different technique, based on a method used in [20]. This method
has running time similar to the ZKPoK approach utilized in [13], but it allows us to
give much stronger guarantees on the ciphertexts produced by corrupt players: the
gap between the size of “noise” honest players put into ciphertexts and what we can
force corrupt players to use was exponential in the security parameter in [13], and
is essentially linear in our solution. This allows us to choose smaller parameters
for the underlying cryptosystem and so makes other parts of the protocol more
efficient.

It is important to understand that by combining these contributions in different ways,
we can obtain two different general MPC protocols: First, since our new online phase
still has full active security, it can be combined with our new approach to active security
in the offline phase. This results in a protocol that is “syntactically similar” to the one
from [13]: it has full active security assuming access to a functionality for key genera-
tion. However, it has enhanced functionality and performance, compared to [13], in that
it can securely compute reactive functionalities. Second, we can combine our covertly
secure protocols for key generation and the offline phase with the online phase to get a
protocol that has covert security throughout and does not assume that key generation is
given for free.

Our covert solutions all make use of the same technique to move from passive to
covert security, while avoiding the computational cost of performing zero-knowledge
proofs. In [11] covert security is obtained by only checking a fraction of the resulting
proofs, which results in a weak notion of covert security (the probability of a cheater
being detected cannot be made too large). In this work we adopt a different approach,



akin to the cut-and-choose paradigm. We require parties to commit to random seeds
for a number of runs of a given sub-protocol, then all the runs are executed in parallel,
finally all bar one of the runs are “opened” by the players revealing their random seeds.
If all opened runs are shown to have been performed correctly then the players assume
that the single un-opened run is also correctly executed.

A pleasing side-effect of the replacement of zero-knowledge proofs with our custom
mechanism to obtain covert security is that the offline phase can be run in much smaller
“batches”. In [11, 13] the need to amortize the cost of the expensive zero-knowledge
proofs meant that the players on each iteration of the offline protocol executed a large
computation, which produced a large number of multiplication triples [4] (in the mil-
lions). With our new technique we no longer need to amortize executions as much, and
so short runs of the offline phase can be executed if so desired; producing only a few
thousand triples per run.

Our second flavour of improvements at the implementation layer are more mundane;
being mainly of an implementation nature. This extended abstract presents the main
ideas behind our improvements and details of our implementation. For a full description
including details of the associated sub-procedures, security models and associated full
security proofs please see the full version of this paper at [12].

2 SPDZ Overview

We now present the main components of the SPDZ protocol; in this section unless
otherwise specified we are simply recapping on prior work. Throughout the paper we
assume the computation to be performed by n players over a fixed finite field Fp of
characteristic p. The high level idea of the online phase is to compute a function repre-
sented as a circuit, where privacy is obtained by additively secret sharing the inputs and
outputs of each gate, and correctness is guaranteed by adding additive secret sharings
of MACs on the inputs and outputs of each gate. In more detail, each player Pi has a
uniform share αi ∈ Fp of a secret value α = α1 + · · ·+αn, thought of as a fixed MAC
key. We say that a data item a ∈ Fp is 〈·〉-shared if Pi holds a tuple (ai, γ(a)i), where
ai is an additive secret sharing of a, i.e. a = a1 + · · · + an, and γ(a)i is an additive
secret sharing of γ(a) := α · a, i.e. γ(a) = γ(a)1 + · · ·+ γ(a)n.

For the readers familiar with [13], this is a simpler MAC definition. In particular we
have dropped δa from the MAC definition; this value was only used to add or subtract
public data to or from shares. In our case δa becomes superfluous, since there is a
straightforward way of computing a MAC of a public value a by defining γ(a)i ← a·αi.

During the protocol various values which are 〈·〉-shared are “partially opened”,
i.e. the associated values ai are revealed, but not the associated shares of the MAC.
Note that linear operations (addition and scalar multiplication) can be performed on the
〈·〉-sharings with no interaction required. Computing multiplications, however, is not
straightforward, as we describe below.

The goal of the offline phase is to produce a set of “multiplication triples”, which
allow players to compute products. These are a list of sets of three 〈·〉-sharings {〈a〉 , 〈b〉,
〈c〉} such that c = a·b. In this paper we extend the offline phase to also produce “square



pairs” i.e. a list of pairs of 〈·〉-sharings {〈a〉 , 〈b〉} such that b = a2, and “shared bits”
i.e. a list of single shares 〈a〉 such that a ∈ {0, 1}.

In the online phase these lists are consumed as MPC operations are performed.
In particular to multiply two 〈·〉-sharings 〈x〉 and 〈y〉 we take a multiplication triple
{〈a〉 , 〈b〉 , 〈c〉} and partially open 〈x〉 − 〈a〉 to obtain ε and 〈y〉 − 〈b〉 to obtain δ. The
sharing of z = x · y is computed from 〈z〉 ← 〈c〉+ ε · 〈b〉+ δ · 〈a〉+ ε · δ.

The reason for us introducing square pairs is that squaring a value can then be
computed more efficiently as follows: To square the sharing 〈x〉 we take a square pair
{〈a〉 , 〈b〉} and partially open 〈x〉 − 〈a〉 to obtain ε. We then compute the sharing of
z = x2 from 〈z〉 ← 〈b〉+2·ε·〈x〉−ε2. Finally, the “shared bits” are useful in computing
high level operation such as comparison, bit-decomposition, fixed and floating point
operations as in [1, 7, 8].

The offline phase produces the triples in the following way. We make use of a Some-
what Homomorphic Encryption (SHE) scheme, which encrypts messages in Fp, sup-
ports distributed decryption, and allows computation of circuits of multiplicative depth
one on encrypted data. To generate a multiplication triple each player Pi generates en-
cryptions of random values ai and bi (their shares of a and b). Using the multiplicative
property of the SHE scheme an encryption of c = (a1 + · · · + an) · (b1 + · · · + bn)
is produced. The players then use the distributed decryption protocol to obtain shar-
ings of c. The shares of the MACs on a, b and c needed to complete the 〈·〉-sharing
are produced in much the same manner. Similar operations are performed to produce
square pairs and shared bits. Clearly the above (vague) outline needs to be fleshed out
to ensure the required covert security level. Moreover, in practice we generate many
triples/pairs/shared-bits at once using the SIMD nature of the BGV SHE scheme.

3 BGV

We now present an overview of the BGV scheme as required by our offline phase. This
is only sketched, the reader is referred to [6, 14, 15] for more details; our goal is to
present enough detail to explain the key generation protocol later.

3.1 Preliminaries

Underlying Algebra: We fix the ring Rq = (Z/qZ)[X]/Φm(X) for some cyclotomic
polynomial Φm(X), where m is an parameter which can be thought of as a function
of the underlying security parameter. Note that q may not necessarily be prime. Let
R = Z[X]/Φm(X), and φ(m) denote the degree of R over Z, i.e. Euler’s φ function.
The message space of our scheme will be Rp for a prime p of approximately 32, 64
or 128-bits in length, whilst ciphertexts will lie in either R2

q0 or R2
q1 , for one of two

moduli q0 and q1. We select R = Z[X]/(Xm/2 + 1) for m a power of two, and p = 1
(mod m). By picking m and p this way we have that the message space Rp offers
m/2-fold SIMD parallelism, i.e. Rp ∼= Fm/2p . In addition this also implies that the ring
constant cm from [13, 15] is equal to one.



We wish to generate a public key for a leveled BGV scheme for which n players
each hold a share, which is itself a “standard” BGV secret key. As we are working with
circuits of multiplicative depth at most one we only need two levels in the moduli chain
q0 = p0 and q1 = p0 · p1. The modulus p1 will also play the role of P in [15] for the
SwitchKey operation. The value p1 must be chosen so that p1 ≡ 1 (mod p), with the
value of p0 set to ensure valid distributed decryption.

Random Values: Each player is assumed to have a secure entropy source. In practice
we take this to be /dev/urandom, which is a non-blocking entropy source found on
Unix like operating systems. This is not a “true” entropy source, being non-blocking,
but provides a practical balance between entropy production and performance for our
purposes. In what follows we model this source via a procedure s ← Seed(), which
generates a new seed from this source of entropy. Calling this function sets the players
global variable cnt to zero. Then every time a player generates a new random value in
a protocol this is constructed by calling PRFs(cnt), for some pseudo-random function
PRF, and then incrementing cnt. In practice we use AES under the key s with message
cnt to implement PRF.

The point of this method for generating random values is that the said values can
then be verified to have been generated honestly by revealing s in the future and recom-
puting all the randomness used by a player, and verifying his output is consistent with
this value of s.

From the basic PRF we define the following “induced” pseudo-random number
generators, which generate elements according to the following distributions but seeded
by the seed s:

– HWT s(h, n): This generates a vector of length n with elements chosen at random
from {−1, 0, 1} subject to the condition that the number of non-zero elements is
equal to h.

– ZOs(0.5, n): This generates a vector of length nwith elements chosen from {−1, 0,
1} such that the probability of coefficient is p−1 = 1/4, p0 = 1/2 and p1 = 1/4.

– DGs(σ2, n): This generates a vector of length n with elements chosen according to
the discrete Gaussian distribution with variance σ2.

– RCs(0.5, σ2, n): This generates a triple of elements (v, e0, e1) where v is sampled
from ZOs(0.5, n) and e0 and e1 are sampled from DGs(σ2, n).

– Us(q, n): This generates a vector of length n with elements generated uniformly
modulo q.

If any random values are used which do not depend on a seed then these should be
assumed to be drawn using a secure entropy source (again in practice assumed to be
/dev/urandom). If we pull from one of the above distributions where we do not care
about the specific seed being used then we will drop the subscript s from the notation.

Broadcast: When broadcasting data we assume two different models. In the online phase
during partial opening we utilize the method described in [13]; in that players send their
data to a nominated player who then broadcasts the reconstructed value back to the
remaining players. For other applications of broadcast we assume each party broadcasts
their values to all other parties directly. In all instances players maintain a running



hash of all values sent and received in a broadcast (with a suitable modification for the
variant used for partial opening). At the end of a protocol run these running hashes are
compared in a pair-wise fashion. This final comparison ensures that in the case of at
least two honest parties the adversary must have been consistent in what was sent to the
honest parties.

3.2 Key Generation

The key generation algorithm generates a public/private key pair such that the public
key is given by pk = (a, b), where a is generated from U(q1, φ(m)) (i.e. a is uniform in
Rq1 ), and b = a · s + p · ε where ε is a “small” error term, and s is the secret key such
that s = s1 + · · ·+ sn, where player Pi holds the share si. Recall since m is a power of
2 we have φ(m) = m/2.

The public key is also augmented to an extended public key epk by addition of a
“quasi-encryption” of the message −p1 · s2, i.e. epk contains a pair enc = (bs,s2 , as,s2)
such that bs,s2 = as,s2 · s + p · εs,s2 − p1 · s2, where as,s2 ← U(q1, φ(m)) and εs,s2

is a “small” error term. The precise distributions of all these values will be determined
when we discuss the exact key generation protocol we use.

3.3 Encryption and Decryption

Encpk(m): To encrypt an elementm ∈ Rp, using the modulus q1, we choose one “small
polynomial” (with 0,±1 coefficients) and two Gaussian polynomials (with variance
σ2), via (v, e0, e1)← RCs(0.5, σ2, φ(m)). Then we set c0 = b · v + p · e0 +m, c1 =
a · v + p · e1, and set the initial ciphertext as c′ = (c0, c1, 1).

SwitchModulus((c0, c1), `): The operation SwitchModulus(c) takes the ciphertext c =
((c0, c1), `) defined modulo q` and produces a ciphertext c′ = ((c′0, c

′
1), ` − 1) defined

modulo q`−1, such that [c0 − s · c1]q`
≡ [c′0 − s · c′1]q`−1 (mod p). This is done by

setting c′i = Scale(ci, q`, q`−1) where Scale is the function defined in [15]; note we
need the more complex function of Appendix E of the full version of [15] if working in
dCRT representation as we need to fix the scaling modulo p as opposed to modulo two
which was done in the main body of [15]. As we are only working with two levels this
function can only be called when ` = 1.

Decs(c): Note, that this operation is never actually performed, since no-one knows the
shared secret key s, but presenting it will be instructive: Decryption of a ciphertext
(c0, c1, `) at level ` is performed by setting m′ = [c0 − s · c1]q`

, then converting m′ to
coefficient representation and outputting m′ mod p.

DistDecsi
(c): We actually decrypt using a simplification of the distributed decryption

procedure described in [13], since our final ciphertexts consist of only two elements
as opposed to three in [13]. For input ciphertext (c0, c1, `), player P1 computes v1 =
c0 − si · c1 and each other player Pi computes vi = −si · c1. Each party Pi then
sets ti = vi + p · ri for some random element ri ∈ R with infinity norm bounded
by 2sec · B/(n · p), for some statistical security parameter sec, and the values ti are



broadcast; the precise value B being determined in the full version of this abstract [12].
Then the message is recovered as t1 + · · ·+ tn (mod p).

3.4 Operations on Encrypted Data

Homomorphic addition follows trivially from the methods of [6, 15]. So the main re-
maining task is to deal with multiplication. We first define a SwitchKey operation.

SwitchKey(d0, d1, d2): This procedure takes as input an extended ciphertext c = (d0, d1,
d2) defined modulo q1; this is a ciphertext which is decrypted via the equation

[d0 − s · d1 − s2 · d2]q1 .

The SwitchKey operation also takes the key-switching data enc = (bs,s2 , as,s2) above
and produces a standard two element ciphertext which encrypts the same message but
modulo q0.

– c′0 ← p1 · d0 + bs,s2 · d2 (mod q1), c′1 ← p1 · d1 + as,s2 · d2 (mod q1).
– c′′0 ← Scale(c′0, q1, q0), c′′1 ← Scale(c′1, q1, q0).
– Output ((c′′0 , c

′′
1), 0).

Notice we have the following equality modulo q1:

c′0 − s · c′1 = (p1 · d0) + d2 · bs,s2 − s ·
(
(p · d1)− d2 · as,s2

)
= p1 · (d0 − s · d1 − s2d2)− p · d2 · εs,s2 ,

The requirement on p1 ≡ 1 (mod p) is from the above equation as we want this to
produce the same value as d0 − s · d1 − s2d2 mod q1 on reduction modulo p.

Mult(c, c′): We only need to execute multiplication on two ciphertexts at level one, thus
c = ((c0, c1), 1) and c′ = ((c′0, c

′
1), 1). The output will be a ciphertext c′′ at level zero,

obtained via the following steps:

– c← SwitchModulus(c), c′ ← SwitchModulus(c′).
– (d0, d1, d2)← (c0 · c′0, c1 · c′0 + c0 · c′1,−c1 · c′1).
– c′′ ← SwitchKey(d0, d1, d2).

4 Protocols Associated to the SHE Scheme

In this section we present two sub-protocols associated with the SHE scheme; namely
our distributed key generation and a protocol for proving that a committed ciphertext is
well formed.



The protocol ΠKEYGEN

Initialize:
1. Every player Pi samples a uniform ei ← {1, . . . , c} and asks FCOMMIT to broadcast

the handle τei ← Commit(ei) for a commitment to ei.
2. Every player Pi samples a seed si,j and asks FCOMMIT to broadcast τsi,j ←

Commit(si,j).
3. Every player Pi computes and broadcasts ai,j ← Usi,j (q1, φ(m)).

Stage 1:
4. All the players compute aj ← a1,j + · · ·+ an,j .
5. Every player Pi computes si,j ← HWT si,j (h, φ(m)) and εi,j ←
DGsi,j

(σ2, φ(m)),
and broadcasts bi,j ← [aj · si,j + p · εi,j ]q1 .

Stage 2:
6. All the players compute bj ← b1,j + · · ·+ bn,j and set pkj ← (aj , bj)..
7. Every player Pi computes and broadcasts enc′i,j ← Encpkj

(−p1 ·
si,j ,RCsi,j (0.5, σ

2, φ(m))).
Stage 3:

8. All the players compute enc′j ← enc′1,j + · · ·+ enc′n,j .
9. Every player Pi computes zeroi,j ← Encpkj

(0,RCsi,j (0.5, σ
2, φ(m))).

10. Every player Pi computes and broadcasts enci,j ← (si,j · enc′j) + zeroi,j .
Output:

11. All the players compute encj ← enc1,j + · · ·+ encn,j and set epkj ← (pkj , encj).
12. Every player Pi calls FCOMMIT with Open(τei ). If any opening failed, the players

output the numbers of the respective players, and the protocol aborts.
13. All players compute the challenge chall← 1 +

``Pn
i=1 ei

´
mod c

´
.

14. Every player Pi calls FCOMMIT with Open(τsi,j) for j 6= chall. If any opening failed,
the players output the numbers of the respective players, and the protocol aborts.

15. All players obtain the values committed, compute all the derived values and check
that they are correct.

16. If any of the checks fail, the players output the numbers of the respective players,
and the protocol aborts. Otherwise, every player Pi sets

– si ← si,chall,
– pk← (achall, bchall), epk← (pk, encchall).

Fig. 1. The protocol for key generation.

4.1 Distributed Key Generation Protocol For BGV

The protocol for distributed key generation protocol is given in Figure 1. It makes use
of an abstract functionality FCOMMIT which implements a commitment functionality. In
practice this functionality is implemented in the random oracle model via hash func-
tions, see the full version for details [12]. Here we present a high level overview.

As remarked in the introduction, the authors of [13] assumed a “magic” set up
which produces not only a distributed sharing of the main BGV secret key, but also
a distributed sharing of the square of the secret key. That was assumed to be done via
some other unspecified MPC protocol. The effect of requiring a sharing of the square of
the secret key was that they did not need to perform KeySwitching, but ciphertexts were
50% bigger than one would otherwise expect. Here we take a very different approach:



we augment the public key with the keyswitching data from [15] and provide an explicit
covertly secure key generation protocol.

Our protocol will be covertly secure in the sense that the probability that an adver-
sary can deviate without being detected will be bounded by 1/c, for a positive integer
c. Our basic idea behind achieving covert security is as follows: Each player runs c
instances of the basic protocol, each with different random seeds, then at the end of
the main protocol all bar a random one basic protocol runs are opened, along with the
respective random seeds. All parties then check that the opened runs were performed
honestly and, if any party finds an inconsistency, the protocol aborts. If no problem is
detected, the parties assume that the single unopened run is correct. Thus intuitively the
adversary can cheat with probability at most 1/c.

We start by discussing the generation of the main public key pkj in execution j
where j ∈ {1, . . . , c}. To start with the players generate a uniformly random value
aj ∈ Rq1 . They then each execute the standard BGV key generation procedure, except
that this is done with respect to the global element aj . Player i chooses a low-weight
secret key and then generates an LWE instance relative to that secret key. Following
[15], we choose

si,j ← HWT s(h, φ(m)) and εi,j ← DGs(σ2, φ(m)).

Then the player sets the secret key as si,j and their “local” public key as (aj , bi,j) where
bi,j = [aj · si,j + p · εi,j ]q1 .

Note, by a hybrid argument, obtaining n ring-LWE instances for n different secret
keys but the same value of aj is secure assuming obtaining one ring-LWE instance is
secure. In the LWE literature this is called “amortization”. Also note in what follows
that a key modulo q1 can be also treated as a key modulo q0 since q0 divides q1 and si,j
has coefficients in {−1, 0, 1}.

The global public and private key are then set to be pkj = (aj , bj) and sj = s1,j +
· · · + sn,j , where bj = [b1,j + · · · + bn,j ]q1 . This is essentially another BGV key pair,
since if we set εj = ε1,j + · · ·+ εn,j then we have

bj =
n∑
i=1

(aj · si,j + p · εi,j) = aj · sj + p · εj ,

but generated with different distributions for sj and εj compared to the individual key
pairs above.

We next augment the above basic key generation to enable the construction of the
KeySwitching data. Given a public key pkj and a share of the secret key si,j our method
for producing the extended public key is to produce in turn (see Figure 1 for the details
on how we create these elements in our protocol).

– enc′i,j ← Encpkj
(−p1 · si,j)

– enc′j ← enc′1,j + · · ·+ enc′n,j .
– zeroi,j ← Encpkj

(0)
– enci,j ← (si,j · enc′j) + zeroi,j ∈ R2

q1 .
– encj ← enc1,j + · · ·+ encn,j .
– epkj ← (pkj , encj).



Note, that enc′i,j is not a valid encryption of −p1 · si,j , since −p1 · si,j does not lie in
the message space of the encryption scheme. However, because of the dependence on
the secret key shares here, we need to assume a form of circular security; the precise
assumption needed is stated in the full version [12]. The encryption of zero, zeroi,j , is
added on by each player to re-randomize the ciphertext, preventing an adversary from
recovering si,j from enci,j/enc′j . We call the resulting epkj the extended public key. In
[15] the keyswitching data encj is computed directly from s2

j ; however, we need to use
the above round-about way since s2

j is not available to the parties.
Finally we open all bar one of the c executions and check they have been executed

correctly. If all checks pass then the final extended public key epk is output and the
players keep hold of their associated secret key share si. See Figure 1 for full details of
the protocol.

Theorem 1. In the FCOMMIT-hybrid model, the protocol ΠKEYGEN implements FKEYGEN

with computational security against any static adversary corrupting at most n− 1 par-
ties.

FKEYGEN simply generates a key pair with a distribution matching what we sketched
above, and then sends the values ai, bi, enc′i, enci for every i to all parties and shares of
the secret key to the honest players. Like most functionalities in the following, it allows
the adversary to try to cheat and will allow this with a certain probability 1/c. This is
how we model covert security. See the full version for a complete technical discription
of FKEYGEN.

The BGV cryptosystem resulting from FKEYGEN is proven semantically secure by
the following theorem from the full version of this paper [12].

Theorem 2. If the functionality FKEYGEN is used to produce a public key epk and secret
keys si for i = 0, . . . , n−1 then the resulting cryptosystem is semantically secure based
on the hardness of RLWEq1,σ2,h and the circular security assumption mentioned earlier.

4.2 EncCommit

We use a sub-protocol ΠENCCOMMIT to replace the ΠZKPoPK protocol from [13]. In this
section we consider a covertly secure variant rather than active security; this means that
players controlled by a malicious adversary succeed in deviating from the protocol with
a probability bounded by 1/c. In our experiments we pick c = 5, 10 and 20. In the full
version of this paper we present an actively secure variant of this protocol.

Our new sub-protocol assumes that players have agreed on the key material for
the encryption scheme, i.e. ΠENCCOMMIT runs in the FKEYGEN-hybrid model. The proto-
col ensures that a party outputs a validly created ciphertext containing an encryption
of some pseudo-random message m, where the message m is drawn from a distri-
bution satisfying condition cond. This is done by committing to seeds and using the
cut-and-choose technique, similarly to the key generation protocol. The condition cond
in our application could either be uniformly pseudo-randomly generated from Rp, or
uniformly pseudo-randomly generated from Fp (i.e. a “diagonal” element in the SIMD
representation).



Protocol ΠENCCOMMIT

Usage: The specific distribution of the message is defined by the input parameter cond. The
output is a single message mi private to each player, and a public ciphertext ci from
player i. The protocol runs in two phases; a commitment phase and an opening phase.

KeyGen: The players execute ΠKEYGEN to obtain si, pk, and epk.
Commitment Phase:

1. Every player Pi samples a uniform ei ← {1, . . . , c}, and queries Commit(ei) to
FCOMMIT, which broadcasts a handle τei .

2. For j = 1, . . . , c
(a) Every player Pi samples a seed si,j and queries Commit(si,j) to FCOMMIT,

which broadcasts a handle τsi,j .
(b) Every player Pi generates mi,j according to cond using PRFsi,j .
(c) Every player Pi computes and broadcasts ci,j ← Encpk(mi,j) using PRFsi,j

to generate the randomness.
3. Every player Pi calls FCOMMIT with Open(τei ). All players get ei. If any opening

failed, the players output the numbers of the respective players, and the protocol
aborts.

4. All players compute chall← 1 +
``Pn

i=1 ei
´

mod c
´
.

Opening Phase:
5. Every player Pi calls FCOMMIT with Open(τsi,j) for all j 6= chall so that all players

obtain the value si,j for j 6= chall. If any opening fails, the players output the
numbers of the respective players, and the protocol aborts.

6. For all j 6= chall and all i′ ≤ n, the players check whether ci′,j was generated
correctly using si′,j . If not, they output the numbers of the respective players i′, and
the protocol aborts.

7. Otherwise, every player Pi stores {ci′,chall}i′≤n and mi,chall.

Fig. 2. Protocol that allows ciphertext to be used as commitments for plaintexts

The protocolΠENCCOMMIT is presented in Figure 2. A proof of the following theorem,
and a description of the associated ideal functionality, are given in the full version of
this paper [12].

Theorem 3. In the (FCOMMIT,FKEYGEN)-hybrid model, the protocol ΠENCCOMMIT imple-
ments FSHE with computational security against any static adversary corrupting at
most n− 1 parties.

FSHE offers the same functionality asFKEYGEN but can in addition generate correctly
formed ciphertexts where the plaintext satisfies a condition cond as explained above,
and where the plaintext is known to a particular player (even if he is corrupt). Of course,
if we use the actively secure version of ΠENCCOMMIT from the full version, we would get
a version of FSHE where the adversary is not allowed to attempt cheating.

5 The Offline Phase

The offline phase produces pre-processed data for the online phase (where the secure
computation is performed). To ensure security against active adversaries the MAC val-
ues of any partially opened value need to be verified. We suggest a new method for this
that overcomes some limitations of the corresponding method from [13]. Since it will



be used both in the offline and the online phase, we explain it here, before discussing
the offline phase.

5.1 MAC Checking

We assume some value a has been 〈·〉-shared and partially opened, which means that
players have revealed shares of the a but not of the associated MAC value γ, this is still
additively shared. Since there is no guarantee that the a are correct, we need to check
it holds that γ = αa where α is the global MAC key that is also additively shared.
In [13], this was done by having players commit to the shares of the MAC. then open
α and check everything in the clear. But this means that other shared values become
useless because the MAC key is now public, and the adversary could manipulate them
as he desires.

So we want to avoid opening α, and observe that since a is public, the value γ−αa
is a linear function of shared values γ, α, so players can compute shares in this value
locally and we can then check if it is 0 without revealing information on α. As in
[13], we can optimize the cost of this by checking many MACs in one go: we take a
random linear combination of a and γ-values and check only the results of this. The
full protocol is given in Figure 3; it is not intended to implement any functionality – it
is just a procedure that can be called in both the offline and online phases.

Protocol MACCheck

Usage: Each player has input αi and (γ(aj)i) for j = 1, . . . , t. All players have a public
set of opened values {a1, . . . , at}; the protocol either succeeds or outputs failure if an
inconsistent MAC value is found.

MACCheck({a1, . . . , at}):
1. Every player Pi samples a seed si and asks FCOMMIT to broadcast τsi ←

Commit(si).
2. Every player Pi calls FCOMMIT with Open(τsi ) and all players obtain sj for all j.
3. Set s← s1 ⊕ · · · ⊕ sn.
4. Players sample a random vector r = Us(p, t); note all players obtain the same

vector as they have agreed on the seed s.
5. Each player computes the public value a←

Pt
j=1 rj · aj .

6. Player i computes γi ←
Pt
j=1 rj · γ(aj)i, and σi ← γi − αi · a.

7. Player i asks FCOMMIT to broadcast τσi ← Commit(σi).
8. Every player calls FCOMMIT with Open(τσi ), and all players obtain σj for all j.
9. If σ1 + · · ·+ σn 6= 0, the players output ∅ and abort.

Fig. 3. Method To Check MACs On Partially Opened Values

MACCheck has the following important properties.

Lemma 1. The protocol MACCheck is correct, i.e. it accepts if all the values aj and the
corresponding MACs are correctly computed. Moreover, it is sound, i.e. it rejects except
with probability 2/p in case at least one value or MAC is not correctly computed.

The proof of Lemma 1 is given in the full version of this paper.



5.2 Offline Protocol

The offline phase itself runs two distinct sub-phases, each of which we now describe. To
start with we assume a BGV key has been distributed according to the key generation
procedure described earlier, as well as the shares of a secret MAC key and an encryption
cα of the MAC key as above. We assume that the output of the offline phase will be a
total of at least nI input tuples, nm multiplication triples, ns squaring tuples and nb
shared bits.

In the first sub-phase, which we call the tuple-production sub-phase, we over-produce
the various multiplication and squaring tuples, plus the shared bits. These are then “sac-
rificed” in the tuple-checking phase so as to create at least nm multiplication triples, ns
squaring tuples and nb shared bits. In particular in the tuple-production phase we pro-
duce (at least) 2 · nm multiplication tuples, 2 · ns + nb squaring tuples, and nb shared
bits. Tuple-production is performed by a variant of the method from [13] (precise de-
tails are in the full version of this paper). The two key differences between our protocol
and that of [13], is that

1. The expensive ZKPoKs, used to verify that ciphertexts encrypting random values
are correctly produced, are replaced with our protocol ΠENCCOMMIT.

2. We generate squaring tuples and shared bits, as well as multiplication triples.

The tuple production protocol can be run repeatedly, alongside the tuple-checking sub-
phase and the online phase.

The second sub-phase of the offline phase is to check whether the resulting material
from the prior phase has been produced correctly. This check is needed, because the
distributed decryption procedure needed to produce the tuples and the MACs could
allow the adversary to induce errors. We solve this problem via a sacrificing technique,
as in [13], however, we also need to adapt it to the case of squaring tuples and bit-
sharings. Moreover, this sacrificing is performed in the offline phase as opposed to
the online phase (as in [13]); and the resulting partially opened values are checked in
the offline phase (again as opposed to the online phase). This is made possible by our
protocol MACCheck which allows to verify the MACs are correct without revealing the
MAC key α. The tuple-checking protocol is presented in the full version of this paper
[12].

We show that the resulting protocol ΠPREP, securely implements the functionality
FPREP, which models the offline phase. The functionality FPREP outputs some desired
number of multiplication triples, squaring tuples and shared bits. Full details of FPREP

and ΠPREP are given in the full version, along with a proof of the following theorem.

Theorem 4. In the (FSHE,FCOMMIT)-hybrid model, the protocolΠPREP implementsFPREP

with computational security against any static adversary corrupting at most n− 1 par-
ties if p is exponential in the security parameter.

The security flavour of ΠPREP follows the security of EncCommit, i.e. if one uses the
covert (resp. active) version of EncCommit, one gets covert (resp. active) security for
ΠPREP.



6 Online Phase

We design a protocol ΠONLINE which performs the secure computation of the desired
function, decomposed as a circuit over Fp. Our online protocol makes use of the pre-
processed data coming fromFPREP in order to input, add, multiply or square values. Our
protocol is similar to the one described in [13]; however, it brings a series of improve-
ments, in the sense that we could push the “sacrificing” to the preprocessing phase,
we have specialised procedure for squaring etc, and we make use of a different MAC-
checking method in the output phase. Our method for checking the MACs is simply
the MACCheck protocol on all partially opened values; note that such a method has a
lower soundness error than the method proposed in [13], since the linear combination
of partially opened values is truly random in our case, while it has lower entropy in
[13].

In the full version of the paper we present the protocol ΠONLINE, which is the ob-
vious adaption of the equivalent protocol from [13]. In addition we present an ideal
functionality FONLINE and prove the following theorem.

Theorem 5. In the FPREP-hybrid model, the protocol ΠONLINE implements FONLINE with
computational security against any static adversary corrupting at most n− 1 parties if
p is exponential in the security parameter.

7 Experimental Results

7.1 KeyGen and Offline Protocols

To present performance numbers for our key generation and new variant of the offline
phase for SPDZ we first need to define secure parameter sizes for the underlying BGV
scheme (and in particular how it is used in our protocols). This is done in the full version
for various choices of n (the number of players) and p (the field size).

We then implemented the preceding protocols in C++ on top of the MPIR library
for multi-precision arithmetic. Modular arithmetic was implemented with bespoke code
using Montgomery arithmetic [19] and calls to the underlying mpn_ functions in MPIR.
The offline phase was implemented in a multi-threaded manner, with four cores produc-
ing initial multiplication triples, square pairs, shared bits and input preparation mask
values. Then two cores performed the sacrificing for the multiplication triples, square
pairs and shared bits.

In Table 1 we present execution times (in wall time measured in seconds) for key
generation and for an offline phase which produces 100000 each of the multiplication
tuples, square pairs, shared bits and 1000 input sharings. We also present the average
time to produce a multiplication triple for an offline phase running on one core and
producing 100000 multiplication triples only. The run-times are given for various values
of n, p and c, and all timings were obtained on 2.80 GHz Intel Core i7 machines with 4
GB RAM, with machines running on a local network.

We compare the results to that obtained in [11], since no other protocol can provide
malicious/covert security for t < n corrupted parties. In the case of covert security the
authors of [11] report figures of 0.002 seconds per (un-checked) 64-bit multiplication



Run Times Time per
n p ≈ c KeyGen Offline Triple (sec)
2 232 5 2.4 156 0.00140
2 232 10 5.1 277 0.00256
2 232 20 10.4 512 0.00483
2 264 5 5.9 202 0.00194
2 264 10 12.5 377 0.00333
2 264 20 25.6 682 0.00634
2 2128 5 16.2 307 0.00271
2 2128 10 33.6 561 0.00489
2 2128 20 74.5 1114 0.00937

Run Times Time per
n p ≈ c KeyGen Offline Triple(sec)
3 232 5 3.0 292 0.00204
3 232 10 6.4 413 0.00380
3 232 20 13.3 790 0.00731
3 264 5 7.7 292 0.00267
3 264 10 16.3 568 0.00497
3 264 20 33.7 1108 0.01004
3 2128 5 21.0 462 0.00402
3 2128 10 44.4 889 0.00759
3 2128 20 99.4 2030 0.01487

Table 1. Execution Times For Key Gen and Offline Phase (Covert Security)

triple for both two and three players; however the probability of cheating being detected
was lower bounded by 1/2 for two players, and 1/4 for three players; as opposed to our
probabilities of 4/5, 9/10 and 19/20. Since the triples in [11] were unchecked we need
to scale their run-times by a factor of two; to obtain 0.004 seconds per multiplication
triple. Thus for covert security we see that our protocol for checked tuples are superior
both in terms error probabilities, for a comparable run-time.

When using our active security variant we aimed for a cheating probability of 2−40;
so as to be able to compare with prior run times obtained in [11], which used the method
from [13]. Again we performed two experiments one where four cores produced 100000
multiplication triples, squaring pairs and shared bits, plus 1000 input sharings; and one
experiment where one core produced just 100000 multiplication triples (so as to produce
the average cost for a triple). The results are in Table 2.

n = 2 n = 3
p ≈ Offline Time per Triple Offline Time per Triple
232 2366 0.01955 3668 0.02868
264 3751 0.02749 5495 0.04107
2128 6302 0.04252 10063 0.06317

Table 2. Execution Times For Offline Phase (Active Security)

By way of comparison for a prime of 64 bits the authors of [11] report on an imple-
mentation which takes 0.006 seconds to produce an (un-checked) multiplication triple
for the case of two parties and equivalent active security; and 0.008 per second for the
case of three parties and active security. As we produce checked triples, the cost per
triple for the results in [11] need to be (at least) doubled; to produce a total of 0.012 and
0.016 seconds respectively.

Thus, in this test, our new active protocol has running time about twice that of
the previous active protocol from [13] based on ZKPoKs. From the analysis of the
protocols, we do expect that the new method will be faster, but only if we produce the
output in large enough batches. Due to memory constraints we were so far unable to do
this, but we can extrapolate from these results: In the test we generated 12 ciphertexts
in one go, and if we were able to increase this by a factor of about 10, then we would
get results better than those of [13, 11], all other things being equal. More information
can be found in the full version [12].



7.2 Online

For the new online phase we have developed a purpose-built bytecode interpreter, which
reads and executes pre-generated sequences of instructions in a multi-threaded manner.
Our runtime supports parallelism on two different levels: independent rounds of com-
munication can be merged together to reduce network overhead, and multiple threads
can be executed at once to allow for optimal usage of modern multi-core processors.

In Table 3 we present timings (again in elapsed wall time for a player) for multiply-
ing two secret shared values. Results are given for three different varieties of multipli-
cation, reflecting the possibilities available: purely sequential multiplications; parallel
multiplications with communication merged into one round (50 per round); and parallel
multiplications running in 4 independent threads (50 per round, per thread). The exper-
iments were carried out on the same machines as the offline phase, running over a local
network with a ping of around 0.27ms. For comparison, the original implementation of
the online phase in [13] gave an amortized time of 20000 multiplications per second
over a 64-bit prime field, with three players.

Multiplications/sec
Sequential 50 in Parallel

n p ≈ Single Thread Single Thread Four Threads
2 232 7500 134000 398000
2 264 7500 130000 395000
2 2128 7500 120000 358000
3 232 4700 100000 292000
3 264 4700 98000 287000
3 2128 4600 90000 260000

Table 3. Online Times
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