
Galindo-Garcia Identity-Based Signature Revisited

Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

Dept. of Computer Science and Automation,
Indian Institute of Science,

Bangalore.
{sanjit,chethan0510,vikaskumar}@csa.iisc.ernet.in

Abstract. In Africacrypt 2009, Galindo-Garcia [11] proposed a lightweight identity-based
signature (IBS) scheme based on the Schnorr signature. The construction is simple and
claimed to be the most efficient IBS till date. The security is based on the discrete-log
assumption and the security argument consists of two reductions: B1 and B2, both of
which use the multiple-forking lemma [4] to solve the discrete-log problem (DLP).
In this work, we revisit the security argument given in [11]. Our contributions are two fold:
(i) we identify several problems in the original argument and (ii) we provide a detailed
new security argument which allows significantly tighter reductions. In particular, we show
that the reduction B1 in [11] fails in the standard security model for IBS [1], while the
reduction B2 is incomplete. To remedy these problems, we adopt a two-pronged approach.
First, we sketch ways to fill the gaps by making minimal changes to the structure of the
original security argument; then, we provide a new security argument. The new argument
consists of three reductions: R1, R2 and R3 and in each of them, solving the DLP is
reduced to breaking the IBS. R1 uses the general forking lemma [2] together with the
programming of the random oracles and Coron’s technique [7]. Reductions R2 and R3,
on the other hand, use the multiple-forking lemma along with the programming of the
random oracles. We show that the reductions R1 and R2 are significantly tighter than
their original counterparts.

Keywords: Identity-based signatures, Galindo-Garcia identity-based signature, Schnorr
signatures, Forking lemma, Discrete-log assumption.

1 Introduction

The notion of identity-based signatures (IBS) is an extension of the idea of digital signatures to
the identity-based setting. As in traditional signature schemes, the signer uses her secret key to
sign a message. However, the signature can be verified by anyone using the signer’s identity and
public parameters of the private-key generator (PKG)1. IBS or more generally, identity-based
cryptosystems [19] do not require any certificates to be exchanged and hence can be advantageous
over the traditional PKI based systems in certain scenarios.

Several RSA based IBS [9,13] have been proposed in the literature after the notion of IBS was
introduced by Shamir in 1984 [19]. In recent times, a few pairing based constructions were also
proposed [6,14,15,8]. Galindo-Garcia [11], on the other hand, used the technique of concatenated
Schnorr’s signature to propose an identity-based signature that works in the discrete-log setting
but does not require pairing. The authors came up with a security proof of the proposed IBS
scheme in the so-called EU-ID-CMA model (see §A.2) using the random oracle methodology [3]
and a variant of the forking lemma [2,4,16]. The security is based on the discrete-log problem in
any prime order group. The authors suggest to implement their scheme in a suitable elliptic curve
group and after a comparative study concluded that the proposed construction has an overall
better performance than the existing RSA-based and pairing-based schemes. The Galindo-Garcia
IBS, due to its efficiency and simplicity, has been used as a building block for a couple of other
cryptosystems [17,21].

0 This is the full version of a paper appearing in ICISC 2012.
1 The PKG is a trusted third party whose duty is to create and then communicate the secret keys to

the users in the system through a secure channel.



2 Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

Our Contribution. Critical examination of the security argument of a cryptographic construction
to see whether the claimed security is indeed achieved or not is an important topic in crypto-
graphic research. Two such well-known examples are Shoup’s work on OAEP [20] and Galindo’s
work on Boneh-Franklin IBE [10]. Another important question in the area of provable security
is to obtain tighter security reduction for existing construction. One such classical example is
Coron’s analysis of FDH [7]. In this work we revisit the security argument of Galindo-Garcia
IBS [11] with the above two questions in mind.

The security argument of Galindo-Garcia IBS consists of two reductions, B1 and B2, the
choice of which is determined by an event E. The authors construct B1 to solve the DLP when
the event E occurs. Similarly, B2 is used to solve the DLP in case the complement of E occurs.
Both the reductions use the multiple-forking lemma [4] to show that the DLP is reduced to
breaking the IBS scheme.

In this work, we make several observations about the security argument in [11]. In particular,
we show that the reduction B1 fails to provide a proper simulation of the unforgeability game in
the standard security model for IBS [1], while B2 is incomplete. We adopt a two-pronged approach
to address these problems. First, we sketch ways to fill the gaps by making minimal changes to
the structure of original security argument; then, we provide a new security argument. The new
argument consists of three reductions: R1, R2 and R3. At a high level, our first reduction, R1,
addresses the problems identified in the original B1 in [11], while R2 and R3 together address the
incompleteness of the original B2. The reduction R1 uses the general forking lemma [2] and the
technique first introduced by Coron [7] to prove the security of FDH. We show that this results
in a significantly tighter security reduction. On the other hand, both R2 and R3 are structurally
similar to B2 but uses two different versions of the multiple forking lemma [4], together with an
algebraic technique similar to one adopted by Boneh-Boyen in [5]. The security reduction R2

is also significantly tighter than the original B2 (see Table 1 for a comparison). All the three
reductions use the programmability of the random oracles in a crucial way.

Notations. We adopt the notations commonly used in the literature. s ∈R S denotes picking
an element s uniformly at random from the set S. Similarly, {s1, . . . , sn} ∈R S denotes picking

elements s1, . . . , sn independently and uniformly at random from the set S. (y1, . . . , yn)
$←−

A(x1, . . . , xm) denotes an probabilistic algorithm A running on input (x1, . . . , xm) to produce
output (y1, . . . , yn). For an oracle H, #H(x) indicates the index on which the oracle query for
input x was made. In a group G, the discrete-log to a generator g is denoted by logG

g . Finally,

in the illustrations involving the forking algorithms, Qij denotes the jth query in the ith run.

Organisation. In §2, we reproduce the original security argument given in [11] and note our
observations on the security argument. We give a detailed security argument for the same IBS
in §3. Finally, we end with the concluding remarks in §4. For the sake of completeness, some of
the standard definitions relevant to the paper are given in Appendix A. The forking algorithms
are explained, in detail, in Appendix B.

2 Revisiting the Galindo-Garcia Security Argument

We first recall the construction of the Galindo-Garcia IBS and then identify several problems
with the original security argument in [11].

2.1 The Construction

The scheme is based on the Schnorr signature scheme [18]. The user secret key can be considered
as the Schnorr signature by the PKG on the identity of the user, using the master secret key as
the signing key. Analogously, the signature on a message by a user is the Schnorr signature, by
that user, on the message using her user secret key as the signing key. The construction is given
below (for further details see §3 in [11]).



Galindo-Garcia Identity-Based Signature Revisited 3

G(κ): Let G = 〈g〉 be a group of prime order p. Return z ∈R Zp as the master secret key
msk and (G, p, g, gz,H,G) as public parameters mpk, where H and G are hash functions

H : {0, 1}∗ → Zp, G : {0, 1}∗ → Zp.

E(id,msk,mpk): Select r ∈R Zp and set R := gr. Return usk := (y,R) ∈ Zp ×G as the user
secret key, where

y := r + zc and c := H(R, id).

S(id,m, usk,mpk): Let usk = (y,R). Select a ∈R Zp and set A := ga. Return σ := (A, b,R) ∈
G × Zp ×G as the signature, where

b := a+ yd and d := G(id, A,m).

V(σ, id,m,mpk): Let σ = (A, b,R), c := H(R, id) and d := G(id, A,m). The signature is valid
if

gb = A(R · (gz)c)d.

Remark 1. Note that, although R is a part of the secret key of a user it is actually public infor-
mation. In fact, R also forms a part of the signatures given by that user. Hence, by construction,
all signatures generated using the user signing key usk = (y,R) will contain the same R. This
also means that, in the security reduction, the simulator has to maintain the same R for a
particular user; otherwise, the simulation will diverge from the actual protocol execution.

2.2 The Security Argument and Problems with it

We now reproduce the original reductions from §4 of [11] using our notation (for ease of refer-
ence, the bullets are replaced by numeric values). Then we describe in details the problems in
the argument. In the following, Bi.j refers to the jth step in the construction of Bi, i ∈ {1, 2}.
The description of the forking algorithms FY and MY,n is given in Appendix B. (Some of the
“typos” in the original security argument, that were corrected, are mentioned in the footnotes.)

Let A be an adversary against the IBS in EU-ID-CMA model. Eventually, A outputs an
attempted forgery of the form σ = (A,B,R). Let E be the event that σ is a valid signature and
R was contained in an answer of the signature oracle Os. Let NE be the event that σ is a valid
signature and R was never part of an answer of Os. Galindo-Garcia construct algorithms B1
(resp. B2) that break the DLP in case of event E (resp. NE).

2.2.1 Reduction B1 B1 takes as argument the description of a group (G, p, g) and a challenge
gα with α ∈R Zp and tries to extract the discrete logarithm α. The environment is simulated as
shown below.

B1.1 B1 picks î ∈R {1, . . . , qG}, where qG is the maximum number of queries that the adversary

A performs to the G-oracle. Let îd (the target identity) be the identity in the îth query
to the G-oracle. Next, B1 chooses z ∈R Zp and sets (mpk,msk) := ((G, g, p,G,H, gz), z),
where G,H are descriptions of hash functions modelled as random oracles. As usual, B1
simulates these oracles with the help of two tables LG and LH containing the queried values
along with the answers given to A.

B1.2 Every time A queries the key extraction oracle Oε, for user id, B1 chooses c, y ∈R Zp, sets
R := g−zcgy and adds 〈R, id, c〉 to the table LH. Then it returns the key (y,R) to A.

B1.3 When A makes a call to the signature oracle Os for (id,m) with id 6= îd, B1 simply computes
id’s secret key as described in the previous bullet. Then it runs the signing algorithm S
and returns the produced signature to A.



4 Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

B1.4 When A makes a call to the signature oracle Os for (id,m) with id = îd, B1 chooses
t ∈R Zp, B ∈R G, sets R := g−zc(gα)t, c := H(id, R),2 and A := B(gαgzc)−d.3 Then it
returns the signature (A,B,R) to A.

B1.5 B1 runs the algorithm MY,1(mpk) as described in Lemma 1 (§4 in [11]). Here algorithm
Y is simply a wrapper that takes as explicit input, the answers from the random oracles.
Then it calls A and returns its output together with two integers I, J . These integers are
the indices of A’s calls to the random oracles G,H with the target identity îd.

algorithm MY,1(mpk) –
Pick random coins ρ for Y
s01, . . . , s

0
qG ∈R Zp

(I0, J0, σ0)
$←− Y(mpk, s01, . . . , s

0
qG , ρ)

If (I0 = 0 ∨ J0 = 0) then return ⊥
s1I0 , . . . , s

1
qG ∈R Zp

(I1, J1, σ1)
$←− Y(mpk, s01, . . . , s

0
I0−1, s

1
I0
, . . . , s1qG , ρ)

If ((I1, J1) 6= (I0, J0) ∨ s1I0 = s0I0) then return ⊥
Otherwise return (σ0, σ1)

In this way we get two forgeries of the form σ0 = (id,m, (A,B0, R)) and σ1 = (id,m, (A,B1, R)).
Let d0 be the answer from the G-oracle given to A in the first execution, s0I0 in MY,1 and

let d1 be the second answer s1I0 . If the identity id is not equal to the target identity îd then
B1 aborts. Otherwise it terminates and outputs the attempted discrete logarithm

α =
(B0 −B1)

td0 − td1
.

Observations on B1 We now note the following points about the reduction B1 given above. We
also mention ways to fix the problems.

(i) Correctness of signatures on îd: In B1.4, when A makes a signature query on îd, B1 returns
(A,B,R) ∈ G3 as the signature. However, in the protocol definition, the signatures are

elements of G × Zp × G. Therefore, the signatures on îd will fail the verification in the
general group setup – i.e., G is any cyclic group of prime order p, and in particular, in the
elliptic curve setting – as the operation gB is not defined in G. What the authors could
have intended in B1.4 is

– When A makes a call to the signature oracle Os for (id,m) with id = îd, B1 chooses
t, b ∈R Zp, sets B := gb, R := g−zc(gα)t, c := H(id, R) and A := B(gαgzc)−d. Then it
returns the signature (A, b,R) to A.

Even after the above correction is applied, the signatures on îd fail the verification algo-
rithm. For the signatures to verify, the following equality should hold.

gb = A(R · (gα)c)d

= gb(gαgzc)−d(g−zc(gα)tgzc)d

1 = g(α+zc)(−d)gαtd

However, it holds only if

(αt− zc− α) d ≡ 0 mod p. (1)

It is easy to check that the LHS in (1) is a random element of Zp. Hence, the signatures on

îd given by B1 will fail to verify with an overwhelming probability of 1− 1
p . The equality

2 In the original reduction, c was set to H(îd, gα) instead of H(îd, R). This is most likely a typo as it
leads to the signatures on îd fundamentally failing the verification.

3 Here, d is not assigned a value, though from the protocol we may infer that d := G(id, A,m). But
this leads to a circularity as the value of A depends on d. To avoid this circularity, B1 has to program
G-oracle as follows: choose d ∈R Zp, compute A = B(gαgzc)−d and then set G(id, A,m) := d.



Galindo-Garcia Identity-Based Signature Revisited 5

holds if we set t := 1 + zc
α , instead of selecting t uniformly at random from Zp.4 However,

setting t := 1 + zc
α results in R being set to the problem instance gα, removing t from the

picture altogether. Thus, B1.4 would finally look like:
– When A makes a call to the signature oracle Os for (id,m) with id = îd, B1 chooses
b, d ∈R Zp, sets B := gb, R := gα, c := H(id, R), A := B(gαgzc)−d and programs the
random oracle in such a way that d := G(id, A,m). Then it returns the signature
(A, b,R) to A.

Although it may appear that the reduction B1 can be rescued with the modification
mentioned above, the line of argument in B1 has another inherent – much more serious –
problem, which we describe next.

(ii) Ambiguity due to the choice of îd: B1 sets the identity involved in the îth G-oracle query

as the target identity îd (see B1.1). Hence, the target identity can be fixed only after
the îth query to the G-oracle has been made. However, whenever a signature query is
made on any identity, B1 has to decide whether the identity is the target identity or not.
Therefore, when A makes a signature query before the îth G-oracle call, B1 has no way to
decide whether to proceed to B1.3 or B1.4 (as it depends on whether id = îd or not). B1
can provide a proper simulation of the protocol environment only if no signature query
is made on the target identity îd before the îth G-oracle call. However, B1 cannot really
restrict the adversarial strategy this way. In fact, B1 will fail to give a proper simulation
of the protocol environment if A makes one signature query on îd before the îth G-oracle
query and one more signature query on îd after the îth G-oracle query.
One way to fix the problem noted above is to guess the “index” of the target identity instead
of guessing the index of the G-oracle query in which the target identity is involved. Suppose
n distinct identities are involved in the queries to the G-oracle, where 1 ≤ n ≤ qG.5 The
strategy would be to guess the index î of the target identity îd among all the identities, i.e.
if {id1, . . . , idn} were the distinct identities involved in the queries to the G-oracle (in that
order), we set idî with 1 ≤ î ≤ n as the target identity. Now, by assumption no identity
queried to the G-oracle prior to idî can be the target identity. Hence, the ambiguity noted
before can be avoided. Although this strategy works well with the “mended” reduction
which we ended up in Observation (i), it will still incur a tightness loss of the order O

(
q3G
)
.

In our alternative security argument given in §3, we show how to get around the problem
in B1 by using Coron’s technique, together with some algebraic manipulation and non-trivial
random oracle programming. In addition to correcting the errors in B1, we end up with a much
tighter reduction as a result.

2.2.2 Reduction B2 It takes as argument, the description of a group (G, p, g) and a challenge
gα with α ∈R Zp and outputs the discrete logarithm α. To do so, it will run A simulating the
environment as shown below.

B2.1 At the beginning of the experiment, B2 sets public parameters mpk:=(G, p, g,G, H) and
msk := (gα), where G, H are description of hash functions modelled as random oracles.
As usual, B2 simulates these oracles with the help of two tables LG and LH containing the
queried values together with the answers given to A.

B2.2 Every time A queries the key extraction oracle Oε, for user id, B2 chooses c, y ∈R Zq, sets
R := g−αcgy and adds 〈R, id, c〉 to the table LH. Then it returns the key (y,R) to A.

B2.3 When A makes a call to the signature oracle Os with (id,m), B2 simply computes id’s
secret key as described in the previous step. Then it computes a signature by calling S,
adding the respective call to the G-oracle, ((id, ga,m), d) to the table LG and gives the
resulting signature to the adversary.

B2.4 B2 runs the algorithm MY,3(mpk). In this way either B2 aborts prematurely or we get,
for some identity id, some message m and some R, four forgeries (id,m, (Ak, bk, R))6, k :=

4 This modification was pointed out by an anonymous reviewer of an earlier version of this paper.
5 B1 will maintain a counter and increment it by 1 each time a new identity is queried to the G-oracle.
6 We use bk instead of Bk, throughout the reduction, to maintain consistency with the protocol de-

scription (in §2.1).



6 Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

0, . . . , 3 with A0 = A1 and A2 = A3. As all these signatures are valid, the following
equations hold.

b0 = logA0 + (logR+ c0α)d0 , b1 = logA1 + (logR+ c0α)d1,

b2 = logA2 + (logR+ c1α)d2 and b3 = logA3 + (logR+ c1α)d3 (2)

with c0 6= c1, d0 6= d1 and d2 6= d3. Since we know c0, c1, d0, . . . , d3, a simple computation
yields

α =
b2 + b1 − b0 − b3

c1(d2 − d3)− c0(d0 − d1)
. (3)

Observations on B2. We now note the following points about the reduction B2 given above. As
in B1, we discuss possible fixes.

(i) Incorrect solution of the DLP instance: In Step B2.4, the reduction obtains the solution
of the DLP instance by solving the four equations given in (2). However, on substituting
the values of bks from (2) in (3) we get

b2 + b1 − b0 − b3
c1(d2 − d3)− c0(d0 − d1)

= α+ logG
g R ·

d2 + d1 − d0 − d3
c1(d2 − d3)− c0(d0 − d1)

, (4)

which is not the correct solution to the DLP instance. Note that the simulator does not
know the value of logG

g R and hence cannot extract α from the above expression. However, it
is not difficult to get the correct solution as we show in (23) of §3.5. The more fundamental
problem is that B2 fails to capture all possible adversarial strategies as we show next.

(ii) Incompleteness of B2: In Step B2.4, B2 runs MY,3 to get four forged signatures with bks
as given in (2). The bk component of the forged signatures, though, need not always have
this particular structure. The structure depends on the precise order in which A makes the
oracle calls: G(id, A,m) and H(R, id), during the simulation. (Here, (id,m) corresponds to
the target identity and the message pair in the forgery while (A,R) are part of the forged
signature.) Thus, (2) covers only one of the two possible adversarial behaviors, which we
call Case 1:– A calling the H-oracle before the G-oracle (shown in Figure 4 where the first
branching corresponds to the forking of the H-oracle). But one cannot rule out the second
case, i.e. Case 2:– A calling the G-oracle before the H-oracle, illustrated in Figure 1 below,
where the first branching corresponds to the forking of the G-oracle.

Q0
I0+1 Q0

γ σ0 = (A, b0, R0) [Run 0]

Q0
J0+1 Q0

I0

Q1
I0+1 Q1

γ σ1 = (A, b1, R0) [Run 1]

Q0
1 Q0

2 Q0
J0

Q2
I1+1 Q2

γ σ2 = (A, b2, R2) [Run 2]

Q2
J0+1 Q2

I1

Q3
I1+1 Q3

γ σ3 = (A, b3, R2) [Run 3]

d0

d2

c0

c1

c2

c3

Q0
J0 = G(id, A,m)

Q0
I0 = H(R0, id) , Q2

I0 = H(R2, id)

Fig. 1. Structure of the forgeries in Case 2. (Note that the branchings indicate forking.)

Let’s look into the structure of the forged signatures in Case 2. As a result of the ordering
of the oracle calls, Y returns J0 as the index of the G-oracle call on (id, A,m) and I0 as



Galindo-Garcia Identity-Based Signature Revisited 7

the index of the H-oracle call on (R0, id), at the end of Run 0. As G-oracle is forked before
the H-oracle, we get d1 = d0, d3 = d2 and R1 = R0, R3 = R2 in the subsequent forkings,
while all the ci, 0 ≤ i ≤ 3 will be different. On the other hand, the value A returned as
part of the forged signature remains the same in all the four runs. Hence, the signatures
returned by MY,3 will contain bks of the form

b0 = logA+ (logR0 + c0α)d0 , b1 = logA+ (logR0 + c1α)d0,

b2 = logA+ (logR2 + c2α)d2 and b3 = logA+ (logR2 + c3α)d2. (5)

When the signatures have the structure as in (5), we cannot use (3) (more precisely, the
corrected version as given in (23) of §3.5) to get a solution of the DLP. This is because
d1 = d0 and d3 = d2 makes the denominator part in the corresponding expression zero. As
we cannot rule out this particular adversary, the reduction does not address all the cases,
rendering it incomplete.

To summarize, the same strategy to solve the DLP will not work for the two aforementioned
complementary cases. Still it is possible to distinguish between the two cases, Case 1 and Case
2, simply by looking at the structure of the forged signatures. In Case 1, all the Rs will be
equal, i.e. R3 = R2 = R1 = R0; on the other hand, in Case 2, all the As will be equal, i.e.
A3 = A2 = A1 = A0. We could then use the appropriate relations, i.e., (23) and (18) (derived in
Appendix 3.3 and §3.2, respectively) to solve for the DLP instance. However, this results in an
unnecessary forking (the branch consisting of Run 2 and Run 3 in Figure 1) being executed in
Case 2. We address this in §3 by splitting B2 into two reductions R2 and R3, with R2 involving
only a single forking. The single forking, in turn, leads to a significantly tighter reduction (see
Table 1).

For the sake of completeness, we provide the modified security argument incorporating all
the above mentioned fixes in Appendix C.

3 New Security Argument

On the basis of the observations made in the previous section, we now proceed to provide a
detailed security argument for Galindo-Garcia IBS. In a nutshell, we have effectively modularised
the security argument into three mutually exclusive parts so that each of the three situations
mentioned in the previous section can be studied in more detail. We also show that it is possible
to obtain significantly tighter reductions in two of the three cases.

In order to address the problem in B1 we redefine the event E and to address the incom-
pleteness of B2 we introduce another event F. The security argument involves constructing three
algorithms: R1, R2 and R3 and in each of them solving the DLP is reduced to breaking the
IBS. R1, unlike its counterpart B1, uses the general forking algorithm, whereas R2 and R3, the
counterparts of B2, still use the multiple-forking algorithm. The new reductions R1 and R2 are
also tighter than their counterparts in [11].

Theorem 1. Let A be an (ε, t, qε, qs, qH, qG)-adversary against the IBS in the EU-ID-CMA model.
If H and G are modelled as random oracles, we can construct either

(i) Algorithm R1 which (ε1, t1)-breaks the DLP, where

ε1 ≥
ε2

exp(1)qGqε
and t1 ≤ t+ 2(qε + 3qs)τ, (6)

or

(ii) Algorithm R2 which (ε2, t2)-breaks the DLP, where

ε2 ≥ ε
(

ε

(qH + qG)2
− 1

p

)
and t2 ≤ t+ 2(2qε + 3qs)τ, (7)

or



8 Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

(iii) Algorithm R3 which (ε3, t3)-breaks the DLP, where

ε3 ≥ ε
(

ε3

(qH + qG)6
− 3

p

)
and t3 ≤ t+ 4(2qε + 3qs)τ. (8)

Here qε and qs denote the upper bound on the number of extract and signature queries,
respectively, that A can make; qH and qG denote the upper bound on the number of queries to
the H-oracle and G-oracle respectively. τ is the time taken for an exponentiation in the group G
and exp is the base of natural logarithm.

Proof. A is successful if it produces a valid forgery σ̂ = (Â, b̂, R̂) on (îd, m̂). Consider the following
event in the case that A is successful.

E:– A makes at least one signature query on îd and R̂ was returned by the simulator as part
of the output to a signature query on îd.

The complement of this event is

Ē:– Either A does not any make signature queries on îd or R̂ was never returned by the
simulator as part of the output to a signature query on îd.

Note that the definition of the new event E (and Ē) is slightly different from the one given in
the security argument of [11], i.e. event E (and NE) discussed in §2.2.

In order to come up with the forgery σ̂ with a non-negligible probability, the adversary,
at some point during its execution, has to make the two random oracle calls: H(R̂, îd) and

G(îd, Â, m̂). Depending on the order in which A makes these calls, we further subdivide the
event Ē into an event F and its complementary event F̄, where

F:– The event that A makes the oracle call G(îd, Â, m̂) before the oracle call H(R̂, îd).

The complement of this event is

F̄:– The event that A makes the oracle call H(R̂, îd) before the oracle call G(îd, Â, m̂).

In the case of the events E, Ē∧F and Ē∧F̄, we give the reductionsR1,R2 andR3 respectively.
They are described in the subsequent sections.

Remark 2. The reductions in the subsequent sections are described in two steps. In the first
step, called “Handling the queries”, we describe the protocol set-up and the methods in which
adversarial queries – signature, extract and random oracle queries, are to be handled. This gives
us sufficient know-how to simulate the protocol environment. In the second step, called “Solving
the DLP”, we describe how the reductions use forking algorithms to solve the underlying hard
problem, which in this case is the DLP. The reductions use the forking algorithm simply as a
black-box to get hold of the forgeries. The actual simulation is handled by the wrapper algorithm
Y in the forking algorithms, according to the plan laid down by the reductions in the first step.
For details on how the forking algorithms work, see Appendix B.

Simulating the Random Oracles. A random oracle query is defined to be fresh if it is the first
query involving that particular input. If a query is not fresh for an input, in order to maintain
consistency, the random oracle has to respond with the same output as in the previous query on
that input. We say that a fresh query does not require programming if the simulator can simply
return a random value as the response. The crux of most security arguments involving random
oracles, including ours, is the way the simulator answers the queries that require programming.
In our case, random oracle programming is used to resolve the circularity involved while dealing
with the implicit random oracle queries. A random oracle query is said to be implicit if it is not
an explicit query from the adversary or the simulator. As usual, to simplify the book-keeping,
all implicit random oracle queries involved in answering the extract and signature queries are
put into the account of A.



Galindo-Garcia Identity-Based Signature Revisited 9

3.1 Reduction R1

R1 uses the so-called “partitioning strategy”, first used by Coron in the security argument
of FDH [7]. The basic idea is to divide the identity-space I into two disjoint sets, Iε and Is,
depending upon the outcome of a biased coin. The simulator is equipped to respond to both
extract and signature queries on identities from Iε. But it fails if the adversary does an extract
query on any identity from Is; it can answer only to signature queries on identities from Is.
Finally, the simulator hopes that the adversary produces a forgery on an identity from Is. The
optimal size of the sets is determined on analysis.

In R1 the problem instance is embedded in the randomiser R, depending on the outcome of
a biased coin. As R1 maintains a unique R for each identity, the structure of R decides whether
that identity belongs to Iε or to Is. The details follow.

Let ∆ := (G, p, g, gα) be the given DLP instance. R1 sets z ∈R Zp as the master secret
key. The public parameters mpk := (G, p, g, gz,H,G) are released to the adversary. The hash
functions H and G are modelled as random oracles. This is done with the aid of two tables, LH

and LG.

3.1.1 Handling the Queries

H-oracle Query. LH contains tuples of the form

〈R, r, id, c, β〉 ∈ G × Zp ∪ {⊥} × {0, 1}∗ × Zp × {0, 1, φ}.

Here, (R, id) is the query to the H-oracle and c is the corresponding output. Therefore, an
oracle query H(R, id) is fresh if there exists no tuple 〈Ri, ri, idi, ci, βi〉 in LH such that (idi =
id) ∧ (Ri = R). If such a tuple exists, then the oracle has to return ci as the output.

The r-field is used to store additional information related to the R-field. The tuples corre-
sponding to the explicit H-oracle queries, made by A, are tracked by storing ‘⊥’ in the r-field.
This indicates that R1 does not have any additional information regarding R. In these tuples,
the β-field is irrelevant and this is indicated by storing ‘φ’. In tuples with r 6= ⊥, the field β
indicates whether the DLP instance is embedded in R or not. If β = 0 then R = (gα)r for some
known r ∈ Zp, which is stored in the r-field. On the other hand, β = 1 implies R = gr for
some known r ∈ Zp, which is, again, stored in the r-field. Therefore, the r-field stores one of

the values: (i) ‘⊥’, (ii) logG
g R or (iii) r, if R = (gα)r. As a result, LH can contain three types of

tuples determined by the content of r-field and β-field, viz.

1. r = ⊥: These tuples correspond to the explicit H-oracle queries made by A.

2. r 6= ⊥ ∧ β = 0: These tuples correspond to identities in Is. They are added by R1 while
answering the signature queries. As the DLP instance is embedded in R, extract query fails
on these identities.

3. r 6= ⊥ ∧ β = 1: These tuples correspond to identities in Iε. They are added by R1 while
answering signature or extract queries.

We now explain how the fresh H-oracle queries are handled.

H(R, id):– The query may be

(i) H1, Explicit query made by A:– In this case R1 returns c ∈R Zp as the output.
〈R,⊥, id, c, φ〉 is added to LH.

(ii) H2, Explicit query made by R1:– As in the previous case, R1 returns c ∈R Zp as the

output. As R1 knows r = logG
g R, 〈R, r, id, c, 1〉 is added to LH.

(iii) H3, Implicit query by R1 in order to answer a signature query made by A:– See Sign
(iii) on how to program the random oracle in this situation.



10 Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

G-oracle Query. LG contains tuples of the form

〈id, A,m, d〉 ∈ {0, 1}∗ ×G × {0, 1}∗ × Zp.

Here, (id, A,m) is the query to the G-oracle and d is the corresponding output. Therefore, a
random oracle query G(id, A,m) is fresh if there exists no tuple 〈idi, Ai,mi, di〉, in LG such that
(idi = id) ∧ (Ai = A) ∧ (mi = m). If such a tuple exists, then the oracle has to return di as the
output.

We now explain how the fresh G-oracle queries are handled.

G(id, A,m):– The query may be

(i) G1, Explicit query made by the either A or R1:– In this case R1 returns d ∈R Zp as the
output. 〈id, A,m, d〉 is added to LG.

(ii) G2, Implicit query by R1 in order to answer a signature query made by A:– See Sign
(i), (iii) on how to program the random oracle in this situation.

Remark 3. In the case of the implicit calls H3 and G2, R1 has to program the respective random
oracles in an appropriate way to deal with the circularity involved. For ease of understanding,
they are dealt with in their respective sections.

Now that R1 can handle the random oracle queries, the extract and signature queries are
answered as follows.

Extract Query. R1 first checks if id has an associated R. This is done by searching for tuples
〈Ri, ri, idi, ci, βi〉 in LH with (idi = id) ∧ (ri 6= ⊥). If such a tuple exists, R1 checks for the value
of βi in the tuple. βi = 0 implies the identity belongs to Is and consequently the extract query
fails, leading to an abort, abort1,1. On the other hand, βi = 1 implies that there was a prior
extract query on id and also that the identity belongs to Iε. R1 generates the secret key (same
as in prior extract query) using the information available in the tuple. On the other hand, if
such a tuple does not exist, R1 selects a fresh r and assigns id to Iε. R1 has this freedom since
the adversary cannot forge on this identity. This is captured by the oracle Oε shown below.

Oε(id):–
If there exists a tuple 〈Ri, ri, idi, ci, βi〉 in LH such that (idi = id) ∧ (ri 6= ⊥)

(i) If βi = 0, R1 aborts (abort1,1).

(ii) Otherwise, βi = 1 and R1 returns usk := (ri + zci, Ri) as the secret key for id.

Otherwise

(iii) R1 chooses r ∈R Zp, sets R := gr and asks the H-oracle for c := H(R, id). It returns
usk := (r + zc,R) as the secret key.

Signature Query. As in the extract query,R1 checks the identity for an associated R by searching
tuples 〈Ri, ri, idi, ci, βi〉 in LH with (idi = id) ∧ (ri 6= ⊥). If such a tuple exists, the identity has
been assigned to either of Iε or Is, determined by the value of βi. If such a tuple does not exist,
then the identity is unassigned and R1 assigns the identity to either Iε or Is by tossing a biased
coin β. If the outcome is 0, id is assigned to Is; else it is assigned to Iε. Identities assigned to Is
have the problem instance gα embedded in the randomiser R. Although the private key cannot
be calculated, an algebraic technique, similar to one adopted by Boneh-Boyen in [5], coupled
with random oracle programming enables us to give the signature. On the other hand, signature
queries involving identities from Iε are answered by first generating the usk as in the extract
query and then running S. This is captured by the oracle Os described below.

Os(id,m):–
If there exists a tuple 〈Ri, ri, idi, ci, βi〉 in LH such that (idi = id) ∧ (ri 6= ⊥)



Galindo-Garcia Identity-Based Signature Revisited 11

(i) If βi = 0, R1 selects s, d ∈R Zp and sets A := gs(gα)−rid. Then (id, A,m, d) is added to
LG (Deferred case G2)7. The signature returned is

σ := (A, s+ zcd,Ri).

(ii) Otherwise, βi = 1 and the secret key for id is usk = (y,Ri), where y = ri + zci and
Ri = gri . R1 selects a ∈R Zp, sets A := ga and asks G-oracle for d := G(id, A,m). The
signature returned is

σ := (A, a+ yd,Ri).

Otherwise, R1 tosses a coin β with a bias δ (i.e, Pr[β = 0]=δ). The value of δ will be
quantified on analysis.

(iii) If β = 0, R1 selects c, d, s, r ∈R Zp and sets R := (gα)r, A := gs(gα)−rd. Next, it adds
〈(gα)r, r, id, c, 0〉 to LH (Deferred case H3) and 〈id, A,m, d〉 to LG (Deferred case G2).8

The signature returned is
σ := (A, s+ zcd,R).

(iv) Otherwise, β = 1 and R1 selects a, r ∈R Zp and sets A := ga, R := gr. It then asks the
respective oracles for c := H(R, id) and d := G(id, A,m). The signature returned is

σ := (A, a+ (r + zc)d,R).

Correctness. For β = 0, the signature given by R1 is of the form (A, b,R), where A = gs(gα)−rd,
b = s+zcd and R = (gα)r. R1 also sets c := H(R, id) and d := G(id, A,m). The signature verifies
as shown below.

gb = gs+zcd

= gs−αrd+αrd+zcd

= g(s−αrd)g(αr+zc)d

= gs(gα)−rd((gα)r(gz)c)d

= A(R(gz)c)d.

For β = 1, the signatures are generated as in the protocol. Therefore they fundamentally verify.

To conclude the queries section, we calculate the probability of the event ¬abort1,1. R1 aborts
only when A does an extract query on an identity from Is, i.e. an identity with β = 0. Therefore,
R1 does not abort if all the extract queries are from Iε and we have

Pr [¬abort1,1] = (1− δ)qε . (9)

3.1.2 Solving the DLP R1 now uses the general forking algorithm FY (see Appendix B.1
for details on the working of FY) to solve the DLP challenge. It runs FY on the given DLP
instance ∆,9 with the G-oracle involved in the replay attack. If FY fails, R1 aborts (abort1,2).
On the other hand, if FY is successful, it gets two valid forgeries

σ̂0 = (Â, b̂0, R̂0) and σ̂1 = (Â, b̂1, R̂1)

on (îd, m̂), as illustrated in Figure 2. R1 now retrieves two tuples

ti := 〈Ri, ri, idi, ci, βi〉 | (idi = îd) ∧ (Ri = R̂0) and

7 If there exists a tuple 〈idi, Ai,mi, di〉 in LG with idi = id ∧ Ai = A ∧ mi = m but di 6= d then
G(id, A,m) cannot be set to d. In that case R1 can simply choose a fresh set of randomisers s, d and
repeat the process.

8 R1 chooses different randomisers if there is a collision as explained in Footnote 7.
9 In reductions involving the forking algorithm, the problem instance is usually embedded in mpk.

Therefore the forking algorithm FY is run on mpk. But in case of R1, the master secret is chosen by
R1 itself. The problem instance (gα) is embedded as part of answers to signature queries. Therefore,
R1 runs FY on ∆ while (msk, mpk) is considered to be part of ρ.



12 Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

Q0
I0+1 Q0

γ σ̂0 = (Â, b̂0, R̂0) [Run 0]

Q0
1 Q0

2 Q0
I0

Q1
I0+1 Q1

γ σ̂1 = (Â, b̂1, R̂1) [Run 1]

s0
1

s0
I0

s1
I0

s0
γ

s1
γ

Q0
I0 = G(îd, Â, m̂)

Fig. 2. Successful oracle replay attack by R1.

tj := 〈Rj , rj , idj , cj , βj〉 | (idj = îd) ∧ (Rj = R̂1)

from LH. R1 aborts (abort1,3) if both βi and βj are equal to 1. Otherwise it solves for α as shown

below. Note that d0 and d1 represent the value of G(îd, Â, m̂) in the two runs, i.e., d0 = s0I0 and

d1 = s1I0 . Let â := logG
g Â.

(i) (βi = 1)∧(βj = 0):– In this case, R̂0 = gri and R̂1 = grjα. Thus we have b̂0 = â+(ri+zci)d0
and b̂1 = â+ (rjα+ zcj)d1.

b̂0 − b̂1 = (rid0 − rjαd1) + z(cid0 − cjd1),

α =
z(cid0 − cjd1) + rid0 − (b̂0 − b̂1)

rjd1
. (10)

(ii) (βi = 0) ∧ (βj = 1):– In this case, R̂0 = griα and R̂1 = grj . Thus we have b̂0 = â+ (riα+

zci)d0 and b̂1 = â+ (rj + zcj)d1.

b̂1 − b̂0 = (rjd1 − riαd0) + z(cjd1 − cid0),

α =
z(cjd1 − cid0) + rjd1 − (b̂1 − b̂0)

rid0
. (11)

(iii) (βi = 0)∧ (βj = 0):– In this case, R̂0 = griα and R̂1 = grjα. Thus we have b̂0 = â+ (riα+

zci)d0 and b̂1 = â+ (rjα+ zcj)d1.

b̂0 − b̂1 = α(rid0 − rjd1) + z(cid0 − cjd1),

α =
(b̂0 − b̂1)− z(cid0 − cjd1)

(rid0 − rjd1)
. (12)

Remark 4. The equations (10), (11) and (12) hold even if R̂1 = R̂0 (and consequently rj = ri and

cj = ci). Note that this can happen if the adversary makes the random oracle query H(R̂0, îd)

before the query G(îd, Â, m̂) in Run 0. Hence, the order in which A makes the aforementioned
random oracle calls is not relevant.

Structure of R. The event E guarantees the existence of the tuple ti in LH. As A cannot make
an extract query on îd, the choice of R̂i must have been made during a signature query, where
the structure of R is determined by the coin β. Therefore

R̂i =

{
gr̂iα If βi = 0

gr̂i Otherwise

This, in turn, is determined by the bias in β, i.e. δ. A similar argument holds for tj . R1 is
successful in solving the DLP if either of the forgeries have β = 0. If (βi = 1) ∧ (βj = 1), R1



Galindo-Garcia Identity-Based Signature Revisited 13

fails and does abort1,3. We conclude by calculating the probability of abort1,3 provided abort1,2
has not occurred. It is same as the probability with which (βi = 1) ∧ (βj = 1), i.e.

Pr [abort1,3 | ¬abort1,2] = (1− δ)2. (13)

Let gfrk be the probability with which FY is successful. Since abort1,2 occurs if FY fails, we have

Pr [¬abort1,2] = gfrk. (14)

3.1.3 Analysis The probability analysis is done in terms of the aborts abort1,1, abort1,2 and
abort1,3. From (9), (14) and (13), we have

Pr [¬abort1,1] = (1− δ)qε , Pr [¬abort1,2] = gfrk and Pr [abort1,3 | ¬abort1,2] = (1− δ)2.

FY is successful during Run 0 if there is no abort during the query phase (¬abort1,1) and A
produces a valid forgery. We denote this probability as acc1. Thus

acc1 ≥ Pr [¬abort1] · ε
≥ (1− δ)qε · ε.

Applying (25) from the general forking lemma with | S |= p and γ = qG, we get

gfrk ≥ acc1 ·
(
acc1
qG
− 1

p

)
≥ (1− δ)qεε ·

(
(1− δ)qεε

qG
− 1

p

)
.

If we assume p� 1, the above expression approximates to

gfrk ≥ (1− δ)2qεε2

qG
.

Now, R1 is successful in solving DLP if neither of the aborts, abort1,2 and abort1,3, occur.
Thus the advantage it has is

ε1 = Pr [¬abort1,3 ∧ ¬abort1,2]

= Pr [¬abort1,3 | ¬abort1,2] · Pr [¬abort1,2]

≥ (1− (1− δ)2) · gfrk

≥ (2δ − δ2)
(1− δ)2qεε2

qG
. (15)

The above expression is maximised when δ =
(

1−
√

qε−2
qε−1

)
, at which we get

ε1 ≥
1

exp(1)(qε − 1)

(
1− 1

qε − 1

)
ε2

qG
.

Here, exp is the base of natural logarithm. Assuming qε � 1, we get the approximation

ε1 ≥
ε2

exp(1)qGqε
.

Remark 5. The above reduction is tighter than the reduction B1 given by Galindo-Garcia [11].
This can be attributed to two reasons: (i) R1 using the general forking algorithm FY instead of
the multiple-forking algorithm MY,1 and (ii) B1 in [11] randomly chooses one of the identities
involved in the G-oracle call as the target identity (Refer to §2.2.1) which contributes a factor
of qG to the degradation in B1. In contrast, we apply Coron’s technique in R1 to partition the
identity space in some optimal way.



14 Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

Time Analysis. If τ is the time taken for an exponentiation in G then the time taken by R1

is t1 ≤ t + 2(qε + 3qs)τ . It takes at most one exponentiation for answering the extract query
and three exponentiations for answering the signature query. This contributes the (qε + 3qs)τ
factor in the running time. The factor of two comes from the forking algorithm, since it involves
running the adversary twice.

3.2 Reduction R2

The reduction R2 is similar in some aspects to the (incomplete) reduction argument B2 in [11].
However, a major difference is that R2 uses the multiple-forking algorithm MY,1 instead of
MY,3 to solve the DLP challenge. Therefore, only one forking is involved leading to a much
tighter reduction than B2. The details follow.

Let ∆ := (G, p, g, gα) be the given DLP instance. R2 sets mpk := (G, p, g, gα,H,G) as public
parameters and releases it to A. Note that R2 does not know the master secret key msk, which
is α, the solution to the DLP challenge. The hash functions H and G are modelled as random
oracles. This is done with the aid of two tables, LH and LG.

3.2.1 Handling the Queries

H-oracle Query. LH contains tuples of the form

〈R, id, c, y〉 ∈ G × {0, 1}∗ × Zp × Zp ∪ {⊥}.

Here, (R, id) is the query to the H-oracle and c the corresponding output. The y-field stores
either the corresponding component of the secret key for id or ‘⊥’ if the field is invalid. A
random oracle query H(R, id) is fresh if there exists no tuple 〈Ri, idi, ci, yi〉 in LH such that
(idi = id) ∧ (Ri = R). If such a tuple exists, then the oracle has to return ci as the output. We
now explain how the H-oracle queries are answered.

H(R, id):– The query may be
(i) H1, Explicit query made byA:– In this caseR2 returns c ∈R Zp as the output. 〈R, id, c,⊥〉

is added to LH.
(ii) H2, Implicit query by R2 in order to answer an extract query made by A:– See Extract

(ii) on how to program the random oracle in this situation.

G-oracle Query. LG has the same structure as in R1 (See §3.1.1). The queries to G-oracle are
handled as shown below.

G(id, A,m):– R2 returns d ∈R Zp as the output. 〈id, A,m, d〉 is added to LG.

Signature and Extract Queries. Since R2 does not know the master secret key α, it has to
use the algebraic technique used in R1 to come up with the secret key corresponding to an
identity. The choice of R and c enables it to give the secret key. The circularity involved in this
choice is resolved by programming the H-oracle appropriately. Signature queries are answered
by generating the usk as in the extract query, followed by calling S.

Extract query. Oε(id):–
(i) If there exists a tuple 〈Ri, idi, ci, yi〉 in LH such that (idi = id) ∧ (yi 6= ⊥), R2 returns

usk := (yi, Ri) as the secret key.
(ii) Otherwise,R2 chooses c, y ∈R Zp, setsR := (gα)−cgy and adds 〈R, id, c, y〉 to LH(Deferred

case H2). It returns usk := (y,R) as the secret key.

Signature query. Os(id,m):–
(i) If there exists a tuple 〈Ri, idi, ci, yi〉 in LH such that (idi = id) ∧ (yi 6= ⊥), then usk =

(yi, Ri). R2 now uses the knowledge of usk to run S and returns the signature.
(ii) Otherwise, R2 generates the usk as in Extract(ii) and runs S to return the signature.

We conclude the queries section with the remark that R2 never aborts during the query stage.



Galindo-Garcia Identity-Based Signature Revisited 15

Q0
I0+1 Q0

γ σ̂0 = (Â, b̂0, R̂) [Run 0]

Q0
1 Q0

2 Q0
J0 Q0

J0+1 Q0
I0

Q1
I0+1 Q1

γ σ̂1 = (Â, b̂1, R̂) [Run 1]

s0
1 s0

J0

s0
I0

s1
I0

s0
γ

s1
γ

Q0
J0 = G(îd, Â, m̂)

Q0
I0 = H(R̂, îd)

Fig. 3. Successful oracle replay attack by R2.

3.2.2 Solving the DLP R2 now uses the multiple-forking algorithm MY,1 (see Appendix
B.2 for details on the working ofMY,n) to solve the DLP challenge. It runsMY,1 on mpk, with
both H and G-oracle involved in the replay attack. If MY,1 fails, R2 aborts (abort2,1). On the
other hand, if MY,1 is successful, R2 gets two valid forgeries

σ̂0 = (Â, b̂0, R̂) and σ̂1 = (Â, b̂1, R̂) (16)

on (îd, m̂), as illustrated in Figure 3, with

b̂0 = â+ (r̂ + αc0)d̂ and b̂1 = â+ (r̂ + αc1)d̂, (17)

where â := logG
g Â and r̂ := logG

g R̂. Note that c0 and c1 represent the value of H(R̂, îd) in the
two runs, i.e., c0 = s0I0 and c1 = s1I0 . The event F guarantees that A makes the G-oracle call

Q0J0 = G(îd, Â, m̂), before the H-oracle call Q0I0 = H(R̂, îd). Finally it outputs the solution to the
DLP instance,

α =
b̂0 − b̂1

d̂(c0 − c1)
. (18)

Structure of the forgeries. Now we justify the structure of the component b of the forgeries given
in (17). Recall that the signature queries are answered by doing an extract query on the identity
followed by calling S. Therefore, the resultant secret keys are of the form usk = (y,R), where
R = (gα)−cgy and we have

r = −αc+ y.

If a forgery is produced using the same R as given by R2 as part of the signature query on id,
then b will be of the form b = a + (−αc + y + αc)d = a + yd. Therefore, it will not contain
the solution to the DLP challenge α, and such forgeries are of no use to R2. But the event Ē
guarantees that A does not forge using an R which was given as part of the signature query on
id and hence, for the forgery to be valid b will necessarily be of the form:

b = a+ (r + αc)d. (19)

We conclude with the remark that the event abort2,1 does not occur if the multiple-forking
algorithm is successful (let this probability be mfrk). Therefore

Pr [¬abort2,1] = mfrk. (20)

3.2.3 Analysis The only abort involved in R2 is abort2,1, which occurs when MY,1 fails.
Therefore R2 is successful if MY,1 is and from (20) we have

ε2 = Pr [¬abort2,1] = mfrk.



16 Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

We denote the probability with which MY,1 is successful during Run 0 as acc2. Since there
is no abort involved during query phase, MY,1 is successful during Run 0 if A produces a valid
forgery, i.e. acc2 = ε. Applying (26) from the multiple-forking lemma with n := 1, γ := qH +qG,10

and | S |= p, we have

ε2 = mfrk ≥ acc2 ·
(

acc2
(qH + qG)2

− 1

p

)
≥ ε

(
ε

(qH + qG)2
− 1

p

)
.

Time Analysis. Drawing analogy from the time analysis of R1, the time taken by R2 is easily
seen to be bounded by t2 ≤ t+ 2(2qε + 3qs)τ .

3.3 Reduction R3

As mentioned in the previous sections, the approach used in R3 is the same as in the reduction
B2 in [11].

Let ∆ := (G, p, g, gα) be the given DLP instance. R3 sets mpk := (G, p, g, gα,H,G) as the
public parameters and releases it to A. As in R2, R3 does not know the master secret msk,
which is α. The hash functions H and G are modelled as random oracles. This is done with the
aid of two tables, LH and LG.

3.4 Handling the Queries

The queries are handled in the same way as in R2. So we refer to §3.2.1 for details.

3.5 Solving the DLP

Q0
I0+1 Q0

γ σ̂0 = (Â0, b̂0, R̂) [Run 0]

“ Q0
J0+1 Q0

I0

Q1
I0+1 Q1

γ σ̂1 = (Â0, b̂1, R̂) [Run 1]

Q0
1 Q0

2 Q0
J0

Q2
I0+1 Q2

γ σ̂2 = (Â1, b̂2, R̂) [Run 2]

Q2
J0+1 Q2

I0

Q3
I0+1 Q3

γ σ̂3 = (Â1, b̂3, R̂) [Run 3]

s0
1

s0
J0

s2
J0

s0
I0

s1
I0

s0
γ

s1
γ

s2
I0

s3
I0

s2
γ

s3
γ

Q0
J0 = H(R̂, îd)

Q0
I0 = G(îd, Â0, m̂) , Q2

I0 = G(îd, Â1, m̂)

Fig. 4. Successful oracle replay attack by R3.

10 In the analysis of B2 in [11], γ was assumed to be qH · qG. However, γ actually denotes the size of the
set of responses to the random oracle queries involved in the replay attack. As both H and G-oracle
is involved in the replay attack in B2, the size of the set is qH + qG rather than qH · qG.



Galindo-Garcia Identity-Based Signature Revisited 17

R3 now uses the multiple-forking algorithmMY,3, to solve the DLP challenge. It runsMY,3
on mpk, with both H and G-oracle involved in the replay attack. If MY,3 fails, R3 aborts
(abort3,1). On the other hand, if MY,3 is successful, as illustrated in Figure 4, R3 gets four
valid forgeries

σ̂0 = (Â0, b̂0, R̂) , σ̂1 = (Â0, b̂1, R̂),

σ̂2 = (Â1, b̂2, R̂) and σ̂3 = (Â1, b̂3, R̂) (21)

with σ̂0 and σ̂1 on (îd, m̂0) and σ̂2 and σ̂3 on (îd, m̂1), where

b̂0 = â0 + (r̂ + αc0)d0 , b̂1 = â0 + (r̂ + αc0)d1,

b̂2 = â1 + (r̂ + αc1)d2 and b̂3 = â1 + (r̂ + αc1)d3, (22)

where r̂ := logG
g R̂, âi := logG

g Âi. Note that c0 and c1 represent the value of H(R̂, îd) in the

H-oracle forks; d0 and d1 represent the value of G(îd, Â0, m̂) in the first two runs; d2 and d3
represent the value of G(îd, Â1, m̂) in the last two runs. Finally it outputs the solution to the
DLP challenge,

α =
(b̂0 − b̂1)(d2 − d3)− (b̂2 − b̂3)(d0 − d1)

(c0 − c1)(d0 − d1)(d2 − d3)
. (23)

We conclude with the remark that the event abort3,1 does not occur if the multiple-forking
algorithm is successful (let this probability be mfrk). Therefore

Pr [¬abort3,1] = mfrk. (24)

3.6 Analysis

As in R2, the only abort involved in R3 is abort3,1, which occurs whenMY,3 fails. Therefore R3

is successful if MY,3 is and from (24) we have

ε3 = Pr [¬abort3,1] = mfrk.

We denote the probability with which MY,3 is successful during the first run as acc3. Since
there is no abort involved during query phase, MY,3 is successful during the first run if A
produces a valid forgery, i.e. acc3 = ε. Applying (26) from the multiple-forking lemma with
n = 3, γ = qH + qG and | S |= p, we have

ε3 = mfrk ≥ acc3 ·
(

acc33
(qH + qG)6

− 3

p

)
≥ ε

(
ε3

(qH + qG)6
− 3

p

)
.

Time Analysis. The time taken by R3 is easily seen to be bounded by t3 ≤ t+ 4(2qε + 3qs)τ .

3.7 A Comparison with the Original Reduction.

Recall that we replaced the reduction B1 in the original security argument with the new reduction
R1. Similarly, B2 was replaced with the two reductions R2 and R3. The resulting effect on
tightness is tabulated below. The security degradation involved in original B1 is of the order
O
(
q3G
)
. In comparison, R1 incurs a degradation of order O (qGqε) which is much lower than that

of B1. Note that qG � qε, i.e. the bound on the number of random oracle queries is much greater
than the bound on the number of extract queries. For example, for 80-bit security one usually
assumes qG ≈ 260 while qε ≈ 230. The degradation involved in the original B2 would be of the
order of O

(
(qGqH)6

)
(as pointed out in Footnote 10). In comparison, the security degradation

involved in R2 and R3 is of order O
(
(qG + qH)2

)
and O

(
(qG + qH)6

)
respectively.



18 Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

Original reductions [11] B1 B2

Degradation O
(
q3
G

)
O

(
(qGqH)6

)
Our new reductions R1 R2 R3

Degradation O (qGqε) O
(
(qG + qH)2

)
O

(
(qG + qH)6

)
Table 1. A comparison of degradation in the original [11] and the new security argument.

4 Conclusion

In this work we have identified certain shortcomings in the original security argument of the
Galindo-Garcia IBS. Based on our observations we provide a new elaborate security argument
for the same scheme. Two of the reductions are significantly tighter than their counterparts in the
original security argument in [11]. However, all the reductions are still non-tight. We would like
to pose the question of constructing an identity-based signature scheme in discrete-log setting
(without pairing) with a tighter security reduction as an interesting open research problem.

References

1. Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for identity-based
identification and signature schemes. In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages
268–286. Springer Berlin / Heidelberg, 2004. (Cited on pages 1, 2 and 20.)

2. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general
forking lemma. In Proceedings of the 13th ACM conference on Computer and communications
security, CCS ’06, pages 390–399, New York, NY, USA, 2006. ACM. (Cited on pages 1, 2, 21
and 22.)

3. Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In Proceedings of the 1st ACM conference on Computer and communications security,
CCS ’93, pages 62–73, New York, NY, USA, 1993. ACM. (Cited on pages 1 and 20.)

4. Alexandra Boldyreva, Adriana Palacio, and Bogdan Warinschi. Secure proxy signature schemes for
delegation of signing rights. Journal of Cryptology, 25:57–115, 2012. (Cited on pages 1, 2, 21, 22
and 24.)

5. Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT
2004, volume 3027 of Lecture Notes in Computer Science, pages 223–238. Springer Berlin / Heidel-
berg, 2004. (Cited on pages 2 and 10.)

6. Jae Choon and Jung Hee Cheon. An identity-based signature from gap diffie-hellman groups. In Yvo
Desmedt, editor, Public Key Cryptography — PKC 2003, volume 2567 of Lecture Notes in Computer
Science, pages 18–30. Springer Berlin / Heidelberg, 2002. (Cited on page 1.)

7. Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare, editor, Advances
in Cryptology — CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 229–235.
Springer Berlin / Heidelberg, 2000. (Cited on pages 1, 2 and 9.)

8. Sharmila Deva Selvi, Sree Vivek, and Chandrasekaran Pandu Rangan. Identity-based deterministic
signature scheme without forking-lemma. In Tetsu Iwata and Masakatsu Nishigaki, editors, Advances
in Information and Computer Security, volume 7038 of Lecture Notes in Computer Science, pages
79–95. Springer Berlin / Heidelberg, 2011. (Cited on page 1.)

9. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew Odlyzko, editor, Advances in Cryptology — CRYPTO’ 86, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer Berlin / Heidelberg, 1987. (Cited on
page 1.)

10. David Galindo. Boneh-franklin identity based encryption revisited. In Lúıs Caires, Giuseppe Ital-
iano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors, Automata, Languages and Pro-
gramming, volume 3580 of Lecture Notes in Computer Science, pages 102–102. Springer Berlin /
Heidelberg, 2005. (Cited on page 2.)



Galindo-Garcia Identity-Based Signature Revisited 19

11. David Galindo and Flavio Garcia. A schnorr-like lightweight identity-based signature scheme. In
Bart Preneel, editor, Progress in Cryptology – AFRICACRYPT 2009, volume 5580 of Lecture Notes
in Computer Science, pages 135–148. Springer Berlin / Heidelberg, 2009. (Cited on pages 1, 2, 3,
4, 7, 8, 13, 14, 16, 18 and 25.)

12. Shafi Goldwasser, Silvio Micali, and Ron Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988. (Cited on page 20.)

13. Louis Guillou and Jean-Jacques Quisquater. A “paradoxical” identity-based signature scheme re-
sulting from zero-knowledge. In Shafi Goldwasser, editor, Advances in Cryptology — CRYPTO’ 88,
volume 403 of Lecture Notes in Computer Science, pages 216–231. Springer Berlin / Heidelberg,
1990. (Cited on page 1.)

14. Javier Herranz. Deterministic identity-based signatures for partial aggregation. The Computer
Journal, 49(3):322–330, 2005. (Cited on page 1.)

15. Florian Hess. Efficient identity based signature schemes based on pairings. In Kaisa Nyberg and
Howard Heys, editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes in Computer
Science, pages 310–324. Springer Berlin / Heidelberg, 2003. (Cited on page 1.)

16. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13:361–396, 2000. (Cited on pages 1 and 21.)

17. V. Radhakishan and S. Selvakumar. Prevention of man-in-the-middle attacks using id based signa-
tures. In Networking and Distributed Computing (ICNDC), 2011 Second International Conference
on, pages 165 –169, sept. 2011. (Cited on page 1.)

18. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, edi-
tor, Advances in Cryptology — CRYPTO’ 89 Proceedings, volume 435 of Lecture Notes in Computer
Science, pages 239–252. Springer Berlin / Heidelberg, 1990. (Cited on page 2.)

19. Adi Shamir. Identity-based cryptosystems and signature schemes. In George Blakley and David
Chaum, editors, Advances in Cryptology, volume 196 of Lecture Notes in Computer Science, pages
47–53. Springer Berlin / Heidelberg, 1985. (Cited on page 1.)

20. Victor Shoup. Oaep reconsidered. In Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 239–259. Springer Berlin / Heidelberg,
2001. (Cited on page 2.)

21. Min Xie and Libin Wang. One-round identity-based key exchange with perfect forward security.
Information Processing Letters, 112(14–15):587 – 591, 2012. (Cited on page 1.)

A Definitions

In this section, we give the formal definition of an IBS and describe the standard security model
for an IBS. We also describe the discrete-log assumption, on which the Galindo-Garcia IBS is
based on.

A.1 Identity-Based Signatures

Definition 1 (Identity-Based Signature). An IBS scheme consists of four probabilistic
polynomial-time algorithms {G, E,S,V} described below.

Set-up. G(κ):– It takes as input the security parameter κ. It outputs the master secret key
msk and public parameters mpk.

(msk,mpk)
$←− G(κ)

Key Extraction. E(id,msk,mpk):– It takes as input the user’s identity id, the master secret
key msk and public parameters mpk to generate the user secret key usk.

usk
$←− E(id,msk,mpk)

Signing. S(id,m, usk,mpk):– It takes as input the user’s identity id, a message m, public
parameters mpk and the user secret key usk to generate a signature σ.

σ
$←− S(id,m, usk,mpk)



20 Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

Verification. V(σ, id,m,mpk):– It takes as input a signature σ, a message m, an identity
id and public parameters mpk. It outputs the result which is 1 if σ is a valid signature on
(id,m) or 0 if the signature is invalid.

result← V(σ, id,m,mpk)

The standard correctness condition –

1← V(S(id,m, usk,mpk), id,m,mpk),

where (msk,mpk)
$←− G(κ) and usk

$←− E(id,msk,mpk), should be satisfied.

A.2 Security Model

Goldwasser et al. [12] defined the security notion for public-key signature (PKS) schemes as
existential unforgeability under chosen-message attack (EU-CMA). The EU-ID-CMA model extends
this notion to the identity-based setting. We use the detailed EU-ID-CMA model given by Bellare
et al. in [1].

Definition 2 (EU-ID-CMA Game11). The security of an IBS scheme in the EU-ID-CMA model
is argued terms of the following game between a challenger C and an adversary A.

Set-up. C runs G to obtain the public parameters mpk and the master secret key msk. A is
given public parameters but the master secret key is kept by C.
Queries. A can adaptively make extract queries to an oracle Oε and signature queries to
an oracle Os. These queries are handled as follows.
• Extract Query. Oε(id):– A asks for the secret key of a user with identity id. If there has

already been an extract query on id, C returns the user secret key that was generated
during the earlier query. Otherwise, C uses the knowledge of msk to run E and generate
the user secret key usk, which is passed on to A.

• Signature Query. Os(id,m):– A asks for the signature of a user with identity id on a
message m. C first generates a user secret key for id, as in the extract query. Next, it
uses the knowledge of usk to run S and generates a signature σ, which is passed to A.

Forgery. A outputs a signature σ̂ on an identity îd and a message m̂, and wins the game if
1. σ̂ is a valid signature on m̂ by îd.
2. A has not made an extract query on îd.
3. A has not made a signature query on (îd, m̂).

The advantage A has in the above game, denoted by AdvEU−ID−CMAA , is defined as the proba-
bility with which it wins the above game, i.e.

AdvEU−ID−CMAA = Pr
[
(msk,mpk)

$←− G(κ); (σ̂, îd, m̂)
$←− AOε,Os(mpk) | 1← V(σ̂, îd, m̂,mpk)

]
provided σ̂ is a valid forgery on (îd, m̂). An adversary A is said to be an (ε, t, qε, qs)-forger of an
IBS scheme if it has advantage of at least ε in the above game, runs in time at most t and makes
at most qε and qs extract and signature queries respectively. If the security argument uses the
random oracle methodology [3], the adversary is also allowed to make queries to the random
oracle(s).

A.3 Discrete-Log Assumption

Definition 3. Consider a group G of prime order p, generated by g. The discrete-log problem
(DLP) in G is to find α given gα, where α ∈R Zp. An adversary A has advantage ε in solving
the DLP if

Pr [α ∈R Zp;α′ ← A(G, p, g, gα) | α′ = α] ≥ ε.
The (ε, t)-discrete-log assumption holds in G if no adversary has advantage at least ε in

solving the DLP in time at most t.

11 The security game in [1], i.e. Expuf-cma
IBS,F̄ , is explained in terms of the three oracles: INIT, CORR and

SIGN. Here we use an equivalent formulation in terms of Extract and Signature queries.



Galindo-Garcia Identity-Based Signature Revisited 21

B Forking Lemma

Pointcheval-Stern introduced the forking lemma [16] to prove the security of a number of signa-
ture schemes. In this section, we describe two variants of the original forking lemma: the general
forking lemma [2] and the multiple-forking lemma [4]. The general forking lemma was proposed
by Bellare-Neven as an abstraction of the forking lemma. The forking lemma is explained in
terms of signatures and adversaries, whereas the general forking lemma focusses on algorithms
and their outputs. But, in the general forking algorithm, only one random oracle is involved
in the so called oracle replay attack. The multiple-forking algorithm extends the oracle replay
attack to involve two random oracles and multiple replay attacks.

B.1 General Forking Lemma

We first reproduce the general forking algorithm from [2] and then explain its working. This
is followed by the statement of general forking lemma. We use slightly different notations to
maintain uniformity.

Forking Algorithm. Fix γ ∈ Z+ and a set S such that | S |≥ 2. Let Y be a randomised algorithm
that on input a string x and elements s1, . . . , sγ ∈ S returns a pair (I, σ) consisting of an integer
0 ≤ I ≤ γ and a string σ. The forking algorithm FY associated to Y is defined as follows.

Algorithm FY(x)

Pick coins ρ for Y at random

s01, . . . , s
0
γ ∈R S; (I0, σ0)

$←− Y(x, s01, . . . , s
0
γ ; ρ) [Run 0]

if (I0 = 0) then
return (0,⊥,⊥)

end if
s1I0 , . . . , s

1
γ ∈R S; (I1, σ1)

$←− Y(x, s01, . . . , s
0
I0−1, s

1
I0
, . . . , s1γ ; ρ) [Run 1]

if (I1 = I0 ∧ s1I0 6= s0I0) then
return (1, σ0, σ1)

else
return (0,⊥,⊥)

end if

Q0
I0+1 Q0

γ σ0 [Run 0]

Q0
1 Q0

2 Q0
I0

Q1
I0+1 Q1

γ σ1 [Run 1]

s0
1

s0
I0

s1
I0

s0
γ

s1
γ

Fig. 5. A successful oracle replay attack by FY .

Working. The reductions in our security argument use FY , as a black-box, to secure the forgeries
required to solve the underlying hard problem. FY , in turn, uses Y to (i) simulate the protocol
environment for the adversary and (ii) launch the oracle replay attacks.
Y takes as input: (i) x, the parameters passed to FY , (ii) T := {s1, . . . , sγ}, the set of answers

to the random oracle queries and (iii) ρ, the randomness associated with the protocol, excluding
T. Here, γ is the upper bound on the number of queries to the random oracle. At the end of
a simulation run, it returns: σ, the forgery produced by the adversary and I, the index to the
oracle query which was used by the adversary to forge.



22 Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

Run 0. FY picks: the randomness ρ and the responses to the random oracle queries {s01, . . . , s0γ}.
Then it runs Y on (x, s01, . . . , s

0
γ , ρ) to get (I0, σ0). This constitutes the first forgery.

Run 1. FY picks {s1I0 , . . . , s
1
γ} and re-runs Y on (x, s01, . . . , s

0
I0−1, s

1
I0
, . . . , s1γ , ρ) to get (I1, σ1).

This constitutes FY launching an oracle replay attack by re-winding the input tape to Q0I0 and
then re-running A using a different random oracle.

FY now hopes that A, during Run 1, uses the same random oracle index to produce its output,
i.e. I1 = I0. This results in A committing to an input, but with different random oracle outputs
as shown in Figure 5. Finally, FY returns (1, σ0, σ1) as an indication of a successful replay attack
. On the other hand, if I1 6= I0, FY fails and returns (0,⊥,⊥) as an indicating failure. The
probability with which FY succeeds, in terms of the adversarial advantage, is governed by the
forking lemma given below.

Lemma 1 (General Forking Lemma [2]). Let GI be a randomised algorithm that takes no
input and returns a string. Let

acc := Pr
[
x

$←− GI ; s01, . . . , s0γ ∈R S; (I0, σ0)
$←− Y(x, s01, . . . , s

0
γ) | I0 ≥ 1

]
and

gfrk := Pr
[
x

$←− GI ; (result, σ0, σ1)
$←− FY(x) | result = 1

]
,

then

gfrk ≥ acc ·
(
acc

γ
− 1

| S |

)
. (25)

B.2 Multiple-Forking Lemma

We first reproduce the multiple-forking algorithm from [4], followed by the statement of multiple-
forking lemma. Again, we use slightly different notations to maintain uniformity.

Multiple-Forking Algorithm. Fix γ ∈ Z+ and a set S such that | S |≥ 2. Let Y be a randomised
algorithm that on input a string x and elements s1, . . . , sγ ∈ S returns a triple (I, J, σ) consisting
of two integers 0 ≤ J < I ≤ γ and a string σ. Let n ≥ 1 be an odd integer. The multiple-forking
algorithm MY,n associated to Y and n is defined as follows:



Galindo-Garcia Identity-Based Signature Revisited 23

Algorithm MY,n(x)

Initialise an empty array results[0, . . . , n]
Pick coins ρ for Y at random

s01, . . . , s
0
γ ∈R S; (I0, J0, σ0)

$←− Y(x, s01, . . . , s
0
γ ; ρ) [Run 0]

if (I0 = 0 ∨ J0 = 0) then
return (0, results)

end if
s1I0 , . . . , s

1
γ ∈R S; (I1, J1, σ1)

$←− Y(x, s01, . . . , s
0
I0−1, s

1
I0
, . . . , s1γ ; ρ) [Run 1]

if ((I1, J1) 6= (I0, J0) ∨ s1I0 = s0I0) then
return (0, results)

end if
i← 2
while (i < n) do

siJ0 , . . . , s
i
γ ∈R S; (Ii, Ji, σi)

$←− Y(x, s01, . . . , s
0
i , s

i
J0
, . . . , siγ ; ρ) [Run i]

if ((Ii, Ji) 6= (I0, J0) ∨ siJ0 = si−1J0
) then

return (0, results)
end if
si+1
I0

, . . . , si+1
γ ∈R S;

(Ii+1, Ji+1, σi+1)
$←− Y(x, s01, . . . , s

0
i , s

i
J0
, . . . , siI0−1, s

i+1
I0

, . . . , si+1
γ ; ρ) [Run i + 1]

if ((Ii+1, Ji+1) 6= (I0, J0) ∨ si+1
J0

= siJ0) then
return (0, results)

end if
i← i+ 2

end while
for i := 0 to n do
results[i]← σi

end for
return (1, results)

Q0
I0+1 Q0

γ σ0 [Run 0]

Q0
J0+1 Q0

I0

Q1
I0+1 Q1

γ σ1 [Run 1]

Q0
1 Q0

2 Q0
J0

Q2
I0+1 Q2

γ σ2 [Run 2]

Q2
J0+1 Q2

I0

Q3
I0+1 Q3

γ σ3 [Run 3]

s0
1

s0
J0

s2
J0

s0
I0

s1
I0

s0
γ

s1
γ

s2
I0

s3
I0

s2
γ

s3
γ

Fig. 6. A successful oracle replay attack by MY,3.

Working. As in the case of FY , the reductions in our security argument use MY,n, as a black-
box, to secure the forgeries required to solve the underlying hard problem. The role of Y remains
as described in FY . However, as two random oracles – denoted by H and G – are now involved
in the replay, FY now takes answers to both the random oracles as it input. We explain the
working of MY,n for the case of n := 3 (which corresponds to the reduction R3 in our security
argument).



24 Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar

Run 0.MY,3 picks the randomness ρ and the responses to the random oracle queries {s01, . . . , s0γ}.
Then it runs Y on (x, s00, . . . , s

0
γ , ρ) to get (I0, J0, σ0). Without any loss of generality, we may

assume that the index I0 involved the H-oracle and J0, the G-oracle. This constitutes the first
forgery.

Run 1. Now, MY,3 picks {s1I0 , . . . , s
1
γ} and re-runs Y on (mpk, s01, . . . , s

0
I0−1, s

1
I0
, . . . , s1γ , ρ) to get

(I1, J1, σ1). This constitutes FY launching the first oracle replay attack by re-winding the input
tape to Q0I0 and then re-running A using a different G-oracle.

FY now hopes that A, during Run 1, forges on the “correct” indices, i.e. I1 = I0 and J1 = J0.
If A does not, MY,3 fails. Otherwise, we have A committing to an input, but with different G-
oracle answers s0I0 and s1I0 . In a similar manner, MY,3 launches two more oracle replay attacks.

Run 2. The second oracle replay attack is launched by re-winding the input tape to Q0J0 and then
re-running A using a different H-oracle. MY,3 is successful during this run if the forgery is on
the “correct” indices, i.e., J2 = J0 and I2 = I0.

Run 3. The third (and final) oracle replay attack is analogous to the first replay attack in the
sense that the re-winding is done to the point where the G-oracle call was made in the previous
run.

IfMY,3 is successful at the end of Run 3 – i.e., it is successful in all the four runs – it returns
(1, results) indicating a successful execution. The probability with whichMY,n succeeds, in terms
of the adversarial advantage, is governed by the multiple-forking lemma given below.

Lemma 2 (Multiple-Forking Lemma [4]). Let GI be a randomised algorithm that takes no
input and returns a string. Let

acc := Pr
[
x

$←− GI ; s01, . . . , s0γ ∈R S; (I0, J0, σ)
$←− Y(x, s01, . . . , s

0
γ) | I0 ≥ 1 ∧ J0 ≥ 1

]
and

mfrk := Pr
[
x

$←− GI ; (result, results)
$←−MY,n(x) | result = 1

]
,

then

mfrk ≥ acc ·
(
accn

γ2n
− n

| S |

)
. (26)

C The Fixed Security Argument

Let A be an adversary against the IBS in EU-ID-CMA model. Eventually, A outputs an attempted
forgery of the form σ = (A, b,R). Let E be the event that σ is a valid signature and R was
contained in an answer of the signature oracle Os. Let NE be the event that σ is a valid signature
and R was never part of an answer of Os. Galindo-Garcia construct algorithms B1 (resp. B2)
that break the DLP in case of event E (resp. NE). We describe the modified reductions below.

C.1 Reduction B1

B1 takes as argument the description of a group (G, p, g) and a challenge gα with α ∈R Zp and
tries to extract the discrete logarithm α. The environment is simulated as shown below.

B1.1 B1 picks î ∈R {1, . . . , qG},12 where qG is the maximum number of queries that the adversary

A makes to the G-oracle. Let îd (the target identity) be the îth distinct identity queried
to the G-oracle. Next, B1 chooses z ∈R Zp and sets (mpk,msk) := ((G, g, p,G,H, gz), z),
where G,H are descriptions of hash functions modelled as random oracles. As usual, B1
simulates these oracles with the help of two tables LG and LH containing the queried values
along with the answers given to A.

12 The number of different identities involved in the G-oracle query, i.e. n, can be at most qG. Hence,
B1 has to choose one index from this set.



Galindo-Garcia Identity-Based Signature Revisited 25

B1.2 Every time A queries the key extraction oracle Oε, for user id, B1 chooses c, y ∈R Zp, sets
R := g−zcgy and adds 〈R, id, c〉 to the table LH. Then it returns the key (y,R) to A.

B1.3 When A makes a call to the signature oracle Os for (id,m) with id 6= îd, B1 simply computes
id’s secret key as described in the previous bullet. Then it runs the signing algorithm S
and returns the produced signature to A.

B1.4 When A makes a call to the signature oracle Os for (id,m) with id = îd, B1 chooses
b, d ∈R Zp, sets B := gb, R := gα, c := H(id, R), A := B(gαgzc)−d and programs the
random oracle in such a way that d := G(id, A,m). Then it returns the signature (A, b,R)
to A.

B1.5 B1 runs the algorithm MY,1(mpk) as described in Lemma 1 (§4 in [11]). Here algorithm
Y is simply a wrapper that takes as explicit input, the answers from the random oracles.
Then it calls A and returns its output together with two integers I, J . These integers are
the indices of A’s calls to the random oracles G,H with the target identity îd.

B1.6 In this way we get two forgeries of the form σ0 = (id,m, (A, b0, R)) and σ1 = (id,m, (A, b1, R)).
Let d0 be the answer from the G-oracle given to A in the first execution, s0I0 in MY,1 and

let d1 be the second answer s1I0 . If the identity id is not equal to the target identity îd then
B1 aborts. Otherwise it terminates and outputs the attempted discrete logarithm

α =
b0 − b1
d0 − d1

− zc.

C.2 Reduction B2

It takes as argument, the description of a group (G, p, g) and a challenge gα with α ∈R Zp and
outputs the discrete logarithm α. To do so, it will run A simulating the environment as shown
below.

B2.1 At the beginning of the experiment, B2 sets public parameters mpk:=(G, p, g,G, H) and
msk := (gα), where G, H are description of hash functions modelled as random oracles.
As usual, B2 simulates these oracles with the help of two tables LG and LH containing the
queried values together with the answers given to A.

B2.2 Every time A queries the key extraction oracle Oε, for user id, B2 chooses c, y ∈R Zq, sets
R := g−αcgy and adds 〈R, id, c〉 to the table LH. Then it returns the key (y,R) to A.

B2.3 When A makes a call to the signature oracle Os with (id,m), B2 simply computes id’s
secret key as described in the previous step. Then it computes a signature by calling S,
adding the respective call to the G-oracle, ((id, ga,m), d) to the table LG and gives the
resulting signature to the adversary.

B2.4 B2 runs the algorithm MY,3(mpk). In this way either B2 aborts prematurely or we get,
for some identity id, some message m and some R, four forgeries (id,m, (Ak, bk, Rk)), k :=
0, . . . , 3. Now, two situations may arise
(a) If R3 = R2 = R1 = R0 (Case 1) then, the signatures will be of the form

b0 = logA0 + (logR+ c0α)d0 , b1 = logA0 + (logR+ c0α)d1,

b2 = logA2 + (logR+ c2α)d2 and b3 = logA2 + (logR+ c2α)d3 (27)

B2 solves for α using the equation

α =
(b0 − b1)(d2 − d3)− (b2 − b3)(d0 − d1)

(c0 − c1)(d0 − d1)(d2 − d3)
. (28)

(b) Else, if A3 = A2 = A1 = A0 (Case 2) then, the signatures will be of the form

b0 = logA+ (logR0 + c0α)d0 , b1 = logA+ (logR0 + c1α)d0,

b2 = logA+ (logR2 + c2α)d2 and b3 = logA+ (logR2 + c3α)d2. (29)

B2 solves for α using the equation

α =
b0 − b1

d0(c0 − c1)
. (30)


	Galindo-Garcia Identity-Based Signature Revisited

