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Abstract

In this work we present a modification of a well-established measure of dependence
appropriate for the analysis of stopping times for adversarial processes on cryptographic
primitives. We apply this measure to construct generic criteria for the ideal behavior of
fixed functions in both the random oracle and ideal permutation setting. More signifi-
cantly, we provide a nontrivial extension of the notion of hash function indifferentiability,
transporting the theory from the status of providing security arguments for protocols
utilizing ideal primitives into the more realistic setting of protocol assurance with fixed
functions. The methodology this measure introduces to indifferentiability analysis con-
nects the security of a hash function with an indifferentiable mode to the security of the
underlying compression function in a quantitative way; thus, we prove that dependence
results on cryptographic primitives provide a direct means of determining the practical
resistance or vulnerability of protocols employing such primitives.

1 Introduction

Many real world phenomena can be studied by associating them with a sequence of iden-
tically distributed discrete random variables, corresponding to measurements, which take
values in some finite set. If the random variables are independent, the behavior of such
processes is well known, both in its long term, or asymptotic behavior and in its behavior
over an intermediate finite number of measurements. The situation for dependent processes,
however, is less clear. Although the limit theory for dependent random sequences has also
been extensively developed, the behavior of dependent processes in the “semi-long term”
has received less focus.

Hash analysis provides an excellent example of a process for which this “semi-long term”
behavior is of the greatest significance. Specifically, an adaptive adversary trying to discover
a weakness in a hash function will choose a strategy which depends on the information
obtained through interaction with the function. The experiment will continue until some
predetermined information is gleaned from this process. Since practical hash functions have
a finite output, the stochastic process defined by the interactions of the adversary with the
hash function has a stopping time.
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The stopping time of such a dependent process is of critical importance in cryptography.
An attack on a hash function can take many forms, as one may construe as an attack any
process which gathers enough information to distinguish the fixed function from an ideal
function with the same codomain. For any meaningful attack, the measure with which
we can judge the resistance of such a function is determined by the stopping time of the
adaptive adversarial process.

The purpose of this work is to provide a mathematical framework upon which we may
study the stopping times of optimal adaptive adversarial strategies. More specifically, we
introduce measures of dependence relevant to the study of stopping times for dependent
stochastic processes and apply these measures, determining the properties required of a
hash primitive to achieve various security criteria.

The manuscript is organized as follows. Section 2 introduces two classical measures
of dependence employed in limit theory to determine the asymptotic behavior of strongly
mixing random sequences. In Section 3 we present the appropriate terminology required
for the cryptographic application. In the following sections, Sections 4 and 5, we derive
analogues of the measure of dependence appropriate to the study of stopping times, and
apply the resulting theory to fixed random functions and fixed permutations, respectively.
Finally, in Section 6 we further employ the dependence condition extending the powerful
indifferentiability framework to provide assurance in a more practical setting.

2 Mixing Coefficients

Strong mixing conditions have been used greatly, both in the context of random sequences
and in the broader context of random fields, in order to study phenomena for which obser-
vations which are close to each other in time or location may show considerable influence
on one another, while observations which are far apart in time or location are almost in-
dependent. Many results in the study of strong mixing conditions for random sequences
have been in the literature in connection with various fields of study: Rosenblatt [22] and
Zhurbenko [23], with respect to the estimation of spectral density; Phillips [20], for the
use of ARMA models in the study of economics; Dabrowski, McDonald, and Rösler [8], in
connection with the flow of electrical signals in the heart or nerve membrane; Halversam
and Wise [12], related with the detection of a signal in the presence of noise; Philipp [19],
in connection with some random processes arising from number theory; Kesten and Papan-
icolaou [14], with respect to the motion of a particle in a velocity field; and Davydov [9]
and Meyn and Tweedie [16], for Markov chains.

In 1956, Rosenblatt [21] proposed one particularly useful type of dependence which he
referred to as the “strong mixing condition” or the α-mixing condition. Since then, a lot of
progress has been made in this area (see [22], [20], [8], [12], [19], [14], [9], [16], [4]) in relation
to the following mixing coefficients. Suppose (Ω,F ,P) is a probability measure space, and
A, B ⊂ F are two σ-fields. Define the following measures of dependence:

α(A,B) := sup
A∈A,B∈B

|P (A ∩B)− P (A)P (B)|,

and
φ(A,B) := sup

A∈A, B∈B, P (A)>0
|P (B|A)− P (B)|.
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It is well known and elementary (see [3], Proposition 3.11(a)) that

0 ≤ 2α(A, B) ≤ φ(A, B) ≤ 1.

It is obvious to notice that if the σ-fields A, B are independent, then α(A,B) = 0 and
ρ(A,B) = 0, and vice versa.

Suppose ξ := (ξk, k ∈ Z) is a (not necessarily stationary) sequence of random variables.
For −∞ ≤ J ≤ L ≤ ∞, define the σ-field

FL
J := σ(ξk, J ≤ k ≤ L),

the σ-field generated by the random variables (ξk, J ≤ k ≤ L). It is understood that the
index k is restricted to the integers. These notations will also be used for (not necessarily
stationary) “one-sided” random sequences ξ := (ξ1, ξ2, ξ3, . . .), with the obvious modification
that σ-field FL

J is defined only for 1 ≤ J ≤ L ≤ ∞. In this paper, for the “one-sided” random
sequences ξ := (ξ1, ξ2, ξ3, . . . , ξn) the σ-field FL

J is defined only for 1 ≤ J ≤ L ≤ n. For each
integer n, define the following dependence coefficients:

α(n) := α(ξ, n) := sup
J∈Z

α(FJ
−∞,F∞

J+n)

and
φ(n) := φ(ξ, n) := sup

J∈Z
φ(FJ

−∞,F∞
J+n).

The random sequence ξ := (ξk, k ∈ Z) (whether stationary or not) is said to be “strongly
mixing” (or α-mixing), respectively “φ-mixing” if α(n) → 0 and φ(n) → 0, respectively,
as n → ∞. The strong mixing condition α(n) → 0 was introduced by Rosenblatt [21],
and the φ-mixing condition φ(n) → 0 was introduced by Ibragimov [13], and also studied
by Cogburn [6]. While in this paper we are not interested in the asymptotic behavior of
the random process, due to the fact that n is an arbitrary fixed integer, it is necessary to
emphasize the challenge of showing the behavior for our random process when the number
of steps is large and fixed, without looking at its limiting behavior.

3 Cryptographic Primitives and Modes

In cryptography, hash functions are designed in such a way to simulate a random function
while committing to its output values. For a good hash function, it should be computation-
ally infeasible to find a pre-image of a known hash value, alter a known input/output pair
to find a second pre-image, or generate two inputs which hash to the same value. A simple
reason for these design criteria is that any function satisfying these conditions behaves like a
random oracle, a theoretical function often used to prove the security of complex protocols.

A finite random oracle, ro : A → B, is a function chosen uniformly at random from
among all functions from the finite set A to the finite set B. To collect information about
any function F one may submit queries, inputs for which F provides outputs, and catalogue
the results. If a query has never been made to the function previously, it is called a fresh
query. Random oracles have the property that every fresh query produces an output which
is uniformly distributed and independent of all previously catalogued information. We may
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define a variable input length random oracle, RO : Z → B, with a similar property by
selecting a sequence of uniformly distributed independent and identically distributed (i.i.d.)
B-valued random variables, Xi, and defining RO(n) = Xn. In practice, the input to RO

may be a bit string instead of an integer, in which case the composition of the necessary
bijection is understood.

Random oracles are not appropriate for all theoretical applications. In particular, in
some contexts it is important for a permutation to behave unpredictably. In such contexts,
we employ ideal permutations. An ideal permutation, π : A → A, is a permutation chosen
uniformly at random from among all permutations of the finite set A.

One model for building a practical hash function is to chain together fixed finite functions
which are designed to mimic the behavior of a finite random oracle or an ideal permutation.
A hash mode is a method for creating a variable input length function from such functions
of fixed input length. If a particular hash mode is proven secure when its components
are assumed to be ideal primitives (either a finite random oracle or an ideal permutation,
depending on the design), then the task of creating a secure hash function is reduced to the
challenge of creating fixed functions which behave like the ideal functions.

These ideal functions provide a road-map for proving the security of a practical hash
function. First, the hash mode is analyzed with the fixed primitives replaced by ideal
primitives. If the resulting variable input length function is shown to be indistinguishable
from a variable input length random oracle, the mode is considered secure. It then suffices
to show that the actual fixed primitives employed in the hash design are indistinguishable
from ideal primitives.

4 Fixed Random Functions

Consider a finite fixed function, F . An adversary, trying to reveal a weakness in F may
attempt a collision attack (finding two inputs which map to the same output), a preimage
attack (finding a preimage for some given fixed but arbitrary value of the codomain of F ),
or a second-preimage attack (finding a second preimage for a known input/output pair).
For such a fixed function, there may exist some symmetry which a diligent adversary can
discover through interaction with the function and possibly exploit to effect one of the above
attacks.

Consider in contrast the interaction of an adversary with a finite random oracle, ro.
Clearly, there is no benefit to submitting a single query repeatedly to the oracle, thus
we may assume that the adversary submits fresh queries. Consequently, we can define a
sequence of uniformly distributed i.i.d. random variables, ξ1, ξ2, . . ., corresponding to each
successive output of ro.

Let the random variableX denote the number of rounds of querying before the adversary
is able to form a collision with outputs of ro. Then its probability density function is
f(x) = x

(n−1)!
(n−x)!n

−x, where x = 1, 2, . . . , n. Consequently, the expected value of X is given
by

(4.1) E(X) =
n
∑

i=1

i2
(n− 1)!

(n− i)!
n−i.
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A classical calculation shows the relative size of this quantity. Specifically, by Markov’s
inequality, E(X) ≥ αP (X ≥ α), and we may find a lower bound for E(X) by finding α

satisfying P (X ≥ α) ≥ 1
2 . Clearly, this is equivalent to finding P (X < α) ≤ 1

2 . Since for all
i ≤ n we have P (X > i− 1) > 0, we obtain, for all α ≤ n:

P (X < α) ≤
α−1
∑

i=1

P (X = i|X > i− 1) =
α−1
∑

i=1

i

n
=

1

n

(

α

2

)

.(4.2)

Setting this quantity equal to 1
2 , we may derive that α =

√
4n+1+1

2 . This fact implies that

E(X) ≥
√
4n+1+1

2 P (X ≥ α) ≥
√
4n+1+1

4 , which shows that the sum in (4.1) is Ω(
√
n).

To get the other bound, notice that the expected number of rounds to get the first
collision must be less than or equal to the number of rounds for the expected number of
collisions to be at least one, since there can be at most one collision in any given round.
Therefore, we can show that this number is order

√
n. Let Ii,j be the indicator that the ith

and jth nodes visited coincide. Let Y be the number of collisions, that is

Y =
σ−1
∑

i=1

σ
∑

j=i+1

Ii,j ,

where σ represents an arbitrary number of rounds. Therefore, considering the fact that
P (Ii,j = 1) = 1

n , we have:

E(Y ) =
σ−1
∑

i=1

σ
∑

j=i+1

1

n
=

(

σ

2

)

1

n
.(4.3)

Thus, for E(Y ) = 1, we need σ = ⌈
√

2n+ 1
4 + 1

2⌉. Thus our sum is O(
√
n), and therefore,

Θ(
√
n).
The critical question in the context of random functions is, “What happens when we

are not guaranteed independence among function output in each of the rounds?” For
each i ∈ {1, 2, . . . , n}, let us define ξi to be a simple random variable taking the values
{1, 2, . . . , n}, where each integer represents the output of a fixed function, F , in round i.

Clearly, whatever the adversary’s criteria for a successful attack may be, he or she may
only consider the attack successful by referring to information from the current round and
past rounds. The adversary may only make judgements in round i based on information
from the previous rounds. Therefore, to study the stopping time of the adversarial process,
we are specifically interested in a measure of dependence involving past events and events
in round i, a measure which consequently bounds the performance of an optimal adversary.

Definition 4.1. Consider the process {ξk} where k ∈ {1, 2, . . . , n} together with a collection
of pairs of sigma fields, Ai and Bi, where A1 is the trivial sigma field, Ai = F i−1

1 for
2 ≤ i ≤ n, and Bi = F i

i for 1 ≤ i ≤ n. We define the dependence sequence of this process
in the following way: for i ∈ {1, 2, . . . , n},
(4.4) φi = φ(Ai,Bi) = sup

A∈Ai, B∈Bi

|P (B|A)− P (B)|, P (A) > 0.

If the ξi are the outputs of a random function, F , with a finite codomain of size n, then we
say that F is a φ[p]-mixing random function provided that φi ≤ n−p for all i < n.
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By an easy calculation one may notice that for each i ∈ {1, 2, . . . , n}, if A ∈ F i−1
1 and

B ∈ F i
i , then

(4.5) |P (A ∩B)− P (A)P (B)| ≤ P (A) · φi.

Now we compute bounds on the probability of obtaining the first collision on round i.
Clearly, larger probabilities of collision in early rounds result in a lower expected number
of rounds to form a collision. With this in mind, we compute each probability assuming
that each previous round attains the theoretical maximum probability of collision. For the
first round we use the formal notation φ1, which simply represents zero, since there are no
events occurring before the first round.

In this manner, we compute that the probability of getting a collision in the first round is
1
n = 1

n+φ1. Therefore, the probability of noncollision in the first round is n−1
n −φ1. Were the

outcome in the second round uniformly distributed and independent of the outcome of the
first round, the probability of a collision in the second round and a noncollision in the first
round would be (n−1

n − φ1)
2
n . The definition of φ2 provides us with a possible error in this

estimation; specifically, we may be as far off the correct value as (n−1
n − φ1)φ2. Therefore,

the probability that the first collision occurs in round two is bounded by (n−1
n −φ1)(

2
n+φ2).

For each i ∈ {1, 2, . . . , n}, we may compute the probability of Ci, the event that the
first collision occurs in round i, given that each collision event is assigned the maximal
probability sequentially,

(4.6) P (Ci) = (
i

n
+ φi)

∏

1≤k<i

(
n− k

n
− φk).

Consider this expression as a polynomial in R[φ1] . . . [φi]. For each i ∈ {1, 2, . . . , n}, we use

Ψ
(k)
i to denote the sum of the total degree k terms in this bound. Then we obtain

(4.7) Ψ
(0)
i =

i

ni

(n− 1)!

(n− i)!
.

We denote the terms contained in Ψ
(1)
i by

(4.8) Ψ
(1)
i,j =

{

φi

ni
n!

(n−i)! if j = i

− iφj

ni
n!

(n−i)!(n−j) if j < i,

where i represents the number of rounds and j represents the index of the variable φ used.
Thus, equation (4.6) becomes: for each i ∈ {1, 2, . . . , n},

(4.9) P (Ci) = Ψ
(0)
i +

∑

1≤j≤i

Ψ
(1)
i,j + higher degree terms.

Now we can explicitly write down a lower bound formula on the expected number of
rounds, X, required to form a collision relative to the φi’s. Specifically, we have that

(4.10) E(X) =
n
∑

i=1

iΨ
(0)
i +

n
∑

i=1

i

i
∑

j=1

Ψ
(1)
i,j + sum of higher degree terms.
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From the birthday paradox we obtain
∑n

i=1 iΨ
(0)
i = Θ(

√
n). To evaluate the second

summation in equation (4.10), we divide into two cases:
Case 1: j = i.
Under this condition, the second summation in (4.10) contributes positively to the ex-

pected value. Specifically, this sum is bounded below by

nmin
l≤n

(φl)
n
∑

i=1

i

ni

(n− 1)!

(n− i)!
.

Notice that each term in the sum above is exactly Ψ
(0)
i , the probability of forming a collision

among the n outputs at step i. Therefore this entire term simplifies to nminl≤n(φl), which
is nonnegative. On a side note, in conjunction with our subsequent calculations, this lower
bound for the summand provides a natural upper bound on the dependence coefficients,
φi. Note that E(X) = O(

√
n), which implies that any fixed function has some dependence

coefficient smaller than Cn−1/2 and Case 1 is complete.
Case 2: j < i.
Under this condition, the second sum in equation (4.10) becomes:

(4.11) −
n
∑

i=2

i−1
∑

j=1

φji
2

ni

n!

(n− i)!(n− j)
= −

n−1
∑

j=1

nφj

n− j

n
∑

i=j+1

i2

ni

(n− 1)!

(n− i)!
.

Note that the inner sum on the index i above is a partial sum with terms iΨ
(0)
i , therefore

it is bounded by C
√
n. Thus the right-hand side of (4.11) is lower bounded by

−Cn3/2
n−1
∑

j=1

φj

n− j
= −Cn3/2

n−1
∑

j=1

φn−j

j
≥ −Cn3/2max

i
φi

n−1
∑

j=1

1

j
.

Consequently, since the partial sum of the harmonic series above is bounded by ln(n) + 1,
we obtain that for n > 1,

−Cn3/2max
i

φi

n−1
∑

j=1

1

j
≥ −Cn3/2(ln(n) + 1)max

i
φi.

Therefore, the condition φi < n−1−ǫ is sufficient to conclude that the second sum in (4.10)
is o(n1/2) and hence, the lower bound of the expected value is Ω(

√
n), provided that the

higher degree terms are negligible for such values of φi.

The following theorem will show the fact that the higher degree terms are indeed negli-
gible if φi < n−1−ǫ for all i ∈ {1, 2, . . . , n}.

Theorem 4.1. A function, F , has ideal collision resistance provided it is φ[1 + ǫ]-mixing
for some ǫ > 0.

Proof. From above, we have that E(X) = Ω(
√
n)+ sum of degree two and higher terms.

We need to show that the sum of the terms with total degree greater than or equal to two
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is o(
√
n). For this, since there are fewer than n possible total degrees, it suffices to show

that the sum restricted to each total degree is o(n−1/2). Consider the degree d ≥ 2 sum,
∑n

i=1 iΨ
(d)
i . Allowing j1 < j2 < . . . < jd ≤ i, we denote the terms in Ψ

(d)
i by

(4.12) Ψ
(d)
i,j1,...,jd

=







(−1)d+1 φiφj1
···φjd−1

ni−1

n!
(n−i)!(n−j1)···(n−jd−1)

if jd = i

(−1)d
iφj1

···φjd

ni−1

n!
(n−i)!(n−j1)···(n−jd)

if jd < i.

We may bound the absolute values of sums of these terms with jd = i and with jd < i

individually. As before, we consider the following two cases:
Case 1: jd = i.
Under this condition, we obtain that

(4.13)

n
∑

i=d

i−1
∑

jd−1=d−1

. . .

j2−1
∑

j1=1

|iΨi,j1,...,jd−1,i| =
n−1
∑

jd−1=d−1

. . .

j2−1
∑

j1=1

n
∑

i=jd−1+1

|iΨi,j1,...,jd−1,i|.

By (4.12), replacing the φk’s with their maximum values and multiplying and dividing by
n in the right-hand side of (4.13), we obtain:

nmax
l≤n

(φd
l )

n−1
∑

jd−1=d−1

1

n− jd−1
. . .

j2−1
∑

j1=1

1

n− j1

n
∑

i=jd−1+1

i

ni

n!

(n− i)!
.

Since the innermost sum is the probability that it takes more than jd−1 rounds to have
a collision in the outputs of a random oracle, our quantity above is bounded by

nmax
l≤n

(φd
l )

n−1
∑

jd−1=d−1

1

n− jd−1
· · ·

j2−1
∑

j1=1

1

n− j1
≤ nmax

l≤n
(φd

l )(ln(n) + 1)d−1.

The condition φi < n−1−ǫ assures that the sum in (4.13) is o(n1−d), which for d ≥ 2 means
it is o(n−1) and in particular, o(n−1/2). As a consequence, Case 1 is complete.

Case 2: jd < i.
In this second case, we have:

(4.14)
n
∑

i=d+1

i−1
∑

jd=d

. . .

j2−1
∑

j1=1

|iΨi,j1,...,jd | =
n−1
∑

jd=d

. . .

j2−1
∑

j1=1

n
∑

i=jd+1

|iΨi,j1,...,jd |.

We can rewrite the right-hand expression above as

n−1
∑

jd=d

. . .

j2−1
∑

j1=1

nφj1 · · ·φjd

(n− j1) · · · (n− jd)

n
∑

i=jd+1

i2

ni

n!

(n− i)!
.

Again, since the inner-most sum is a partial sum of the expected number of rounds required
to form a collision in the outputs of a random oracle, we can bound it by Cn1/2. Therefore,
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we have

Cn3/2
n−1
∑

jd=d

φjd

n− jd
· · ·

j2−1
∑

j1=1

φj1

n− j1
≤ Cn3/2max

l≤n
(φd

l )

(

n−1
∑

i=1

1

i

)d

≤ Cn3/2max
l≤n

(φd
l )(ln(n) + 1)d.

Using the given bound, φi < n−1−ǫ, we obtain a bound of o(n3/2−d) for the sum in (4.14),
which for d ≥ 2 it implies the sum is o(n−1/2). Therefore, Theorem 4.1 is complete.

Corollary 4.1. A fixed function, F , has ideal collision resistance if the dependence sequence
satisfies φi < n−1−ǫ for 1 ≤ i ≤ C

√
n for some constant C.

Proof. For any fixed function, F , let us denote

E(X|X ≤ σ) :=
σ
∑

i=0

iP (X = i|X ≤ σ).

Define now EX≤σ(X) = E(X|X ≤ σ)P (X ≤ σ), which is exactly the σth partial sum of
E(X). Therefore, {EX≤σ} forms a monotonically increasing sequence with index σ. Thus

all “little-oh” bounds from Theorem 4.1 and before hold for the negative parts of
∑

iΨ
(d)
i ,

d ≥ 1. Hence, it suffices to show that for a random oracle, EX≤C
√
n(X) = Ω(

√
n).

Fix σ to be the smallest integer such that P (X ≤ σ) ≥ 1
2 . From the discussion at the

beginning of this section, σ = C
√
n. We need only to show that E(X|X ≤ σ) = Ω(

√
n).

Again, by Markov’s Inequality, E(X|X ≤ σ) ≥ αP (X ≥ α|X ≤ σ). We find an α such
that P (X ≥ α|X ≤ σ) ≥ 1

2 ; this is equivalent to finding α such that P (X < α|X ≤ σ) ≤ 1
2 ,

which for α < σ becomes P (X < α) ≤ P (X≤σ)
2 . Since P (X ≤ σ) ≥ 1

2 , it suffices to find an
α such that P (X < α) = 1

4 .
As in this section’s prologue, P (X < α) ≤ 1

n

(

α
2

)

, and we find that α must be roughly
√

n
2 to satisfy our inequality. Therefore, the partial sums of E(X) for a random oracle

are Ω(
√
n) provided that there are at least Ω(

√
n) summands. Thus, if φi < n−1−ǫ for

1 ≤ i ≤ C
√
n, E(X) > EX≤C

√
n(X) = Ω(

√
n), and the corollary is complete.

5 Fixed Permutations

Clearly, collision resistance is not a concern for a permutation; however, we can analyze a
random walk model similar to the random oracle process of the previous section to simulate
the process of deriving a cycle in the permutation. Obviously, having an easily derived short
cycle is a weakness for a permutation, since such a cycle may produce a free-start collision in
a naive mode using the permutation. With this in mind, we compute the expected number
of queries required to form a cycle in an ideal permutation.

Let F : {1, 2, . . . , n} → {1, 2, . . . , n} be an ideal permutation. Since the properties of
an ideal permutation imply that each element in the domain has the same probability of
belonging to a cycle of any specified length, we may analyze a random walk starting with
the initial value IV , computing F (IV ), F (F (IV )), . . . , F i(IV ) = IV .
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To determine the probability that F i(IV ) = IV , we first count the number of permu-

tations for which F j(IV ) 6= IV for all 0 < j < i. There are (n−1)!
(n−i)! choices for a prefix of an

i-cycle beginning with IV , the choice F i(IV ) = IV is forced, and there are (n − i)! ways
of permuting the remaining n − i elements. Therefore, there are (n − 1)! permutations in
which F i(IV ) = IV . Thus, for all i, P (F i(IV ) = IV ) = 1

n .
To find the expected number of queries, X, required to form a cycle, we calculate:

E(X) =
n
∑

i=1

iP (X = i) =
n
∑

i=1

i

n
=

n+ 1

2
.

Definition 5.1. A permutation, F , is said to have the ideal cycle property if the number
of queries, Q, required to discover a cycle, F (i), is Θ(n), the number of queries to perform
the same task for an ideal permutation.

For an ideal permutation, the hypotheses of Theorem 4.1 are not satisfied. In particular,
for each i ∈ {1, 2, . . . , n} consider calculating the dependence sequence, {φi}, corresponding
to the ideal permutation. Again, φ1 = 0 since there are no events occurring before the first
round. For the second dependence coefficient,

φ2 = sup
A∈σ(ξ1), B∈σ(ξ2)

|P (B|A)− P (B)|, P (A) > 0.

Consider the events A = [ξ1 = IV ] and B = [ξ2 6= IV ]. Clearly, P (A) = 1
n . By the above

calculation, P (B) = n−1
n . Notice, however, that A ∩B = ∅, since if ξ1 = IV then ξ2 = IV .

Therefore, φ2 ≥ n−1
n . Although Theorem 4.1 is not applicable, we can, however, still apply

the techniques from Section 4 and generalize the results to give us a meaningful result.
In contrast to a random oracle, the outputs of fresh queries to an ideal permutation

do not form an i.i.d. sequence of random variables. In particular, the outputs of the
permutation are definitively not independent. If we consider the dependence sequence of
the previous section in a new light, however, we can generalize this technique to construct
an useful measure of variation between the output distributions of a fixed permutation and
an ideal permutation.

Note that if the ith input to a random oracle is fresh, then for all A ∈ σ(ξ1, . . . , ξi−1)
and B ∈ σ(ξi), we have that P (B|A) = P (B). Therefore we can consider the dependence
sequence of the previous section as a measure of variation between the distribution of
outputs of the fixed function, F , and the random oracle RO. To make this formal, we
need to define a sequence of relative dependence coefficients depending on two sequences of
random variables.

Definition 5.2. Let F be a fixed function with a finite codomain of size n and let π be an
ideal function. Define ξi to be the random sequence of outputs of F under fresh queries.
Similarly, define ζi to be the random sequence of outputs of π under fresh queries. Define
a map τ : σ(ξ1, . . . , ξn) → σ(ζ1, . . . , ζn) by τ [(ξ1, . . . , ξn) ∈ A] = [(ζ1, . . . , ζn) ∈ A] for any
subset, A, of {1, . . . , n}n. For each i ∈ {1, 2, . . . , n}, define the relative dependence sequence,

(5.1) φ̂i = sup
Ai∈σ(ξ1,...,ξi−1),Bi∈σ(ξi)

|P (Bi|Ai)− P (τ(Bi)|τ(Ai))|,

with P (Ai)P (τ(Ai)) > 0. F is said to be φ̂[p]-mixing if φ̂i ≤ n−p for all i < n.
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Note that if ξi and ζi are identically distributed and in addition ζi are also independent,
then φ̂i = φi. This fact is the analytic expression of the intuition that the measure of
dependence φ is essentially a measure of variation between the given process and an idealized
independent version of the process. As a consequence, φ̂i = φi if τ maps to the sigma field
generated by the outputs of a random oracle.

Define an i-singleton event by Ai = [ξ1 = a1, . . . , ξi = ai] ∈ σ(ξ1, . . . , ξi), and an (i, k)-
singleton event by Bi,k = [ξk+1 = bk+1, . . . , ξi = bi] ∈ σ(ξk+1, . . . , ξi). Clearly, in the case of

an ideal permutation, we have that P (Ai) =
(n−i)!

n! for all i and P (Bi,k) =
(n−i+k)!

n! for all
k < i. Using this relation, we derive the following permutation measuring lemma:

Lemma 5.1. Fix 1 ≤ i ≤ n. Let F be a fixed permutation. Assume that ξi, fresh query
outputs for F , and ζi, fresh query outputs for an ideal permutation, π, are identically
distributed. Let Ai ∈ F i−1

1 and Bi ∈ F i
i . Then |P (Ai∩Bi)− n

n+1−iP (Ai)P (Bi)| ≤ P (Ai)φ̂i.

Proof. If P (Ai) = 0, then the result is obviously valid. If P (Ai) > 0, then P (τ(Ai)) > 0;
consequently, |P (Bi|Ai) − P (τ(Bi)|τ(Ai))| ≤ φ̂i. Note |P (Ai ∩ Bi) − n

n+1−iP (Ai)P (Bi)| =
|P (Ai ∩Bi)− P (Ai)

nP (Bi)
n+1−i |.

Since Bi ∈ σ(ξi) and ξi and ζi are identically distributed, we obtain the relation P (Bi) =
P (τ(Bi)). Now τ(Ai) can be expressed as the disjoint union of a (i − 1)-singleton events,
and τ(Bi) can be expressed as a disjoint union of b (i, i − 1)-singleton events of the form
[ξi = k], each having probability 1

n . Therefore we compute, using the above mentioned

relation for (i−1)-singleton events, the quantities P (τ(Ai)) =
a(n+1−i)!

n! , and P (τ(Bi)) =
b
n .

Moreover, since the event τ(Ai) ∩ τ(Bi) must be the disjoint union of a · b i-singleton

events, it follows that P (τ(Ai)∩τ(Bi)) =
ab(n−i)!

n! . We therefore have that P (τ(Bi)|τ(Ai)) =
b

n+1−i = nP (τ(Bi))
n+1−i = nPr(Bi)

n+1−i . We thus obtain, |P (Ai ∩ Bi) − P (Ai)P (τ(Bi)|τ(Ai))| =

P (Ai)|P (Bi|Ai)−P (τ(Bi)|τ(Ai))|, since P (Ai) > 0. This quantity is bounded by P (Ai)φ̂i,
and, consequently, the lemma holds.

Using a technique similar to that of Section 4, we compute the probability of obtaining
the first cycle on round i. Again, larger probabilities of cycle formation in early rounds
result in a lower expected number of rounds to form a cycle; therefore, we compute each
probability assuming that every previous round attains the theoretical maximum probability
of cycle formation. As in the random oracle case, φ̂1 = 0.

The probability of forming a cycle in the first round is 1
n = 1

n + φ̂1; consequently, the

probability of noncollision in the first round is n−1
n − φ̂1. By Lemma 5.1, the probabil-

ity of getting a cycle in the second round and no cycle in the first round is bounded by

P (A)
(

φ̂2 +
n

n−1
1
n

)

, where A represents the event that there is no cycle formed in the first

round. This quantity simplifies to
(

n−1
n − φ̂1

)

·
(

φ̂2 +
1

n−1

)

.

Similarly, for each i ∈ {1, 2, . . . , n}, we derive the probability of Ci, the event that the
first cycle formation occurs in round i, given that each cycle formation event is assigned the
maximal probability sequentially,

(5.2) P (Ci) =

(

1

n+ 1− i
+ φ̂i

)

∏

1≤k<i

(

n− k

n+ 1− k
− φ̂k

)

.
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Again, let us consider this expression as a polynomial in R[φ̂1] . . . [φ̂i] with i ∈ {1, 2, . . . , n}.
Let Ψ

(k)
i denote the sum of the total degree k terms in this bound. Then we obtain

Ψ
(0)
i =

1

n
.

We denote the terms in Ψ
(1)
i by

Ψ
(1)
i,j =







(n+1−i)φ̂i

n if i = j

− (n+1−j)φ̂j

n(n−j) if j < i.

Thus equation (5.2) becomes:

(5.3) P (Ci) = Ψ
(0)
i +

∑

1≤j≤i

Ψ
(1)
i,j + higher degree terms.

We now derive an explicit lower bound formula for the expected number of rounds, X,
required to form a cycle relative to the φ̂i’s. We obtain

(5.4) E(X) =
n
∑

i=1

iΨ
(0)
i +

n
∑

i=1

i

i
∑

j=1

Ψ
(1)
i,j + sum of higher degree terms.

From the analysis earlier in this section,
∑n

i=1 iΨ
(0)
i = n+1

2 . The following theorem
provides conditions for which the sum of these terms constitutes the dominant term.

Theorem 5.1. A permutation, F , has the ideal cycle property provided it is φ̂[1+ ǫ]-mixing
for some ǫ > 0.

Proof. First, we note that the terms in Ψ
(d)
i , the sum of the total degree d terms, satisfy:

Ψ
(d)
i,j1,...,jd

=







(−1)d+1 (n+1−j1)···(n+1−jd)φ̂j1
···φ̂jd

n(n−j1)···(n−jd−1)
if jd = i

(−1)d
(n+1−j1)···(n+1−jd)φ̂j1

···φ̂jd

n(n−j1)···(n−jd)
if jd < i.

By the calculations shown at the beginning of this section,
∑n

i=1 iΨ
(0)
i = Θ(n). It there-

fore suffices to show that the absolute value of the sum of the negative terms,
∑n

i=d iΨ
(d)
i

with d > 0 is o(n).

Now, Ψ
(d)
i is negative when either jd = i and d > 0 is even, or jd < i and d is odd. In

particular, since we have taken care of the d = 0 case, we consider the absolute value of the

sum
∑n

i=d iΨ
(d)
i,j1,...,jd

when jd < i and d ≥ 1 is odd, and when jd = i and d ≥ 2 is even.
Case 1: jd = i and d ≥ 2 is even.
Under these conditions, we have that

(5.5)
n
∑

i=d

i|Ψ(d)
i,j1,...,jd−1,i

| ≤ max
l≤n

φ̂d
l

n
∑

i=1

i(n+ 1− i)

n





n−1
∑

j=1

n+ 1− j

n− j





d−1

.
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The first sum in the right-hand side of (5.5) evaluates to

n
∑

i=1

i(n+ 1− i)

n
=

1

3

(

n+ 1

2

)

,

while the second sum in (5.5) simplifies to





n−1
∑

j=1

n+ 1− j

n− j





d−1

=

(

n− 1 +
n−1
∑

k=1

1

k

)d−1

≤ (n+ ln(n))d−1 .(5.6)

Thus the right-hand sum in (5.5) is bounded by the quantity

1

3
max
l≤n

φ̂d
l

(

n+ 1

2

)

(n+ ln(n))d−1 .

Since by hypothesis maxl≤n φ̂l < n−1−ǫ, we have

1

3
max
l≤n

φ̂d
l

(

n+ 1

2

)

(n+ ln(n))d−1 <
1

3
n−d−dǫ

(

n+ 1

2

)

(n+ ln(n))d−1 ,

which is O(n1−dǫ), and hence, Case 1 is complete.
Case 2: jd < i and d ≥ 1 is odd.
Under these conditions, we obtain that

n
∑

i=d

i|Ψ(d)
i,j1,...,jd

| ≤ max
l≤n

φ̂d
l

n
∑

i=1

i

n





n−1
∑

j=1

n+ 1− j

n− j





d

.

Using the bound maxl≤n φ̂l < n−1−ǫ, this expression simplifies to

n−d−dǫn+ 1

2
(n+ ln(n))d = O(n1−dǫ),

and Case 2 is complete.
Taking the maximum constant, C, from each of the “big-oh” expressions in the n values

of d, we obtain the following bound for the sum of the negative terms in (5.4):

C

n
∑

d=1

n1−dǫ ≤ Cn
1

nǫ − 1
= o(n).(5.7)

Therefore the total sum in (5.4) is Θ(n) and Theorem 5.1 is complete.

6 Application to Indifferentiability

The indifferentiability framework for hash functions provides a security criterion for the
replacement of an ideal function with a fixed function. Specifically, we have the following
definition based on [7, 15].

13



Definition 6.1. An interactive Turing machine T with oracle access to an ideal primitive F
is said to be (tA, tS , σ, ǫ)-indifferentiable from an ideal function G if there exists a simulator
S such that, for any distinguisher A, we have:

∣

∣P (AT,F ⇒ 1)− P (AG,S ⇒ 1)
∣

∣ ≤ ǫ.

The simulator S is an interactive Turing machine with oracle access to G running in time
at most tS, the distinguisher A runs in time at most tA, the number of queries A is allowed
is σ, and ǫ is a negligible function of the security parameter of T .

The indifferentiability framework provides the most important theoretical means of ver-
ifying the security of a hash mode. In particular, an indifferentiable hash mode together
with an ideal compression function is resistant to every generic attack, including any possi-
ble generic attack found in the future. As a result, the recent years have witnessed a great
deal of work devoted to the indifferentiability security of the most significant hash modes.
In [1, 5], an indifferentiability bound of n

2 bits is derived for the hash function BLAKE; the
same bound is also derived in [10, 11, 18, 2] for Skein, Gröstl, JH, and the SHA-3 winner
Keccak, respectively.

As an application of the framework developed in the previous sections, we are able to
extend any generic indifferentiability proof of hash mode H using an ideal primitive to
the case of a φ̂[p]-mixing primitive. This advancement is due primarily to the observation
put forth in [17] and [18] that any indifferentiability proof can be modeled with the use
of only three games: Game(RO,S), a game modelling interaction with a variable input
length random oracle RO and simulator S, Game(H, ip), a game modelling interaction
with the actual hash mode H and ideal primitive ip, and G1, a single hybrid game with an
input/output distribution identical to that of Game(H, ip) and different from Game(RO,S)
on an exhaustively specified set of events defined for each round i, denoted by BADi.

The methodology employed in [17] and [18] recasts the typical quest for a long sequence
of games into a purely mathematical problem involving the events BADi, denoting the
event that some occurrance in the ith round may allow an adversary to determine with
which entity she is interacting, and GOODi, denoting

⋂

j<i ¬BADj . Here ¬BADj denotes
the complement of BADj . Specifically, any indifferentiability proof can in this way be
reduced to checking that the catalogue of information retrieved by any indifferentiability
adversary A is identical for the two games G1 and Game(RO,S) in round i if GOODi

occurred followed by a simple computation of ¬GOODi.
A key concept from this analysis is the fact that given a fixed view, any adversary A,

being a probabilistic Turing machine, has a fixed distribution of state transitions. Con-
sequently, even though given the same input/output distributions A may in one instance
output 1 while in another instance output 0, the probability of each output is unchanged
from one experiment to the next.

Lemma 6.1. Let 0 ≤ a1, . . . , ak, b1, . . . , bk ≤ 1. Then
∣

∣

∣

∏k
i=1 ai −

∏k
i=1 bi

∣

∣

∣ ≤
∑k

i=1 |ai − bi|.

Proof. The result is clearly true if k = 1. Assume the result is true for all values less than
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k.
∣

∣

∣

∣

∣

k
∏

i=1

ai −
k
∏

i=1

bi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
∏

i=1

ai − bk

k−1
∏

i=1

ai + bk

k−1
∏

i=1

ai −
k
∏

i=1

bi

∣

∣

∣

∣

∣

≤
k−1
∏

i=1

ai |ak − bk|+ bk

∣

∣

∣

∣

∣

k−1
∏

i=1

ai −
k−1
∏

i=1

bi

∣

∣

∣

∣

∣

≤ |ak − bk|+
∣

∣

∣

∣

∣

k−1
∏

i=1

ai −
k−1
∏

i=1

bi

∣

∣

∣

∣

∣

.

(6.1)

Thus by induction,
∣

∣

∣

∣

∣

k
∏

i=1

ai −
k
∏

i=1

bi

∣

∣

∣

∣

∣

≤
k
∑

i=1

|ai − bi| .

Theorem 6.1. Let A be an indifferentiability adversary interacting with the hybrid game
G(H,Fp), which utilizes a φ̂[p]-mixing primitive Fp, and Game(RO,S) while limited to σ

queries. If when interacting with Game(RO,S) and the hybrid game G(H, ip), which utilizes
an ideal primitive ip, and A is limited by σ queries we have

(6.2)
∣

∣

∣P (AG(H,ip) ⇒ 1)− P (ARO,S ⇒ 1)
∣

∣

∣ ≤ ǫ(σ),

then the following inequality holds as well:

(6.3)
∣

∣

∣
P (AG(H,Fp) ⇒ 1)− P (ARO,S ⇒ 1)

∣

∣

∣
≤ 2σ

22pn
+ ǫ(σ).

Proof. The left-hand side of (6.3) can be expanded in the following form:

(6.4)
∣

∣

∣
P (AG(H,Fp) ⇒ 1)− P (AG(H,ip) ⇒ 1) + P (AG(H,ip) ⇒ 1)− P (ARO,S ⇒ 1)

∣

∣

∣
.

By (6.2), the equation (6.4) is bounded by

∣

∣

∣
P (AG(H,Fp) ⇒ 1)− P (AG(H,ip) ⇒ 1)

∣

∣

∣
+ ǫ(σ).

Now let Gi denote the event GOODi for all i. Note that we can split the left summand
above into:

∣

∣

∣P (AG(H,Fp) ⇒ 1|τ−1(Gσ))P (τ−1(Gσ))− P (AG(H,ip) ⇒ 1|Gσ)P (Gσ)

+ P (AG(H,Fp) ⇒ 1|¬τ−1(Gσ)P (¬τ−1(Gσ))− P (AG(H,ip) ⇒ 1|¬Gσ)P (¬Gσ)
∣

∣

∣
.

(6.5)

By Lemma 6.1 and the triangle inequality, it suffices to obtain bounds on the following
three quantities:

∣

∣

∣P (AG(H,Fp) ⇒ 1|τ−1(Gσ))− P (AG(H,ip) ⇒ 1|Gσ)
∣

∣

∣ ,

∣

∣

∣
P (AG(H,Fp) ⇒ 1|¬τ−1(Gσ))− P (AG(H,ip) ⇒ 1|¬Gσ)

∣

∣

∣
,
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and
∣

∣P (τ−1(Gσ))− P (Gσ)
∣

∣ .

By the definition of τ , the view of the adversary in the game G(H,Fp), V1,σ, and
the view of the adversary in G(H, ip), V2,σ, given either of the event pairs (τ−1(Gσ), Gσ)
or (¬τ−1(Gσ),¬Gσ), are identically distributed. Therefore, since the possible states of
A interacting with G(H,Fp) and G(H, ip) are identically distributed, the corresponding
output distributions are identical. Thus we have:

∣

∣

∣
P (AG(H,Fp) ⇒ 1|τ−1(Gσ))− P (AG(H,ip) ⇒ 1|Gσ)

∣

∣

∣
= 0

and
∣

∣

∣
P (AG(H,Fp) ⇒ 1|¬τ−1(Gσ))− P (AG(H,ip) ⇒ 1|¬Gσ)

∣

∣

∣
= 0.

To analyze the last of the three quantities, notice that Gi has the special property that
Gi = ∩k≤iGk. Therefore,

P (Gσ) = P (G1)

σ
∏

i=2

P (Gi|Gi−1),

and τ−1(Gσ) satisfies a similar relation. Thus by Lemma 6.1,
∣

∣P (τ−1(Gσ))− P (Gσ)
∣

∣ is
bounded by

σ
∑

i=1

∣

∣P (τ−1(Gi)|τ−1(Gi−1))− P (Gi|Gi−1)
∣

∣ ≤
σ
∑

i=1

φ̂i.

Therefore, (6.5) is bounded by 2
∑σ

i=1 φ̂i, which is bounded by σ2−2pn+1.

7 Conclusion

The measures of dependence derived in Sections 4 and 5 provide a measure for fixed func-
tions, determining such a function’s proximity to an ideal primitive in some sense. This
framework supports the direct analysis of cryptographic primitives as exemplified in Sec-
tions 4 and 5 as well as providing a means of porting protocol security arguments involving
ideal primitives into a more realistic setting.

Perhaps the most interesting application for these dependence coefficients has been the
stopping time analysis for an indifferentiability adversary provided in Section 6. An analysis
of the dependence sequence for the primitives of the SHA-3 finalists and the winner of the
SHA-3 competition, Keccak, may solidify the indifferentiability arguments already present
in the literature. Although the direct calculation of the dependence sequence of such fixed
functions is itself a challenging task, such functions are often constructed from block ciphers
and other iterative protocols which can be further broken down and analyzed.

On the other hand, the determination of lower bounds for the dependence coefficients
of these hash primitives is a more immediately approachable problem. The discovery of
particularly large dependence coefficients, while not constituting an invalidation of indiffer-
entiability results, may call the practical resistance to distinguishing attacks of protocols
employing such primitives into question. Furthermore, this methodology can be utilized
for the construction of new heuristic arguments which may influence the construction of
primitive random functions.
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