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Abstract

This article introduces a definition of privacy for Direct Anonymous
Attestation schemes. The definition is expressed as an equivalence prop-
erty which is suited to automated reasoning using Blanchet’s ProVerif.
The practicality of the definition is demonstrated by analysing the RSA-
based Direct Anonymous Attestation protocol by Brickell, Camenisch &
Chen. The analysis discovers a vulnerability in the RSA-based scheme
which can be exploited by a passive adversary and, under weaker assump-
tions, corrupt administrators. A security fix is identified and the revised
protocol is shown to satisfy our definition of privacy.
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1 Introduction

Trusted computing allows commodity computers to provide cryptographic as-
surances about their behaviour. At the core of the architecture is a hardware
device called the Trusted Platform Module (TPM). The TPM uses shielded
memory to store cryptographic keys, and other sensitive data, which can be
used to achieve security objectives, in particular, the chip can measure and re-
port its state, and authenticate. These security objectives assume that a TPM’s

†Corresponding author: Ben Smyth, research@bensmyth.com, http://www.bensmyth.com/,
INRIA, 23 avenue d’Italie, 75013 Paris, France. This article is based upon [SRC11, SRC07]
and an earlier version appeared in [Smy11, Chapter 4]. The ProVerif scripts which sup-
port this article are available at the following URL: http://www.bensmyth.com/publications/
2012-Direct-Anonymous-Attestation-anonymity-definition/.
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shielded memory protects keys and TPMs are said to be compromised if this
assumption does not hold (see Tarnovsky [Tar10] for a hardware attack that
successful extracts keys from shielded memory).

Cryptographic operations, by their nature, may reveal a platform’s identity
and, as a consequence, the TPM has been perceived as a threat to privacy by
some users, for example, see Stallman [Sta02, Sta10] and Anderson [And03,
And04]. In an attempt to overcome these privacy concerns, Brickell, Camenisch
& Chen [BCC04] have introduced Direct Anonymous Attestation (DAA), a
historical account of DAA’s development is presented by Brickell, Camenisch &
Chen [BCC05].

Direct Anonymous Attestation enables a platform to authenticate in a man-
ner that provides privacy and accountability. The concept is based upon group
signatures with stronger anonymity guarantees, in particular, the identity of a
signer can never be revealed, but certain signatures can be linked (as discussed
below) and signatures produced by compromised platforms can be identified. A
DAA scheme considers a set of hosts, issuers, TPMs, and verifiers; the host and
TPM together form a trusted platform or signer. DAA protocols proceed as fol-
lows. A host requests membership to a group of signers managed by an issuer.
The issuer authenticates the host as a trusted platform and grants an attes-
tation identity credential (occasionally abbreviated credential). A verifier can
authenticate trusted platforms using signatures produced from such credentials.

Brickell, Chen & Li [BCL08b, BCL09] and Chen [Che10a, Che11] char-
acterise the following security properties1 for Direct Anonymous Attestation
schemes:

• Anonymity. The identity of a signer cannot be revealed from a signature.

• Non-frameability. An adversary cannot produce a signature associated
with an honest TPM.

• Unforgeability. Signatures cannot be produced without a TPM.

• User-controlled linkability. A signer can control whether her signatures
can be detected as being from the same signer.

A signer defines whether her signatures are linkable (that is, can be detected as
being from the same signer) or unlinkable (that is, cannot be detected as being
from the same signer) at the time of construction.

Our security properties aim to balance the privacy (anonymity and un-
linkability properties) demands of users with the accountability (linkability,
non-frameability and unforgeability properties) needs of administrators. The
distinction between privacy and accountability properties is reflected in our
trust model: anonymity and unlinkability assume that two signers are honest,
whereas, linkability, non-frameability and unforgeability assume that an issuer

1The necessity for non-frameability was highlighted by Backes, Maffei & Unruh [BMU08]
and formalised by Chen [Che10a, Che11], the remaining properties were formalised by Brickell,
Chen & Li [BCL08b, BCL09].
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is honest. (The issuer must be honest for linkability, since a dishonest issuer
can provide an adversary with a new credential for every signature, thereby
ensuring that two signatures are never linked.) In addition, DAA schemes must
be correct : valid signatures can be verified and, where applicable, linked.

Brickell, Camenisch & Chen [BCC04] propose the first concrete instance of
a Direct Anonymous Attestation scheme. Their scheme is based upon RSA
and support for this scheme is mandated by the TPM specification version
1.2 [TCG07], which has been defined as an ISO/IEC international standard
[Int09]. Moreover, TPM version 1.2 is estimated to have been embedded in
over 500 million computers [Tru11] (however, the Trusted Computer Group
acknowledges that the opt-in policy – whereby, users must choose to enable the
TPM – has hindered development [Tru12], moreover, Martin claims that only
5% of these TPMs have been turned on [Mar08, §6] and we suspect significantly
fewer are in active use). Furthermore, the RSA-based DAA scheme has also
been included in the ISO/IEC anonymous digital signature standard [Int11]. A
brief review of other DAA schemes appears in Appendix A.

1.1 Contribution

We formalise Direct Anonymous Attestation protocols in the applied pi calculus
and present a definition of privacy as an equivalence property which is suited to
automated reasoning using ProVerif (Section 4). Informally, the security defini-
tion asserts that an adversary cannot distinguish between signatures produced
by two distinct signers, even when the adversary controls the issuer and has ob-
served signatures produced by each signer. The application of the definition is
demonstrated by analysing privacy in the RSA-based DAA protocol (Section 5).
The analysis discovers a vulnerability in the protocol which allows privacy to be
violated by a passive adversary and, under weaker assumptions, corrupt admin-
istrators. A fix is identified, and the revised RSA-based DAA protocol is shown
to be secure in the symbolic model. We examine the balance between privacy
and accountability offered by DAA and propose extensions to DAA (Section 6):
we propose a stronger notion of privacy which is intuitively satisfied by the fixed
RSA-based scheme, address an issue which can prevent linkability, and provide
some practical guidelines for basenames to help resolve a flaw in unlinkability.

1.2 Related work

In the computational model, Brickell, Camenisch & Chen [BCC04] introduce
simulation-based models of security and Brickell, Chen & Li [BCL08b, BCL09]
propose a game-based security definition; the relationship between the simulation-
based models and the game-based definition is unknown [CMS08a, pp158].
Bernhard et al. [BFG+11] argue that the simulation-based definitions and the
game-based definition are insufficient for accountability due to informal handling
of identities and propose an alternative game-based security definition, more-
over, Bernhard et al. show that the simulation-based model by Chen, Morrissey
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& Smart [CMS09] is unsatisfiable (for all protocols there trivially exists a dis-
tinction between the ideal- and real-world). We consider a symbolic definition
for privacy, based upon the game-based definition by Brickell, Chen & Li (we
stress that the criticisms from Bernhard et al. relate to the accountability game
and not the privacy game, hence, their concerns are not relevant to our work).
By comparison, Backes, Maffei & Unruh [BMU08] formalise an earlier notion
of privacy (informally described in [BCC04]) for the RSA-based DAA protocol.
This formalisation is tightly coupled with their model of the RSA-based proto-
col and it is unclear whether other DAA schemes can be analysed or, indeed,
how to analyse alternative models of the RSA-based protocol. In addition, their
formalisation pre-dates the privacy definitions by Brickell, Chen & Li and con-
siders a conceptually weaker adversary, for example, signers are only permitted
one credential and signatures can only be produced after both signers have cre-
dentials. Finally, our definition is intuitively simpler, which should aid analysis
and, in particular, be better suited to automated reasoning.

Our earlier work also merits comparison. The attack and fix presented in
this article originally appeared in Smyth, Ryan & Chen [SRC07]. Delaune, Ryan
& Smyth [DRS08] demonstrate a technique to extend the class of equivalences
that can be checked using diff-equivalence and present a high-level description
of how their technique can be used to analyse the fixed DAA scheme. In addi-
tion, Delaune, Ryan & Smyth formalise a notion of privacy for the RSA-based
DAA protocol in an unpublished technical report [DRS07]. This formalisation
is subject to the issues highlighted with respect to Backes, Maffei & Unruh,
moreover, signers may only output one signature, the issuer’s key is assumed
to be honestly generated, and subtle properties of the underlying CL signature
scheme are omitted; we overcome these limitations in this article. Further-
more, as witnessed by Backes, Maffei & Unruh, privacy can be checked using
the standard class of equivalences that can be checked using diff-equivalence,
rather than the extended class proposed by Delaune, Ryan & Smyth. Smyth
presented a version of this article in his thesis [Smy11, Chapter 4], in partic-
ular, Smyth’s thesis contains a formalisation of Direct Anonymous Attestation
schemes as processes in the applied pi calculus, a privacy definition (based upon
the cryptographic game proposed by Brickell, Chen & Li), an analysis of the
fixed RSA-based DAA protocol, and a special case of the Smyth, Ryan & Chen
attack which can be exploited by passive adversaries. The formalisation of DAA
schemes as processes and the privacy definition have been developed by Smyth,
Ryan & Chen [SRC11], in addition, Smyth, Ryan & Chen analyse the ECC-
based DAA protocol by Brickell, Chen & Li [BCL08a, BCL09]. This article
collates Smyth, Ryan & Chen [SRC07], Smyth [Smy11, Chapter 4] and, Smyth,
Ryan & Chen [SRC11]; Smyth’s thesis has not been previously published, hence
the analysis of the fixed RSA-based DAA protocol and a special case of the
attack which allows a passive adversary to violate privacy are new. In addition,
this article provides a more detailed discussion of our results, highlights the
limitations of our model, notes some ambiguities in the cryptographic game by
Brickell, Chen & Li, and proposes a refinement to the RSA-based DAA protocol
to help balance privacy and accountability.
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2 Calculus of ProVerif

We adopt a dialect [Bla04, BAF08] of the applied pi calculus [AF01, RS11] which
is suited to automated reasoning using Blanchet’s ProVerif [BS11]. In this set-
ting, we acknowledge that security claims do not imply the absence of real-world
attacks (see [RS98, AR00, AR02, War03, War05], for example), due to the ab-
stract representation of cryptographic primitives. Nonetheless, we believe sym-
bolic analysis is useful because computational security methodologies have pro-
vided limited success in the analysis of complex cryptographic protocols [Moo88,
Mea03, KM06, KM07]. Indeed, Chen, Morrissey & Smart [CMS08a, pp157] at-
tribute flaws in the security proof of RSA-based DAA [BCC04] to the highly
complex nature of DAA schemes and the inherent difficulties of composing cor-
rect provable security proofs.

2.1 Syntax and semantics

The calculus assumes an infinite set of names, an infinite set of variables, and
a signature Σ consisting of a finite set of function symbols (constructors and
destructors), each with an associated arity. A function symbol with arity 0
is a constant. We write f for a constructor, g for a destructor, and h for
either a constructor or destructor. Terms are defined over names, variables, and
constructors applied to other terms (Figure 1). A substitution, denoted {M/x},
replaces the variable x with the term M and we let the letters σ and τ range
over substitutions. We write Nσ for the result of applying σ to the free variables
of N .

The signature Σ is equipped with a finite set of equations of the form M =
N and we derive an equational theory from this set by reflexive, symmetric
and transitive closure, closure under the application of constructors, closure
under substitution of terms for variables, and closure under bijective renaming
of names. We write Σ ` M = N for an equality modulo the equational theory
and Σ ` M 6= N for an inequality modulo the equational theory. (We write
M = N and M 6= N for syntactic equality and inequality, respectively.)

The semantics of a destructor g of arity l is given by a finite set defΣ(g) of
rewrite rules g(M ′1, . . . ,M

′
l )→M ′, where M ′1, . . . ,M

′
l ,M

′ are terms containing
only constructors and variables, the variables of M ′ are bound in M ′1, . . . ,M

′
l ,

and variables are subject to renaming. The term evaluation g(M1, . . . ,Ml) is de-
fined if and only if there exists a substitution σ and a rewrite rule g(M ′1, . . . ,M

′
l )→

M ′ in defΣ(g) such that Mi = M ′iσ for all i ∈ {1, . . . , l}, and in this case
g(M1, . . . ,Ml) is M ′σ. In order to avoid distinguishing constructors and de-
structors in the definition of term evaluation, we let defΣ(f) be {f(x1, . . . , xl)→
f(x1, . . . , xl)} when f is a constructor of arity l.

The grammar for processes appears in Figure 1. The process let x = D in P else
Q tries to evaluate D; if this succeeds, then x is bound to the result and P is
executed, otherwise, Q is executed. For convenience, the statement let x =
D in P else Q may be abbreviated as let x = D in P when Q is the null pro-
cess. The syntax does not include the conditional if M = N then P else Q,
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Figure 1 Syntax for terms and processes

M,N ::= terms
a, b, c, . . . , k, . . . ,m, n, . . . , s name
x, y, z variable
f(M1, . . . ,Ml) constructor application

D ::= term evaluations
M term
eval h(D1, . . . , Dl) function evaluation

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
ν a.P name restriction
M(x).P message input
M〈N〉.P message output
let x = D in P else Q term evaluation

but this can be defined as let x = eq(M,N) in P else Q, where x is a fresh
variable and eq is a binary destructor with the rewrite rule eq(x, x) → x. We
always include this destructor in Σ. The rest of the syntax is standard (see
Blanchet [Bla04, BAF08] for details).

The sets of free and bound names, respectively variables, in process P are
denoted by fn(P ) and bn(P ), respectively fv(P ) and bv(P ). We also write
fn(M) and fv(M) for the sets of names and variables in term M . A process P
is closed if it has no free variables. A context C is a process with a hole and we
obtain C[P ] as the result of filling C’s hole with P . An evaluation context is a
context whose hole is not in the scope of a replication, an input, an output, or
a term evaluation.

The operational semantics are defined by reduction (→Σ) in association with
the auxiliary rules for term evaluation (⇓Σ) and structural equivalence (≡). Both
≡ and →Σ are defined only on closed processes. We write →∗Σ for the reflexive
and transitive closure of →Σ, and we write →∗Σ≡ for the union of →∗Σ with ≡.
We occasionally abbreviate →Σ as → and ⇓Σ as ⇓.

2.2 Biprocesses

The calculus provides a notation for modelling pairs of processes that have the
same structure and differ only by the terms and term evaluations that they
contain. We call such a pair of processes a biprocess. The grammar for the
calculus with biprocesses is a simple extension of Figure 1, with additional
cases so that diff[M,M ′] is a term and diff[D,D′] is a term evaluation. The
semantics for biprocesses include the rules in Figure 2, except for (Red I/O),
(Red Fun 1), and (Red Fun 2), which are revised in Figure 3. We also extend

6



Figure 2 Semantics for terms and processes

M ⇓M
eval h(D1, . . . , Dn)⇓Nσ

if h(N1, . . . , Nn)→ N ∈ defΣ(h) and σ is such that
for all i, Di ⇓Mi and Σ `Mi = Niσ

P | 0 ≡ P
P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)
ν a.ν b.P ≡ ν b.ν a.P
ν a.(P | Q) ≡ P | ν a.Q

if a /∈ fn(P )

P ≡ P
Q ≡ P ⇒ P ≡ Q
P ≡ Q, Q ≡ R ⇒ P ≡ R
P ≡ Q ⇒ P | R ≡ Q | R
P ≡ Q ⇒ ν a.P ≡ ν a.Q

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` N = N ′

let x = D in P else Q→ P{M/x} (Red Fun 1)
if D ⇓M

let x = D in P else Q→ Q (Red Fun 2)
if there is no M such that D ⇓M

!P → P | !P (Red Repl)
P → Q ⇒ P | R → Q | R (Red Par)
P → Q ⇒ ν a.P → ν a.Q (Red Res)
P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

Figure 3 Generalised semantics for biprocesses

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` fst(N) = fst(N ′) and Σ ` snd(N) = snd(N ′)

let x = D in P else Q→ P{diff[M1,M2]/x} (Red Fun 1)
if fst(D)⇓M1 and snd(D)⇓M2

let x = D in P else Q→ Q (Red Fun 2)
if there is no M1 such that fst(D)⇓M1 and
there is no M2 such that snd(D)⇓M2

the definition of contexts to permit the use of diff.
Given a biprocess P , we define processes fst(P ) and snd(P ), as follows:

fst(P ) is obtained by replacing all occurrences of diff[M,M ′] withM and diff[D,D′]
with D in P ; and, similarly, snd(P ) is obtained by replacing diff[M,M ′] with
M ′ and diff[D,D′] with D′ in P . We define fst(D), fst(M), snd(D), and snd(M)
similarly.
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2.3 Observational equivalence

Intuitively, processes P and Q are said to be observationally equivalent if they
can output on the same channels, no matter what context they are placed inside.
Formally, we write P ↓M when P can send a message on M , that is, when
P ≡ C[M ′〈N〉.R] for some evaluation context C[ ] such that bn(C)∩ fn(M) = ∅
and Σ ` M = M ′. The definition of observational equivalence [Bla04, BAF08]
follows.

Definition 1 (Observational equivalence). Observational equivalence ∼ is the
largest symmetric relation R between closed processes such that P R Q implies:

1. if P ↓M , then Q ↓M ;

2. if P → P ′, then Q→ Q′ and P ′ R Q′ for some Q′;

3. C[P ] R C[Q] for all evaluation contexts C[ ].

We additionally define observational equivalence as a property of biprocesses.

Definition 2. The closed biprocess P satisfies observational equivalence if fst(P )
∼ snd(P ).

2.4 Assumptions and notation

In this article, all signatures are tacitly assumed to include the constant ∅,
unary destructors fst and snd, and the binary constructor pair. Furthermore,
for all variables x and y we assume the rewrite rules

fst(pair(x, y))→ x snd(pair(x, y))→ y

For convenience, pair(M1, pair(. . . , pair(Mn,∅))) is occasionally abbreviated as
(M1, . . . ,Mn) and fst(sndi−1(M)) is denoted πi(M).

3 DAA schemes

A Direct Anonymous Attestation scheme comprises of five algorithms [BCC04,
BCL08b, BCL09], each of which will now be discussed.

Setup. The setup algorithm is used by the issuer to construct a DAA key pair
skI and pk(skI), the public part pk(skI) is published. In addition, the setup
algorithm may define implementation-specific parameters.

Join. The join algorithm is run between a trusted platform and an issuer for
the purpose of obtaining group membership. The algorithm assumes that the
trusted platform and issuer have established a one-way authenticated channel,
that is, the issuer is assured to be communicating with a host and TPM. The
definition of DAA does not mandate a particular authentication mechanism (the
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Trusted Computing Group recommend encrypting every message sent by the
issuer under the TPM’s endorsement key [TCG07]). On successful completion
of the join algorithm, the issuer grants the trusted platform with an attestation
identity credential cre based upon a secret tsk known only by the TPM.

Sign. The sign algorithm is executed by a trusted platform to produce a signa-
ture σ, based upon an attestation identity credential cre and secret tsk, which
asserts group membership and, therefore, trusted platform status. In addition
to cre and tsk, the algorithm takes as input a message m and a basename bsn.
The basename is used to control linkability between signatures: if bsn = ⊥,
then signatures should be unlinkable, otherwise, signatures produced by the
same signer and based upon the same basename can be linked (see Section 6 for
further discussion on linkability).

Verify. The verification algorithm is used by a verifier to check the validity
of a signature. The algorithm takes as input a set of secret keys ROGUEtsk,
which are known to have been successfully extracted from compromised TPMs,
allowing the identification of rogue platforms. The methodology used to build
ROGUEtsk is not defined by DAA, see Chen & Li [CL10b] for further discussion.

Link. The link algorithm is used by a verifier to check if two valid signatures
are linked, that is, signed using the same basename bsn and secret tsk.

The inputs and outputs of these algorithms are explicitly summarised in Table 1.

4 Security definition: privacy

Informally, the notion of privacy asserts that given two honest signers A and
B, an adversary cannot distinguish between: a situation in which A signs a
message and a situation in which B signs a message. Based upon the game-based
definition by Brickell, Chen & Li [BCL08b, BCL09], we present the following
description of our privacy property.

Initial: The adversary constructs the DAA key pair skI and pk(skI), and pub-
lishes the public part pk(skI) along with any additional parameters. Moreover,
the adversary may request the public keys of honest TPMs.

Phase 1: The adversary makes the following requests to signers A and B:

• Join. The signer executes the join algorithm with the adversary to cre-
ate cre and tsk. (The adversary, behaving as the issuer, will typically
construct cre but not learn tsk.)

• Sign. The adversary submits a basename bsn and a message m. The
signer runs the sign algorithm and returns the signature to the adversary.
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We insist that sign requests to A (or B) must be proceeded by at least one join
request to A (respectively B). Moreover, at the end of Phase 1, both signers
are required to have run the join algorithm at least once.

Challenge: The adversary submits a message m′ and a basename bsn′ to the
signers, with the restriction that the basename has not been previously used if
bsn′ 6= ⊥. Each signer produces a signature on the message and returns the
signature to the adversary.

Phase 2: The adversary continues to probe the signers with join and sign
requests, but is explicitly forbidden to use the basename bsn′ used in the Chal-
lenge phase if bsn′ 6= ⊥.

Result: The protocol satisfies privacy if the adversary cannot distinguish be-
tween the two signatures output during the challenge.

Intuitively, our description captures anonymity because the adversary cannot
distinguish between the two signatures output during the challenge. Formally,
this can be witnessed as follows. Suppose a protocol satisfies the above descrip-
tion of privacy but the identity of a signer can be revealed from a signature.
It follows immediately that the adversary can test which challenge signature
belongs to A, therefore, allowing the signatures to be distinguished and, hence,
deriving a contradiction. Moreover, our description also captures unlinkability.
This can be witnessed as follows. Suppose a protocol satisfies our description
of privacy, but a randomly sampled pair of signatures from the same signer can
be linked with non-negligible probability, where the signatures were defined as
unlinkable by the signer. Further suppose that the signatures are on messages
m and m′. Let us consider an adversary that requests a signature σA from A
during Phase 1 using the message m and basename bsn = ⊥ (that is, signatures
should be unlinkable). Furthermore, the adversary submits the message m′ and
basename bsn′ = ⊥ during the challenge, and the signers return signatures σ1

and σ2. The adversary tests if σA and σ1 are linked or if σA and σ2 are linked.
Exactly one test will succeed with non-negligible probability, thereby allowing
the adversary to distinguish between signatures σ1 and σ2. We have derived
a contradiction and, therefore, a protocol satisfying our description of privacy
provides unlinkability.

Comparison with Brickell, Chen & Li. Our description of privacy clarifies
some ambiguities in the cryptographic game proposed by Brickell, Chen & Li:

• The side condition that both signers must execute the join algorithm at
least once during Phase 1 is only implicitly included in the cryptographic
game by Brickell, Chen & Li with the requirement that “ [the adversary]
chooses two signers’ identities [...]” [BCL09, §2.2.2]. We stress that their
cryptographic game is unsatisfiable without this condition, in particular,

11



privacy can never be achieved in a setting with one signer. Accordingly,
we make the side condition explicit in our description.

• Sign queries with A or B are restricted to the basename ⊥ in Phase 2 of
the cryptographic game, more precisely, Brickell, Chen & Li state “ [the
adversary is] not allowed to make Sign [queries] with bsn if bsn 6= ⊥
[...]” [BCL09, §2.2.2]. However, Chen has confirmed that this was unin-
tentional and we only forbid sign requests with A or B from using the
challenge basename.

In addition, there are some high level distinctions between our description of
the privacy property and the cryptographic game proposed by Brickell, Chen &
Li:

1. No key verification. In the cryptographic game a key constructed by the
adversary in the Initial phase is verified, whereas, no verification of the
key is performed in our model.

2. Static corruption of honest TPMs. In the cryptographic game the adver-
sary can dynamically corrupt honest TPMs, whereas, all TPMs except
two are assumed to be corrupt in our model.

3. Indistinguishability definition. In the game-based definition either A or
B signs the message during the Challenge and privacy is satisfied if the
adversary has a negligible advantage over guessing the correct signer. By
comparison, in our definition, we consider a run in which A signs during
the challenge and a run in which B signs during the challenge, and privacy
is satisfied if these runs are indistinguishable.

The first abstraction is trivially sound, but not complete (nonetheless, the level
of abstraction in the symbolic model typically precludes attacks of this type).
The second simplifying abstraction appears to be reasonable since TPMs can
be simulated by the adversarial context. Indeed, this is a typical simplification
in symbolic models, for example, definitions of ballot secrecy for electronic vot-
ing [KR05, DKR06, BHM08] and privacy for vehicular ad hoc networks [DDS10]
also fix the set of honest participants. However, it is unknown if these simplifi-
cations are sound. The third abstraction is intuitively sound, since an adversary
strategy that can detect whether a signature belongs to A or B can be trans-
formed into a strategy that distinguishes the signatures of A and B. More
precisely, let M be an adversary that, given a signature σ, returns the identity
id = M(σ) of the signer. A strategy M′ for distinguishing σ1 and σ2 simply
tests whether M(σ1) =M(σ2).

Finally, our model will overcome the following shortcoming in the privacy
game: the cryptographic game does not permit the adversary to interact with
TPMs during the Initial phase. As a consequence, any DAA scheme satisfy-
ing the game-based definition may exhibit the following undesirable property,
namely, if a malicious issuer interacts with TPMs before constructing a key,
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then no security assurances are offered. We avoid this limitation by modelling
dishonest TPMs as part of the adversarial context and allow the adversary to
receive the public keys of honest TPMs during the Initial phase. In future work,
the cryptographic game could be revised to allow the adversary to probe the
challenger during the Initial phase (the accountability game exhibits the same
weakness and could be similarly revised).

4.1 Privacy as an equivalence

Informally, privacy asserts that an adversary cannot distinguish between signa-
tures produced by two distinct signers. We formalise privacy as an observational
equivalence property (Definition 3) using the DAA game biprocess DAA-G (Fig-
ure 4) parametrised by a pair of processes 〈Join,Sign〉, which model a DAA
scheme’s join and sign algorithms.

Definition 3 (Privacy). Given a pair of processes 〈Join, Sign〉, privacy is sat-
isfied if the DAA game biprocess DAA-G satisfies observational equivalence.

Let us critique the suitability of Definition 3 by relating the operations per-
formed in DAA-G to those performed in our description of privacy.

Modelling the Initial phase. The DAA-G process defines the TPM endorse-
ment keys ν skA and ν skB (these keys are defined during manufacture [TCG07]),
outputs the public part of these keys, and inputs wparams, where wparams captures
inputting a public key pk(skI) and any additional parameters from the adver-
sary, therefore, immediately corresponding to the Initial step of our description.
(As observed by Rudolph [Rud07], and specified in our description and enforced
by our biprocess DAA-G, privacy can only be expected if both signers use the
same system parameters, that is, the signers do not accept distinct system pa-
rameters from the issuer.)

Modelling Phases 1 & 2. The processes Signer{bA/wb, skA/wek} and Signer{
bB/wb, skB/wek}, which form part of the DAA-G process, allow the adversary to
initiate two signers and perform arbitrarily many join and sign requests, cap-
turing Phases 1 & 2 of our description (we over-approximation the capabilities
of the signers and do not formally distinguish between Phases 1 & 2). Formally,
we model a signer’s ability to perform join and sign requests by permitting the
Signer process to instantiate the Join and Sign processes, which are expected
to behave like services, that is, they can be called by, and return results to,
the Signer process. The restricted channel names aj and a′j are introduced to
ensure private communication between the Signer and Join processes; similarly,
names as and a′s ensure private communication between the Signer and Sign
processes. The bound name cnt is a counter value selected by the host (in
this article we consider a static counter value for simplicity, in particular, we
do not model incrementing a counter) and the bound name DAASeed represents
the TPM’s internal secret (this value is defined during manufacture [TCG07]).
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Figure 4 Biprocess modelling privacy in DAA

Given a pair of processes 〈Join,Sign〉, the DAA game biprocess DAA-G is defined
as

ν skA . ν skB .
(
c〈pk(skA)〉 | c〈pk(skB)〉 | c(wparams) .

ν bA . ν bB . (Challenge | Signer{bA/wb, skA/wek} |
Signer{bB/wb, skB/wek})

)
such that bA, bB , skA, skB , wb, wek 6∈ (fn(Sign) ∪ fv(Sign) ∪ fn(Join) ∪ fv(Join))
and where

Signer = ν aj . ν a
′
j . ν as . ν a

′
s . ( (!Join) | (!Sign) | (

ν cnt . ν DAASeed .
!aj〈(wparams, DAASeed, cnt, wek)〉 . a′j(x) .
let xcre = π1(x) in let xtsk = π2(x) in (

!c(y) . let ybsn = π1(y) in let ymsg = π2(y) in
if ybsn = ⊥ then
as〈(wparams, ybsn, ymsg, xcre, xtsk)〉 .
a′s(z) . c〈z〉

else
as〈(wparams, (chl

+, ybsn), ymsg, xcre, xtsk)〉 .
a′s(z) . c〈z〉

) | (
wb〈(xcre, xtsk)〉

)
))

Challenge = ν as . ν a
′
s . ( (Sign) | (

bA(x) . let xcre = π1(x) in let xtsk = π2(x) in
bB(y) . let ycre = π1(y) in let ytsk = π2(y) in
c(z) . let zbsn = π1(z) in let zmsg = π2(z) in
if zbsn = ⊥ then
as〈(wparams, zbsn, zmsg,diff[xcre, ycre],diff[xtsk, ytsk])〉 .
a′s(z) . c〈z〉

else
as〈(wparams, (chl

−, zbsn), zmsg,
diff[xcre, ycre],diff[xtsk, ytsk])〉 .

a′s(z) . c〈z〉
))

for some constants chl+, chl−.
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The remainder of the Signer process models a signer’s ability to execute arbi-
trarily many instances of the join and sign algorithms (as discussed below), and
captures an aspect required by the Challenge phase.

• Join process. The Join process is assumed to act like a service and listens
for input on channel aj . It follows that the Signer process can invoke
the service by message output aj〈(wparams, DAASeed, cnt, skM )〉, where
(wparams, DAASeed, cnt, skM ) models the join algorithm’s parameters. The
Join process is assumed to output results on channel a′j , and this response
can be received by the Signer process using message input a′j(x); the result
is bound to the variable x, and is expected to consist of a pair (xcre, xtsk)
representing the attestation identity credential and TPM’s secret.

Interaction between Sign and Signer is similar.

• Sign process. The Signer process first inputs a variable y which is expected
to be a pair representing the verifier’s basename ybsn and a message ymsg.
The invocation of the sign algorithm by the signer is modelled by the mes-
sage output as〈(wparams, ybsn, ymsg, xcre, xtsk)〉, where (wparams, ybsn, ymsg,
xcre, xtsk) represents the algorithm’s parameters. (We shall discuss the
distinction between parameters (wparams, ybsn, ymsg, xcre, xtsk) and (wparams,
(chl+, ybsn), ymsg, xcre, xtsk) in Section 4.1.1.) The sign algorithm is ex-
pected to output a signature which can be sent to a verifier, in the Signer
process this signature is received from the Sign process by message input
a′s(z) and the variable z, representing the signature, is immediately out-
put. The side condition that a sign request must be proceeded by at least
one join request is enforced by the sequential description of the Signer
process.

In addition, the processes Signer{bA/wb, skA/wek} and Signer{bB/wb, skB/wek}
communicate their attestation identity credentials (denoted by xcre) and TPM
secrets (denoted by xtsk) to the Challenge process using private channels bA and
bB . Moreover, the side condition that signers A and B are both required to have
run the join algorithm at least once during Phase 1 is enforced by the sequential
inputs on channels bA and bB in the Challenge process.

Modelling the Challenge phase. The Challenge process, which forms part
of the DAA-G process, is designed to capture the behaviour of the signers in the
Challenge phase of our description. The Challenge process inputs the attestation
identity credentials and TPM secrets produced by the signers. The Challenge
process also inputs a basename and a message from the environment. The inputs
(namely, x, y, and z) to the Challenge process are used to construct a signature
and the process uses diff[xcre, ycre] and diff[xtsk, ytsk] to ensure that the signature
is produced by A in fst(DAA-G) and B in snd(DAA-G).

Modelling the Result phase. The Result phase of our description is cap-
tured using observational equivalence.

15



4.1.1 Limitations

We assume that the processes Join and Sign are initiated by input on channels
aj and as and, similarly, output results on channels a′j and a′s. Intuitively, it
follows that some processes not satisfying these conditions will satisfy our defini-
tion of privacy, in fact, the pair of processes 〈0, 0〉 will satisfy our definition. We
tolerate this limitation here, and future work could consider a complete defini-
tion of the DAA properties, including: correctness, linkability, non-frameability,
and unforgeability. The correctness property will exclude degenerate pairs of
processes such as 〈0, 0〉. Similar considerations are made in the literature, for
example, degenerate processes can satisfy the definition of ballot secrecy for elec-
tronic voting by Delaune, Kremer & Ryan [DKR09, DKR10] and the definition
of privacy for vehicular ad-hoc networks by Dahl, Delaune & Steel [DDS10].

The necessity for a distinct basename bsn ′ in the Challenge phase (when
bsn ′ 6= ⊥) is enforced by prefixing the basename zbsn used by the Challenge
process with chl− and, similarly, prefixing the basenames ybsn used by the Signer
process with chl+. Capturing distinct basenames in this manner introduces an
abstraction.

5 Case study: RSA-based DAA

The first concrete Direct Anonymous Attestation scheme was introduced by
Brickell, Camenisch & Chen [BCC04] and is based on RSA. The TPM speci-
fication version 1.2 [TCG07], which has been defined as an ISO/IEC interna-
tional standard [Int09], mandates support for the RSA-based scheme, and the
scheme has also been included in the ISO/IEC anonymous digital signature
standard [Int11]. In this section, we analyse privacy in the RSA-based protocol
using our definition.

5.1 Primitives and building blocks

Camenisch-Lysyanskaya (CL) signatures [CL03, Lys02] form the foundations of
RSA-based DAA. Unlike most signature schemes, CL signatures are particularly
suited to DAA since the scheme supports signing committed values and proving
knowledge of a signature is efficient.

Signature scheme. A CL signature is denoted clsign(xsk, xprime, xrand, xmsg),
where xsk is the secret key, xprime is a random prime, xrand is a nonce, and
xmsg is a message. The prime and nonce components can be derived from a
signature. Verification is standard given a signature, message and public key,
namely, checkclsign(pk(xsk), xmsg, clsign(xsk, xprime, xrand, xmsg)) = accept.

Signature scheme for committed values. Given the public part of a sign-
ing key pk(xsk), a message xcsk, and commitment factor xcf , the corresponding
commitment is U = clcommit(pk(xsk), xcf , xcsk) and the associated signature is
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clsign(xsk, yprime, yrand, U), where yprime is a randomly chosen prime and yrand is a
nonce. This signature can be opened to recover σ = clopen(pk(xsk), xcf , clsign(
xsk, yprime, yrand, U)) = clsign(xsk, yprime, yrand ◦ xcf , xcsk) – that is, the signature
on xcsk – where ◦ is commutative and associative. (A proof should also be pro-
vided to demonstrate that σ does not contain a covert channel – such details
will be omitted from the model presented here – see Brickell, Camenisch &
Chen [BCC04] or Smyth [Smy11, pp159] for further details.)

We also consider commitments commit(xpub, xcsk), where xpub is a public param-
eter and xcsk is a message. In essence, our ternary commitment function differs
from our binary commitment function by taking a commitment factor as an
additional parameter, this distinction permits signatures on committed values
to be constructed.

We will adopt the notation introduced by Camenisch & Stadler [CS97]
to describe primitives which prove knowledge of, and relations among, dis-
crete logarithms. For instance, given values K, N , T and U , the expres-
sion PK{(α, β) : N = commit(T, α) ∧ U = clcommit(pk(K), α, β)} denotes a
“zero-knowledge Proof of Knowledge of α, β such that N = commit(T, α) and
U = clcommit(pk(K), α, β).” In the example, the Greek letters are used for val-
ues about which knowledge is being proved and these values are kept secret by
the prover. All other values, that is, those from the Latin alphabet, are known
to the verifier. The Fiat-Shamir heuristic [FS87, PS96] allows an interactive
zero-knowledge scheme to be converted into a signature scheme. A signature
acquired in this way is termed a Signature Proof of Knowledge and is denoted,
for example, as SPK{(α) : N = commit(T, α)}(m), where m is a message. The
RSA-based DAA scheme uses proofs of knowledge to demonstrate possession of
attestation identity credentials.

Proving knowledge of a signature. The signature scheme for committed
values can be used to build an anonymous credential system. Given a signa-
ture σ = clsign(xsk, xprime, xrand, xcsk) and commitment factor xcf , an anonymous
credential σ̂ = clcommit(pk(xsk), xcf , σ). The zero-knowledge proof of knowl-
edge PK{(xcsk, xcf) : checkclsign(pk(xsk), xcsk, clopen(pk(xsk), xcf , σ̂)) = accept}
can then be used to demonstrate that the anonymous credential σ̂ is indeed a
commitment to a signature on the message xcsk using commitment factor xcf .

Our representation of cryptographic primitives is an abstraction. For instance,
we assume cryptography is perfect and do not capture the low-level mathemat-
ical details of the cryptography. Moreover, on the basis that both the host and
TPM must be honest for privacy, we do not distinguish between operations per-
formed by the host and TPM. The application of our primitives to construct
the RSA-based DAA protocol will be considered in the next section.
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Figure 5 RSA-based DAA join algorithm

Trusted platform Issuer

Trusted platform publishes pk(skM )
Issuer publishes pk(skI), bsnI , and KI

tsk = hash(hash(DAASeed, hash(KI)), cnt, 0)

Generate v′

ζI = hash(0, bsnI)

NI = commit(ζI , tsk)

U = clcommit(pk(skI), v
′, tsk)

NI , U .

Generate n, ne

E = penc(pk(skM ), n, ne)

/ E

aU = hash(U, dec(skM, E))

aU .

Generate ni

/ ni

Generate nt

nt, spk .

Generate e, v′′

/ clsign(skI , e, v
′′, U)

where spk is shorthand for SPK{(tsk, v′) : NI = commit(ζI , tsk)∧U =
clcommit(pk(skI), v

′, tsk)}(ni, nt)

5.2 Protocol description

For the purpose of studying privacy, it is sufficient to consider the join and sign
algorithms. The join algorithm (Figure 5) is defined below, given the algorithm’s
input: system parameters pk(skI), bsnI , and KI (that is, the DAA public key,
basename, and the long-term key); the TPM’s secret DAASeed; a counter value
cnt; and the TPM’s endorsement key pk(skM ).

1. The host computes ζI = hash(0, bsnI) and sends ζI to the TPM. The
TPM computes secret tsk = hash(hash(DAASeed, hash(KI)), cnt, 0) and
derives the commitment NI = commit(ζI , tsk). The TPM also gen-
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erates a blinding factor v′, which is used to compute the commitment
U = clcommit(pk(skI), v

′, tsk). The trusted platform sends U and NI to
the issuer.

2. The issuer generates a nonce ne, encrypts the nonce with the TPM’s en-
dorsement key pk(skM ), and sends the encrypted nonce to the TPM. The
TPM decrypts the ciphertext to recover ne, computes aU = hash(U, ne)
and sends aU to the issuer, therefore authenticating as a trusted platform.
(Note that the RSA-based DAA protocol does not rely on the authentica-
tion technique recommended by the Trusted Computing Group.)

3. The trusted platform generates a signature proof of knowledge that the
messages U and NI are correctly formed and sends it to the issuer.

4. The issuer verifies the proof and evaluates a policy to decide if a new
credential should be granted (the policy dictates how many distinct cre-
dentials may be issued to a particular trusted platform). To proceed, the
issuer generates a signature clsign(skI , e, v

′′, U) and sends it to the trusted
platform.

5. The trusted platform verifies the signature and opens it to reveal the
credential cre = clsign(skI , e, v

′ ◦ v′′, tsk), that is, the TPM’s secret tsk

signed by the issuer.

The join algorithm outputs cre and tsk, which can be provided as input to
the sign algorithm, along with the system parameters, a basename bsn, and
message m. The sign algorithm proceeds as follows.

6. If bsn = ⊥, then the host generates a nonce ζ, otherwise, the host com-
putes ζ = hash(0, bsn). The host provides the TPM with ζ. The TPM
generates a nonce w, and computes the commitment NV = commit(ζ, tsk)
and anonymous credential ĉre = clcommit(pk(skI), w, cre). The trusted
platform then produces a signature proof of knowledge that ĉre is a com-
mitment to a valid credential and that NV is correctly formed.

The sign algorithm outputs the signature proof of knowledge which is sent to
the verifier. Intuitively, if a verifier is presented with such a proof, then the
verifier is convinced that it is communicating with a trusted platform.

5.3 Signature and equational theory

Before modelling the RSA-based DAA scheme as a process, we construct a
suitable signature Σ (defined below) to capture the cryptographic primitives
used and define an equational theory to capture the relationships between these
primitives.

Σ = {accept,⊥, 0, 1,Fjoin,Fsign, clgetnonce, clgetprime,

hash, pk, commit, ◦, dec, checkclsign,
checkspk, clcommit, clopen, penc, spk, clsign}
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Functions accept, ⊥, 0, 1, Fjoin, Fsign are constant symbols; clgetnonce, clgetprime,
hash, pk are unary functions; commit, ◦, dec are binary functions; checkclsign,
checkspk, clcommit, clopen, penc, spk are ternary functions; and clsign is a func-
tion of arity four. We occasionally write hash(xplain,1, . . . , xplain,n) to denote
hash((xplain,1, . . . , xplain,n)). The equations associated with these functions are
defined below:

dec(xsk, penc(pk(xsk), xrand, xplain)) = xplain

clgetprime(clsign(xsk, xprime, xrand, xmsg)) = xprime

clgetnonce(clsign(xsk, xprime, xrand, xmsg)) = xrand

checkclsign(pk(xsk), xmsg, clsign(xsk, xprime, xrand, xmsg))
= accept

clopen(x, xrand, clcommit(x, xrand, xplain)) = xplain

clopen(pk(xsk), xrand, clsign(xsk, yprime, yrand,
clcommit(pk(xsk), xrand, xmsg)))

= clsign(xsk, yprime, yrand ◦ xrand, xmsg)

A signature proof of knowledge is encoded in the form spk(F,U, V ), where F
is a constant declaring the particular proof in use, U denotes the witness (or
private component) of a signature proof of knowledge, and V defines the public
parameters and message being signed. The function checkspk is used to verify
a signature and we define the following equations.

checkspk(Fjoin, V, spk(Fjoin, (xtsk, xcf), V )) = accept
where V = (xζI , xpk, commit(xζI , xtsk),
clcommit(xpk, xcf , xtsk), xmsg)

checkspk(Fsign, V, spk(Fsign, (xtsk, xcf), V )) = accept
where V = (xζ , pk(xsk), commit(xζ , xtsk),
clcommit(pk(xsk), xcf , clsign(xsk, xprime, xrand, xtsk)), xmsg)

The first equation is used to verify the signature proof of knowledge produced
by the trusted platform during the join algorithm and the second is used by a
trusted platform during the sign algorithm to assert group membership.

5.4 Model in applied pi

The RSA-based join and sign algorithms are modelled by the pair of pro-
cesses 〈JoinRSA,SignRSA〉 presented in Figure 6, where c(x1, . . . , xn).P denotes
c(x).let x1 = π1(x) in . . . let xn = πn(x) in P . The join process JoinRSA is in-
stantiated by inputting the join algorithm’s parameters: the RSA-based DAA
system parameters wparams, the TPM’s internal secret wDAASeed, the counter
value wcnt chosen by the host, and the TPM’s endorsement key wek. The sys-
tem parameters wparams are expected to be a triple containing the DAA public
key wpk, basename wbsnI , and long-term key KI . The process constructs the
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Figure 6 Applied pi processes for RSA-based DAA

JoinRSA =̂
aj(wparams, wDAASeed, wcnt, wek) . ν v

′ .
let wpk = π1(wparams) in
let wbsnI = π2(wparams) in
let wK = π3(wparams) in
let ζI = hash(0, wbsnI) in
let tsk = hash(hash(wDAASeed, hash(wK)), wcnt, 0) in
let NI = commit(ζI , tsk) in
let U = clcommit(wpk, v

′, tsk) in
c〈(NI , U )〉 . c(x) . c〈hash(U, dec(wek, x))〉 . c(y) . ν nt .
c〈(nt, spk(Fjoin, (tsk, v

′), (ζI , wpk, NI , U, (nt, y))))〉 .
c(z) . let cre = clopen(wpk, v

′, z) in
if checkclsign(wpk, tsk, cre) = accept then

a′j〈(cre, tsk)〉

SignRSA =̂
as(wparams, wbsn, wmsg, wcre, wtsk) .
let wpk = π1(wparams) in
c(x) . ν nt . ν w .
if wbsn =⊥ then
ν ζ .
let ĉre = clcommit(wpk, w, wcre) in
let NV = commit(ζ, wtsk) in
let spk = spk(Fsign, (wtsk, w),

(ζ, wpk, NV , ĉre, (nt, x, wmsg ))) in
a′s〈(ζ, wpk, NV , ĉre, nt, spk)〉

else
let ζ = hash(0, wbsn) in
let ĉre = clcommit(wpk, w, wcre) in
let NV = commit(ζ, wtsk) in
let spk = spk(Fsign, (wtsk, w),

(ζ, wpk, NV , ĉre, (nt, x, wmsg ))) in
a′s〈(ζ, wpk, NV , ĉre, nt, spk)〉

terms NI and U in accordance with the protocol’s description (Section 5.2) and
outputs the values to the issuer. The process then receives a ciphertext x, which
it decrypts, and outputs the hash of the plaintext paired with U . A nonce y is
then input and a signature proof of knowledge is produced. Finally, the process
inputs a signature z on the commitment U and concludes by outputting the
attestation identity credential cre and TPM’s secret tsk on the private channel
a′j , that is, the JoinRSA process returns the values cre and tsk to the Signer pro-
cess. The sign process SignRSA is instantiated by inputting the sign algorithm’s
parameters: the RSA-based DAA system parameters wparams, the verifier’s base-
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name wbsn, the message wmsg to be signed, the attestation identity credential
wcre, and the TPM’s secret wtsk. (For simplicity, we do not capture the possibil-
ity of signing a message produced by the TPM using private data.) The process
recovers the DAA public key wpk from the system parameters, and inputs a
nonce x from the verifier. The if-then-else branch models the signer’s ability
to produce either linkable or unlinkable signatures, based upon the parameter
wbsn, in particular, the if-branch produces an unlinkable signature, whereas the
else-branch produces a linkable signature. The process concludes by outputting
a signature on the private channel a′s, that is, the SignRSA process returns the
signature to the Signer process.

5.5 Analysis: Violating privacy

The DAA game biprocess DAA-GRSA derived from 〈JoinRSA,SignRSA〉 does not
satisfy privacy. Informally, this can be observed by consideration of the following
adversaries.

Passive adversary. A passive adversary can violate privacy under the fol-
lowing assumptions: first, the identity of a trusted platform can be observed
during the join algorithm2; secondly, there exists a basename which is shared
between an issuer and a verifier; and, thirdly, a signer is willing to use the same
basename with an issuer and verifier. By our second assumption, there exists
an issuer’s basename bsnI and a verifier’s basename bsn such that bsnI = bsn.
The attack proceeds as follows. Let us suppose that the trusted platform exe-
cutes the join protocol with the issuer and subsequently runs the sign protocol
with the verifier. Since the signer is willing to use the same basename with an
issuer and verifier, it follows that ζI = ζ and NI = NV . The commitments NI
and NV are unique for a particular signer and the adversary knows the identity
of the trusted platform that produced NI during the join algorithm, it follows
that the signer’s identity can be revealed.

Corrupt administrators. Corrupt administrators can violate privacy under
the assumption that a signer is willing to use the same basename with an issuer
and verifier. This is a special case of our passive attack: an issuer and verifier
conspire to use the same basename (that is, bsnI = bsn) and since the issuer
knows the identity of the trusted platform that produced NI , the identity of the
signer can be revealed.

The linchpin of these attacks is the willingness of a signer to use the same base-
name with an issuer and verifier. This can be justified as follows. Firstly, this

2The RSA-based DAA protocol [BCC04] does not specify how the issuer learns a trusted
platform’s public endorsement key during an execution of the join algorithm. However, it
seems reasonable to assume that the public key would be sent as plaintext. By contrast,
Cesena et al. [CLR+10, Ces10] define an extension of RSA-based DAA which uses TLS to
hide the affiliation between groups and trusted platforms, this variant would thwart a passive
adversary, but not corrupt administrators.
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mode of operation is not explicitly forbidden by the protocol definition [BCC04].
Secondly, this behaviour is expected when the issuer and verifier are the same
entity, as demonstrated by Camenisch et al. [CL01, CH02] in the idemix system,
for example. Finally, the signer has insufficient resources to detect the use of
the same basename with an issuer and verifier.

Formally, Theorem 1 demonstrates that DAA-GRSA does not satisfy privacy.
This result is witnessed using a context C[ ] such that fst(C[DAA-GRSA]) −→∗ Q
and Q can output on channel b, but there is no reduction snd(C[DAA-GRSA]) −→∗
Q′ such that Q′ can output on b, where both reductions are of the same length.
Intuitively, the context behaves as follows. First, the context outputs system pa-
rameters (pk(skI), bsn,KI ). Secondly, the context executes the join algorithm
with both signers and binds (commit(hash(0, bsn), tsk), clcommit(pk(skI), v

′,
tsk)) to x, where tsk = hash(hash(DAASeed, hash(KI)), cnt, 0) and cnt, DAASeed
and v′ are restricted names. Thirdly, the context issues a challenge using the
basename bsn and message msg, and binds T to y, where π3(T ) = commit(hash(
0, bsn),diff[tsk, tsk′]), tsk′ = hash(hash(DAASeed′, hash(KI)), cnt

′, 0), and cnt′

and DAASeed′ are restricted names. Finally, the context compares π1(x) and
π3(y) to derive a distinction between fst(C[DAA-GRSA]) and snd(C[DAA-GRSA]).

Theorem 1. The pair of processes 〈JoinRSA,SignRSA〉 do not satisfy privacy.

Proof. Let DAA-GRSA be the DAA game biprocess derived from 〈JoinRSA,SignRSA〉
and consider the evaluation context C[ ] defined below:

| c〈(pk(skI), bsn,KI )〉 .
c(w) . c(x) . c〈penc(w, n, ne)〉 . c(za) .
if za = hash(ne, π2(x)) then
c〈ni〉 . c(zs) . c〈clsign(skI , e, v

′′, π2(x))〉 .
c(w′) . c(x′) . c〈penc(w′, n, ne)〉 . c(z′a) .
if z′a = hash(ne, π2(x′)) then
c〈ni〉 . c(z′s) . c〈clsign(skI , e, v

′′, π2(x′))〉 .
c〈(bsn,msg)〉 . c〈nv〉 . c(y) .

if π1(x) = π3(y) then b〈fail〉 else 0

We have the following reductions:

fst(C[DAA-GRSA]) −→∗ C ′[if M = M then b〈fail〉 else 0]

snd(C[DAA-GRSA]) −→∗ C ′[if M = N then b〈fail〉 else 0],

whereM = commit(hash(0, bsn), hash(hash(DAASeed, hash(KI)), cnt, 0)) andN =
commit(hash(0, bsn), hash(hash(DAASeed′, hash(KI)), cnt

′, 0)). It follows that
fst(C[DAA-GRSA]) 6∼ snd(C[DAA-GRSA]) because fst(C[DAA-GRSA]) can output
on channel b but snd(C[DAA-GRSA]) cannot and, therefore, DAA-GRSA does not
satisfy privacy.

The context C[ ] was discovered by manual reasoning and, subsequently, we
found that ProVerif finds a similar context. (Analysis takes 39 seconds using
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ProVerif 1.86pl3 on CentOS 5.7 with 2.40GHz Intel Xeon and 4GB memory.
Our scripts are available in Appendix B).) An attack in the computational
model follows immediately from our result in the symbolic setting (Theorem 1),
see Smyth [Smy11, Appendix B] for details.

5.6 Solution: Fixing RSA-based DAA

The protocol can be fixed by refining the definition of ζ, namely, let 〈JoinRSA′ ,
SignRSA′〉 refine 〈JoinRSA,SignRSA〉 by redefining ζ as ζ = hash(1, bsn). The
attacks presented are no longer possible, regardless of whether bsnI = bsn.
Furthermore, the revised pair of processes 〈JoinRSA′ ,SignRSA′〉 satisfy privacy;
this can be automatically verified using ProVerif (verification takes 26 seconds
using ProVerif 1.86pl3 on CentOS 5.7 with 2.40GHz Intel Xeon and 4GB mem-
ory; our scripts are available in Appendix B)). We acknowledge that our results
do not imply the absence of real-world attacks, due to the gulf between our
symbolic representations of cryptography and concrete implementations (see
also [RS98, AR00, AR02, War03, War05]).

6 Balancing privacy and accountability

Balancing the privacy demands of users and the accountability needs of admin-
istrators is a fundamental objective of Direct Anonymous Attestation schemes,
in particular, DAA schemes permit signatures to be linked, without revealing
the identity of the signer. The degrees of linkability are identified below, with
reference to an application domain in which an honest issuer offers membership
to a single group of signers and several verifiers offer multiple services.

• Single-service linkability. A verifier offering a single service is able to link
transactions made by a given signer.

• Cross-service linkability. A verifier offering multiple services is able to
link transactions made by a given signer over multiple services, when the
services share the same basename.

• Cross-verifier linkability. Multiple verifiers offering services are able to
link transactions made by a given signer across all the verifiers, when the
services share the same basename.

In this section, we reflect upon the notions of linkability for Direct Anonymous
Attestation schemes and extend the degree of privacy available in such schemes.

6.1 Linkability between an issuer’s groups

Let us identify an issuer by its long-term key KI , and recall that the game-based
security definition by Brickell, Chen & Li [BCL08b, BCL09] assumes that an
issuer controls a single group of signers, where the group of signers is identified
by a public key pk(skI). In this section, we generalise to the situation in which
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an issuer may issue credentials to several groups of signers, where each group of
signers is associated with a different key pk(skI). In this situation, one can ask
the following question:

• Can a verifier link two signatures constructed using distinct DAA public
keys pk(skI) and pk(sk′I), each belonging to the same issuer? We call this
linkability between an issuer’s groups.

The RSA-based scheme permits linkability between an issuer’s groups, when
the signatures share the same basename. This can be observed as follows: given
the issuer’s long-term key KI and the basename bsn such that bsn 6= ⊥, the
TPM’s secret tsk = hash(hash(DAASeed, hash(KI)), cnt, 0) and signatures pro-
duced using tsk will include NV = commit(ζ, tsk), where ζ = hash(1, bsn). (In
the computational setting, linkability between an issuer’s groups assumes that
the groups’ public keys share the same modulus Γ and order ρ, see [BCC04,
§4.3] for definitions of Γ and ρ.) We can modify the RSA-based scheme to pre-
vent linkability between an issuer’s groups by defining ζ = hash(1, bsn, pk(skI)),
rather than ζ = hash(1, bsn). Intuitively, linkability between an issuer’s groups
strengthens accountability and weakens privacy, hence, the original RSA-based
scheme provides stronger accountability, whereas our modification provides stronger
privacy.

6.2 Practical guidelines for basenames

Basenames are particularly sensitive for DAA because they enable linkability
and the ability to uniquely identify a set of services for which a basename can
be used is a prerequisite of user-controlled linkability. However, no methodology
for basename construction has been defined and this may lead to a security
vulnerability. For example, a signer may inadvertently permit signatures to be
linked, simply by using the same basename for multiple signatures; we argue
that this scenario is likely because signers have insufficient resources to maintain
a history of all basenames. We overcome this problem with the presentation
of guidelines for the construction of basenames. First, basenames should be
constructed from service-specific data such as the following:

• Service information, for example, issuer’s public key, verifier’s public key,
service URL, and terms and conditions of service.

• Basename validity date, for example, start and expiry dates.

• DAA signing mode, for example, Attestation Identity Key (AIK) sign-
ing, Platform Configuration Register (PCR) signing, and external input
signing.

Secondly, given a basename constructed in this manner, a signer can evaluate
whether the basename is suitable for use with a particular service. It follows
immediately that our construction helps inform a signer that signatures can be
linked.
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7 Further work and conclusion

Direct Anonymous Attestation is a relatively new concept and its properties
merit further study, in particular, correctness, linkability, non-frameability and
unforgeability have received limited attention. Extending this work to include
a complete definition of DAA properties would be an interesting direction for
the future. Moreover, establishing a unified definition which includes all proper-
ties (that is, anonymity, correctness, linkability, non-frameability, unforgeability,
and unlinkability) would be of interest to reduce the verification workload. As
a starting point, this could be achieved by developing the formalisation of join
and sign algorithms, modelled by 〈Join,Sign〉, to distinguish between operations
performed by the host and those performed by the TPM. This distinction is
not necessary for our definition of privacy because this property can only be
achieved if both the host and TPM are trusted. By contrast, a corrupt host
– even in collaboration with a corrupt TPM (where the TPM is known to be
rogue) – should not be able to violate accountability properties and, therefore,
an alternative model of 〈Join,Sign〉 would be required such that the actions
performed by the host and TPM are distinguished.

For privacy it is necessary to ensure a distinct basename is used during the
Challenge. Since the applied pi calculus does not record state, this is achieved
by an abstraction. Accordingly, we believe the definition is necessary, but may
not be sufficient. This limitation could be overcome by introducing a stateful
variant of the applied pi calculus, indeed, Arapinis, Ritter & Ryan [ARR11]
make some progress in this direction. A further limitation of our privacy defi-
nition is the restriction to settings with one issuer, indeed, this corresponds to
the cryptographic game. Extending the definition to multiple issuers remains
as future work.

Conclusion. This article presents a definition of privacy for Direct Anony-
mous Attestation protocols. The definition is expressed as an equivalence prop-
erty which is suited to automated reasoning and the practicality of the approach
is demonstrated by evaluating the RSA-based Direct Anonymous Attestation
protocol. The RSA-based scheme is particularly significant because support is
mandated by the TPM specification version 1.2, which has been implemented
and deployed in over 500 million computers (although the number of TPMs in
active use is estimated to be significantly smaller). The analysis discovers a
vulnerability which can be exploited by a passive adversary and, under weaker
assumptions, by corrupt administrators. A security fix is identified and the re-
vised protocol is shown to satisfy our definition of privacy. The fix only affects
the host’s part of the protocol and, therefore, no hardware changes to the TPM
are required. Furthermore, the fix has influenced the design of subsequent DAA
schemes, for example, [BCL08a, BCL09].
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A A brief review of DAA schemes

The first concrete Direct Anonymous Attestation scheme was introduced by
Brickell, Camenisch & Chen [BCC04] and is based upon RSA. However, RSA-
based cryptography requires larger keys than equivalent ECC-based schemes.
Moreover, the RSA-based DAA protocol is reliant on the strong RSA and de-
cisional Diffie-Hellman assumptions, and some users are uncomfortable with
the strong RSA assumption. This motivated the work of Brickell, Chen &
Li [BCL08a, BCL09] who provide the first ECC-based DAA protocol using sym-
metric pairing. This scheme is more efficient and, therefore, better suited to de-
vices with limited resources, such as the TPM. Furthermore, the ECC-based pro-
tocol is reliant on the LRSW [LRSW00] and decisional Bilinear Diffie-Hellman
assumptions, which some users may prefer. Chen, Morrissey & Smart [CMS08a,
CMS08b] extended the scheme based upon symmetric pairing to an asymmet-
ric setting to improve efficiency. However, Li discovered a vulnerability in
the asymmetric scheme which violates basename linkability and Chen & Li
propose a fix [CL10a]; a further attack has been identified by Chen, Morris-
sey & Smart [CMS09] which, in theory, violates unforgeability. In addition,
Chen, Morrissey & Smart [CMS11] have found theoretical accountability attacks
against the symmetric pairing based scheme [BCL08a, BCL09] and the original
RSA-based scheme [BCC04]. The Chen, Morrissey & Smart [CMS09, CMS11]
attacks allow a malicious host to extract the TPM’s secret tsk, if the protocol
is implemented in hardware without stage control mechanisms; the host can
then forge signatures. However, since the TPM provides stage control protec-
tion, there is no practical threat in the current setting; but, these attacks are of
practical interest because they identify settings in which DAA protocols cannot
be deployed (for example, in other trusted computing settings which do not
use the TPM). We remark that the analysis of unforgeability in the RSA-based
scheme by Backes, Maffei & Unruh [BMU08] could not identify the Chen, Mor-
rissey & Smart attack because they consider a setting where the host and TPM
are both honest. Chen, Morrissey & Smart [CMS09, CMS11] also propose a
new asymmetric scheme and Chen, Page & Smart [CPS10] propose an optimi-
sation, moreover, Chen [Che10b] provides a further optimisation to the Chen,
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Page & Smart scheme. Brickell, Chen & Li [BCL11] have shown that an ad-
versary can forge signatures in the variant by Chen and propose a fix. We are
aware of six further ECC-based DAA protocols: Chen & Feng [CF08], Brickell
& Li [BL09a, BL09b], Chen [Che10a, Che11], Brickell & Li [BL10], Bernhard et
al. [BFG+11], and Bernhard, Fuchsbauer & Ghadafi [BFG12].

B Analysis: Fixed RSA-based DAA scheme

Section 5 presents an analysis of privacy in the RSA-based DAA pro-
tocol, discovers a vulnerability, and proposes a security fix. This
appendix provides the scripts used to automatically verify that the
revised RSA-based DAA protocol satisfies privacy (the scripts are
also available online: http://www.bensmyth.com/publications.php?key=

2012-Direct-Anonymous-Attestation-anonymity-definition). The free
name declarations, function definitions and equations for the RSA-based DAA
process specification appear in Listing 1; the join algorithm JoinRSA′ is presented
in Listing 2, and the sign algorithm SignRSA′ appears in Listing 3. Finally, the
Direct Anonymous Attestation game biprocess DAA-GRSA′ is presented in List-
ing 4. (The nonce XXTERM is introduced to avoid an over-approximation issue.)
ProVerif can be used to automatically verify observational equivalence of List-
ing 4 and hence the revised RSA-based DAA protocol satisfies privacy.
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fun accept /0 .
fun zero /0 .
fun one /0 .
fun FJoin /0 .
fun FSign /0 .
fun c l g e tnonce /1 .
fun c l g e tp r ime /1 .
fun hash /1 .
fun pk /1 .
fun commit /2 .
fun c i r c /2 .
fun dec /2 .
fun c h e c k c l s i g n /3 .
fun checkspk /3 .
fun clcommit /3 .
fun c lopen /3 .
fun penc /3 .
fun spk /3 .
fun c l s i g n /4 .

equation dec (k , penc ( pk ( k ) , r ,m) ) = m.
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commit ( xtsk , xzeta ) , clcommit ( xpk , xv , xtsk ) , xmsg ) ) ) = accept .
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in ( aj , ( ( pkI , bsnI , KI ) ,DAASeed , cnt , skM ) ) ;

new v ’ ;
l e t z e t a I = hash ( ( zero , bsnI ) ) in
l e t t sk = hash ( ( hash ( (DAASeed , hash (KI ) ) ) , cnt , ze ro ) ) in
l e t NI = commit ( tsk , z e t a I ) in
l e t U = clcommit ( pkI , v ’ , t sk ) in
out ( c , ( NI ,U) ) ;

in ( c , encNe ) ;
l e t ne = dec (skM , encNe ) in
out ( c , hash ( (U, ne ) ) ) ;

in ( c , n i ) ;
new nt ;
out ( c , ( nt , spk ( FJoin , ( tsk , v ’ ) , ( ze ta I , pkI , NI ,U, ( nt , n i ) ) ) ) ) ;

in ( c , s i g ) ;
l e t c r e = clopen ( pkI , v ’ , s i g ) in
i f c h e c k c l s i g n ( pkI , tsk , c r e ) = accept then

out ( aj ’ , ( cre , t sk ) ) .

Listing 2: ProVerif script modelling JoinRSA′

in ( as , ( ( pkI , bsnI , KI ) , bsnV ,m, cre , tsk ,xxTERM) ) ;
in ( c , nv ) ;
new nt ;new w;

i f bsnV = bottom then (
new zeta ;
l e t creHat = clcommit ( pkI ,w, c r e ) in
l e t NV = commit ( tsk , ze ta ) in
out ( as ’ , ( zeta , pkI ,NV, creHat , nt ,

spk ( FSign , ( tsk ,w) , ( zeta , pkI ,NV, creHat , ( nt , nv ,m) ) ) ) )
) else (
l e t zeta = hash ( ( one , bsnV ) ) in
l e t creHat = clcommit ( pkI ,w, c r e ) in
l e t NV = commit ( tsk , ze ta ) in
out ( as ’ , ( zeta , pkI ,NV, creHat , nt ,

spk ( FSign , ( tsk ,w) , ( zeta , pkI ,NV, creHat , ( nt , nv ,m) ) ) ) )
) .

Listing 3: ProVerif script modelling SignRSA′
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free chlP .
free chlM .

fun bottom /0 .

l e t SignerP =
new a j ;new aj ’ ; new as ;new as ’ ; ( ! j o i n ) | ( ! s i gn ) | (

new cnt ;new DAASeed ;
! out ( aj , ( wparams , DAASeed , cnt , wek ) ) ;
in ( aj ’ , ( cre , t sk ) ) ;
( !

in ( c , ( xmsg,=bottom ) ) ;new XXTERM;
out ( as , ( wparams , bottom , xmsg , cre , tsk ,XXTERM) ) ;
in ( as ’ , z ) ; out ( c , z )

) | ( !
in ( c , ( xmsg , xbsn ) ) ;new XXTERM;
out ( as , ( wparams , ( chlP , xbsn ) , xmsg , cre , tsk ,XXTERM) ) ;
in ( as ’ , z ) ; out ( c , z )

) | (
out (wb , ( cre , t sk ) )

)
) .

l e t Chal lenge =
new as ;new as ’ ; ( s i gn ) | (

in (bA, ( creA , tskA ) ) ;
in (bB , ( creB , tskB ) ) ;
l e t c r e = choice [ creA , creB ] in
l e t t sk = choice [ tskA , tskB ] in
(

in ( c , ( xmsg,=bottom ) ) ;new XXTERM;
out ( as , ( wparams , bottom , xmsg , cre , tsk ,XXTERM) ) ;
in ( as ’ , x ) ; out ( c , x )

) | (
in ( c , ( xmsg , xbsn ) ) ;new XXTERM;
out ( as , ( wparams , ( chlM , xbsn ) , xmsg , cre , tsk ,XXTERM) ) ;
in ( as ’ , x ) ; out ( c , x )

)
) .

process
new skA ;new skB ; ( out ( c , pk ( skA ) ) | out ( c , pk ( skB ) ) |

in ( c , wparams ) ;new bA;new bB ; (
( l e t wb = bA in l e t wek = skA in SignerP ) |
( l e t wb = bB in l e t wek = skB in SignerP ) |
( Chal lenge )

) )

Listing 4: ProVerif script modelling privacy in DAA-GRSA′
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