
TAAC: Temporal Attribute-based Access Control
for Multi-Authority Cloud Storage Systems

Kan Yang∗‡, Zhen Liu∗†, Zhenfu Cao†, Xiaohua Jia∗, Duncan S. Wong∗, Kui Ren‡

∗ Dept. of CS, City University of Hong Kong
† Dept. of CS, Shanghai Jiao Tong University

‡ Dept. of CSE, University at Buffalo, The State University of New York
{kanyang3, zhenliu7}@student.cityu.edu.hk, zfcao@cs.sjtu.edu.cn, {csjia, duncan}@cityu.edu.hk, kuiren@buffalo.edu

Abstract—Data access control is an effective way to ensure
the data security in the cloud. Due to data outsourcing and
untrusted cloud servers, the data access control becomes a
challenging issue in cloud storage systems. Ciphertext-Policy
Attribute-based Encryption (CP-ABE), as a promising technique
for access control of encrypted data, is very suitable for access
control in cloud storage systems due to its high efficiency and
expressiveness. However, the existing CP-ABE schemes cannot
be directly applied to data access control for cloud storage
systems because of the attribute revocation problem. In this
paper, we consider the problem of attribute revocation in multi-
authority cloud storage systems where the users’ attributes
come from different domains each of which is managed by
a different authority. We propose TAAC (Temporal Attribute-
based Access Control), an efficient data access control scheme
for multi-authority cloud storage systems, where the authorities
are independent from each other and no central authority is
needed. TAAC can efficiently achieve temporal access control
on attribute-level rather than on user-level. Moreover, different
from the existing schemes with attribute revocation functionality,
TAAC does not require re-encryption of any ciphertext when the
attribute revocation happens, which means great improvement on
the efficiency of attribute revocation. The analysis results show
that TAAC is highly efficient, scalable, and flexible to applications
in practice.

Index Terms—Access Control, Temporal Revocation, CP-ABE,
Cloud Storage, Multi-authority

I. INTRODUCTION

Cloud storage is a promising technique that allows data
owners to host their data in the cloud that provides data access
service to users (data consumers) [1]. Because data owners
cannot manage their outsourced cloud data as in their local
storage systems, the data security becomes a significant issue
in cloud storage systems. Data access control is an effective
method to ensure the data security in the cloud. However,
traditional server-based access control methods are no longer
applicable to cloud storage systems, because the cloud server
cannot be fully trusted by data owners. To keep data privacy on
untrusted server, data owners usually encrypt the data and only
the users who have valid keys can decrypt the data. However,
the encryption-based methods may incur high key management
overhead and require data owners to stay online all the time
for the key distribution. Moreover, data owners may have to
generate multiple copies of the encrypted data for the users
with different keys. This may incur heavy storage overhead on
the server, and data owners need to pay more for the storage

space in pay-as-you-go cloud business model. Thus, the data
access control is a challenging issue in cloud storage systems.

Ciphertext-Policy Attribute-based Encryption (CP-ABE)
[2], [3] is regarded as one of the most suitable technologies
for data access control in cloud storage systems, because
it allows the data owner to define and enforce the access
policy. In a CP-ABE system, each user is issued a decryption
key that reflects his/her attributes (credentials), data owners
encrypt data using access policies defined over attributes, so
that only the users whose attributes satisfy the access policy
can decrypt the ciphertext and access the data. There are two
types of CP-ABE systems: single-authority CP-ABE [2]–[6]
where all attributes are managed by a single authority, and
multi-authority CP-ABE [7]–[10] where attributes are from
different domains and managed by different authorities. Multi-
authority CP-ABE is more appropriate for the access control
of cloud storage systems, as the users may hold attributes
issued by multiple authorities and data owners may share the
data using access policy defined over attributes from different
authorities. For example, data owners may share the data using
access policy “Google.Engineer AND CityU.Alumni” where
the attribute “Engineer” is issued by Google and the attribute
“Alumni” is issued by CityU. However, due to the attribute
revocation problem, these multi-authority CP-ABE schemes
cannot be directly applied to data access control for such multi-
authority cloud storage systems.

In multi-authority cloud storage systems, the users’ at-
tributes can be changed dynamically. Specifically, a user may
be entitled some new attributes, or revoked some attributes, or
re-granted some previously revoked attributes. Accordingly,
the user’s data access permission should be changed, e.g.,
when an attribute is revoked from a user, this user should
not be able to decrypt any new ciphertexts which require the
revoked attribute to decrypt. 1 However, all the aforementioned
multi-authority CP-ABE schemes do not have appropriate
mechanisms to handle such changes. Although some methods
[11]–[14] were proposed to support such attribute revocation,
they are not suitable for data access control in multi-authority
cloud storage systems. Their schemes either rely on a trusted

1Note that revocation cannot obligate the revoked user to “forget” the data
he has accessed before he is revoked, and that revocation is often to prevent
the revoked user from accessing the “new” data after he is revoked, i.e.,
revocation is used to guarantee “backward security”.

server to maintain the revocation list and enforce the key
update or have to re-encrypt the ciphertexts in the cloud.
However, the cloud server cannot be trusted by data owners in
cloud storage systems, and the ciphertext re-encryption may
incur a heavy burden to the system due to the large number of
the ciphertexts. Thus, an efficient temporal attribute revocation
method is desirable in order to design the data access control
scheme for multi-authority cloud storage systems.

OUR CONTRIBUTIONS In this paper, we propose TAAC
(Temporal Attribute-based Access Control), an efficient data
access control scheme for multi-authority cloud storage sys-
tems, which allows data owners to define the access policy on
the data and only users who possess sufficient attributes can
decrypt the data. We solve the attribute revocation problem in
multi-authority cloud storage systems, where each user in the
system may be entitled attributes from multiple and different
attribute domains and each authority manages a different
attribute domain independently, even does not need to know
the existence of others. Time in the system is slotted, and
at each time slot each authority can revoke or re-grant any
attribute in its domain from or to any user, without involving
any other authorities, affecting any other users who also
possesses the attribute, or affecting the decryption privilege
of any other attributes possessed by the user.

In TAAC, only one copy of ciphertext for each data is stored,
instead of multiple copies. TAAC can efficiently achieve
temporal access control on attribute-level (when an attribute is
revoked, it does not affect the user’s decryption privilege of his
other attributes) rather than on user-level (once an attribute is
revoked, the user loses all the decryption privilege). Moreover,
different from the existing schemes with attribute revocation
functionality, TAAC does not require re-encryption of any
ciphertext when the attribute revocation happens, which means
great improvement on the efficiency of attribute revocation.
We apply the tree structure for the user management of
each attribute and propose an efficient algorithm to find the
minimum set of nodes that covers all the non-revoked users,
which can also improve the efficiency of our scheme. The
analysis results show that TAAC is highly efficient, scalable,
and flexible to applications in practice.

The remaining of this paper is organized as follows. We
first give the definition of the system model, the framework
and security model of TAAC in Section II. Then, we propose
TAAC, a temporal attribute-based access control for multi-
authority cloud storage systems with efficient revocation in
Section III. In Section IV, we analyze TAAC in terms of
security, scalability and performance by comparing with exist-
ing schemes. Section V gives the related work on data access
control and the attribute revocation in ABE systems. Finally,
the conclusion is given in Section VI.

II. SYSTEM MODEL AND SECURITY MODEL

A. Definition of System Model and Framework

We consider a cloud storage system with multiple authori-
ties that defines a time space T. Without loss of generality, T
is defined as T = {1,2, . . .}, and the system initializes its time

Cloud Server

…

…

Users

AA’s Pubic

Bulletin Board

Secure channel

Public channel

Owners

Fig. 1. System Model of TAAC

to 0, and then increases it by 1 for the next time slot (for any
time slot t ∈T, t−1 is its last time slot and t+1 is its next time
slot). As shown in Fig.1, the system model consists of four
types of entities: attribute authorities (AAs), the cloud server
(server), data owners (owners) and data consumers (users). In
addition, time in the system is slotted to support temporal data
access control.

Every AA is an independent attribute authority that
is responsible for entitling/revoking/re-granting attributes
to/from/to users according to their role or identity in its
domain. In TAAC, every attribute is associated with a single
AA, but each AA can manage an arbitrary number of attributes.
In practice, attributes belong to different authorities can be
identified by encoding the attributes with different prefix, and
in this paper, for simplicity, we will use a mapping φ : U 7→D
to map any attribute to the index of corresponding authority.
Every AA has full control over the structures and semantics
of its attributes, and maintains a state and a revocation list
for each attribute in its domain. Each AA is responsible for
issuing secret keys to users when they are entitled attributes
in its domain and publishing update keys for each attribute in
its domain at each time slot to reflect the users’ possessions
of the attribute at the time slot.

Data owners define the access policies on attributes from
multiple authorities and some time slots, then encrypt the
data under the policies before hosting them on the cloud
servers. They do not rely on the server to do data access
control. Instead, the ciphertext can be accessed by all the legal
users in the system, which means that any legal user who has
been authenticated by the system somehow, he/she can freely
download any interested ciphertexts from the server. But, the
access control happens inside the cryptography. That is only
the users who possess eligible attributes (satisfying the access
policy A) at a particular time slot te can decrypt the ciphertext
associated with (A, te). The cloud server stores the owners’
data and provides data access service to users.

Each user has a global identity gid in the system. A user
gid may be entitled a set of attributes Sgid which may contain
attributes from multiple authorities. As Sgid may change dy-
namically from time slot to time slot, Sgid,t is used to denote
the attribute set that the user gid possesses at time slot t.
When a user gid is entitled an attribute x, he will be issued
a corresponding secret key SKgid,x. However, the secret keys

of a user gid is insufficient to decrypt a ciphertext encrypted
under the policy (A, te) even when the corresponding attributes
satisfy A, and the user has to obtain a set of update keys at
each time slot t (i.e. UKx,t) from the corresponding authorities.
But the user are not required to be always online. Actually,
the authorities revoke/re-grant attributes from/to users by pub-
lishing the update keys on the public bulletin boards (which
can be stored on the cloud server), and only when the users
need to access some data, they go online to obtain the released
update keys for the passed time slots from the public bulletin
boards. Note that such a revocation mechanism does not need
secure channel or interaction (e.g., the user prove himself to
the authorities) between the authorities and the users. The
user can compute decryption keys for each time slot t from
his secret keys and the received update keys, and uses the
decryption keys to decrypt the ciphertext. 2

B. Definition of TAAC Framework

Let AA1,AA2, . . . be attribute authorities and D= {1,2, . . .}
be the index set of the AAs, that is, using d ∈D to denote the
index of attribute authority AAd . Let Ud be the set of attributes
managed by AAd , where Ui∩U j = /0 for all i 6= j ∈D, and the
attribute universe of the system is defined as U =

⋃
d∈DUd .

The AAs are independent from each other and do not need to
know the existence of others. TAAC is defined as follows.

Definition 1 (TAAC). TAAC is a collection of the following al-
gorithms: GlobalSetup, AuthoritySetup, SKeyGen, UKeyGen,
DKeyCom, Encrypt and Decrypt.

• GlobalSetup(λ) → GPP. The global setup algorithm
takes the security parameter λ as input. It outputs the
global public parameters GPP.

• AuthoritySetup(GPP,Ud)→ (PKd ,MSKd). The author-
ity setup algorithm takes inputs as the global public
parameters GPP, an attribute domain Ud . It outputs the
authority’s public key PKd and master secret key MSKd .
In addition, for each x ∈Ud , this algorithm initializes the
state STx and initializes the revocation list of x to empty.

• SKeyGen(gid,x,STx,GPP,MSKφ(x)) → (SKgid,x,STx).
The secret key generation algorithm takes as inputs the
user’s global identity gid, the state of the attribute STx,
the global public parameters GPP and the master secret
key MSKφ(x). The algorithm outputs a secret key SKgid,x
for the (attribute, identity) pair (x,gid), and an updated
state STx.

• UKeyGen(t,x,STx,RLx,t ,GPP,MSKφ(x)) → (UKx,t). At
each time slot t, for each attribute x∈Uφ(x), the authority
AAφ(x) runs the update key generation algorithm once
by taking inputs as the state of the attribute STx, the
revocation list of x at time slot t RLx,t , the global public

2In this paper, the term “secret key” is used to denote the key components
that are issued to the user by the authority through a secure channel according
to the entitled attributes to the user, the term “update key” is used to denote
the key components that the authorities published on their public bulletin
board to implement their control of revocation, and the term “decryption key”
corresponds to the conventional secret key, i.e., the users in TAAC will use
decryption key to decrypt the ciphertexts.

parameters GPP, and its master secret key MSKφ(x). The
algorithm outputs the update key UKx,t for x at t, which
will be published on the public bulletin board of the
authority, which is stored on cloud servers.

• DKeyCom(SKgid,x,UKx,t) → (DKgid,x,t) or ⊥. For any
time slot t and any attribute x, a user gid can run the
decryption key computation algorithm with secret key
SKgid,x and update key UKx,t as input. The algorithm
outputs a decryption key DKgid,x,t implying that gid
possesses x at t, or a special symbol ⊥ implying that
gid does not posses x at t. i.e., if and only if x ∈ Sgid,t ,
the user gid can compute a valid DKgid,x,t .

• Encrypt(M, te,A,GPP,{PKd})→ (CT). The encryption
algorithm takes as inputs a message M3, a time slot
te, an access policy A whose attributes can be from
multiple authorities, the global public parameters GPP,
and the public parameters {PKd} related to A. It outputs
a ciphertext CT which includes A and te.

• Decrypt(CT,GPP,{PKd},{DKgid,x,t}x∈Sgid,t) → (M) or
⊥. The decryption algorithm takes as input a cipher-
text CT which includes access policy A and time
slot te, the global public parameters GPP, the public
parameters {PKd} related to A, and decryption keys
{DKgid,x,t}x∈Sgid,t corresponding to a (global identity, time
slot) pair (gid, t). The algorithm outputs a message M or
a special symbol ⊥ implying decryption failure.

C. Definition of Security Model

In cloud storage systems, we consider the case that the
server may send the owners’ data to the users who do not have
access permission. The server is also curious about the content
of the encrypted data. The users, however, are dishonest and
may collude to obtain unauthorized access to data. Some of
the AAs can be corrupted or compromised by the attackers.

The security of TAAC is defined by the following game run
between a challenger and an adversary A.
• Setup.

1) The challenger runs GlobalSetup and gives the
output GPP to A.

2) A specifies index set Dc⊂D as the corrupt AAs. For
good (non-corrupt) AAs in D \Dc, the challenger
runs the AuthoritySetup algorithm and gives the
output PKd(d ∈ D\Dc) to A.

• Phase 1. A can obtain secret keys and update keys by
querying the following oracles:

– SKQ(gid,x): A makes secret key queries by sub-
mitting pairs (gid,x), where gid is a global iden-
tity and x is an attribute belonging to some good
authority (i.e., φ(x) ∈ D \Dc). The challenger runs
SKeyGen(gid,x,STx,GPP,MSKφ(x)) to return a se-
cret key SKgid,x to A and update the state STx.

3In practice, data owners will first encrypt data with a content key by using
symmetric encryption methods. Then, it apply TAAC to encrypt and control
the content keys. Thus, in TAAC, the message M is the symmetric content
key k.

– UKQ(t,x,RLx,t): A makes update key queries by
submitting tuples (t,x,RLx,t), where t ∈ T is a
time slot, x is an attribute belonging to some
good authority (i.e., φ(x) ∈ D \Dc), and RLx,t is a
valid revocation list of x at t. The challenger runs
UKeyGen(t,x,STx,RLx,t ,GPP,MSKφ(x)) to return an
update key UKx,t to A.

• Challenge Phase. A submits to the challenger two equal-
length messages M0, M1, an access policy A∗ over U,
and a time slot t∗ ∈ T. In addition, A must also give
the challenger the public keys {PKd} for any corrupt
authorities whose attributes appear in A∗. The challenger
flips a random coin β ∈ {0,1} and sends to A an
encryption of Mβ under (A∗, t∗).

• Phase 2. A makes further queries as in Phase 1.
• Guess. A submits a guess β ′ for β .

A wins the game if β ′ = β under the following restrictions:
1) UKQ(t, ·, ·) can be queried on time slot which is greater

than or equal to the time slot of all previous queries. i.e.,
the adversary is allowed to query only in non-decreasing
order of time slot 4. Also, for any pair (t,x), UKQ(t,x, ·)
can be queried only once 5.

2) For any queried gid, Sgid,t∗ does not satisfy A∗.
The advantage of A is defined as |Pr[β = β ′]−1/2|.

Definition 2. TAAC is secure if for all polynomial-time adver-
sary A in the game above, the advantage of A is negligible.

III. TAAC: TEMPORAL ATTRIBUTE-BASED ACCESS
CONTROL FOR MULTI-AUTHORITY CLOUD STORAGE

SYSTEMS

In this section, we first give an overview of our solutions
and then propose the detailed construction of TAAC and the
efficient attribute revocation method.

A. Overview of Our Solutions

To realize the fine-grained access control, the owner first
divides the data into several components according to the logic
granularities and encrypts each data component with different
content keys by using symmetric encryption methods. Then,
the owner applies TAAC to encrypt each content key, such that
only the users whose attributes at a time slot satisfy the access
structure in the ciphertext can decrypt the content keys. Users
with different attributes can decrypt different content keys and
thus obtain different granularities of information from the same
data.

To achieve temporal access control, the system defines a
time space T which is slotted. For each attribute x ∈ Ud , AAd
maintains a state STx and a revocation list RLx, where STx is
updated when a user is entitled x and RLx (initially empty) is
updated at each time slot if any user is revoked or re-granted x

4This captures the practical scenarios, where the authority will always
generate and publish update keys for current time slot, so that the update
keys can only be obtained in the non-decreasing order of time slot.

5This is because at each time slot t, for any attribute x, the corresponding
authority will publish the corresponding update key UKx,t only once.

at that time slot. 6 For clarity, we denote RLx,t as the revocation
list of the attribute x at time slot t.

When a user gid is entitled an attribute x ∈ Ud , AAd
issues a secret key SKgid,x to gid and updates STx. When the
owner encrypts a message M, besides specifying an access
policy A over attribute universe U, he also specifies a time
slot te ∈ T, which implies that only the users who possess
eligible attributes at time slot te can decrypt the ciphertext. In
TAAC, a user gid having secret keys {SKgid,x}x∈Sgid is unable
to decrypt a ciphertext encrypted by (A, te) even when Sgid
satisfies A. Besides, he has to obtain the update key for (x, te)
(i.e. {UKx,te}x∈Sgid,te

) from the corresponding AAs. By using
SKgid,x and UKx,te , the user gid can compute a decryption key
DKgid,x,te and use it to decrypt the ciphertext encrypted under
(A, te), if Sgid,te satisfies A. At each time slot t ∈ T, for any
x ∈ Ud , AAd generates the UKx,t according to STx and RLx,t
so that only the users who possess x at time slot t are able to
obtain valid UKx,t . Thus, by setting the revocation list RLx,t
and publishing the corresponding UKx,t the authority achieves
revocation control of x.

B. Construction of TAAC

TAAC consists of four phases: System Initialization, Key
Generation by AAs, Data Encryption by Owners and Data
Decryption by Users.
Phase 1. System Initialization

The system is initialized by running the global setup algo-
rithm GlobalSetup. Let G be a bilinear group of order p and g
be a generator of G. The global public parameter is published
as

GPP= (p,g,H),

where H is a hash function that will map global identities to
elements of G.

Then, each authority is set up by running AuthoritySetup.
It takes the global public parameter GPP and the attribute set
Ud as inputs.

For each attribute x∈Ud , the corresponding authority AAφ(x)
will build up a binary tree Tx whose height is determined
according to the possible number of users that possess x. When
a user is entitled x, he will be associated to a leaf node of Tx,
i.e., a binary tree of height hx can allow 2hx users to be entitled
x.

The nodes of Tx is encoded as
• The root node is on level 0;
• If the level of a non-leaf node is l, then the level of its

children is l +1;
• For l = 0 to hx, the nodes on level l are encoded/indexed

from left to right to be 2l ,2l +1, . . . ,2l+1−1.
Thus, the nodes in the tree Tx are uniquely encoded, and Tx
can be represented as the set of indices of its nodes, i.e., Tx =
{1,2, . . . ,2hx+1−1}. Fig. 2 shows a binary tree of height = 3.

Let Lx = {2hx ,2hx +1, . . . ,2hx+1−1} be the set of leaf nodes
of Tx. For any leaf node vx ∈ Lx, let Path(vx) denote the set

6RLx can be a part of STx, but we keep it explicit for clarity.

1

2 3

4 5

8 9 10 11 12 13 14 15

6 7

3

Fig. 2. A state tree of an attribute x. hx is the hight of the state tree and
ctrx is the number of users in the state tree. Listx stores the users in the state
tree together with the node number that each user occupies in the tree.

of nodes on the path from vx to the root node (both vx and the
root node inclusive), then we have

Path(vx) = {b
vx

2l c}
hx
l=0.

For any non-leaf node vx ∈ Tx \Lx, let Lc(vx) and Rc(vx) be
the left child and right child of vx respectively, then we have
Lc(vx) = 2vx and Rc(vx) = 2vx +1.

Initially, all leaf nodes of Tx are set to be empty to imply
that no user is entitled x. When a user gid is entitled x,
the corresponding authority will choose an empty leaf node
ux,gid ∈ Lx and assign it to gid by storing the pair (gid,ux,gid)
in the state of x, and ux,gid is said to be occupied by gid.
Without loss of generality, and for the sake of efficiency, we
assume that when a new user is entitled x, the authority will
assign the most left empty leaf node of Tx to the user.

The authority setup algorithm is constructed as follows.
AuthoritySetup(GPP,Ud) → (PKd ,MSKd). For each at-

tribute x ∈ Ud , the algorithm chooses two random exponents
αx,βx ∈ Zp. Also, the algorithm determines an integer hx
to allow at most 2hx users to possess x, and sets Tx =
{1,2, . . . ,2hx+1 − 1}. For each node vx ∈ Tx, the algorithm
chooses a random element Rvx ∈G. Let Hd : Ud×T 7→G be a
hash function that maps (attribute, time slot) paris in Ud ×T

to elements of G. The public key is set to

PKd = ({e(g,g)αx ,gβx}x∈Ud ,Hd),

and the master secret key is set to

MSKd = {αx,βx, {Rvx}vx∈Tx}x∈Ud .

In addition, for each x ∈ Ud , the algorithm initializes the
state as STx = (x,hx,ctrx,Listx), where hx is the height of the
binary tree Tx, ctrx is an integer (initial 0) that represents the
number of users that has been entitled x, and Listx (initially
empty) is a set of (global identity, index of leaf node) pairs to
record the assignments of leaf nodes to users.
Phase 2. Key Generation by AAs

The AAs will generate both secret keys and update keys for
users.

1. Secret Key Generation

When a user gid is entitled an attribute x ∈ Uφ(x), the
corresponding authority AAφ(x) runs the secret key generation
algorithm SKeyGen to update STx and generate a secret key
SKgid,x for this user gid as follows.

1) Sets ux,gid = 2hx +ctrx, adds (gid,ux,gid) to Listx (assign-
ing the leaf node ux,gid , i.e., the most left empty leaf
node, to gid), and sets ctrx = ctrx +1,

2) Sets

SKgid,x = {Kgid,x,vx = gαx H(gid)βx Rvx}vx∈Path(ux,gid).

Then, the authority AAφ(x) sends the secret key SKgid,x to the
user gid. Note that only when a new attribute x ∈ Uφ(x) is
assigned to the user gid, a corresponding secret key SKgid,x is
issued to this user gid by the authority AAφ(x). This secret key
assignment happens at most once for each attribute on each
user. When the attribute x is revoked or re-granted some time,
the secret key SKgid,x will not be removed or re-assigned to
the user gid anymore.

2. Update Key Generation

At the beginning of each time slot t, for each attribute
x ∈ Uφ(x), the corresponding authority AAφ(x) determines the
revocation list RLx,t and runs the update key generation
algorithm UKeyGen once to generate and publish the update
key UKx,t . The algorithm computes the minimum set of nodes
Nx,t that covers all the non-revoked users who possess x at t
by running the key update nodes selection algorithm KUNodes
(the algorithm will be described in Section III-C) , then for
each vx ∈ Nx,t it chooses a random exponent ξvx,t ∈ Zp. The
update key for (x, t) is set to

UKx,t = {(Evx = Rvx Hφ(x)(x, t)
ξvx ,t , E ′vx = gξvx ,t)}vx∈Nx,t .

Then, all the update keys {UKx,t} are published on the public
bulletin board of the corresponding authority AAφ(x) at the
beginning of the time slot t. All the users in the system can
access these update keys from the public bulletin board of each
authority, which is also stored in the cloud.
Phase 3. Data Encryption by Owners

The owner first encrypts the data component with a content
key by using symmetric encryption methods. It then runs the
encryption algorithm Encrypt to encrypt the content key k.
The encryption algorithm is defined as follows.

Encrypt(k, te,A = (A,ρ),GPP,{PKd}) → (CT). k is the
content key, te is a time slot, A is the access policy which
is expressed by an LSSS matrix (A,ρ) 7, where A is an
m× n matrix and ρ maps each row Ai of A to an attribute
ρ(i), and {PKd} are the public keys related to (A,ρ), where
d ∈ {φ(ρ(i))|1≤ i≤ m}.
The algorithm chooses two random vectors ~v,~u ∈ Zn

p, with
s and 0 as the first entry respectively, and for each i ∈
{1,2, . . .m}, it randomly picks ri ∈ Zp. Let λi = Ai ·~v and

7The details of using LSSS to express access policy is referred to Ap-
pendix A.

µi = Ai ·~u. The ciphertext of the content key is

CT = 〈 (A,ρ), te, C = k · e(g,g)s, {Ci,1 = e(g,g)λie(g,g)αρ(i)ri ,

Ci,2 = gµigβρ(i)ri ,Ci,3 = gri ,Ci,4 = Hφ(ρ(i))(ρ(i), te)
ri}m

i=1 〉.

Phase 4. Data Decryption by Users
Any legal user can download the ciphertexts he interested.

But only the users who possess eligible attributes (satisfying
the access policy A) at a particular time slot te can decrypt
the ciphertext associated with (A, te). The decryption phase
consists two steps: Decryption Key Generation and Ciphertext
Decryption.

1. Decryption Key Generation
At each time slot t, every user can get update keys for each

attribute it possess at this time slot from the public bulletin
boards of the authorities. For each attribute x it possesses at
time slot t, the user gid computes a decryption key DKgid,x,t for
this attribute by running the algorithm DKeyCom constructed
as follows.
DKeyCom(SKgid,x,UKx,t)→ (DKgid,x,t) or ⊥. If x ∈ Sgid,t ,

i.e., gid possesses x at t, then there exists a unique vx such that
vx ∈Path(ux,gid)∧vx ∈Nx,t (this is guaranteed by the KUNodes
algorithm), the algorithm sets the decryption key for attribute
x of gid at t to

DKgid,x,t = (Dgid,x,t = Kgid,x,vx/Evx , D′gid,x,t = E ′vx),

so that

Dgid,x,t = gαx H(gid)βx Hφ(x)(x, t)
−ξvx ,t ,

D′gid,x,t = gξvx ,t .

If x /∈ Sgid,t , as there does not exist such a vx (this is
guaranteed by the KUNodes algorithm as well), the algorithm
outputs ⊥.

Only the users who possess x at t can compute a valid
decryption key, i.e., a user gid who is entitled x at a later
time slot t ′ > t is unable to compute a valid DKgid,x,t even
he has SKgid,x (issued at t ′) and UKx,t . However, in practice,
sometimes such a user is allowed to obtain a valid DKgid,x,t
as a special case. Later we will also give a discussion how to
efficiently handle such special cases.

2. Ciphertext Decryption
Each user can freely get the ciphertext from the server,

but he can decrypt the ciphertext only when the attributes he
possesses at time slot te satisfy the access policy defined in
the ciphertext. Suppose the user gid has sufficient attributes
at time slot te, it can generate sufficient valid decryption keys
{DKgid,x,t}x∈Sgid,t . By using these decryption keys, the user gid
can decrypt the ciphertext by running the decryption algorithm
Decrypt constructed as follows.
Decrypt(CT,GPP,{PKd},{DKgid,x,t}x∈Sgid,t) → (M) or ⊥.

Assume CT is associated with 〈(A,ρ), te〉 and the set of
decryption keys {DKgid,x,t}x∈Sgid,t is associated with the pair
(gid, t). If t 6= te or Sgid,t does not satisfy (A,ρ), the algorithm
outputs ⊥, otherwise, it decrypts the ciphertext as follows:

1) Finds a set I = {i|ρ(i) ∈ Sgid,t} and computes cor-
responding constants {wi|i ∈ I} such that ∑i∈I wiAi =

(1,0, . . . ,0).
2) For each i ∈ I, computes

C̄i =
Ci,1 · e(H(gid),Ci,2)

e(Dgid,ρ(i),t ,Ci,3) · e(D′gid,ρ(i),t ,Ci,4)

=e(g,g)λi · e(H(gid),g)µi .

3) Computes

∏
i∈I

C̄wi
i =e(g,g)∑i∈I wiλi · e(H(gid),g)∑i∈I wiµi

=e(g,g)s,

and recovers the content key k by k =C/e(g,g)s.
Then, the user can use this content key to further decrypt

the encrypted data.

C. Efficient Attribute Revocation in TAAC

To achieve efficient attribute revocation, each authority
maintains a revocation list for each attribute and generates
update keys according to the revocation list for each time
slot RLx,t . In particular, RLx,t is a set of global identities, and
gid ∈ RLx,t means that gid was entitled x at some time slot
t ′ ≤ t but is revoked x at time slot t.

The attribute revocation scheme contains three phases: Re-
vocation List Determination, Minimum Cover Set Selection
and Update Key Generation.
Phase 1. Revocation List Determination

At any time slot t, for any attribute x ∈ Ud , AAd sets the
elements of RLx,t at its choice to determine who possess x
at t. Note that it is not required that RLx,t ⊆ RLx,t+1, i.e., the
system can support temporal revocation. For example, a user
gid is revoked the decryption privilege of attribute x at time
slot t (i.e., gid ∈RLx,t), but at time slot t+1 he needs to be re-
granted the decryption privilege of x. Such a case can be easily
supported by removing gid from RLx,t+1 (i.e., gid /∈ RLx,t+1).
Phase 2. Minimum Cover Set Selection

At the begging of each time slot t ∈ T, for any attribute
x ∈ U, according to the revocation list RLx,t for x at t and the
current state STx, the corresponding authority AAφ(x) finds the
minimal set of nodes for which it publishes update keys so that
only the users who possess x at t can make use of the published
update keys to generate corresponding decryption keys. The
key update nodes selection algorithm KUNodes(STx,RLx,t) is
defined in Algorithm 1.

Note that a similar algorithm was used in [15], and the
difference is that our algorithm will prevent a user who is
entitled x at a later time slot t ′ > t from making use of the
update keys for (x, t). Fig. 3 and Fig. 4 show the examples
where RLx,t = /0 and RLx,t = {gid3} respectively. Also note that
the algorithm can be efficiently implemented with the above
encoding rules.
Phase 3. Update Key Generation

In this phase, AAφ(x) generates the UKx,t according to STx
and RLx,t so that only the users who possess x at time
slot t are able to obtain valid UKx,t . For any attribute x,
the corresponding authority runs UKeyGen only once at the

Algorithm 1 KUNodes(STx,RLx,t)

1: Xe,Xr,Nx,t ← /0
2: ue← the most left empty leaf node
3: Xe← Path(ue)
4: for each ur ∈ RLx,t do
5: add Path(ur) to Xr
6: end for
7: Xr← Xr \Xe
8: for each ve ∈ Xe do
9: if ve is not a leaf node then

10: vlc← left child of ve
11: if vlc /∈ Xr ∪Xe then
12: add vlc to Nx,t
13: end if
14: end if
15: end for
16: for each vr ∈ Xr do
17: if vr is not a leaf node then
18: vlc← left child of vr
19: if vlc /∈ Xr then
20: add vlc to Nx,t
21: end if
22: vrc← right child of vr
23: if vrc /∈ Xr then
24: add vrc to Nx,t
25: end if
26: end if
27: end for
28: if Nx,t = /0 then
29: add the root node x to Nx,t
30: end if
31: Return Nx,t

beginning of each time slot t, taking the current values of
STx and RLx,t . Note that for any time slot t and attribute x,
once UKeyGen(t,x,STx,RLx,t ,GPP,MSKd)→ (UKx,t) is run
and UKx,t is publish, the later changes of STx and RLx,t
will not affect UKx,t , and will be reflected at next time slot,
i.e., UKx,t+1. Thus, by setting the revocation list RLx,t and
publishing the corresponding UKx,t the authority achieves
revocation control of x.

IV. ANALYSIS OF TAAC

A. Security Analysis

Similar to the underlying multi-authority CP-ABE scheme
in Appendix D of [10], we will prove TAAC is secure in the
generic bilinear group model previously used in [2], [16], [17],
modeling H and {Hd}d∈D as random oracles. Security in this
model assures us that an adversary can not break TAAC with
only black-box access to the group operations and H,{Hd}d∈D.

Theorem 1. In the generic bilinear group model and ran-
dom oracle model, no polynomial time adversary can break
TAAC with non-negligible advantage in the security game of
Sec. II-C.

1

2 3

4 5

8 9 10 11 12 13 14 15

6 7

.

3

Fig. 3. RLx,t = /0. In this example, the revocation list of attribute x at time
slot t RLx,t is empty, and the minimum cover set is selected as Nx,t = {2,6},
i.e., the authority only needs to compute the update key UKx,t,2 for node 2
and UKx,t,6 for node 6 . The users gid1,gid2,gid3,gid4 can use the update key
UKx,t,2 to compute their decryption keys at t and the users gid5 and gid6 can
use the update key UKx,t,6 to compute their decryption keys at t.

1

2 3

4 5

8 9 10 11 12 13 14 15

6 7

.

3

Fig. 4. RLx,t = {gid3}. In this example, gid3 is in the revocation list of
attribute x at time slot t RLx,t , and the minimum cover set can be selected
as Nx,t = {4,6,11}, i.e., the authority only needs to compute the update
key {UKx,t,4,UKx,t,6,UKx,t,11} for node 4, node 6 and node 11. The users
gid1,gid2 can use the update key UKx,t,4 to compute their decryption keys at
t and the users gid5 and gid6 can use the update key UKx,t,6 to compute their
decryption keys at t. For the user gid4, it can also compute the decryption key
by using UKx,t,4 at time slot t.

Proof: To cancel the e(g,g)s in the challenge ciphertext
C = Mb · e(g,g)s, the adversary has to use the secret keys
SKgid,x in a way similar to that of the underlying multi-
authority CP-ABE scheme in Appendix D of [10], i.e., for
any 1≤ i≤m, if the adversary has a corresponding secret key
SKgid,ρ(i), it can compute

C̄i =Ci,1 · e(H(gid),Ci,2)/(e(Kgid,ρ(i),vρ(i)
,Ci,3)

=e(g,g)λi · e(H(gid),g)µi/e(Rvρ(i) ,g
ri).

Note that if and only if the adversary has sufficient secret
keys for some same gid, it is possible for him to use
e(g,g)λi · e(H(gid),g)µi to reconstruct e(g,g)s. This is the
key techniques used in TAAC to resist the attribute col-
lusion attacks from different users. Furthermore, in TAAC,
e(g,g)λi · e(H(gid),g)µi is always blinded by an additional
term e(Rvρ(i) ,g

ri) as shown above.
To cancel the term e(Rvρ(i) ,g

ri), the only way is to ob-

TABLE I
COMPARISON OF SCALABILITY

Scheme Require Global CA? Granularity
TAAC No Attribute Level
[18] No User Level
[19] Yes Attribute Level

tain corresponding update keys, as update keys are the
only terms containing Rvρ(i) except the secret keys. As
the Rvρ(i) in Evρ(i) (update key component) is always

blinded by Hφ(ρ(i))(ρ(i), t)
ξv

ρ(i),t , e(Rvρ(i) ,g
ri) is always blinded

by an additional term e(Hφ(ρ(i))(ρ(i), t)
ξv

ρ(i) ,t ,gri) due to

e(Evρ(i) ,Ci,3) = e(Rvρ(i) ,g
ri) · e(Hφ(ρ(i))(ρ(i), t)

ξv
ρ(i) ,t ,gri). Note

that the only ciphertext component related to i,ρ(i),ri,Hφ(ρ(i))
in the challenge ciphertext is for time slot te, i.e., Ci,4 =
Hφ(ρ(i))(ρ(i), te)ri , we have that only if the adversary is using
the update key components for the time slot te, can he cancel
the term e(Hφ(ρ(i))(ρ(i), t)

ξv
ρ(i) ,t ,gri) and obtain e(Rvρ(i) ,g

ri).
In summary, only if there exists a gid, such that the

adversary has sufficient secret keys related to gid and sufficient
update key components related to gid and time slot te, can
the adversary cancel the e(g,g)s. Note “sufficient” means that
gid possesses eligible attributes (satisfying (A,ρ)) at time slot
te. However, in the security game the adversary is restricted
to make such key queries. This implies that the adversary
cannot attain non-negligible advantage in the security game.
The detailed proof is described in Appendix B.

B. Scalability Analysis

We conduct the scalability comparison of TAAC with two
existing data access control schemes [18], [19] for multi-
authority cloud storage systems. As shown in Table. I, TAAC
does not require any global certificate authority and can
support the access control on attribute level rather than on user
level. That is in TAAC and [19], when an attribute is revoked
from a user, the other attributes of this user are not affected,
i.e., the user can use its remaining attributes to decrypt the
ciphertexts. However, in [18], when an attribute is revoked
from a user, the user lose the decryption privilege of all his
attributes.

TAAC has high scalability also in the sense that it can be
easily extended to support the following two scenarios:

Scenario 1: In TAAC, a user gid who does not have
sufficient attributes at time slot t cannot decrypt the ciphertext
CT which is encrypted under the policy (A, t), even when the
user is entitled sufficient attributes at a later time slot t ′(t < t ′).
However, in cloud storage systems, this user may be authorized
to have the decryption privilege of the ciphertext CT due to
some reasons.

TAAC can easy handle such special case as follows. For
every attribute x required for decryption at time slot t, the

authority AAφ(x) can publish a special update key

UKx,t,gid = (Eux,gid = Rux,gid Hφ(x)(x, t)
ξux,gid , E ′ux,gid

= gξux,gid),

where ux,gid is the leaf node assigned to gid and ξux,gid ∈Zp is
randomly chosen. Note that such an update key is useless to
other users, and the user gid can use this update key to obtain
only the decryption privilege of x at time slot t.

Scenario 2: The ciphertexts in TAAC only associated with
attributes at only one time slot te and only the users who
have sufficient attributes at this time slot te can decrypt them.
However, in cloud storage systems, sometimes it allows the
users who have sufficient attributes at multiple time slots or a
time period to decrypt the ciphertexts.

TAAC can also efficiently deal with this scenario by mod-
ifying the encryption algorithm. The encryption algorithm
Encrypt can be modified to a general one which encrypts
a message using ((A,ρ),Te ⊆ T). In particular, Ci,4 can be
modified to Ci,4 = {Hφ(ρ(i))(ρ(i), te)ri}te∈Te , and the ciphertext
for ((A,ρ),Te) contains (3+ |Te|)m+1 elements.

C. Performance Analysis
We conduct the performance analysis of TAAC by compar-

ing with [18] and [19] under the metrics of Storage Overhead,
Communication Cost and Computation Cost.
1) Storage Overhead

The storage overhead is one of the most significant issues of
the access control scheme in cloud storage systems. The size
of encrypted data and ciphertext contribute the main storage
overhead on the server, which is almost the same in these
schemes. For the storage overhead on the owner, besides the
public keys, the scheme in [18] also requires the owner to store
all the secret encryption exponent in order to re-encrypt the
ciphertext during the revocation. The storage overhead on each
user comes from the secret keys. In TAAC, each user should
also hold the decryption key for every time slot. However,
in [18], each non-revoked user should keep a component for
each ciphertext which contains the revoked attribute. Due to
the large number of ciphertexts, the scheme in [18] incurs
a heavy storage overhead on each user. Compared with [18]
and [19], TAAC requires each authority to store a set of
values {Rvx}vx∈Tx for each attribute x ∈Uφ(x), but this storage
overhead can be reduced by using Pseudo Random Function
(PRF) and storing a seed sx in MSKφ(x).
2) Communication Cost

The communication cost of normal access control is almost
the same in these three access control schemes, which are
all based on the CP-ABE methods. Here, we only consider
the communication cost for the revocation of an attribute.
Table II describes the comparison of communication cost for
the revocation of attribute x. In TAAC, the communication cost
comes from the update keys of each attribute from each AA to
each user, which is linear to the number of total attributes that
all the users possess in the system. The scheme in [18] requires
the owner to transfer a new component of each ciphertext
which is associated with the revoked attribute x to all the non-
revoked users. The revocation communication cost in [18] is

TABLE II
COMPARISON OF COMMUNICATION COST FOR REVOCATION OF ATTRIBUTE x

Scheme Owner-User Owner-Server User-Server AA-Owner AA-User
TAAC None None None None ∑

nu
k=1 2|Sgidk,t | · |p|

[18] nnon,x ∑
no
i=1 nc,x,oi · |p| ∑

no
i=1 nc,x,oi · |p| None None None

[19] None 2no · |p| None no · |p| (2nnon,x + r+∑
r
i=1 |S′gidi

|) · |p|

|p| is the size of elements in the group with order p; no is the number of owners and nu is the number of users
in the sytem; nnon,x is the number of non-revoked users who possess x; nc,x,oi is the number of ciphertexts
associated with x from generated by owner oi; |Sgidk,t | is the number of attributes the user gidk possesses at
time slot t; |S′gidi

| is the number of attribute the revoked user gidi holds after the revocation; r is the number
of revoked users.

linear to the number of ciphertexts that are associated with
the revoked attribute x. Due to the large number of ciphertexts
in cloud storage systems, the scheme in [18] incurs a heavy
communication cost. In [19], the revocation communication
cost is much less than TAAC and [18], but it incurs a very
heavy computation cost.
3) Computation Cost

Compared with [18] and [19], TAAC has the same com-
plexity of encryption/decryption. Here we only compare the
computation cost for the revocation of an attribute x, as shown
in Table III. In TAAC, the revocation computation cost comes
from the update key generation (which is linear to the number
of the non-revoked users who possess x) and the decryption
key computation (which is linear to the total number of
attributes of all the users in the system at time slot t) in each
time slot t. In [18], the revocation computation cost comes
from the re-encryption of ciphertexts, which is linear to the
number of ciphertexts associated with x. In [19], the revocation
computation cost comes from two parts: 1) the key update for
all the users who has any attribute from the authority AAφ(x),
which is linear to the total number of attributes in all the
users which are issued by AAφ(x); 2) the re-encryption for
all the ciphertexts associated with any attribute from AAφ(x),
which is linear to the total number of attributes appeared in all
the ciphertexts which are issued by AAφ(x). In cloud storage
systems, due to the large number of ciphertexts, [18] and [19]
incur much more computation cost than TAAC.

To further reduce the revocation computation cost in TAAC,
we design a key update nodes selection algorithm KUNodes
to select the minimum set of nodes that covers all the non-
revoked users who possess the revoked attribute at time slot
t. Let |Nx,t | denote the number of nodes in the minimum
cover set Nx,t . Thus, we can reduce our revocation com-
putation cost from O(nnon,x) · Exp.+ O(nnon,x + na,t) ·Mul.
to O(|Nx,t |) ·Exp.+O(|Nx,t |+ na,t) ·Mul. In practical cloud
storage systems, the number of nodes in the minimum cover
set |Nx,t | is approximate to r log nu,x

r , where nu,x is the number
of users who possess x and r is the number of revoked users.

V. RELATED WORK

Cryptographic techniques are well applied to access control
for remote storage systems [20]–[22]. Traditional public key

TABLE III
COMPARISON OF COMPUTATION COST FOR REVOCATION OF ATTRIBUTE x

Scheme Revocation Computation Cost
TAAC O(nnon,x) ·Exp.+O(nnon,x +na,t) ·Mul.
[18] O(nc,x) ·Exp.+O(nc,x) ·Mul.
[19] O(na,u,φ(x)) ·Exp.+O(na,c,φ(x)) ·Mul.

Exp.: the exponentiate operation in the group;
Mul.: the multiplication operation in the group;
nnon,x: num of non-revoked users possess x; na,t :
total num of attributes of all the users in the system
at time slot t; nc,x: num of ciphertexts associated
with x; na,u,φ(x)/na,c,φ(x): total num of attributes in
all the users/ciphertexts issued by AAφ(x).

encryption (PKE) based schemes [23], [24] either incurs
complicated key management or produces multiples copies of
encrypted data with different user’s keys. Some methods [25]–
[27] deliver the key management and distribution from data
owners to the remote server under the assumption that the
server is trusted or semi-trusted. However, the server is not
fully trusted in cloud storage systems and thus these methods
cannot be applied to access control for cloud storage systems.

Attribute-based Encryption (ABE) is a promising technique
that is designed for access control of encrypted data. After
Sahai and Waters introduced the first ABE scheme [28], Goyal
et al. [29] formulated the ABE into two complimentary forms:
Key-Policy ABE (KP-ABE) and Ciphertext-Policy (CP-ABE).
There are a number of works used ABE to realize fine-grained
access control for outsourced data [2], [11], [12], [30]. In these
schemes, a trusted single authority is used to manage the
attributes and issue keys. However, in real storage systems,
the authority can fail or be corrupted, which may leak out
the data since the authority can decrypt all the encrypted
data. Moreover, the authority may become the performance
bottleneck in the large scale cloud storage systems.

Some new cryptographic methods are proposed to the
multi-authority ABE problem [7]–[10], [31], [32]. Chase [7]
proposed a solution that introduced a global identity to tie
users’ keys together. The proposed scheme also relies on a
central authority to provide a final secret key to integrate the

secret keys from different attribute authorities. However, the
central authority would be able to decrypt all the ciphertexts
in Chase’s scheme, because it holds the master key of the
system. Thus, the central authority would be a vulnerable
point for security attacks and a performance bottleneck for
large scale systems. Another limitation of Chase’s scheme is
that it can only express a strict “AND” policy over a pre-
determined set of authorities. To improve the Chase’s scheme,
Muller et al. [8] proposed a multi-authority ABE scheme
that can handle any expressions in LSSS access policy, but
it also requires a centralized authority. Chase et al. [9] also
proposed a method to remove the central authority by using a
distributed PRF (pseudo-random function). But it has the same
limitation to strict “AND” policy of pre-determined authorities.
Lin et al. [31] proposed a decentralized scheme based on
threshold mechanism. In their scheme, the set of authorities
is pre-determined and it requires the interaction among the
authorities during the system setup. Their scheme can tolerate
collusion attacks for up to m colluding users, where m is a
system parameter chosen at setup time. In [10], Lewko et
al. proposed a new comprehensive scheme, which does not
require any central authority. It is secure against any collusion
attacks and it can process the access policy expressed in
any Boolean formula over attributes. However, their method
is constructed in composite order bilinear groups that incurs
heavy computation cost. They also proposed a multi-authority
CP-ABE scheme constructed in prime order group, but they
did not consider attribute revocation, which is one of the major
challenges in access control for multi-authority cloud storage
systems.

There are a number of works about the revocation in ABE
systems in the cryptography literature [2], [5], [11], [12], [33]–
[36]. However, these methods either only support the user
level revocation or rely on the server to conduct the attribute
revocation. Moreover, these attribute revocation methods are
designed only for ABE systems with single authority. In [36],
Li et al. proposed an attribute revocation method for multi-
authority ABE systems, but their methods is only for KP-
ABE systems. Ruj et al. [18] designed a DACC scheme and
proposed a revocation method for the Lewko and Waters’
decentralized ABE scheme. However, their attribute revocation
method incurs a heavy communication cost since it requires
the data owner to transmit a new ciphertext component to
every non-revoked user. In [19], the authors proposed an
access control method for multi-authority systems in cloud
storage, where a new multi-authority CP-ABE scheme and
an attribute revocation method are proposed. However, their
attribute revocation method is not efficient, because they
require the re-encryption of a large number of ciphertexts.
In our scheme, we propose an attribute revocation method
without needing to re-encrypt any ciphertexts in the cloud.

VI. CONCLUSION

This paper proposed an efficient data access control scheme
for multi-authority cloud storage systems denoted as TAAC,
where the authorities are independent from each other and

no central authority is needed. TAAC can efficiently achieve
temporal access control on attribute-level rather than on user-
level. Compared to the existing schemes with attribute revoca-
tion functionality, TAAC does not require re-encryption of any
ciphertext when the attribute revocation happens, which can
greatly reduce the computation cost of the attribute revocation.
The analysis results show that TAAC is highly efficient,
scalable, and flexible to multi-authority cloud storage systems
in practice.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology, Tech. Rep., 2009.

[2] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proceedings of the 2007 IEEE Symposium on
Security and Privacy (S&P’07). IEEE Computer Society, 2007, pp.
321–334.

[3] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in Proceedings of the 4th
International Conference on Practice and Theory in Public Key Cryp-
tography (PKC’11). Springer, 2011, pp. 53–70.

[4] V. Goyal, A. Jain, O. Pandey, and A. Sahai, “Bounded ciphertext policy
attribute based encryption,” in Proceedings of the 35th International
Colloquium on Automata, Languages and Programming (ICALP’08).
Springer, 2008, pp. 579–591.

[5] R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based encryption
with non-monotonic access structures,” in Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS’07).
ACM, 2007, pp. 195–203.

[6] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters,
“Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption,” in Proceedings of the 29th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques: Advances in Cryptology - EUROCRYPT’10.
Springer, 2010, pp. 62–91.

[7] M. Chase, “Multi-authority attribute based encryption,” in Proceedings
of the 4th Theory of Cryptography Conference on Theory of Cryptog-
raphy (TCC’07). Springer, 2007, pp. 515–534.

[8] S. Müller, S. Katzenbeisser, and C. Eckert, “Distributed attribute-based
encryption,” in Proceedings of the 11th International Conference on
Information Security and Cryptology (ICISC’08). Springer, 2008, pp.
20–36.

[9] M. Chase and S. S. M. Chow, “Improving privacy and security in
multi-authority attribute-based encryption,” in Proceedings of the 16th
ACM Conference on Computer and Communications Security (CCS’09).
ACM, 2009, pp. 121–130.

[10] A. B. Lewko and B. Waters, “Decentralizing attribute-based encryption,”
in Proceedings of the 30th Annual International Conference on the
Theory and Applications of Cryptographic Techniques: Advances in
Cryptology - EUROCRYPT’11. Springer, 2011, pp. 568–588.

[11] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing
with attribute revocation,” in Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security (ASIACCS’10).
ACM, 2010, pp. 261–270.

[12] J. Hur and D. K. Noh, “Attribute-based access control with efficient
revocation in data outsourcing systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 22, no. 7, pp. 1214–1221, 2011.

[13] S. Jahid, P. Mittal, and N. Borisov, “Easier: encryption-based access con-
trol in social networks with efficient revocation,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security (ASIACCS’11). ACM, 2011, pp. 411–415.

[14] A. Sahai, H. Seyalioglu, and B. Waters, “Dynamic credentials and
ciphertext delegation for attribute-based encryption,” in Proceedings of
the 32nd Annual International Cryptology Conference: Advances in
Cryptology - CRYPTO’2012. Springer, 2012, pp. 199–217.

[15] A. Boldyreva, V. Goyal, and V. Kumar, “Identity-based encryption with
efficient revocation,” in ACM Conference on Computer and Communi-
cations Security(CCS’08). ACM, 2008, pp. 417–426.

[16] V. Shoup, “Lower bounds for discrete logarithms and related problems,”
in Proceeding of the International Conference on the Theory and
Application of Cryptographic Techniques: Advances in Cryptology -
EUROCRYPT ’97. Springer, 1997, pp. 256–266.

[17] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity based encryp-
tion with constant size ciphertext,” in Proceeding of the International
Conference on the Theory and Application of Cryptographic Techniques:
Advances in Cryptology - EUROCRYPT ’05. Springer, 2005, pp. 440–
456.

[18] S. Ruj, A. Nayak, and I. Stojmenovic, “DACC: Distributed Access Con-
trol in Clouds,” in Proceeding of the 10th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom’11). IEEE, 2011, pp. 91–98.

[19] K. Yang and X. Jia, “Attribute-based access control for multi-authority
systems in cloud storage,” in Proceedings of the 32th IEEE International
Conference on Distributed Computing Systems (ICDCS’12). IEEE,
2012, pp. 1–10.

[20] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus:
Scalable secure file sharing on untrusted storage,” in Proceedings of the
2nd USENIX Conference on File and Storage Technologies (FAST’03).
USENIX, 2003.

[21] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing
remote untrusted storage,” in Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS’03). The Internet Society,
2003.

[22] D. Naor, M. Naor, and J. Lotspiech, “Revocation and tracing schemes
for stateless receivers,” Electronic Colloquium on Computational Com-
plexity (ECCC), no. 043, 2002.

[23] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient controlled
encryption: ensuring privacy of electronic medical records,” in Proceed-
ings of the first ACM Cloud Computing Security Workshop (CCSW’09).
ACM, 2009, pp. 103–114.

[24] C. Dong, G. Russello, and N. Dulay, “Shared and searchable encrypted
data for untrusted servers,” Journal of Computer Security, vol. 19, no. 3,
pp. 367–397, 2011.

[25] E. Damiani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “Key management for multi-user encrypted databases,”
in Proceedings of the 2005 ACM Workshop On Storage Security And
Survivability (StorageSS’05). ACM, 2005, pp. 74–83.

[26] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Over-encryption: Management of access control evolution
on outsourced data,” in Proceedings of the 33rd International Conference
on Very Large Data Bases (VLDB’07). ACM, 2007, pp. 123–134.

[27] W. Wang, Z. Li, R. Owens, and B. K. Bhargava, “Secure and efficient
access to outsourced data,” in Proceedings of the first ACM Cloud
Computing Security Workshop (CCSW’09). ACM, 2009, pp. 55–66.

[28] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Proceed-
ings of the 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques: Advances in Cryptology -
EUROCRYPT’05. Springer, 2005, pp. 457–473.

[29] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security
(CCS’06). ACM, 2006, pp. 89–98.

[30] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in Proceedings of
the 29th IEEE International Conference on Computer Communications
(INFOCOM’10). IEEE, 2010, pp. 534–542.

[31] H. Lin, Z. Cao, X. Liang, and J. Shao, “Secure threshold multi authority
attribute based encryption without a central authority,” Inf. Sci., vol. 180,
no. 13, pp. 2618–2632, 2010.

[32] J. Li, Q. Huang, X. Chen, S. S. M. Chow, D. S. Wong, and D. Xie,
“Multi-authority ciphertext-policy attribute-based encryption with ac-
countability,” in Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security (ASIACCS’11). ACM, 2011,
pp. 386–390.

[33] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters, “Secure attribute-
based systems,” in Proceedings of the 13th ACM Conference on Com-
puter and Communications Security (CCS’06). ACM, 2006, pp. 99–112.

[34] N. Attrapadung and H. Imai, “Conjunctive broadcast and attribute-based
encryption,” in Proceedings of the Third International Conference on
Pairing-Based Cryptography (Pairing’09). Springer, 2009, pp. 248–
265.

[35] X. Liang, X. Li, R. Lu, X. Lin, and X. Shen, “An efficient and secure
user revocation scheme in mobile social networks,” in Proceedings of the
Global Communications Conference (GLOBECOM’11). IEEE, 2011,
pp. 1–5.

[36] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure shar-
ing of personal health records in cloud computing using attribute-based
encryption,” IEEE Transactions on Parallel and Distributed Systems,
2012.

[37] A. Beimel, “Secure schemes for secret sharing and key distribution,”
DSc dissertation, 1996.

APPENDIX A
ACCESS POLICY

Definition 3 (Access Structure [37]). Let {P1,P2, . . . ,Pn} be
a set of parties. A collection A ⊆ 2{P1,P2,...,Pn} is monotone if
∀ B,C : if B ∈ A and B ⊆ C then C ∈ A. An access struc-
ture (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of
{P1,P2, . . . ,Pn}, i.e., A⊆ 2{P1,P2,...,Pn} \{ /0}. The sets in A are
called the authorized sets, and the sets not in A are called the
unauthorized sets.

In ABE, the role of the parties is taken by the attributes.
Thus, the access structure A contains the authorized sets of
attributes. As of previous work in ABE, we focus on monotone
access structures in this paper. It is shown in [37] that any
monotone access structure can be realized by a linear secret
sharing scheme. Here we use the definition from [3], [37].

Definition 4 (Linear Secret-Sharing Schemes (LSSS) [3]). A
secret sharing scheme Π over a set of parties P is called linear
(over Zp) if

1) The shares for each party form a vector over Zp.
2) There exists a matrix A called the share-generating

matrix for Π. The matrix A has l rows and n columns.
For i = 1, . . . , l, the ith row of A is labeled by a party
ρ(i)(ρ is a function from {1, . . . , l} to P). When we
consider the column vector ~v = (s,r2, . . . ,rn), where
s ∈ Zp is the secret to be shared and r2, . . . ,rn ∈ Zp
are randomly chosen, then A~v is the vector of l shares
of the secret s according to Π. The share (A~v)i belongs
to party ρ(i).

It is shown in [37] that every linear secret-sharing scheme
according to the above definition also enjoys the linear recon-
struction property, defined as follows: Suppose that Π is an
LSSS for access structure A. Let S ∈ A be an authorized set,
and let I ⊂ {1,2, . . . , l} be defined as I = {i : ρ(i) ∈ S}. There
exist constants {ωi ∈ Zp}i∈I such that if {λi} are valid shares
of any secret s according to Π, then ∑i∈I ωiλi = s. Furthermore,
these constants {ωi} can be found in time polynomial in the
size of the share-generating matrix A. For any unauthorized
set, no such constants exist. In this paper, we use LSSS matrix
(A,ρ) to express an access policy.

APPENDIX B
PROOF OF THEOREM 1

Similar to the proof of the underlying multi-authority CP-
ABE scheme in Appendix D of [10], we will now prove
our scheme is secure in the generic bilinear group model

TABLE IV
Possible query terms from the adversary

αx
βx βxβy (αx +hgidβx + γvx)(αy +hgid′βy + γvy)

hgid βxhgid (αx +hgidβx + γvx)ξvy,t

hx,t βxhy,t (αx +hgidβx + γvx)(γvy +hy,tξvy,t)

αx +hgidβx + γvx βx(αy +hgidβy + γvy) (αx +hgidβx + γvx)ri

ξvx,t βxξvy,t (αx +hgidβx + γvx)(µi +βρ(i)ri)

γvx +hx,tξvx,t βx(γvy +hy,tξvy,t) (αx +hgidβx + γvx)hρ(i),teri

ri βxri
µi +βρ(i)ri βx(µi +βρ(i)ri) ξvx,tξvy,t ′

hρ(i),teri βxhρ(i),teri ξvx,t(γvy +hy,tξvy,t ′)

λi +αρ(i)ri ξvx,tri

hgidhgid′ ξvx,t(µi +βρ(i)ri)

hgidhx,t ξvx,thρ(i),teri

hgid(αx +hgidβx + γvx)
hgidξvx,t (γvx +hx,tξvx,t)(γvy +hy,t ′ξvy,t ′)

hgid(γvx +hx,tξvx,t) (γvx +hx,tξvx,t)ri
hgidri (γvx +hx,tξvx,t)(µi +βρ(i)ri)

hgid(µi +βρ(i)ri) (γvx +hx,tξvx,t)hρ(i),te ri

hgidhρ(i),teri

rir j
hx,thy,t ′ ri(µ j +βρ(j)r j)

hx,t(αy +hgidβy + γvy) rihρ(j),ter j

hx,tξvy,t ′

hx,t(γvy +hy,t ′ξvy,t ′) (µi +βρ(i)ri)(µ j +βρ(j)r j)

hx,tri (µi +βρ(i)ri)hρ(j),te r j

hx,t(µi +βρ(i)ri)

hx,thρ(i),teri hρ(i),terihρ(j),ter j

previously used in [2], [16], [17], modeling H and {Hd}d∈D
as random oracles. Security in this model assures us that
an adversary can not break our scheme with only black-box
access to the group operations and H,{Hd}d∈D.

Proof: We describe the generic bilinear model as [10],
[17]. Let ψ0 and ψ1 be two random encodings of the additive
group Zp. In particular, each of ψ0,ψ1 is an injective map
from Zp to {0,1}λ̄ for λ̄ > 3log(p). We define the groups
G0 = {ψ0(x) : x ∈Zp} and {G1 = ψ1(x) : x ∈Zp}, and assume
we have access to oracles which compute the induced group
operations in G0 and G1 and an oracle with computes a non-
degenerate bilinear map e : G0×G0→ G1. We refer to G0 as
a generic bilinear group.

In our security game, the adversary must distinguish be-
tween C =M0e(g,g)s and C =M1e(g,g)s. We can alternatively
consider a modified game, where the attacker must distinguish
between C = e(g,g)s and C = e(g,g)s̄ for s̄ chosen uniformly
randomly from Zp. This is same modification employed in [2],
and it is justified by a simple hybrid argument.

We will simply our notation as follows: let g denote ψ0(1),
gx denote ψ0(x), e(g,g) denote ψ1(1), and e(g,g)y denote
ψ1(y).

We now simulate the modified security game in the generic

bilinear group model where C is set to e(g,g)s̄.
Setup.

1) The simulator B runs the GlobalSetup algorithm, and
gives g to the adversary A.

2) A gives B an index set Dc ⊂ D as the corrupt AAs.
3) For each attribute x ∈ ∪d∈D\DcUd :

a) B randomly chooses values αx,βx ∈ Zp, queries
the group oracles for e(g,g)αx ,gβx , and gives these
to A.

b) B determines an integer hx to allow at most 2hx

users to possess x, and sets Tx = {1,2, . . . ,2hx+1−
1}. And for each vx ∈ Tx B randomly chooses γvx ∈
Zp, queries the group oracle for Rvx = gγvx , and
stores them.

c) B initializes the state STx = (x,hx,ctrx = 0,Listx =
/0).

Phase 1.

• Hash Function H: If A requests H(gid) from some
gid first time, B chooses a random value hgid ∈ Zp,
queries the group oracle for ghgid , and gives this value
to A as H(gid). B stores this value so that it can reply
consistently to any subsequent requests fro H(gid).

• Hash Functions {Hd}: If A requests Hφ(x)(x, t) from
some pair (x, t) first time, B chooses a random value
hx,t ∈ Zp, queries the group oracle for ghx,t , and gives
this value to A as Hφ(x)(x, t). B stores this value so that
it can reply consistently to any subsequent requests for
Hφ(x)(x, t).

• SKQ(gid,x): When A requests a secret key for some
pair (gid,x) where x ∈ ∪d∈D\DcUd , B adds (gid,ux,gid =

2hx + ctrx) to Listx, computes SKgid,x = {Kgid,x,vx =
gαx H(gid)βx Rvx}vx∈Path(ux,gid) using the group oracle and
stored {Rvx}, and sets ctrx = ctrx + 1. Then B gives
SKgid,x to A. If H(gid) has not been requested before,
it is determined as above.

• UKQ(t,x,RLx,t): When A requests a update key form
some valid tuple (x, t,RLx,t) where x ∈ ∪d∈D\DcUd and
(x, t,RLx,t) satisfies the restriction 1 in the definition
of security game, B computes the node set Nx,t ←
KUN(STx,RLx,t), and for each vx ∈ Nx,t , it chooses a
random exponent ξvx,t ∈ Zp. Then B computes UKx,t =
{(Evx = Rvx Hφ(x)(x, t)ξvx ,t ,E ′vx = gξvx ,t)}vx∈Nx,t using the
group oracle and stored {Rvx}, and gives UKx,t to A. If
Hφ(x)(x, t) has not been requested before, it is determined
as above.

Challenge Phase. A submits to B an LSSS matrix (A,ρ)
and a time slot te for the challenge ciphertext and addition-
ally supplies B with e(g,g)αx ,gβx values for any attribute x
controlled by corrupt authorities that appear in (A,ρ). B then
checks that these are valid group elements by query the group
oracles.
B chooses random vectors ~v = (s,v2, . . . ,vn),~u =

(0,u2, . . . ,un) ∈ Zn
p. For each i ∈ {1,2, . . . ,m}, B computes

λi = Ai ·~v,µi = Ai ·~u, and chooses a random ri ∈ Zp. Then
B chooses a random s̄ ∈ Zp and (using the group oracles)
computes the challenge cipherttext:

C = e(g,g)s̄, {Ci,1 = e(g,g)λie(g,g)αρ(i)ri , Ci,2 = gµigβρ(i)ri ,

Ci,3 = gri , Ci,4 = Hφ(ρ(i))(ρ(i), te)
ri}m

i=1.

The challenge ciphertext is given to A.
Phase 2. Same to Phase 1.
We will argue that will all but negligible probability, A’s

view in the above simulation is identically distributed to what
its view would have been if C had been set to e(g,g)s instead
of e(g,g)s̄. This shows that A cannot attain a non-negligible
advantage in the modified security game, and hence cannot
attain a non-negligible advantage in the real security game.

We condition the event that each of A’s queries to the
group oracles have input values that were given to A during
the simulation or were received from the oracles in response
to previous queries. This event occurs with high probability.
Since each ψ0,ψ1 is a random injective map from Zp into a
set of > p3 elements, the probability of A being able to guess
an element in the images of ψ0,ψ1 which it has not previously
obtained is negligible.

Under this condition, we can think of A’s queries
as a multi-variate polynomial in the variables

s̄,αx,βx,γvx ,ξvx,t ,λi,µi,ri,hgid ,hx,t , where x ranges over
the attributes controlled by uncorrupt authorities, vx ranges
over the nodes of binary tree corresponding to x where x
ranges over the attributes controlled by uncorrupt authorities,
i ranges over the rows of the challenge access matrix, gid
ranges over the allowed identities, and (x, t) ranges over the
allowed (attribute, timeslot) pairs. (We can also think of λi,µi
as linear combinations of the variables s,v2, . . . ,vn,u2, . . . ,un.)

We now further condition on the event that for each pair of
the queries A makes corresponding to different polynomials, A
receives different answers. In other words, we are conditioning
on the event that our random assignment of values to the
variables s̄,αx,βx,γvx ,ξvx,t ,λi,µi,ri,hgid ,hx,t does not happen
to be a zero of the difference of two query polynomials.
(Here, we are treating λi as a linear combination of variables
s,v2, . . . ,vm and µi as a linear combination of the variables
u2, . . . ,vn.) This event occurs with high probability, which we
can see by using the Schwartz-Zippel lemma and a union
bound, since our polynomials have degree at most 4 (which
we will see below when we enumerate all the types of queries
A can make).

Since s̄ only appears as e(g,g)s̄, the only queries A can
make involving s̄ are of the form ct + other terms, where c
is a constant. A’s view can only differ when s̄ = s if A can
make two queries f and f ′ into G1 where these are unequal as
polynomials but become the same when we substitute s for s̄.
This implies f − f ′ = cs− cs̄ from some constant c. We may
conclude that A can then make the query cs.

We will show that A cannot make a query of the form
cs, and therefore arrive at a contradiction. By examining the
values given to A doing the simulation, we see that A can
only form queries which are linear combinations of 1, s̄, and
the terms appearing in Table IV.

We note that A additionally knows the values of αx,βx for
attributes x which are controlled by corrupt authorities, so
these are known constants which can appear in coefficients
of the terms in Table IV in a linear combination.

We recall that λi = Ai~v where ~v = (s,v2, . . . ,vn). Since these
are the only appearances of s in the above table, in order
to form a query cs A must choose constants {wi} such that
∑i wiλi = cs and form :

∑
i

wi(λi +αρ(i)ri).

For any terms wiαρ(i)ri where ρ(i) is an attribute controlled
by a corrupt authority, A knows the value αρ(i), and so can
form the term −wiαρ(i)ri in order to cancel this from the above
polynomial. For terms wiαρ(i)ri where ρ(i) is an attribute
controlled by an uncorrupt authority, A must cancel this term
by using:

−wi · (αρ(i)+hgidβρ(i)+ γvρ(i))ri,

which leaves an additional term of −wi(hgidβρ(i)+ γvρ(i))ri to
be canceled. We also note that A only has access to a term
(αρ(i)+ hgidβρ(i)+ γvρ(i))ri if it requests a secret key for the
pair (gid,ρ(i)).

1) The term −wi · γvρ(i)ri can only be canceled by using

wi · (γvρ (i)+hρ(i),tξvρ(i),t)ri,

which incurs an addition term of wihρ(i),tξvρ(i),tri to be
canceled. A must cancel this term by using

−wi ·ξvρ(i),thρ(i),teri,

where it is required that t = te. Thus, We have that A

only can cancel −wi · γvρ(i)ri if it requests an update
key for (te,ρ(i),RLρ(i),te) under the condition that gid
possesses ρ(i) at te.

2) The term −wihgidβρ(i)ri can only be canceled by using

wi ·hgid(µi +βρ(i)ri),

which leaves behind the term wihgid µi.
The collection of these terms of for each gid will only cancel
if vector (1,0, . . . ,0) ∈ Zm

p is in the span of rows Ai of A
belonging to corrupt authorities or for which A obtained secure
keys for (gid,ρ(i)) and update keys for (te,ρ(i),RLρ(i),t) under
the condition that gid possesses ρ(i) at te. However, in the
security game A is restricted to make such queries.

Hence, we have shown that A can not construct a query
of the form cs for a constant c. Therefore, under conditions
that hold with all but negligible probability, A’s view when s̄
is random is the same as A’s view when s̄ = s. This proves
that A cannot attain non-negligible advantage in the security
game.

