
Privacy Preserving Revocable Predicate Encryption Revisited

Kwangsu Lee∗ Intae Kim† Seong Oun Hwang‡

Abstract

Predicate encryption (PE) that provides both the access control of ciphertexts and the privacy
of ciphertexts is a new paradigm of public-key encryption. An important application of predicate
encryption is a searchable encryption system in a cloud storage, where it enables a client to securely
outsource its data to an untrusted cloud server and to search over it even without revealing a key-
word itself. One practical issue of predicate encryption is to devise an efficient revocation method
to revoke a user when the secret key of the user is compromised. Privacy preserving revocable
predicate encryption (RPE) can provide not only revocation, but also the privacy of revoked users.
In this paper, we first define two new security models of privacy preserving RPE: the strongly full-
hiding security and the weakly full-hiding security. The strongly full-hiding security provides the
full privacy of ciphertexts against outside and inside adversaries, but the weakly full-hiding secu-
rity only provides the full privacy of ciphertexts against an outside adversary who cannot decrypt
the challenge ciphertext. Next, we propose two general RPE constructions from any inner product
encryption (IPE) schemes, and prove their security. This first RPE scheme provides the strongly
full-hiding security, but the size of ciphertexts is proportional to the number of users in the system.
The second RPE scheme improves the efficiency of the first RPE scheme such that the size of ci-
phertexts is sublinear and the decryption algorithm is efficient, but it provides the weakly full-hiding
security.

Keywords: Public-key encryption, Predicate encryption, Revocation, Privacy, Adaptive security.

1 Introduction

Predicate encryption (PE) is a special type of functional encryption and the concept of PE was pro-
posed by Boneh and Waters [11, 16]. Public-key encryption (PKE) is suitable for traditional one-to-one
communication environments since only the receiver who was specified by a sender can decrypt the
ciphertext of the sender. Functional encryption, by contrast, can be used for more complex communi-
cation environments of today since any user who has a privileged secret key for specific ciphertexts can
decrypt the ciphertexts [9, 14, 25, 15, 6, 11, 10]. In functional encryption, a ciphertext is associated with
an attribute x and a secret key is associated with a function f , and a user who has a secret key associated
with f can decrypt a ciphertext associated with x if f (x) = 1. Whereas functional encryption provides
the message hiding property, PE provides not only the message hiding property but also the attribute
hiding property.

One important application of PE is the searches on encrypted data in outsourced storages. For
example, the outsourced storage of a hospital can store the ciphertext of patient’s health information by
∗Columbia University, NY, USA
†Hongik University, Korea
‡Hongik University, Korea

1

attaching a keyword x to the ciphertext. A researcher can request a secret key for his research area f to
the authorized center and receives the secret key associated with f . After that, the researcher can access
to a limited set of ciphertexts in the outsourced storage if f (x) = 1. In this case, the researcher cannot
access to other ciphertexts such that f (x) 6= 1. Therefore, PE not only protects the privacy of patients,
but also enables researchers to use the health information of patients.

The large obstacle of using the PE schemes in real applications is to provide an efficient revocation
method that can revoke a user whose secret key was compromised. For example, if the secret key of a
researcher in the outsourced storage of the hospital is leaked, then the secret key of the researcher should
be revoked to prevent an adversary from using the secret key to access the information of patients. Thus
revocation is a very important mechanism to preserve the whole security of the system. In PKE, an
efficient revocation method was easily achieved by using the certificate revocation list (CRL) since a
sender can check the validity of a receiver’s certificate before he sends a ciphertext. However, it is not
easy to apply the revocation method of PKE to PE since there is no user’s certificate in PE. In identity-
based encryption (IBE), Boneh and Franklin proposed a revocation method such that the private-key
generator (PKG) issues the secret key of a user for an identity that includes an original identity and time
information [9]. However, this method does not provide an efficient revocation method in PE since the
attribute of PE consists of many identities and the revocation of one attribute affects many users that
have the same attributes. Another revocation method is for the authorized center to publish secret key
update information regularly [7]. Though this approach can solve the previous problems, it requires
unrevoked users to update their secret keys regularly.

To revoke a user without updating the user’s secret key, we may consider the sender-local revocation
method, where the authorized center publishes a revoked list and a sender constructs a ciphertext such
that only the non-revoked users can decrypt this. Nieto et al. proposed revokable predicate encryption
(RPE) schemes by adapting this method [20]. The first scheme of Nieto et al. supports both the attribute
hiding property and the message hiding property, but the second scheme of theirs additionally supports
the privacy of revoked users. The privacy preserving RPE scheme of Nieto et al. is appealing since it
hides all information in the ciphertext. However, their RPE scheme that provides the privacy of revoked
users is only secure in a restricted security model, and it can only be constructed from a specific IPE
scheme. Therefore, very natural, but interesting questions arise: Can we build a RPE scheme that
provides the stronger privacy of revoked users? Can we construct a RPE scheme from any PE scheme?
Can we improve the efficiency of the previous RPE scheme? In this paper, we address these problems
and answer them in positive directions.

1.1 Our Contributions

We first introduce two new security models of the privacy preserving RPE schemes. In the security
models, we divide adversaries into two types: an outside adversary who can not decrypt the challenge
ciphertext and an inside adversary who can decrypt it. The first security model, called strongly full-
hiding, is the best achievable security model for the privacy preserving RPE schemes. It provides
adaptive security against outside and inside adversaries. The second security model, called weakly full-
hiding, provides adaptive security against an outside adversary, but it does not provide the privacy of
revoked users against an inside adversary.

Next we propose two privacy preserving RPE schemes that provide strongly full-hiding and weakly
full-hiding respectively. The first scheme is a general REP construction from any IPE scheme, and it is
secure in the strongly full-hiding model. This scheme provides stronger security, but it is not efficient
since the number of ciphertext components is proportional to the number of users in the system. The

2

second scheme is an efficient general RPE construction from any IPE scheme, but it is secure in the
weakly full-hiding model. The number of ciphertext components in the second scheme is r log(N/r)
and the decryption algorithm requires r log2(N) decryption operations of the IPE scheme where r is the
number of revoked users and N is the number of users in the system. Additionally, we can improve
the efficiency of the decryption algorithm of the second scheme by using an anonymous hint system
[5, 18]. Furthermore, we can build a RPE scheme whose security and efficiency are inherited from the
underlying IPE scheme since our construction uses an IPE scheme in a black-box way. For instance,
if we build our RPE scheme using the IPE scheme with constant size secret keys of Okamoto and
Takashima [22], then the decryption algorithm of our RPE scheme just requires constant number of
pairing operations.

1.2 Related Work

Functional Encryption. Functional encryption (FE) is a new paradigm of public-key encryption
(PKE) and includes identity-based encryption (IBE), hierarchical IBE (HIBE), attribute-based encryp-
tion (ABE), and predicate encryption (PE) [9, 14, 25, 15, 11, 16, 10]. In FE, a ciphertext is associated
with an attribute x and a secret key is associated with a function f . A user who has a private key for f
can decrypt a ciphertext for x if f (x) = 1. PE is a special type of FE and it additionally provides the
privacy of the attribute in ciphertexts [11]. PE includes anonymous IBE (AIBE) that supports equality
queries [8, 1], hidden vector encryption (HVE) that supports conjunctive queries [11, 26, 17], and inner
product encryption (IPE) that supports evaluations of polynomials [16, 3, 21, 23, 22].

Revocation in FE. A simple revocation method for IBE was proposed by Boneh and Franklin [9]. Their
revocation method is for the private-key generator (PKG) of IBE to issue a user’s secret key by attaching
the current date to the identity of a user. If a user is revoked, then the PKG stops issuing the secret key
of the user for a next date. However, this method has the problem of scalability since the PKG should
be online and all users are required to update their secret keys regularly. Additionally, this method is
not applicable to ABE and PE since the private key of ABE or PE is associated with multiple attributes
and the revocation of one attribute affects many users who have the same attribute.

To solve the scalability problem of previous approach, Boldyreva et al. proposed another revocation
method such that the PKG publicly broadcasts key update information to non-revoked users [7]. In this
method, each user at first obtains an initial secret key from the PKG, and a sender constructs a ciphertext
by encrypting a message with time information. After that, the PKG regularly broadcasts key update
information that contains the updated secret keys of non-revoked users. If a user is not revoked, then he
can decrypt the ciphertext after updating his secret key by using the key update information. If a user is
revoked, then he cannot update his private key. This method can be applicable not only to IBE, but also
to ABE and PE. Recently, Sahai et al. proposed an ABE scheme with revocable storage by extending
this method [24]. One disadvantage of this method is that non-revoked users should update theirs secret
keys periodically.

We may consider the sender-local revocation method to revoke users without affecting the secret
keys of non-revoked users. In this method, the authorized center first posts a revocation list, and then
a sender constructs a ciphertext by directly including revocation information. Attrapadung and Imai
proposed a broadcast ABE scheme to support revocation in ABE [4]. Recently, Nieto et al. proposed
revocable PE schemes to support revocation in PE [20].

Anonymous BE. Privacy preserving RPE is related with anonymous broadcast encryption since broad-
cast encryption can provide the revocation of users. Barth et al. proposed a private broadcast encryption

3

scheme that has linear size ciphertexts and an efficient decryption algorithm, and proved its security
under random oracle model [5]. Libert et al. proposed anonymous broadcast encryption schemes by im-
proving the scheme of Barth et al. and proved their security without random oracles [18]. To improve the
efficiency of anonymous broadcast encryption, Fazio and Perera proposed an outside-anonymous broad-
cast encryption scheme with sublinear size ciphertexts by weakening the security model of anonymity
[13].

2 Preliminaries

In this section, we first define the predicate encryption and its security model. Next, we introduce the
subset cover framework.

2.1 Predicate Encryption

Predicate encryption, introduced by Boneh and Waters [11], is a special type of public-key encryption
where a ciphertext is associated with an attribute x and a secret key is associated with a predicate f . In
predicate encryption, a user with a secret key for a predicate f can decrypt a ciphertext for an attribute
x if f (x) = 1 and the attribute information in the ciphertext is not revealed to an adversary except the bit
information of f (x) = 1.

Definition 2.1 (Predicate Encryption). A predicate encryption (PE) scheme for the classF of predicates
over the set Σ of attributes consists of four PPT algorithms Setup, GenKey, Encrypt, and Decrypt, which
are defined as follows:

Setup(1λ). The setup algorithm takes as input a security parameter 1λ and outputs a public key PK
and a master secret key MK.

GenKey(f ,MK). The key generation algorithm takes as input a predicate f ∈F and the master secret
key MK, and outputs a secret key SK f .

Encrypt(x,M,PK). The encryption algorithm takes as input an attribute x ∈ Σ, a message M ∈M,
and the public key PK, and outputs a ciphertext CT .

Decrypt(CT,SK f). The decryption algorithm takes as input a ciphertext CT and a secret key SK f , and
outputs a message M or the distinguished symbol ⊥.

The correctness property of PE is defined as follows: For all PK,MK generated by Setup, all f ∈ F ,
any SK f generated by GenKey, all x ∈ Σ, and any M ∈M, it is required that

• If f (x) = 1, then Decrypt(Encrypt(x,M,PK),SK f) = M.

• If f (x) = 0, then Decrypt(Encrypt(x,M,PK),SK f) =⊥ with all but negligible probability.

The second condition of the correctness property in PE is not a trivial one to satisfy since the de-
cryption algorithm of PE cannot easily check whether f (x) = 0 or not. That is, the decryption algorithm
cannot obtain x from a ciphertext because of anonymity. One possible relaxation is to use a compu-
tational condition instead of a statistical condition. For a computational condition, we can use weak
robustness of Abdalla et al. [2].

4

Predicate encryption provides not only the message hiding property (indistinguishability), but also
the attribute hiding property (anonymity). The security model of predicate encryption was proposed by
Boneh and Waters [11]. The security property of PE is defined as follows:

Definition 2.2 (Attribute-Hiding). The security notion of attribute-hiding under a chosen plaintext at-
tack is defined in terms of the following experiment between a challenger C and a PPT adversary A:

1. Setup: C runs Setup to generate a public key PK and a master secret key MK, and it gives PK to
A.

2. Phase I:Amay adaptively request a polynomial number of secret keys for any predicates f1, . . . , fq′ ∈
F , and C gives the corresponding secret keys SK f1 , . . . ,SK fq1

to A by running GenKey(fi,MK).

3. Challenge: A outputs challenge attributes x0,x1 ∈Σ and challenge messages M0,M1 ∈M subject
to the following restrictions:

• For all predicate fi of secret key queries, it is required that fi(x0) = fi(x1).

• If there is fi in secret key queries such that fi(x0) = fi(x1) = 1, then it is required that
M0 = M1.

C chooses a random bit b and gives the ciphertext CT to A by running Encrypt(xb,Mb,PK).

4. Phase II: A may continue to request secret keys for additional predicates fq′+1, . . . , fq subject to
the same restrictions as before, and C gives the corresponding secrets keys to A.

5. Output: Finally A outputs a bit b′.

The advantage of A is defined as AdvPE,AH
A (λ) = |Pr[b = b′]−1/2| where the probability is taken over

all the randomness of the experiment. A PE scheme is (adaptively) attribute-hiding under a chosen
plaintext attack if for all PPT adversaries A, the advantage of A in the above experiment is negligible
in the security parameter λ .

Inner product encryption (IPE) is a special type of predicate encryption and was introduced by Katz
et al. [16]. In IPE, an attribute in a ciphertext is a vector ~x and a predicate in a secret key is a vector
~y. The evaluation of a predicate and an attribute is the inner product operation of two vectors ~x and ~y.
That is, if 〈~x,~y〉 = 0, then a user who has a secret key with ~y can decrypt the ciphertext with a vector
~x. By using IPE, it is possible to construct a predicate encryption scheme that supports an equality
query, conjunctive queries, disjunctive queries, polynomial evaluations, CNF, and DNF formulas [16].
Recently, Okamoto and Takashima proposed an IPE scheme with constant size secret key and proved its
security in the adaptively attribute-hiding model under a standard assumption [22]. The IPE scheme of
Okamoto and Takashima does not satisfy the second condition of the correctness property. We can use
the technique of Boneh and Waters [11], or the transformation of Abdalla et al. [2] for weak robustness.

2.2 Subset Cover Framework

The subset cover framework was introduced by Naor et al., and it is a general method to construct an
efficient revocation system [19]. In this framework, a collection C of subsets of universe U = {1, . . . ,N}
is defined where the users of the system are represented as the member of U . Each subset S j ∈ C is
assigned a unique long-lived key, and a user is also assigned the long-lived key if the user belongs to

5

the subset S j. To encrypt a message, the authorized center first calculates a cover CV that consists of
disjoint subset from the collection C that covers the set U \R of receivers where R is the set of revoked
users, and it encrypts the message using the long-lived keys in CV . If a user is not revoked, then he
can decrypt the ciphertext using the long-lived keys assigned to him since there exists one subset in the
cover CV where he belongs to. Naor et al. proposed two subset cover methods namely, the Complete
Subtree (CS) method and the Subset Difference (SD) method. In this paper, we are interested in the CS
method.

Definition 2.3 (Complete Subtree). A complete subtree method for the universe U = {1, . . . ,N} of users
consists of four PPT algorithms InitTree, GetPathValue, FindCover, and MatchCover, which are de-
fined as follows:

InitTree(N). The tree initialization algorithm takes as input the number N of users and outputs a full
binary tree TN such that a unique value is assigned to each node of the tree.

GetPathValue(TN ,u). The path value getting algorithm takes as input the full binary tree TN and a
user index u ∈ U , and outputs a path value PVu = {(T0,V0), . . . ,(Td ,Vd)} that consists of subtrees
and values from the root node to the leaf node of u.

FindCover(TN ,R). The cover finding algorithm takes as input the full binary tree TN and a set R of
revoked users, and outputs a cover CVR = {(T1,V1), . . . ,(Tl,Vl)} that covers the leaf nodes of
non-revoked users U \R where Vi is a value assigned to the root node of the subtree Ti.

MatchCover(CVR,PVu). The cover matching algorithm takes as input a cover CVR and a path value
PVu of a user index u, and outputs a matching indexes (j,k) such that (Tj,−) ∈ PVu is equal to
(Tk,−) ∈CVR or outputs ⊥.

The correctness property of CS is defined as follows: For all TN generated by InitTree, all PVu generated
by GetPathValue, and any R, it is required that:

• If u /∈ R, then MatchCover(FindCover(TN ,R),PVu) = (j,k).

• If u ∈ R, then MatchCover(FindCover(TN ,R),PVu) =⊥.

Naor et al. combined their CS method with a symmetric-key encryption scheme to construct a
symmetric-key revocation scheme where the authorized center only can encrypt a message [19]. Dodis
and Fazio extended the CS method of Naor et al. to the public-key setting, and they combined the ex-
tended CS method with an identity-based encryption (IBE) scheme to construct a public-key revocation
scheme [12]. The main idea of Dodis and Fazio is to assign a unique identifier to the subset instead of
a long-lived key, and to use the identifier as the identity of IBE. The extended CS method of Dodis and
Fazio, namely, the public-key CS (PKCS) method, is described as follows:

PKCS.InitTree(N). This algorithm takes as input the number N of users. Let N = 2d for simplicity.
It first sets a full binary tree TN of depth d. It assigns a special identifier ∗ to the root node. For
the child nodes of the root node, it assigns 0 to the left child node and assigns 1 to the right child
node. For each internal node with an identifier ID, it assigns ID||0 to the left child node and
assigns ID||1 to the right child node. It outputs the full binary tree TN that has identifiers.

6

PKCS.GetPathValue(TN ,u). This algorithm takes as input the full binary tree TN and a user index u.
Let IDd be the binary representation of u− 1. There exists a leaf node xu that has an identifier
IDd . It constructs a path value PVu = {(T0, ID0), . . . ,(Td , IDd)} that consists of identifiers in the
path from the root node to the leaf node xu. It outputs a path value PVu.

PKCS.FindCover(TN ,R). This algorithm takes as input the full binary tree TN and a set R of revoked
users. It outputs a cover CVR = {(T1, ID1), . . . ,(Tl, IDl)} where {Ti} is a disjoint set of subtrees
that covers U \R and IDi is the identifier of the root node of Ti.

PKCS.MatchCover(CVR,PVu). This algorithm takes input as a cover CVR = {(T1,V1), . . . ,(Tl,Vl)} and
a path value PVu = {(T0,V0), . . . ,(Td ,Vd)}. For 0 ≤ j ≤ d and 1 ≤ k ≤ l, it finds indexes j and k
such that (Tj,−) ∈ PVu is equal to (Tk,−) ∈ CVR. If it found the indexes, then it outputs (j,k).
Otherwise, it outputs ⊥.

3 Revocable Predicate Encryption

In this section, we define privacy preserving revocable predicate encryption and introduce its new secu-
rity models.

3.1 Definition

Revocable predicate encryption (RPE), introduced by Nieto et al., is a variation of PE that has an addi-
tional functionality such that a sender can specify the set of revoked users in ciphertexts [20]. In RPE,
a user obtains a secret key that is associated with a predicate f and an index u from the PKG. The PKG
posts a revocation list that contains the list of revoked user’s indexes. After that, a sender constructs a
ciphertext for an attribute x and a set R of revoked users. If a receiver has a secret key associated with a
predicate f and an index u such that (f (x) = 1)∧ (u /∈ R), then he can decrypt the ciphertext associated
with an attribute x and a set R.

Definition 3.1 (Revocable Predicate Encryption). A revocable predicate encryption (RPE) scheme for
the class F of predicates over a set Σ of attributes and the universe U = {1, . . . ,N} of users consists of
four PPT algorithms Setup, GenKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ,N). The setup algorithm takes as input a security parameter 1λ and the number N of users
in the system, and then it outputs a public key PK and a master secret key MK.

GenKey(f ,u,MK). The key generation algorithm takes as input a predicate f ∈F , a user index u∈U ,
and the master secret key MK, and then it outputs a secret key SK f ,u.

Encrypt(x,R,M,PK). The encryption algorithm takes as input an attribute x ∈ Σ, a set R ⊆ U of
revoked users, a message M ∈M, and the public key PK, and then it outputs a ciphertext CT .

Decrypt(CT,SK f ,u). The decryption algorithm takes as input a ciphertext CT and a secret key SK f ,u,
and outputs a message M or the distinguished symbol ⊥.

The correctness property of RPE is defined as follows: For all PK,MK generated by Setup, all f ∈ F ,
all u ∈ U , any SK f ,u generated by GenKey, all x ∈ Σ, any R⊆ U , and any M ∈M, it is required that:

• If (f (x) = 1)∧ (u /∈ R), then Decrypt(Encrypt(x,R,M,PK),SK f ,u) = M.

7

• If (f (x) = 0)∨ (u ∈ R), then Decrypt(Encrypt(x,R,M,PK),SK f ,u) =⊥ with all but negligible
probability.

We can use weak robustness of Abdalla et al. [2] for the second condition of the correctness property.

3.2 Security Model

The security model of RPE was introduced by Nieto et al. [20]. They introduced two security models:
the attribute-hiding (AH) security that does not provide the privacy of the set R of revoked users, and
the full-hiding (FH) security that provides the privacy of the set R of revoked users. In this paper, we
only consider the security model that provides the privacy of the set R. The full-hiding (FH) security
of Nieto et al. is a restricted security model that limits the capability of an adversary. In this paper, we
introduce the ideal security model of RPE, namely, the strongly full-hiding security, that does not limit
the capability of the adversary.

The strongly full-hiding security provides the attribute hiding property, the revocation set hiding
property, and the message hiding property against not only an outside adversary who cannot decrypt
the challenge ciphertext, but also an inside adversary who can decrypt the challenge ciphertext. In this
security model, an adversary may adaptively obtain a secret key associated with a predicate f and an
index u. After that, the adversary outputs the challenge attributes x0,x1, the challenge revocation sets
R0,R1, and the challenge messages M0,M1 with restrictions such that the adversary cannot request a
secret key that trivially can distinguish the challenge ciphertext. That is, if an adversary requested a
secret key for a predicate f and an index u that can decrypt the challenge ciphertext such that (f (x0) =
1)∧ (u /∈ R0)) = (f (x1) = 1)∧ (u /∈ R1)) = 1, then the adversary should output the challenge messages
M0,M1 such that M0 = M1.

Definition 3.2 (Strongly Full-Hiding). The security notion of strongly full-hiding under a chosen plain-
text attack is defined in terms of the following experiment between a challenger C and a PPT adversary
A:

1. Setup: C runs Setup to generate a public key PK and a master secret key MK, and it gives PK to
A.

2. Phase I: A may adaptively request a polynomial number of secret keys for any predicate f ∈ F
with a user index u ∈ U , and then C gives the corresponding secret key SK f ,u to A by running
GenKey(f ,u,MK).

3. Challenge: A outputs challenge attributes x0,x1 ∈ Σ, challenge sets R0,R1 ⊆ U of revoked users
of equal length, and challenge messages M0,M1 ∈M subject to the following restrictions:

• For all predicate fi with a user index ui of secret key queries, it is required that ((fi(x0) =
1)∧ (ui /∈ R0)) = ((fi(x1) = 1)∧ (ui /∈ R1)).

• If there is fi with ui in secret key queries such that ((fi(x0) = 1)∧ (ui /∈ R0)) = ((fi(x1) =
1)∧ (ui /∈ R1)) = 1, then it is required that M0 = M1.

C chooses a random bit b and gives the ciphertext CT to A by running Encrypt(xb,Rb,Mb,PK).

4. Phase II: A may continue to request secret keys for additional predicates with user indexes sub-
ject to the same restrictions as before, and C gives the corresponding secrets keys to A.

8

5. Output: Finally A outputs a bit b′.

The advantage ofA is defined as AdvRPE,sFH
A (λ) = |Pr[b = b′]−1/2| where the probability is taken over

all the randomness of the experiment. A RPE scheme is strongly full-hiding under a chosen plaintext
attack if for all PPT adversaries A, the advantage of A in the above experiment is negligible in the
security parameter λ .

Even though the strongly full-hiding security provides the full privacy of the set of revoked users, it
is not easy to devise an efficient RPE scheme that satisfies this strong security. Thus we propose another
security model, namely the weakly full-hiding security, by weakening the strongly full-hiding security.
The weakly full-hiding security provides the same security level against an outside adversary. However,
this security does not provide the privacy of the set of revoked users against an inside adversary. There-
fore, it is required that the inside adversary outputs the challenge sets R0,R1 and the challenge message
M0,M1 such that R0 = R1 and M0 = M1 in this weaker security model.

Definition 3.3 (Weakly Full-Hiding). The security notion of weakly full-hiding under a chosen plaintext
attack is defined in terms of the following experiment between a challenger C and a PPT adversary
A: The experiment is almost the same as the experiment of strongly full-hiding notion except that the
restrictions in the challenge step are replaced as follows:

• For all predicate fi with a user index ui of secret key queries, it is required that ((fi(x0)= 1)∧(ui /∈
R0)) = ((fi(x1) = 1)∧ (ui /∈ R1)).

• If there is fi with ui in secret key queries such that ((fi(x0) = 1)∧(ui /∈R0)) = ((fi(x1) = 1)∧(ui /∈
R1)) = 1, then it is required that R0 = R1 and M0 = M1.

The advantage ofA is defined as AdvRPE,wFH
A (λ) = Pr[b = b′]−1/2 where the probability is taken over

all the randomness of the experiment. A RPE scheme is weakly full-hiding under a chosen plaintext
attack if for all PPT adversaries A, the advantage of A in the above experiment is negligible in the
security parameter λ .

Remark 3.4. The full-hiding (FH) security of Nieto et al. [20] is weaker than the weakly full-hiding
security of this paper since they didn’t consider the security against an inside adversary.

4 Strongly Full-Hiding RPE Construction

In this section, we propose a general RPE construction by using any IPE scheme, and prove that it is
secure in the strongly full-hiding security model if the underlying IPE scheme is secure in the adaptively
attribute-hiding security model.

The main idea of our general RPE construction is to build a PE scheme that supports a predicate for
RPE by using the expressiveness of IPE. That is, we can build a PE scheme that support the predicate
f~y,u such that f~y,u(~x,R) = (〈~x,~y〉 = 0)∧ (u /∈ R) where a secret key is associated with a vector~y and an
index u, and a ciphertext is associated with a vector ~x and a set R of revoked users. In this case, the
security of IPE is easily reduced to the security of RPE.

9

4.1 Construction

Suppose that the vector of an IPE scheme is defined over elements in Zp. We first construct a PE scheme
for the class of predicates F = { f~y,u |~y = (y1, . . . ,yn) ∈ Zn

p,u ∈ Zp} corresponding to a conjunction of
an inner product query and a membership query where

f~y,u(~x,S) =
{

1 if (〈~x,~y〉= 0 mod p)∧ (u ∈ S),
0 otherwise.

The PE scheme is described as follows:

PE.Setup(1λ ,N): This algorithm first obtains PK′ and MK′ by running IPE.Setup(1λ). It outputs a
public key PK = (PK′,N) and a master secret key MK = MK′.

PE.GenKey(f~y,u,MK): This algorithm takes as input a predicate f~y,u = (~y,u) where ~y = (y1, . . . ,yn)
and u ∈ U , and the master secret key MK = MK′. It first builds a new vector ~w = (y1, . . . ,yn,uN

mod p,uN−1 mod p, . . . ,u0 mod p). It outputs a secret key SK f~y,u by running IPE.GenKey(~w,MK′).

PE.Encrypt(x,M,PK): This algorithm takes as input an attribute x = (~x,S) where~x = (x1, . . . ,xn) and a
receiver set S⊆U , a message M, and the public key PK = (PK′,N). It first parses S = {v1, . . . ,vl}.
If l < N, then it sets a new set S′ = {v1, . . . ,vl,dvl+1, . . . ,dvN} where dvi is a dummy index such
that dvi /∈ U . Next, it constructs a polynomial h(u) of degree N such that h(u) = ∏

l
i=1(u−

vi)∏
N
i=l+1(u−dvi) = cNuN + cN−1uN−1 + . . . ,+c1u+ c0. It selects a random s ∈ Z∗p and builds a

new vector~v=(x1, . . . ,xn,scN mod p,scN−1 mod p, . . . ,sc0 mod p) where {ci} are coefficients
of h(x) and outputs a ciphertext CT by running IPE.Encrypt(~v,M,PK′).

PE.Decrypt(CT,SK f~y,u): This algorithm takes as input a ciphertext CT and a secret key SK f~y,u , and
outputs a message M by running IPE.Decrypt(CT,SK f~y,u).

We now construct a RPE scheme using the above PE scheme that supports the class of predicates
corresponds to conjunctions of a predicate query and a membership query. Our RPE scheme is described
as follows:

RPE.Setup(1λ ,N): This algorithm first runs PE.Setup(1λ) to generate PK′ and MK′. It outputs a
public key as PK = (PK′,N) and a master secret key MK = MK′.

RPE.GenKey(~y,u,MK): This algorithm takes as input a vector~y, a user index u, and the master secret
key MK =MK′. It first sets a new predicate f~y,u = (~y,u) such that f~y,u(~x,S) = (〈~x,~y〉= 0)∧(u∈ S)
and outputs a secret key SK~y,u by running PE.GenKey(f~y,u,MK′).

RPE.Encrypt(~x,R,M,PK): This algorithm takes as input a vector vecx, a set R of revoked users, a
message M, and the public key PK = (PK′,N). It first sets a new attribute x = (~x,S) where
S = U \R, and outputs a ciphertext CT by running PE.Encrypt(x,M,PK′).

RPE.Decrypt(CT,SK~y,u): This algorithm takes as input a ciphertext CT and a secret key SK~y,u, and
outputs a message M by running PE.Decrypt(CT,SK~y,u).

10

4.2 Correctness

The correctness property of the PE scheme easily follows if we can show that f~y,u(~x,S) = ((〈~x,~y〉 = 0
mod p)∧ (u ∈ S)) = 1 if and only if 〈~v,~w〉 = 〈~x,~y〉+ s · h(u) = 0 mod p where ~v,~w are vectors and
h(u) = ∏

l
i=1(u− vi)∏

N
i=l+1(u−dvi) of the IPE scheme. If f~y,u(~x,v) = 1, then 〈~v,~w〉 = 0 mod p since

〈~x,~y〉 = 0 mod p and ∃vk such that u = vk. If 〈~v,~w〉 = 0 mod p, then we consider two cases such as
〈~x,~y〉 = 0 mod p or 〈~x,~y〉 6= 0 mod p. In case of 〈~v,~w〉 = 0 mod p and 〈~x,~y〉 = 0 mod p, we have
f~y,u(~x,v) = 1 since ∃vk such that u− vk = 0. In case of 〈~v,~w〉 = 0 mod p and 〈~x,~y〉 6= 0 mod p, the
probability of f~y,u(~x,v) = 1 is negligible since s is randomly chosen.

The correctness property of the RPE scheme easily follows since the RPE scheme is a PE scheme
that supports the predicate f~y,u such that f~y,u(~x,S) = (〈~x,~y〉= 0)∧ (u ∈ S).

4.3 Security Analysis

Theorem 4.1. The above RPE scheme is strongly full-hiding under a chosen plaintext attack if the IPE
scheme is adaptively attribute-hiding under a chosen plaintext attack. That is, for any PPT adversaryA
for the above RPE scheme, there exists a PPT algorithmB for the PE scheme such that AdvRPE,sFH

A (λ)≤
AdvIPE,AH

B (λ).

Proof. We first show that the PE scheme is adaptively attribute-hiding if the IPE scheme is adaptively
attribute-hiding. The security property of the PE scheme easily follows if we can show that f~y,u(~x,S) =
((〈~x,~y〉 = 0 mod p)∧ (u ∈ S)) = 1 if and only if 〈~v,~w〉 = 〈~x,~y〉+ s · h(u) = 0 mod p where ~v,~w are
vectors and h(u) = ∏

l
i=1(u− vi)∏

N
i=l+1(u−dvi) of the IPE scheme. This was shown in the correctness

property.
Next we show that the RPE scheme is strongly full-hiding if the PE scheme is adaptively attribute-

hiding. The security of the RPE scheme easily follows since the RPE scheme is a PE scheme that
supports the predicate f~y,u such that f~y,u(~x,S) = (〈~x,~y〉= 0)∧ (u ∈ S). This completes our proof.

4.4 Discussions

Efficiency. Let N be the number of users and n be the size of vectors for inner product operations in
the RPE scheme. In this case, the underlying IPE scheme of the RPE scheme should support vectors
of size n+N for inner product operations. The size of secret keys, the size of ciphertexts, and the
decryption operations of the RPE scheme is the same as the size of secret keys, the size of ciphertexts,
and the decryption operations of the IPE scheme respectively. For instance, if we use the IPE scheme
with constant-size secret keys of Okamoto and Takashima [22], then the public key consists of O(n+N)
group elements, the secret key consists of 11 group elements, the ciphertext consists of 5(n+N)+ 1
group elements, and the decryption algorithm requires (n+N) exponentiations and 11 pairing opera-
tions.

5 Weakly Full-Hiding RPE Construction

In this section, we propose an efficient general RPE construction by using any IPE scheme, and prove
that it is secure in the weakly full-hiding security model if the underlying IPE scheme is secure in the
adaptively attribute-hiding security model.

The main idea of our efficient general RPE construction is to combine an IPE scheme with the
public-key CS (PKCS) method. To provide the privacy of revoked users, we hide the identifier of PKCS

11

by using the attribute hiding property of IPE. Additionally, we use a dummy identifier to hide the size of
covering subsets of PKCS since two covering subsets of PKCS have different sizes even if the number of
revoked users is the same. Though this construction provide the weakly full-hiding security, it does not
provide the strongly full-hiding security since an inside adversary can easily obtain partial information
of the revoked set through the decryption process.

5.1 Construction

Suppose that the vector of an IPE scheme is defined over elements in Zp. We first construct a PE scheme
for the class of predicates F = { f~y,u | ~y = (y1, . . . ,yn) ∈ Zn

p,u ∈ Zp} corresponding to conjunctions of
an inner product query and an equality query where

f~y,u(~x,v) =
{

1 if (〈~x,~y〉= 0 mod p)∧ (u = v),
0 otherwise.

The PE scheme is described as follows:

PE.Setup(1λ): This algorithm first obtains PK′ and MK′ by running IPE.Setup(1λ). It outputs a public
key PK = PK′ and a master secret key MK = MK′.

PE.GenKey(f~y,u,MK): This algorithm takes as input a predicate f~y,u = (~y,u) where~y= (y1, . . . ,yn) and
a value u, and the master secret key MK = MK′. It first builds a new vector ~w = (y1, . . . ,yn,u,1).
It outputs a secret key SK f~y,u by running IPE.GenKey(~w,MK′).

PE.Encrypt(x,M,PK): This algorithm takes as input an attribute x = (~x,v) where ~x = (x1, . . . ,xn)
and v is a value, a message M, and the public key PK = PK′. It chooses a random s ∈ Z∗p
and builds a new vector ~v = (x1, . . . ,xn,s,−sv mod p) and outputs a ciphertext CT by running
IPE.Encrypt(~v,M,PK′).

PE.Decrypt(CT,SK f~y,u): This algorithm takes as input a ciphertext CT and a secret key SK f~y,u , and
outputs a message M by running IPE.Decrypt(CT,SK f~y,u).

We now construct a RPE scheme using the above PE scheme that supports the class of predicates
corresponds to conjunctions of an inner product query and an equality query. Let N = 2d be the number
of users in the system, R be the set of revoked users where |R| = r, and L be a constant such that
L = dr log(N/r)e. We set TN as the full binary tree that is defined by PKCS.InitTree(N). Our RPE
scheme is described as follows:

RPE.Setup(1λ ,N): This algorithm first runs PE.Setup(1λ) to generate PK′ and MK′. It outputs a
public key as PK = (PK′,N) and a master secret key MK = MK′.

RPE.GenKey(~y,u,MK): This algorithm takes as input a vector~y, a user index u, and the master secret
key MK = MK′. It proceeds as follows:

1. It obtains a path value PVu = {(T0, ID0), . . . ,(Td , IDd)} by running PKCS.GetPathValue(TN ,u).

2. For 0≤ j≤ d, it sets a new predicate f~y,ID j = (~y, ID j) and computes a subkey K j by running
PE.GenKey(f~y,ID j ,MK′) where f~y,ID j(~x, ID) = (〈~x,~y〉= 0)∧ (ID j = ID).

3. It outputs a secret key as SK~y,u =
(
K0, . . . ,Kd

)
.

12

RPE.Encrypt(~x,R,M,PK): This algorithm takes as input a vector~x, a set R of revoked users, a message
M, and the public key PK = (PK′,N). Let dummy be a dummy identifier and m̃ be a random
message. It proceeds as follows:

1. It obtains a cover CVR = {(T1, ID1), . . . ,(Tl, IDl)} by running PKCS.FindCover(TN ,R).
Note that l ≤ r log(N/r)≤ L by the claim of Naor et al. in [19].

2. For 1≤ j ≤ l, it computes C j by running PE.Encrypt((~x, ID j),M,PK′).

3. For l +1≤ j ≤ L, it computes C j by running PE.Encrypt((~x,dummy), m̃,PK′).

4. It outputs a ciphertext as CT =
(
Cπ(1), . . . ,Cπ(L)

)
where π is a random permutation over

{1, . . . ,L}.

RPE.Decrypt(CT,SK~y,u): This algorithm takes as input a ciphertext CT = (C1, . . . ,CL) and a secret key
SK~y,u = (K0, . . . ,Kd). It proceeds as follows:

1. For 0≤ j ≤ d and 1≤ k ≤ L, it computes M by running PE.Decrypt(Ck,K j) and returns M
if M 6=⊥.

2. If it fails to obtain M 6=⊥ during the above iteration, then it outputs ⊥.

5.2 Correctness

The correctness property of the PE scheme easily follows if we can show that f~y,u(~x,v) = ((〈~x,~y〉 = 0
mod p)∧ (u = v)) = 1 if and only if 〈~v,~w〉= 〈~x,~y〉+ s · (u−v) = 0 mod p where~v,~w are vectors of the
IPE scheme. If f~y,u(~x,v) = 1, then 〈~v,~w〉 = 0 mod p since 〈~x,~y〉 = 0 mod p and u = v. If 〈~v,~w〉 = 0
mod p, then we consider two cases such as 〈~x,~y〉= 0 mod p or 〈~x,~y〉 6= 0 mod p. In case of 〈~v,~w〉= 0
mod p and 〈~x,~y〉 = 0 mod p, we have f~y,u(~x,v) = 1 since u− v = 0. In case of 〈~v,~w〉 = 0 mod p and
〈~x,~y〉 6= 0 mod p, the probability of f~y,u(~x,v) = 1 is negligible since s is randomly chosen.

For the correctness property of the RPE scheme, we consider two conditions. If (〈~x,~y〉= 0)∧ (u /∈
R), then we have (〈~x,~y〉 = 0)∧ (ID j = IDk) since there exits a tuple (j,k) by the correctness property
of PKCS. Thus we obtain Decrypt(Encrypt(~x,R,M,PK),SK~y,u) = M since PE.Decrypt(Ck,K j) = M.
If (〈~x,~y〉 6= 0)∨ (u ∈ R), then we have (〈~x,~y〉 6= 0)∨ (ID j 6= IDk) for all j and k since there is no tuple
(j,k) by the correctness property of PKCS. Thus we obtain Decrypt(Encrypt(~x,R,M,PK),SK~y,u) =⊥
since PE.Decrypt(Ck,K j) =⊥ for all j and k by the correctness property of the above PE scheme.

5.3 Security Analysis

Theorem 5.1. The above RPE scheme is weakly full-hiding under a chosen plaintext attack if the
IPE scheme is adaptively attribute-hiding under a chosen plaintext attack. That is, for any PPT ad-
versary A for the above RPE scheme, there exists a PPT algorithm B for the IPE scheme such that
AdvRPE,wFH

A (λ)≤ 2L ·AdvIPE,AH
B (λ) where L = dr log(N/r)e.

Proof. We first show that the PE scheme is adaptively attribute-hiding if the IPE scheme is adaptively
attribute-hiding. The security of the PE scheme easily follows if we can show that f~y,u(~x,v) = ((〈~x,~y〉=
0 mod p)∧(u= v))= 1 if and only if 〈~v,~w〉= 〈~x,~y〉+s ·(u−v)= 0 mod p where~v,~w are vectors of the
IPE scheme. This was shown in the correctness property. Thus we have AdvPE,AH(λ)≤ AdvIPE,AH(λ).

Next we show that the RPE scheme is weakly full-hiding if the PE scheme is adaptively attribute-
hiding. To prove the security of the RPE scheme, we divide the behavior of an adversary as two types:

13

type-I and type-II. The type-I adversary behaves like an outside adversary who cannot request a secret
key that can decrypt the challenge ciphertext. The type-II adversary behaves like an inside adversary
who can request a secret key that can decrypt the challenge ciphertext. The two types of adversaries are
formally defined as follows:

Type-I. The type-I adversary AI only requests a secret key for a a vector ~yi and an index ui such that
(〈~x0,~yi〉= 0)∧ (ui /∈ R0)) = (〈~x1,~yi〉= 0)∧ (ui /∈ R1)) = 0.

Type-II. The type-II adversaryAII requests at least one secret key for a a vector~yi and an index ui such
that (〈~x0,~yi〉 = 0)∧ (ui /∈ R0)) = (〈~x1,~yi〉 = 0)∧ (ui /∈ R1)) = 1. Thus, the output of AII in the
challenge step should satisfy the requirements such that R0 = R1 and M0 = M1.

Let TI,TII be the event such that an adversary behave like the type-I, type-II adversary respectively.
In Lemma 5.2, we show that a type-I adversary can be used for attacking the PE scheme. In Lemma
5.4, we show that a type-II adversary can be used for attacking the PE scheme too. Therefore we have

AdvRPE,wFH
A (λ)≤ Pr[TI] ·AdvRPE,wFH

AI
(λ)+Pr[TII] ·AdvRPE,wFH

AII
(λ)

≤ Pr[TI] ·2L ·AdvPE,AH
B (λ)+(1−Pr[TI]) ·L ·AdvPE,AH

B (λ)

≤ 2L ·AdvIPE,AH
B (λ).

This completes our proof.

5.3.1 Type-I Adversary

Lemma 5.2. If there is a type-I adversary AI for the above RPE scheme, then there is a PPT algorithm
B for the PE scheme such that AdvRPE,wFH

AI
(λ)≤ 2L ·AdvPE,AH

B (λ) where L = dr log(N/r)e.

Proof. The main idea of this proof is that a type-I adversary (that is, an outside adversary) cannot
distinguish the changes of the challenge ciphertext from the correct encryption to the encryption of a
random vector, a dummy set, and a random message since the type-I adversary cannot request a secret
key query that can decrypt the challenge ciphertext. Thus, we first changes the challenge ciphertext
from the encryption of a vector ~x0, a set R0, and a message M0 to the encryption of a random vector
x̃, a dummy set, and a random message m̃ through hybrid games. Next, we also similarly changes the
challenge ciphertext from the encryption of a random vector x̃, a dummy set, and a random message
m̃ to the encryption of a vector ~x1, a set R1, and a message M1 through hybrid games. Therefore, if
the adversary cannot distinguish these changes of hybrid games, then he cannot distinguish the changes
from the encryption of~x0,R0, and M0 to the encryption of~x1,R1, and M1.

We first define a sequence of games G0
I,0, . . . ,G

0
I,L,G

1
I,L, . . . ,G

1
I,0. The games G0

I,0 and G1
I,0 will be

the original security game except that the challenge bit is fixed to 0 and 1 respectively, and the games
G0

I,L and G1
I,L will be an ideal game such that an adversary has no advantage. Let x̃ be a random attribute,

dummy be a dummy identifier, and m̃ be a random message. For γ ∈ {0,1}, the games are defined as
follows:

Game Gγ

I,0. This game is the original security game in Definition 3.3 except that the challenge bit b is
fixed to γ .

Game Gγ

I,h. We define a new game Gγ

I,h for 1 ≤ h ≤ L− 1. This game is almost identical to Gγ

I,h−1
except that the ciphertext component Ch is the encryption of (x̃,dummy) and m̃, instead of the

14

encryption of (~xb, IDh) and Mb. The challenge bit b is set as γ and the challenge ciphertext is
constructed as follows:

1. It obtains a cover CVb = {(T1, ID1), . . . ,(Tlb , IDlb)} by running PKCS.FindCover(TN ,Rb).
Note that l0, l1 ≤ L since |R0|= |R1|= r.

2. If 1≤ h≤ lb, then it proceeds the follows steps.
(a) For 1≤ j ≤ h, it computes C j by running PE.Encrypt((x̃,dummy), m̃,PK′).
(b) For h+1≤ j ≤ lb, it computes C j by running PE.Encrypt((~xb, ID j),Mb,PK′).
(c) For lb +1≤ j ≤ L, it computes C j by running PE.Encrypt((~xb,dummy), m̃,PK′).

3. Otherwise (that is, if lb +1≤ h≤ L), it proceeds the follows steps.
(a) For 1≤ j ≤ h, it computes C j by running PE.Encrypt((x̃,dummy), m̃,PK′).
(b) For h+1≤ j ≤ L, it computes C j by running PE.Encrypt((~xb,dummy), m̃,PK′).

4. It outputs a ciphertext as CT =
(
Cπ(1), . . . ,Cπ(L)

)
where π is a random permutation.

Game Gγ

I,L. In this game Gγ

I,L, the challenge ciphertext is constructed as follows:

1. For 1≤ j ≤ L, it computes C j by running PE.Encrypt((x̃,dummy), m̃,PK′).
2. It outputs a ciphertext as CT =

(
Cπ(1), . . . ,Cπ(L)

)
where π is a random permutation.

Let Adv
Gγ

I,h
AI

be the advantage ofAI in Gγ

I,h. That is, Adv
Gγ

I,h
AI

=
∣∣Pr[b′ = b|b = γ]−1/2

∣∣ where b is the

challenge bit and b′ is the output of an adversary. We easily obtain Adv
G0

I,h
AI

= Adv
G1

I,h
AI

for all 0 ≤ h ≤ L

since the challenge bit is randomly chosen. We also obtain Adv
G0

I,L
AI

= Adv
G1

I,L
AI

= 0 since the challenge
ciphertext is not correlated with b. In Lemma 5.3, we prove that it is hard to distinguish Gγ

I,h−1 from
Gγ

I,h if the underlying PE scheme is secure. Thus, we have that

Adv
G0

I,0
AI

= Adv
G0

I,0
AI

+
L−1

∑
h=1

(
Adv

G0
I,h

AI
−Adv

G0
I,h

AI

)
−Adv

G0
I,L

AI
≤

L

∑
h=1

∣∣AdvG0
I,h−1

AI
−Adv

G0
I,h

AI

∣∣
≤ 2L ·AdvPE,AH

B (λ).

Finally, we can obtain the inequality relation as

AdvRPE,wFH
AI

(λ) = Pr[b = 0] ·
∣∣Pr[b′ = b|b = 0]−1/2

∣∣+Pr[b = 1] ·
∣∣Pr[b′ = b|b = 1]−1/2

∣∣
= 1/2 ·AdvG0

I,0
AI

+1/2 ·AdvG1
I,0

AI
= Adv

G0
I,0

AI
≤ 2L ·AdvPE,AH

B (λ).

This completes our proof.

Lemma 5.3. If there is a type-I adversary that distinguishes between Gγ

I,h−1 and Gγ

I,h with non-negligible

advantage, then there is a PPT algorithm B for the PE scheme such that
∣∣AdvGγ

I,h−1
AI

−Adv
Gγ

I,h
AI

∣∣ ≤ 2 ·
AdvPE,AH

B (λ).

Proof. The basic idea of this proof is that a simulator can use the challenge oracle of PE to construct
the challenge ciphertext component Ch of RPE since the only difference between Gγ

I,h−1 and Gγ

I,h is
the challenge ciphertext component Ch. Suppose there exists a type-I adversary AI that distinguishes
between Gγ

I,h−1 and Gγ

I,h with non-negligible advantage ε . A simulator B that attacks the PE scheme is
first given: a challenge public key PK′. Then B that interacts with AI is described as follows:

15

Setup: B first sets PK = (PK′,N) and gives PK to AI .

Phase I: AI adaptively requests a secret key for a vector ~y and a user index u. B proceeds the secret
key query as follows:

1. It obtains a path value PVu = {(T0, ID0), . . . ,(Td , IDd)} by running PKCS.GetPathValue(TN ,u).

2. For 0≤ j ≤ d, it sets a new predicate f~y,ID j = (~y,u) and requests a secret key K j for the new
predicate f~y,ID j to the key generation oracle that simulates PE.GenKey.

3. It sets the secret key SK f ,u = (K0, . . . ,Kd) and gives this to AI .

Challenge: AI outputs challenge vectors ~x0,~x1 ∈ Zn
p, challenge sets R0,R1 ⊆ U , and challenge mes-

sages M0,M1 ∈M subject to the restrictions of the type-I adversary. Let x̃ be a random vector,
dummy be a dummy identifier, and m̃ be a random message. B sets b = γ and proceeds as follows:

1. It obtains a cover CVb = {(T1, ID1), . . . ,(Tlb , IDlb)} by running PKCS.FindCover(TN ,Rb).

2. If 1≤ h≤ lb, then it proceeds the following steps.

(a) For 1≤ j ≤ h−1, it computes C j by running PE.Encrypt((x̃,dummy), m̃,PK′).
(b) For j = h, it gives challenge attributes x′0 = (~xb, IDh),x′1 = (x̃,dummy) and challenge

messages M′0 = Mb,M′1 = m̃ to the challenge oracle that simulates PE.Encrypt, and
receives a challenge ciphertext C′. It sets Ch =C′.

(c) For h+1≤ j ≤ lb, it computes C j by running PE.Encrypt((~xb, ID j),Mb,PK′).
(d) For lb +1≤ j ≤ L, it computes C j by running PE.Encrypt((~xb,dummy), m̃,PK′).

3. Otherwise (that is, if lb +1≤ h≤ L), it proceeds the following steps.

(a) For 1≤ j ≤ h−1, it computes C j by running PE.Encrypt((x̃,dummy), m̃,PK′).
(b) For j = h, it gives challenge attributes x′0 =(~xb,dummy),x′1 =(x̃,dummy) and challenge

messages M′0 = m̃,M′1 = m̃, and receives a challenge ciphertext C′. It sets Ch =C′.
(c) For h+1≤ j ≤ L, it computes C j by running PE.Encrypt((~xb,dummy), m̃,PK′).

4. It outputs a ciphertext as CT = (Cπ(1), . . . ,Cπ(L)) where π is a random permutation.

Phase II: AI may continue to request secret keys for vectors and user indexes subject to the same
restrictions as before, and B gives the corresponding secrets keys to AI .

Output: Finally AI outputs a bit b′. B sets c′ = b′ and outputs c′.

To finish the proof, we show that the distribution of the simulation is correct. It is easy to check
that the public key and the secret keys are correctly distributed. Let c be the challenger oracle’s random
bit of the PE scheme. If c = 0 and h ≤ lb, then C′ is the encryption of an attribute x′0 = (~xb, IDb) and a
message Mb. If c = 0 and h ≥ lb + 1, then C′ is the encryption of an attribute x′0 = (~xb,dummy) and a
message m̃. Thus, the challenge ciphertext is the same as Gγ

I,h−1 if c = 0. Similarly, we obtain that the

16

challenge ciphertext is the same as Gγ

I,h if c = 1. Therefore, we have

AdvPE,AH
B (λ) = Pr[c = 0] ·

∣∣Pr[c′ = c|c = 0]−1/2
∣∣+Pr[c = 1] ·

∣∣Pr[c′ = c|c = 1]−1/2
∣∣

= 1/2 ·
∣∣Pr[b′ = 0|c = 0]−1/2

∣∣+1/2 ·
∣∣Pr[b′ = 1|c = 1]−1/2

∣∣
= 1/2 ·

∣∣Pr[b′ = 0|c = 0]−1/2
∣∣+1/2 ·

∣∣(1−Pr[b′ = 0|c = 1])−1/2
∣∣

≥ 1/2 · (Pr[b′ = 0|c = 0]−1/2)−1/2 · (Pr[b′ = 0|c = 1]−1/2)

= 1/2 · (Pr[b′ = b|b = γ,c = 0]−1/2)−1/2 · (Pr[b′ = b|b = γ,c = 1]−1/2)

= 1/2 ·Adv
Gγ

I,h−1
AI

−1/2 ·Adv
Gγ

I,h
AI

.

This completes our proof.

5.3.2 Type-II Adversary

Lemma 5.4. If there is a type-II adversary AII for the above RPE scheme, then there exists a PPT
algorithm B for the PE scheme such that AdvRPE,wFH

AII
(λ)≤ L ·AdvPE,AH

B (λ).

Proof. The main idea of this proof is that a type-II (that is, an inside adversary) cannot distinguish the
changes of the challenge ciphertext from the encryption of~x0,R, and M to the encryption of~x1,R, and M
through hybrid games since the type-II adversary has the restriction of R0 = R1 = R and M0 = M1 = M.
Note that we cannot change the challenge ciphertext to the encryption of a random vector, a dummy
set, and a random message like the proof of the type-I adversary since the type-II adversary can easily
distinguish this changes by decrypting the challenge ciphertext.

We first define a sequence of games GII,0, . . . ,GII,L. Let R0 = R1 = R and M0 = M1 = M since it is
a type-II adversary. We formally define the games as follows:

Game GII,0. This game is the original security game except that the challenger bit b is fixed to 0.

Game GII,h. We define a new game GII,h for 1 ≤ h ≤ L− 1. This game is almost identical to GII,h−1
except that the challenge ciphertext component Ch is changed from the encryption of~x0,R, and M
to the encryption of~x1,R, and M. The challenge ciphertext is constructed as follows:

1. It obtains a cover CVR = {(T1, ID1), . . . ,(Tl, IDl)} by running PKCS.FindCover(TN ,R).
For l +1≤ j ≤ L, it sets ID j = dummy.

2. For 1≤ j ≤ h, it computes C j by running PE.Encrypt((~x1, ID j),M,PK′).

3. For h+1≤ j ≤ L, it computes C j by running PE.Encrypt((~x0, ID j),M,PK′).

4. It outputs a ciphertext as CT =
(
Cπ(1), . . . ,Cπ(L)

)
where π is a random permutation.

Game GII,L. In this game GII,L, the challenge ciphertext is constructed as follows:

1. It obtains a cover CVR = {(T1, ID1), . . . ,(Tl, IDl)} by running PKCS.FindCover(TN ,R).
For l +1≤ j ≤ L, it sets ID j = dummy.

2. For 1≤ j ≤ L, it computes C j by running PE.Encrypt((~x1, ID j),M,PK′).

3. It outputs a ciphertext as CT =
(
Cπ(1), . . . ,Cπ(L)

)
where π is a random permutation.

Note that this game is the same as the original security game except that the challenge bit b is
fixed to 1.

17

Let AdvGII,h
AII

be the advantage ofAII in GII,h. That is, AdvGII,h
AII

= |Pr[b′ = b|b = 0]−1/2|. We obtain

Adv
GII,L
AII

= |Pr[b′ = 0|b = 0]− 1/2| = |Pr[b′ = 0|b = 1]− 1/2| since GII,L is the same as the original
security game where b is fixed to 1. In Lemma 5.5, we prove that it is hard to distinguish GII,h−1 from
GII,h if the underlying PE scheme is secure. Thus, we have that

Adv
GII,0
AII
−Adv

GII,L
AII

= Adv
GII,0
AII

+
L−1

∑
h=1

(
Adv

GII,h
AII
−Adv

GII,h
AII

)
−Adv

GII,L
AII

≤
L

∑
h=1

∣∣AdvGII,h−1
AII

−Adv
GII,h
AII

∣∣≤ 2L ·AdvPE,AH
B (λ).

Finally, we can obtain the inequality relation as

AdvRPE,wFH
AII

(λ) =
∣∣Pr[b = 0] ·Pr[b′ = b|b = 0]+Pr[b = 1] ·Pr[b′ = b|b = 1]−1/2

∣∣
=
∣∣1/2 · (Pr[b′ = 0|b = 0]−1/2)+1/2 · ((1−Pr[b′ = 0|b = 1])−1/2)

∣∣
= 1/2 ·

∣∣(Pr[b′ = 0|b = 0]−1/2)− (Pr[b′ = 0|b = 1]−1/2)
∣∣

≤ 1/2 ·
∣∣AdvGII,0

AII
−Adv

GII,L
AII

∣∣≤ L ·AdvPE,AH
B (λ).

This completes our proof.

Lemma 5.5. If there is a type-II adversary that distinguishes between GII,h−1 and GII,h with non-
negligible advantage, then there is a PPT algorithm B for the PE scheme such that

∣∣AdvGII,h−1
AII

−
Adv

GII,h
AII

∣∣≤ 2 ·AdvPE,AH
B (λ).

Proof. The basic idea of this proof is that a simulator can use the challenge oracle of PE to construct
the challenge ciphertext component Ch of RPE since the only difference between GII,h−1 and GII,h is
the challenge ciphertext component Ch. Suppose there exists a type-II adversary AII that distinguishes
between GII,h−1 and GII,h with non-negligible advantage ε . A simulator B that attacks the PE scheme
is first given: a challenge public key PK′. Then B that interacts with AII is described as follows:

Setup: B first sets PK = (PK′,N) and gives PK to AII .

Phase I: AII adaptively requests a secret key for a vector~y and a user index u. B proceeds the secret
key query as follows:

1. It obtains a path value PVu = {(T0, ID0), . . . ,(Td , IDd)} by running PKCS.GetPathValue(TN ,u).

2. For 0≤ j≤ d, it sets a new predicate f~y,ID j = (~y, ID j) and requests a secret key K j for a new
predicate f~y,ID j to the key generation oracle that simulates PE.GenKey.

3. It sets the secret key SK~y,u = (K0, . . . ,Kd) and gives this to AII .

Challenge: AII outputs challenge vectors~x0,~x1 ∈Zn
p, challenge sets R0,R1⊆U such that R0 = R1 = R,

and challenge messages M0,M1 ∈M such that M0 = M1 = M subject to the restrictions. It sets
b = 0 and proceeds as follows:

1. It obtains a cover CVR = {(T1, ID1), . . . ,(Tl, IDl)} by running PKCS.FindCover(TN ,R).
For l +1≤ j ≤ L, it sets ID j = dummy.

2. For 1≤ j ≤ h−1, it computes C j by running PE.Encrypt((~x1, ID j),M,PK′).

18

3. For j = h, it gives challenge attributes x′0 = (~x0, ID j),x′1 = (~x1, ID j) and challenge messages
M′0 = M,M′1 = M to the challenge oracle that simulates PE.Encrypt, and receives C′. It sets
Ch =C′.

4. For h+1≤ j ≤ L, it computes C j by running PE.Encrypt((~x0, ID j),M,PK′).
5. It outputs a ciphertext as CT = (Cπ(1), . . . ,Cπ(L)) where π is a random permutation.

Phase II: AII may continue to request secret keys for additional vectors and user indexes subject to
the same restrictions as before, and B gives the corresponding secrets keys to AII .

Output: Finally AII outputs a bit b′. B sets c′ = b′ and outputs c′.

To finish the proof, we show that the distribution of the simulation is correct. It is easy to check that
the public key and the secret keys are correctly distributed. Let c be the challenger oracle’s random bit
of the PE scheme. If c = 0, then C′ is the encryption of an attribute x′0 = (~x0, ID j) and a message M.
If c = 1, then C′ is the encryption of an attribute x′1 = (~x1, ID j) and a message M. Thus, the challenge
ciphertext is the same as GII,h−1 if c = 0. Similarly, we obtain that the challenge ciphertext is the same
as GII,h if c = 1. Therefore, we have

AdvPE,AH
B (λ) = Pr[c = 0] ·

∣∣Pr[c′ = c|c = 0]−1/2
∣∣+Pr[c = 1] ·

∣∣Pr[c′ = c|c = 1]−1/2
∣∣

= 1/2 ·
∣∣Pr[b′ = 0|c = 0]−1/2

∣∣+1/2 ·
∣∣Pr[b′ = 1|c = 1]−1/2

∣∣
= 1/2 ·

∣∣Pr[b′ = 0|c = 0]−1/2
∣∣+1/2 ·

∣∣(1−Pr[b′ = 0|c = 1])−1/2
∣∣

≥ 1/2 · (Pr[b′ = 0|c = 0]−1/2)−1/2 · (Pr[b′ = 0|c = 1]−1/2)

= 1/2 · (Pr[b′ = 0|b = 0,c = 0]−1/2)−1/2 · (Pr[b′ = 0|b = 0,c = 1]−1/2)

= 1/2 ·AdvGII,h−1
AII

−1/2 ·AdvGII,h
AII

.

This completes our proof.

5.4 Discussions

Efficiency. Let N = 2d be the number of users and n be the size of vectors for inner product operations
in the RPE scheme. In this case, the underlying IPE scheme of the RPE scheme should support vectors
of size n+ 2 for inner product operations. The secret key of the RPE scheme consists of (d + 1) =
log(N) secret keys of the IPE scheme, the ciphertext of the RPE scheme consists of L = r log(N/r) ≈
r log(N) ciphertexts of the IPE scheme, and the decryption algorithm of the RPE scheme requires (d +
1)L = r log2(N) decryption operations of the IPE scheme. For instance, if we use the IPE scheme
with constant-size secret keys of Okamoto and Takashima [22], then the public key consists of O(n)
group elements, the secret key consists of 11log(N) group elements, the ciphertext consists of (5n+
11)r log(N) group elements, and the decryption algorithm requires (n+2)r log2(N) exponentiations and
11r log2(N) pairing operations.

Efficient Decryption. The decryption algorithm of the RPE scheme requires (d + 1)L = r log2(N)
decryption operations of the underlying IPE scheme. We can improve the efficiency of the decryption
algorithm by using the technique of Barth et al. [5], redefined as anonymous hint systems by Libert et al.
[18]. If we use the anonymous hint system of Barth et al., then we can reduce the decryption overhead
from r log2(N) decryption operations of the IPE scheme to r log2(N) exponentiations and one decryption
operation of the IPE scheme. For instance, if we use the IPE scheme with constant-size secret keys of
Okamoto and Takashima [22], then the decryption algorithm just requires r log2(N) exponentiations and
11 pairing operations.

19

6 Conclusion

In this paper, we revisited the notion of privacy preserving revocable predicate encryption (RPE) and its
general constructions. We first introduced two security notions of RPE, namely the strongly full-hiding
security and the weakly full-hiding security. Next, we proposed a general RPE construction with linear
size ciphertexts that provides the strongly full-hiding security. To obtain a more efficient RPE scheme,
we proposed another general RPE construction with sublinear size ciphertexts that provides the weakly
full-hiding security. One advantage of our RPE constructions is that they can use the most efficient IPE
scheme since they use the IPE scheme in a black-box way. Additionally, we can improve the efficiency
of the decryption algorithm of the second RPE construction by using anonymous hint systems. One
interesting problem is to propose a general RPE construction from any IPE scheme that has a ciphertext
of sublinear size and provides the strongly full-hiding security.

Acknowledgements

Kwangsu Lee was supported by the MKE (The Ministry of Knowledge Economy), Korea, under the
ITRC (Information Technology Research Center) support program (NIPA-2012-H0301-12-3007) su-
pervised by the NIPA (National IT Industry Promotion Agency). Seong Oun Hwang was supported by
Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by
the Ministry of Education, Science and Technology (2012002139).

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited:
Consistency properties, relation to anonymous ibe, and extensions. In Victor Shoup, editor,
CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 205–222. Springer, 2005.

[2] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In Daniele Micciancio,
editor, TCC, volume 5978 of Lecture Notes in Computer Science, pages 480–497. Springer, 2010.

[3] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional encryption for
inner product predicates from learning with errors. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages 21–40. Springer, 2011.

[4] Nuttapong Attrapadung and Hideki Imai. Conjunctive broadcast and attribute-based encryption.
In Hovav Shacham and Brent Waters, editors, Pairing, volume 5671 of Lecture Notes in Computer
Science, pages 248–265. Springer, 2009.

[5] Adam Barth, Dan Boneh, and Brent Waters. Privacy in encrypted content distribution using private
broadcast encryption. In Giovanni Di Crescenzo and Aviel D. Rubin, editors, Financial Cryptog-
raphy, volume 4107 of Lecture Notes in Computer Science, pages 52–64. Springer, 2006.

[6] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption. In
IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer Society, 2007.

20

[7] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with efficient
revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM Conference on Com-
puter and Communications Security, pages 417–426. ACM, 2008.

[8] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryp-
tion with keyword search. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT, volume
3027 of Lecture Notes in Computer Science, pages 506–522. Springer, 2004.

[9] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe
Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 213–229.
Springer, 2001.

[10] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges.
In Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages 253–273.
Springer, 2011.

[11] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In
Salil P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages 535–554.
Springer, 2007.

[12] Yevgeniy Dodis and Nelly Fazio. Public key broadcast encryption for stateless receivers. In
Joan Feigenbaum, editor, Digital Rights Management Workshop, volume 2696 of Lecture Notes in
Computer Science, pages 61–80. Springer, 2002.

[13] Nelly Fazio and Irippuge Milinda Perera. Outsider-anonymous broadcast encryption with sublin-
ear ciphertexts. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, Public Key
Cryptography, volume 7293 of Lecture Notes in Computer Science, pages 225–242. Springer,
2012.

[14] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Yuliang Zheng, editor,
ASIACRYPT, volume 2501 of Lecture Notes in Computer Science, pages 548–566. Springer, 2002.

[15] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, ACM Conference on Computer and Communications Security, pages 89–98.
ACM, 2006.

[16] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of
Lecture Notes in Computer Science, pages 146–162. Springer, 2008.

[17] Kwangsu Lee and Dong Hoon Lee. Improved hidden vector encryption with short ciphertexts and
tokens. Des. Codes Cryptography, 58(3):297–319, 2011.

[18] Benoı̂t Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia. Anonymous broadcast encryption:
Adaptive security and efficient constructions in the standard model. In Marc Fischlin, Johannes
Buchmann, and Mark Manulis, editors, Public Key Cryptography, volume 7293 of Lecture Notes
in Computer Science, pages 206–224. Springer, 2012.

21

[19] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless re-
ceivers. In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages
41–62. Springer, 2001.

[20] Juan Manuel González Nieto, Mark Manulis, and Dongdong Sun. Fully private revocable predicate
encryption. In Willy Susilo, Yi Mu, and Jennifer Seberry, editors, ACISP, volume 7372 of Lecture
Notes in Computer Science, pages 350–363. Springer, 2012.

[21] Tatsuaki Okamoto and Katsuyuki Takashima. Achieving short ciphertexts or short secret-keys
for adaptively secure general inner-product encryption. In Dongdai Lin, Gene Tsudik, and Xi-
aoyun Wang, editors, CANS, volume 7092 of Lecture Notes in Computer Science, pages 138–159.
Springer, 2011.

[22] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchical) inner
product encryption. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume
7237 of Lecture Notes in Computer Science, pages 591–608. Springer, 2012.

[23] Jong Hwan Park. Inner-product encryption under standard assumptions. Des. Codes Cryptogra-
phy, 58(3):235–257, 2011.

[24] Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials and ciphertext delega-
tion for attribute-based encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO,
volume 7417 of Lecture Notes in Computer Science, pages 199–217. Springer, 2012.

[25] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EURO-
CRYPT, volume 3494 of Lecture Notes in Computer Science, pages 457–473. Springer, 2005.

[26] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption systems. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, ICALP (2), volume 5126 of Lecture Notes in Computer Science, pages
560–578. Springer, 2008.

22

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Predicate Encryption
	Subset Cover Framework

	Revocable Predicate Encryption
	Definition
	Security Model

	Strongly Full-Hiding RPE Construction
	Construction
	Correctness
	Security Analysis
	Discussions

	Weakly Full-Hiding RPE Construction
	Construction
	Correctness
	Security Analysis
	Type-I Adversary
	Type-II Adversary

	Discussions

	Conclusion

