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Abstract

In a digital signature scheme with message recovery, rather than transmitting the message m
and its signature σ, a single enhanced signature τ is transmitted. The verifier is able to recover
m from τ and at the same time verify its authenticity. The two most important parameters of
such a scheme are its security and the overhead |τ | − |m|. A simple argument shows that for
any scheme with “n bits security” |τ | − |m| ≥ n, i.e., the overhead is at least the security. The
best previous constructions required an overhead of 2n. In this paper we show that the n bit
lower bound can basically be matched. Concretely, we propose a new simple RSA-based digital
signature scheme that, for n = 80 bits security in the random oracle model, has an overhead of
≈ 90 bits.

At the core of our security analysis is an almost tight upper bound for the expected number of
edges of the densest “small” subgraph of a random Cayley graph, which may be of independent
interest.

Keywords: digital signatures, Feistel, combinatorics, Cayley graph.

1 Introduction

When transmitting a message m over an unauthenticated public channel, one usually appends a
string σ to the message that can be used to verify (relative to a public key) the authenticity of
the message. This string σ is called the digital signature of m. More generally, one transforms the
message m into an enhanced signature τ such that (i) the original message m can be recovered from
τ ; (ii) the authenticity of m can be verified. This is called a digital signature scheme with message
recovery and is used to save on bandwidth, i.e., to minimize the signature overhead informally
defined as oh = |τ | − |m| (signature length minus message length). A natural question to ask is
what is the minimal signature overhead for a fixed level of security?

Lower Bounds on the Overhead. Following [2], we say that a signature scheme has “n-bit
security” if for all adversaries A attacking the scheme have success ration SR(A) at most 2−n,
where SR(A) := success(A)/time(A). A natural lower bound for the overhead of a signature scheme
(with or without message recovery) for n-bit security is oh ≥ n bits. This is since for a signature
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Scheme Underlying Overhead for n bits security Security
padding asymptotic n = 80 qh + qs ≤ 260 reduction

PSS-MR 2-round Feistel 2n+ 2(log qh) 320 280 Bellare-Rogaway [4]
PSS-MR 2-round Feistel 2n+ log(qh) + log(qs) 320 240 Coron [7]
PSS-MR 2-round Feistel n+ log(qh) 160 140 Kakvi-Kiltz [9]
SIG-MR4F 4-round Feistel n+ o(log(qh + qs)) 93 88 this work

Table 1: Overhead of signature schemes with message recovery for n bits security. The table shows
the overhead required for n = 80 (and only the trivial upper bound qh + qs ≤ 280) and when we
additionally assume that the number of random-oracle and signature queries is upper bounded by
qh + qs ≤ 260, as proposed in [4].

scheme with oh bits of overhead any random bit string τ constitutes a valid enhanced signature
with probability 2−oh . Hence an adversary A guessing a random authenticated message has success
ratio SR(A) = 2−oh .

Upper Bounds on the Overhead for existing Schemes. In standard digital signature
schemes (without message recover) such as RSA full domain hash [4], the probabilistic signature
scheme PSS [4], or BLS signatures [5] the overhead equals the size of a signature. Since a signature
contains (at least one) group element (e.g., Z∗N or an elliptic curve group) whose representation
requires at least 2n bits (for n bits security, due to generic attacks) we cannot hope to obtain an
overhead any smaller than 2n bits.

Computing the overhead turns out to be a bit subtle and depends on the security reduction.
We exemplify such a calculation for the RSA-based probabilistic signature scheme with message
recovery PSS-MR[n0, n1] [4]. PSS-MR[n0, n1] has an overhead of n0 + n1 bits, where parameter
n0 controls the randomness and n1 the amount of added redundancy used during signing. The
minimal size of n0 and n1 providing a given security level can be computed from the security
reduction. The security reduction from [4] transforms an adversary against PSS-MR[n0, n1] making
qs (online) signing and qh (offline) hash (random oracle [3]) queries with success probability εPSS-MR

into an adversary against RSA with success probability εRSA such that εPSS-MR = εRSA+εsim , where
εsim = (qs+qh)2(2−n0 +2−n1). An easy computation shows that this implies ohPSS-MR = n0 +n1 ≥
2n + log2(qh) + log2(qs) bits of overhead for n bits security.1 An improved security reduction
by Coron gives ohPSS-MR ≥ 2n + log2(qh) + log2(qs). Recently, an alternative security reduction
for PSS-MR was proposed in [9] demonstrating a tight security reduction for PSS-MR[n0 = 0, n1]
with zero-padding from the (stronger) phi-hiding assumption. However, the required overhead is
still ohPSS-MR = n + log2(qh) bits, stemming from an additive term εsim = q2h/2

n1 in the security
reduction. Table 1 summarizes the signature overhead for PSS-MR and gives concrete parameters
for a typical security parameter of n = 80 bits.

1.1 Our contribution

Our main contribution is to revisit the question if there exists a digital signature scheme with mes-
sage recovery that has minimal (≈ n bits) overhead. Concretely, we propose SIG-MR4F , a scheme
based on a four-round Feistel padding. When instantiated with the RSA trapdoor permutation and
assuming the phi-hiding assumption, then SIG-MR4F has almost minimal overhead.

1For n-bit security of PSS-MR[n0, n1] we require SR(A) ≤ 2−n+1 which is implied by εRSA/time(A) ≤ 2−n and
εsim/time(A) ≤ 2−n. With time(A) ≥ qs + qh we obtain n0 ≥ n + log2(qh) and n1 ≥ n + log2(qh) and consequently
the overhead is oh = n0 + n1 ≥ 2n+ 2 log2(qh).
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Padding-based Signature schemes with message recovery. To prove our main result,
we first introduce an abstract framework to analyze a class of signature schemes with message
recovery based on a padding scheme PAD. A padding scheme PAD = (π, π−1) consists of an
evaluation function π that pads a message m into a larger string π(m), and an inversion function
π−1 that either recovers the message m or returns ⊥ if its input is not a correctly padded message.
(In our setting, both π and π−1 have access to a random oracle H.) Given a padding scheme and
a trapdoor permutation TDP = (f, f−1) with matching domains, we can define a signature scheme
with message recovery SIG-MR[PAD,TDP] as follows. The enhanced signature τ on a message m is
defined as τ = f−1(π(m)), where f−1 is the secret inversion algorithm of TDP. (Hence, signing uses
the trapdoor td .) Signature recovery first evaluates the trapdoor permutation on τ and checks if
the result is a correctly padded message or not, i.e., {m,⊥} = π−1(f(τ)). If the result is not ⊥, it
returns message m.

To argue about the security of the resulting signature scheme SIG-MR[PAD,TDP] (in the sense
of unforgeability against chosen-message attacks) we introduce the notion of εsim-simulatability for
a padding scheme PAD. Essentially, PAD is simulatable if a properly distributed signature on any
message can be computed if one is in control of the random oracle H but not of the trapdoor of the
trapdoor permutation. The quality parameter εsim is used to measure the quality of the simulation
of the signatures and the random oracles.

Generalizing [9], we show that each εsim -simulatable padding scheme yields a secure signature
scheme with message recovery if the underlying trapdoor permutation is lossy [13]. The security
reduction essentially only loses the additive factor εsim from the simulation quality of PAD (and is
tight otherwise). Consequently, εsim will play a crucial role in determining the overhead of a given
signature scheme.

Simulation Quality of padding schemes. As a simple warmup example we consider the
simulation quality of a padding scheme PAD2f [n1] derived from a two-round Feistel network, where
the parameter n1 controls the redundancy of the padding (and hence the overhead of the signature
scheme). Such a padding scheme was already implicitly used in PSS and PSS-MR [4]. We show
that PAD2f [n1] has simulation quality εsim = q2h/2

n1 . As explained before, the resulting signature
scheme SIG-MR2f [n1] = PSS-MR[n0 = 0, n1] has an overhead of n1 = n + log2(qh) bits. This
reproves the overhead of PSS-MR obtained in [9].

The PAD4F padding scheme. For an optimal overhead we would need a padding scheme satisfying
εsim ≈ qh/2n1 . We consider the simulation quality εsim of a new padding scheme PAD4F [n1] derived
from a four-round Feistel network, where parameter n1 controls the redundancy of the padding. The
main result of this paper states that (for sufficiently large domain) PAD4F [n1] is εsim -simulatable
with

εsim ≤ q1+o(1)h /2n1 . (1)

Hence the resulting signature scheme SIG-MR4F has an overhead of ohSIG-MR4F
= n + o(log(qh))

bits, cf. Table 1. The o(1) term can be computed explicitly and leads to 93 bits overhead for n = 80
bits security if the domain of the TDP is at least 1024 bits. More concretely, the o(1) term goes to
0 as the ratio of the security we want to achieve, divided by the domain size of the TDP, decreases.

In the proof of (1) a variable Q(µ, qh) will play a central role, which can be cast in graph theo-
retical terms as follows. Q(µ, qh) takes as value the number of edges of the densest qh×qh subgraph
of a random bipartite Zµ × Zµ Cayley graph with degree qh, i.e., Q(µ, qh) = maxX ,Z |{(x, z) |x ∈
X , z ∈ Z, z − x ∈ B}|, where B,X ,Z are qh element subsets of Zµ, and B is sampled uniformly at
random.

Concretely, we show (Theorem 4.4) that PAD4F [n1] is εsim = O(E[Q(µ, qh)]/2n1) simulatable.
Next, we prove by a compressing argument our main technical result (Theorem 6.1) which can be
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stated as

for each 0 < a < 1/2 : Q(µ, µa) ≤ µa+a2/(1−2a) (with probability extremely close to 1). (2)

We believe that this result may be of independent interest. It complements a result of Alon et al.
(Theorem 4 in [1]) which states that Q(µ, µa) ≈ µ3a−1 for 2/3 < a ≤ 1, i.e. their bound applies
to large subgraphs of size ≥ µ2/3. Bound (2) together with the above reduction (setting qh = µa)
implies bound (1) on the simulatability of PAD4F [n1].

2 Preliminaries

For n ∈ N, we write 1n for the string of n ones, and [n] for {1, . . . , n}. Moreover, |x| denotes the
length of a bitstring x, while |S| denotes the size of a set S. Further, s ← S denotes sampling an
element from s uniformly at random from the set S. For an algorithm A, we write z ← A(x, y, . . .)
to indicate that A is a (probabilistic) algorithm that outputs z on input (x, y, . . .).

2.1 Digital signatures with message recovery

A digital signature scheme with message recovery SIG-MR = (GSIG-MR,Sign,Recover) consists of
three algorithms and two families M(n),S(n) of message and signature spaces. Key generation
GSIG-MR generates a keypair (pk , sk) ← G(1k) for a secret signing key sk and a public verification
key pk . The signing algorithm Sign inputs a message m ∈ M(n) and the secret signing key, and
returns a signature τ ← Signsk (m) ∈ S(n) of the message. The recovery algorithm Recover that
takes a verification key pk and an enhanced signature τ as input, and returns m ← Vrfypk (m, τ)
where m ∈M∪ {⊥}. We require that Pr[Recoverpk (Signsk (m)) = m] = 1.

Random Oracle Model. When the signature scheme contains a hash function H : {0, 1}∗ →
{0, 1}n, it can be analyzed in the random oracle model [3]. In this model the hash function is
treated as an idealized function whose outputs are independent random values and can only be
access through oracle calls. (To instantiate such a scheme in the real world, one would instantiate
the random oracle H with a hash function like SHA.)

Security. Let us recall the existential unforgeability against chosen message attacks (EUF-CMA)
security experiment [8] in the random oracle model, played between a challenger and a forger F.

1. The challenger runs GSIG-MR(1n) to generate a keypair (pk , sk). Forger F receives pk as input.

2. Forger F may ask the challenger to sign a number of messages and evaluate a number of
hash queries. To query the i-th signature, F submits a message mi ∈M(n) to the challenger.
The challenger returns an enhanced signature τi under sk for this message. For the j-th hash
query, F submits a query xi to the challenger who returns the values H(xi).

3. Forger F outputs an enhanced signature τ∗.

Let m∗ ← Recover(pk , τ∗) be the recovered message of F’s forgery. Forger F wins the game if
m∗ 6= ⊥ (that is, τ∗ is a valid enhanced signature) and m∗ 6= mi for all i.

Definition 2.1 (Security and Overhead of SIG-MR) Let SIG-MR be a signature scheme with
message recovery, where M(n) is the message and S(n) is the signature spaces. Let tsig , qs, qh, εsig
be functions of a security parameter n.
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Security: SIG-MR is (tsig , qs, qh, εsig)-secure, if all adversaries F running in time at most tsig
making at most qs signing queries and qh hash queries, have success probability at most εsig .

n-bit security: We say SIG-MR has n bits of security against qs, qh queries if it is (tsig , qs, qh, εsig)-
secure for all tsig , εsig satisfying εsig/tsig ≤ 2−n. We simply say it has n bits security if it has n
bits security for any qs, qh (we can always assume the trivial upper bound qs+qh ≤ tsig ≤ 2n.2)

Overhead: The overhead of SIG-MR is log2 |S(n)| − log2 |M(n)|.

Minimal overhead: With ohSIG-MR(n, q) denote the overhead required in the construction SIG-MR
to reach n bits security against qs + qh ≤ q queries. ohSIG-MR(n) denotes ohSIG-MR(n, 2n).

2.2 Trapdoor Permutations

A trapdoor permutation TDP = (GTDP, f, f
−1) over domain D(n) consists of three ppt algorithms.

Key generation GTDP generates a keypair (ek , td)← GTDP(1n) of evaluation key and trapdoor. For
every (ek , td) in the domain of GTDP(1n), f(ek, .) and f−1(td , .) compute permutations fek (·), f−1td (·)
on D(n) s.t. for all x ∈ D(n): f−1td (fek (x)) = x. We say TDP is homomorphic if (D(n), ◦) is a group
and for all x1, x2 ∈ D(n), fek (x1) ◦ fek (x2) = fek (x1 ◦ x2).

We now recall the security properties of one-wayness and regular lossiness [9, 13].

Definition 2.2 (Security of TDP) Let t = t(n) and ε = ε(n) be functions of a security parameter
n. TDP is (ε, t)-one-way if for all adversaries A running in time at most t, Pr[A(ek , fek (x)) = x] ≤
ε, where (ek , td)← GTDP(1n), x← D(n).

Definition 2.3 (Lossy TDP) Let t = t(n), ` = `(n) and ε = ε(n) be functions of a security
parameter n. A trapdoor permutation TDP over domain D(n) is regular (ε, t, `)-lossy if there exists
a ppt algorithm Glossy (the lossy key generator) that on input 1n outputs (ek , td) such that

1. (indistinguishability of real and lossy keys) for all adversaries A running in time at most t,
Pr[A(ek) = 1]− Pr[A(ek ′) = 1] ≤ ε, where (ek , td)← GTDP(1n) and ek ′ ← Glossy(1n);

2. (lossiness) fek ′(·) is `-to-1, i.e. ∀x ∈ D(n) : |{z : fek ′(z) = fek ′(x)}| = `.

It is well known [13] that a lossy trapdoor permutation is collision-resistant when instantiated in
lossy mode. The most important example of a trapdoor permutation is RSA with D(n) = Z∗N ,
defined as fN,e(x) = xe mod N . It is homomorphic with respect to modular multiplication. It is
one-way under the RSA assumption; for all e < N1/4 it is furthermore regular e-lossy under the phi-
hiding assumption [9], where e is the public RSA exponent. Another example of a (homomorphic
and regular lossy) trapdoor function is Paillier [12].

3 Padding-Based Signatures

3.1 Padding Schemes

A padding scheme PAD consists of three ppt algorithms PAD = (GPAD, π, π
−1) and familiesM(n),R(n)

of message and range space with |R(n)| ≥ |M(n)|. GPAD(1n) is a probabilistic algorithm that out-
puts a key k. For each k, π and π−1 implement functions

πk :M(n)→ R(n), π−1k : R(n)→M(n) ∪ {⊥}.
2As ε ≤ 1, εsig/tsig ≤ 2−n for every tsig ≥ 2n, so we only have to look at the case tsig ≤ 2n.
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That is, π pads a message m ∈ M(n) into a larger space R(n). The redundancy of PAD is
log2 |R(n)| − log2 |M(n)|.

For (perfect) correctness we require that for all n ∈ N, k ∈ GPAD(1n) and m ∈ M(n),
π−1k (πk(m)) = m. Hence π must be injective. For k ∈ GPAD(1n) we define Ik := {πk(m) | m ∈
M(n)} ⊆ R(n) as the image of M under πk. For (perfect) soundness we require that for all
y ∈ {0, 1}n \ Ik, π−1k (y) = ⊥. We will analyze the security of padding schemes PAD in the random
oracle model in which case we assume for simplicity that there is no key-generation algorithm.
Instead of getting access to a key k, the algorithms π, π−1 (and the adversary) have access to a
random oracle H : {0, 1}∗ → {0, 1}n.

Simulability. We will now define what it means for a padding scheme PAD = (π, π−1) to be
“simulatable” in the random oracle model. (This notion is closely related to indifferentiability as
we will discuss below.)

To a padding scheme PAD = (π, π−1) defined in the random oracle model with hash function
H, a simulator S (which we specify in more detail below), and an adversary A we associate the
following advantage function

Advsim
A,PAD,S(n) = |Pr[Aπ

H,H(1n) = 1]− Pr[AF ,S
F

(1n) = 1]|,

where F : M(n) → R(n) is a random function, H : {0, 1}∗ → R(n) is a random oracle and the
(stateful, probabilistic) simulator SF gets to see all queries made to oracle F .

Definition 3.1 (Simulability of a Padding Scheme) We say PAD is (qF , qH, qS, tsim , εsim) sim-
ulatable if there exists a simulator S making qS oracle queries to F and running in time tsim such
that Advsim

A,PAD,S ≤ εsim , for all A making qF and qH queries to the oracles F and H, respectively.

In informal discussions we will just say (q, ε) to denote (q, q,Θ(q), q · polylog(q), ε) simulatable.

3.2 Padding-based Signatures with message recovery

Let TDP be a trapdoor permutation over domain D(n) and PAD be a padding scheme with
message space M(n) and range R(n) = D(n). We build a signature scheme with message re-
covery SIG-MRTDP,PAD = (GSIG-MR, Sign,Recover) with message space M(n) and signature space
S(n) = D(n). (To obtain a scheme with arbitrary message space, one can apply the domain ex-
tension given in Section 3.4.) GSIG-MR(1n) runs k ← GPAD(1n) and (ek , td)← GTDP(1n). It returns
pk = (k, ek) and sk = td .

Algorithm Signsk (m ∈M(n))
y := πk(m) ∈ D(n)
Return τ = f−1td (y) ∈ D(n)

Algorithm Recoverpk (τ ∈ D(n))

y = fek (τ)
If π−1k (y) = ⊥ then return ⊥
Else return m = π−1k (y)

Note that (perfect) correctness of SIG follows by (perfect) correctness of PAD and since TDP is a
permutation. The following theorem proves security provided TDP is regular lossy. Its proof is
similar to the one of RSA-FDH in [9].

Theorem 3.2 Suppose TDP is regular (`, tlossy , εlossy)-lossy (i.e., lossy by log2(`) bits) and PAD is a
perfectly sound and (qF , qH, qS, tsim , εsim)-simulatable padding scheme. Then SIG is (tsig , qh, qs, εsig)
secure in the random oracle model with

qh = qH, qs = qF , tsig = tlossy − tsim , εsig = εsim + (2`− 1)/` · εlossy .
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Proof. Let F be an adversary against the signature scheme that runs in time tsig , makes at most qs
queries to the signing oracle, qh queries to the random oracle, and outputs a forgery with probability
εsig .

Game G0. This is the UF-CMA game and hence Pr[G0 = 1] = εsig .

Game G1. Consider the function F :M(n) → D(n) as defined below. Since fek defines a permu-
tation over D(n), F defines a perfectly random function. In Game G1, replace random oracle H
with SF and use Sign1 to sign messages.

Algorithm F(m)
If F(m) 6= ⊥ then return F(m)
Else τ(m) ∈R D(n)
Return F(m) := fek (τ(m))

Algorithm Sign1(m ∈M(n))
If F(m) = ⊥ then call F(m)
Return τ(m)

We claim that
Pr[G0 = 1]− Pr[G1 = 1] ≤ εsim .

To prove the claim we define an adversary AO1,O2 as follows. It runs GTDP to obtain the ek and td .
Next, it runs F on pk = ek , answering its signing queries on a message m by τm = f−1td (O1(m)) and
its hash queries using oracle O2. Finally, it outputs 1 iff the forgery output by F is valid. A runs in
time t+ tsim , makes qF = qs queries to oracle F and qH = qh queries to oracle H. Clearly, Pr[G0 =

1] = Pr[Aπ
H,H(1n) = 1]. Furthermore, if (O1,O2) = (F , SF ), then the simulated signatures are of

the form τm = f−1td (F(m)) = f−1td (fek (τ(m))) = τ(m) and hence Pr[G1 = 1] = Pr[AF ,S
F

(1n) = 1].

Overall, Pr[G0 = 1]−Pr[G1 = 1] = Pr[Aπ
H,H(1n) = 1]−Pr[AF ,S

F
(1n) = 1] = Advsim

A,PAD,S(n) ≤ εsim .

Game G2. Switch ek of TDP to lossy. More formally, game G2 is like G1 with the difference that ek
from pk is now generated using the lossy trapdoor generation algorithm Glossy(1n). Clearly, since
from G1 on signing does not use trapdoor td anymore,

Pr[G1 = 1]− Pr[G2 = 1] ≤ εlossy .

By the regular lossyness of fek , the value τ(m∗) is information-theoretically hidden amongst the
` possible preimages of fek (τ(m∗)) and with probability `−1

` we have fek (τ(m∗)) = fek (τ∗) with
τ(m∗) 6= τ∗. In the latter case we have a collision which contradicts again lossyness. More formally
we can show that

Pr[G2 = 1] ≤ `− 1

`
· εlossy .

Summing up, we get εsig ≤ Pr[G0 = 1]− Pr[G2 = 1] ≤ εsim + εlossy + `−1
` εlossy as claimed.

3.3 Tight security from one-wayness

In case TDP only satisfies the weaker security property of (t, εone−way)-one-wayness, then we can
obtain a non-tight security reduction with respect to εone−way .3 As we will show now, a tight
security reduction from one-wayness can be obtained by padding m with one random bit b, using
a reduction technique by Katz and Wang [10].

Let TDP be a trapdoor permutation over D(n) and PAD be a padding scheme with message
space M(n) × {0, 1} and range R(n) = D(n). We now define an alternative signature scheme
SIG-MR′ with message space M which can be proved tightly secure from one-wayness of TDP.

3 Concretely, the reduction uses a different random function F which partitions into solved instances F(m) :=
fek (τ(m)) and unsolved instances F(m) ← D(n) with a certain independent probability. This leads to εsig =
qhεone−way + εsim or, similar to [6], εsig = exp(1)qsεone−way + εsim if TDP is homomorphic.
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Algorithm Sign′sk (m ∈M(n))
b← {0, 1}
y := πk(b‖m) ∈ D(n)
Return τ = f−1td (y) ∈ D(n)

Algorithm Recover′pk (τ ∈ D(n))

y = fek (z)
If π−1k (y) = ⊥ then return ⊥
Else compute b‖m = π−1k (y)
Return m

Theorem 3.3 Suppose TDP is homomorphic and (t, εone−way)-one-way and PAD is a perfectly
sound and (qF , qH, qS, tsim , εsim)-simulatable padding scheme. Then SIG-MR′ is (t, qh, qs, 2εone−way+
εsim) secure in the random oracle model.

Proof. Let F be an adversary against the signature scheme that runs in time tsig , makes at most qs
queries to the signing oracle, qh queries to the random oracle, and outputs a forgery with probability
εsig .

Game G0. This is the UF-CMA game and hence Pr[G0 = 1] = εsig .

Game G1. Define this game as in the proof of Theorem 3.2 with a different definition of F and
Sign1.

Algorithm F(b‖m)
If F(b‖m) 6= ⊥ then return F(b‖m)
If b(m) = ⊥ then b(m)← {0, 1}
if b(m) = b then
τ(m)← D(n)
Return F(b‖m) := fek (τ(m))

Else return F(b‖m)← D(n) (*)

Algorithm Sign1(m ∈M(n))
If b(m) = ⊥ then b(m)← {0, 1}
If F(b(m)‖m) = ⊥ then call F(b(m)‖m)
Return τ(m)

With the same argument as in the proof of Theorem 3.2 we get

Pr[G0 = 1]− Pr[G1 = 1] ≤ εsim .

Let τ∗ be the forgery and let b∗||m∗ be the bit and the recovered message. Note that the value
b(m∗) is information-theoretically hidden from the adversary’s view and with probability 1/2 we
have b(m∗) 6= b∗. In the latter case the adversary has managed to find a pre-image under fek on
an uniformly distributed value coming from the outside of the experiment. More formally we can
show that

Pr[G1 = 1] ≤ 1

2
· εone−way .

For the simulation, we need TDP to be homomorphic to be able to embed one single challenge
from the one-wayness experiment into all extended signatures τ which contain b||m such that
b 6= b(m). Concretely, the adversary A against one-wayness inputs ek and y = fek (x). It simulates
the oracles F and Sign as above where in the case (∗) (b 6= b(m)) of the F-simulation he defines
F (b||m) := fek (x(m)) ◦ y, for x(m) ← D(n). Finally, when F outputs his forgery τ∗, A recovers
b∗||m∗ and aborts if b(m∗) = b∗. This happens with probability 1/2. Otherwise, we have τ∗ =
f−1(F(b∗||m∗)) = x(m∗) ◦ f−1ek (y), from which the pre-image of y can be computed.

Summing up, we get εsig ≤ Pr[G0 = 1]− Pr[G1 = 1] ≤ εsim + 1
2εone−way as claimed.
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3.4 Domain Extension

The construction of a padding based signature scheme SIG-MR with message recovery from Sec-
tions 3.2 and 3.3 requires that the range R of the padding scheme is equivalent to the domain D of
the trapdoor permutation. In particular, the message space M of SIG-MR cannot be larger than
|D|. (Because of the required redundancy, it is strictly smaller.)

We will now describe a simple (almost) generic way to turn such a scheme SIG-MR into a signa-
ture scheme SIG-MR∗ with arbitrary message spaceM×{0, 1}∗ without increasing the redundancy
and where SIG-MR∗ comes with almost the same security guarantee (in the random oracle model)
as SIG-MR.

Let H denote the hash function used in SIG-MR. The scheme SIG-MR∗ has the same key-space
as SIG-MR, and signs a message (m,m∗) ∈M× {0, 1}∗ by computing τ ← SIG-MR(m), but where
each hash function call H(x) is replaced with H(m∗, x).4 The signature is (m∗, τ). To verify (m∗, τ)
one simply verifies τ as in SIG-MR, but using the hash function H(m∗, ·). If this verification accepts
and outputs a message m, the verification for SIG-MR∗ accepts and outputs (m,m∗).5

We claim that SIG-MR∗ is secure if SIG-MR is. To see this, first assume the adversary against
SIG-MR∗ only makes signature/hash queries for the same fixed m∗ (i.e., signature queries (m,m∗)
for any m and hash queries (m∗, x) for any x.) Then the security of SIG-MR∗ can be proven exactly
as for SIG-MR, except that throughout the security experiment we use the random oracle H(m∗, ·)
instead of H(·).

Let us now consider the general case where the adversary makes signature/hash queries for
different m∗’s. In the security proof for SIG-MR we run a simulator S to program the random
oracle. In the proof for SIG-MR∗ we now simply start a new simulator Sm∗ whenever the adversary
makes a query with a new m∗. We can think of this proof as programming many independent
random oracles H(m∗, ·) for different m∗. The simulation fails, if any of the simulators Sm∗ fails. If
our padding scheme is proven to be (q, ε(q)) simulatable where ε(q) is convex, in particular, if for
any q1, . . . , qt,

∑t
i=1 qi = q it satisfies

∑t
i=1 ε(qi) ≤ ε(q). Then we also get (q, ε(q)) simulability for

the potentially many different simulations. The bounds on simulability we prove are of the form
ε(q) = q1+c/d (for some constant c > 0 and a term d that does not depend on q), and thus satisfy
this convexity condition.

4 Padding schemes from Feistel networks

4.1 The two round Feistel network

Consider the (random-oracle) padding scheme PAD2f [ρ] = (π, π−1) from Figure 1 (left) which
is derived from an unbalanced two-round Feistel network φ2f instantiated with random oracles
H1 : Zµ → Zρ,H2 : Zρ → Zµ

φ2f (x, v) = (x+H2(H1(x) + v),H1(x) + v) φ−12f (w, y) = (w −H2(y), y −H1(w −H2(y))

as π(x) = φ2f (x, 0) π−1(w, y) =

{
x if φ−12f (w, y) = (x, 0)

⊥ otherwise

4Here H(a, b) means we invoke H on some efficiently uniquely decodable encoding of the message pair (a, b). Such
an encoding is, for example, given by 0la‖La‖a‖b where La is the length of a in binary, and la is the length of La.

5A more efficient solution (whenever the padding queries H more than once) is to prepend G(m∗) instead of m∗

for some collision resistant hash function G (e.g., a random oracle). Alternatively, if H is an iterated hash function,
one must hash the prefix m∗ only once, and can then evaluate H(m∗, x) at basically the cost of hashing only x. The
complexity added by the two solutions outlined above is just the cost of hashing m∗ once.
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This will serve as an example of an easy to analyze padding scheme and to prepare for our four
round Feistel network in the next Section. (For that reason the Feistel network uses modular
addition and not binary xor, as usual.)

Theorem 4.1 (Simulability of PAD2f , implicit in [4]) The padding scheme PAD2f [ρ] as illus-
trated in Figure 1 (left) is (qF , qH, qS, tsim , εsim) simulatable for any qF , qH and with qA = qF + qH

qS = qA tsim = qA · polylog(µ) εsim = q2A/2ρ.

More precisely, we can set tsim = O(qA log(qA) log(µ)) using that the cost per (find or insert)
operation on a sorted list with ≤ qA elements of size log(µ) bits is O(log(qA) log(µ)).

Proof. Let πH2f (·) = φ2f (·, 0) denote the evaluation function of PAD2f instantiated with two ran-
domly chosen functions H1 : Zµ → Zρ,H2 : Zρ → Zµ. We have to specify the simulator S such that
for any (qF , qH)-query adversary A and a random function F : Zµ → Zµ × Zρ

|Pr[Aπ
H
2f ,H(1n) = 1]− Pr[AF ,S

F
(1n) = 1]| ≤ (qF + qH)2/ρ (3)

The probability is over the choice of F ,H and the randomness used by S and A. The simulator
SF will internally define fake random oracles Ĥ1, Ĥ2 by lazy sampling which initially are undefined
on all inputs. Ĥ1(x) = ⊥ denotes Ĥ1 is undefined on input x. The set X ⊂ Zµ will denote the
inputs on which Ĥ1 has already been defined, and A = Ĥ1(X ) are the corresponding outputs.
Similarly Y,B = Ĥ2(Y) denote the inputs and the corresponding outputs on which Ĥ2 has been
defined. The simulator also initializes a variable FAIL := 0 which will only be used in the proof
below. Informally, if at the end of the experiment FAIL = 1 then this indicates that SF failed to
define the Ĥ1, Ĥ2 such that π2f (·) looks consistent with F(·) given all queries made so far. If this
happens, the simulator aborts which means it refuses to answer any more queries. We now define
how SF answers queries to Ĥ1 and Ĥ2 and how it updates its state if AF ,S

F
makes an F query.

Ĥ2 query y ∈ Zρ : If y 6∈ Y (equivalently Ĥ2(y) = ⊥) sample b← Zµ and set Ĥ2(y) := b. Output
Ĥ2(y).

Ĥ1 or F query x ∈ Zµ : If x 6∈ X try to program the Ĥi s.t. πĤ2f (x, 0) = F(x) as follows

1. query (f0, f1)← F(x) and set Ĥ1(x) := f1.

2. if f1 ∈ Y set FAIL := 1 and abort.

3. set Ĥ2(f1) := x− f0.

If this is an Ĥ1 (and not a F) query output Ĥ1(x).

Considering the efficiency of our simulator, note that SF does exactly one oracle query for every F
and H1 query of AF ,H (and no query for an H2 query), so qS ≤ qH + qF .

To prov eq.(3) we’ll first bound the probability that FAIL = 1 in the above experiment. Note
that |Y| (i.e. the number of inputs on which Ĥ2 is defined) increases by at most 1 on every Ĥ1, Ĥ2

and F query, thus
|Y| ≤ (qH + qF )

Further, FAIL can only be set to 1 on a Ĥ1 or F query, and this happens if the uniformly random
f1 is in Y. For every query, this happens with probability ≤ |Y|/ρ. Taking the union bound over
all Ĥ1,F queries we get

Pr[FAIL = 1] ≤ (qH + qF )2/ρ

10



Next, well argue that∣∣∣Pr[Aπ
H,H(1n) = 1]− Pr[AF ,S

F
(1n) = 1]

∣∣∣ ≤ Pr[FAIL = 1] (4)

Note that the two equation above imply eq.(3).

Let 〈AF ,SF 〉 denote the transcript containing all queries and corresponding answers of the oracle
queries made by A. For any possible transcript τ

∀τ : Pr[τ = 〈AF ,SF 〉 ∧ FAIL = 0] ≤ Pr[τ = 〈AπH,H〉] (5)

To see this, note S assigns uniformly random values to the Ĥi (the randomness is either sampled
directly or comes from the random function F) which are independent of anything that happend
so far. Eq.(5) implies eq.(4) by standard arguments like the fundamental lemma of game-playing.

Corollary 4.2 (Security and minimal overhead for SIG-MR2f) Let TDP be a (tlossy , εlossy , `)-
lossy trapdoor permutation with domain R(n). Then by Theorem 3.2 SIG-MR2f [ρ] = SIG-MR[PAD2f [ρ],TDP]
is a (tsig , qs, qh, εsig)-secure signature scheme with

tsig = tlossy − (qh + qs) · poly(n), εsig =
(qs + qh)2

2ρ
+

2`− 1

`
εlossy . (6)

Assuming 2εlossy/tsig ≤ 2−n−1, the overhead required to get n bits security with (qs, qh) queries is

ohSIG-MR2f
(n, qs, qh) ≥ n+ log(qh + qs) or ohSIG-MR2f

(n) ≥ 2n

assuming only the trivial qh + qs ≤ 2n bound on the number of queries.

Proof. We compute the overhead according to Definition 2.1. Using 2εlossy/tsig ≤ 2−n−1 and
tsig ≥ qs + qh we obtain by (6)

εsig
tsig
≤ (qs + qh)2

2ρtsig
+ 2−n−1 ≤ qs + qh

2ρ
+ 2−n−1

To get n bits of security we must set the overhead ρ such that εsig/tsig ≤ 2−n, which holds for
log ρ := n+ log(qs + qh).

Note that SIG-MR2f is the same as PSS-MR with modular addition instead of xor. Hence
Corollary 4.2 similar essentially reproves a theorem of [9] about the security of PSS-MR, expressed
in our general framework.

The following lemma says that one cannot avoid the additional additive factor q2h/ρ in the
security reduction, hence the overhead of ohSIG-MR2f

= n+ log(qh) bits is optimal for SIG-MR2f .

Lemma 4.3 If there exists a one-way (lossy) TDP, then there exists a one-way (lossy) TDP′ such
that for all q, SIGPAD2f ,TDP′ is not (tsig = O(q), qh = q, qs = 0, εsig = q2/ρ)-secure.

Proof. We define the evaluation function of TDP′ as f ′(z, y) := (z, f(y)) ∈ Zµ × Zρ. Clearly,
one-wayness and lossiness are inherited. The attack on TDP′ is as follows. First, F picks uniform
x1, . . . , xq and computes yi := f(xi). Next, it makes q queries arbitrary distinct m1, . . . ,mq to
the H1 oracle. The probability that there exists indices i, j ∈ {1, . . . , q} such that H1(mi) = yj
is bounded by q2/ρ. In case they exist, then τ := (mi + H2(yj), xj) is a valid signature, i.e.,
Recover′(τ) = mi.
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4.2 The four round Feistel network

We now define our main padding scheme PAD4F [ρ] based on an unbalanced four-round Feistel
network as illustrated in Figure 1. ρ is a parameter controlling the overhead. We will later prove
that PAD4F [ρ] is (q, q1+o(1)/ρ) simulatable (as compared to the (q, q2/ρ) simulability of PAD2f [ρ].)

x ∈ Zµ 0 ∈ Zρ

x

y

a

b

�H1

� H2

x ∈ Zµ (v, 0) ∈ Zρ × Zρ
x a

b y

z c

d w

�H1

�H3

� H2

� H4

Figure 1: (left) The evaluation function π(x) = φ2f (x, 0) of the padding PAD2f [ρ]. It is derived
from an unbalanced two-round Feistel network φ2f , instantiated with random oracles H1,H2. The
redundancy is log2(ρ) bits. � denotes component-wise addition in the respective domains. (right)
The evaluation function π(x, v) = φ4F (x, v, 0) of the padding PAD4F [ρ], also with log2(ρ) bits
redundancy.

Let Q(µ, q) denote the random variable that takes as value the number of edges of the densest
q × q subgraph of an µ× µ random bipartite Cayley graph of degree q (we give a formal definition
in Section 5.1) We’ll prove the following theorem which bounds the simulability of PAD4F in terms
of the expected value of Q(µ, q).

Theorem 4.4 (Simulability of PAD4F ) The padding scheme PAD4F [ρ] with evaluation function
π : Zµ × Zρ → Zµ × Zρ × Zρ as illustrated in Figure 1 is (qF , qH, qS, tsim , εsim) simulatable for any
qF , qH and with qA = qF + qH

qS ≤ qA log(ρ) tsim = qS · polylog(µ) εsim =
2E[Q(µ, qA)]

ρ
+

2q4A
µ

+
2q2A
ρ2
·
(

log(ρ)

log(ρ/qA)

)2

. (7)

4.3 The Overhead of SIG-MR[PAD4F [ρ],RSA]

We will prove in Section 6 that for any 0 < a < 1/2 we have an upper bound Q(µ, µa) ≤
µa(1+a/(1−2a) except with some extremely tiny probability O(exp(−µβ)) for some β > 0 which
we can safely ignore. As long as

(i) (log ρ− log qA)2 > log2(ρ) · 2 · qA/ρ and (ii) µ ≥ 2q3Aρ (8)

The last two terms of εsim in (7) are≤ qA/ρ ≤ E[Q(µ, qA)]/ρ and we can simplify εsig ≤ 4E[Q(µ, qA)]/ρ.
In order to bound εsig , we need to bound a = log qA/ logµ (as qA = µa). As we’re interested in
80 bit security, we can assume qA ≤ 280. And as we’re interested in an instantiation over an RSA
modulus N with logN ≥ 1024, we can assume logµ = logN − 2 log ρ ≥ 800, and thus get an upper
bound a ≤ log qA/ logµ ≤ 0.1. By Theorem 6.1

E[Q(µ, qA = µa)] ≤ µa(1+a/(1−2a)) = q
1+a/(1−2a)
A ≤ q1.125A
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We assume the parameters of the TDP are such that 2εlossy/tsim ≤ 2−n−1. Then using Theorem 3.2
in the first and tsim ≥ qA in the last step

εsim
tsim

≤
εsig + 2εlossy

tsim
≤ εsig
tsim

+ 2−n−1 ≤ 4E[Q(µ, qA])

ρtsim
+ 2−n−1 ≤

4q1.125A

ρtsim
+ 2−n−1 ≤

4q0.125A

ρ
+ 2−n−1

Setting ρ = 21.125n+3 and using qA ≤ 2n we further get

4q0.125A

ρ
+ 2−n−1 ≤ 4

2n+3
+ 2−n−1 = 2−n

Thus an overhead of ohSIG-MR4F
(n) = 1.125n + 3 in sufficient for n bits security, in particular for

n = 80 we achieve an overhead of log ρ = 1.125n + 3 = 93 (note that the constraints in eq.(8) are
indeed satisfied for this parameters, i.e. ρ = 293, qA ≤ 280, µ ≥ 2800).

We can push the overhead closer to the theoretical minimum of 80 by either setting a non-trivial
upper bound qA � 2n on the number of oracle queries or increasing the domain of the TDP, say
to 2048 instead 1024 as we did now. For example, for qA ≤ 23n/4 (which is 260 for n = 80) we get
a ≤ log qA/ logµ = 60/800 = 0.075. Then

4q0.075A /ρ ≤ 2−n−1

Holds for log ρ = 1.05625n + 3, thus ohSIG-MR4F
(n, q = 23n/4) = 1.05625n + 3, which is 87.5 < 88

for n = 80.

5 Proofs for the Four Round Feistel Padding

The proof is organized as follows. First, in Section 5.1 we define Q(q, µ). Next, we prove a technical
lemma (Lemma 5.3) which informally bounds the advantage of any q query adversary in making
a fresh query x to H1 (variables as in Figure 2, right) such that for some v, in the evaluation of
φ4F (x, v, 0) the input z to H3 has already been queried. Using Lemma 5.3, in Section 5.3 we prove
the simulability of the evaluation function π(·) = φ4F (·, ·, 0) of PAD4F as claimed in Theorem 4.4.
Finally, in Section 6 we prove a q1+o(1)/ρ upper bound on the expected value of Q(q, µ).

5.1 Density of Subgraphs of Random Cayley Graphs

For µ, q ∈ N let B be a subset of Zµ of size q, we define the value

Q(µ, q,B) = max
X ,Z⊂Zµ,|X |=|Z|=q

|{(x, z) | x ∈ X , z ∈ Z, z − x ∈ B}| (9)

We will be interested in the random variable Q(µ, q,B) where B is a randomly chosen q element
subset of Zµ, we denote this variable by Q(µ, q).

It will be convenient to think of Q(µ, q) in terms of random Cayley graphs as we will explain
now. For B ⊂ Zµ, |B| = q we denote with C(µ, q,B) the bipartite graph with µ vertices on each
side which we identify with the elements of Zµ.The edge set is e(C(µ, q,B)) = {(x, z) : z−x ∈ B},
that is, (x, z) is an edge if x + b = z for some b ∈ B. With C(µ, q) we denote the random graph
C(µ, q,B) for a random B ⊂ Zµ, |B| = q.

With this notion Q(µ, q,B) is the maximum number of edges in any subgraph of C(µ, q,B) with
q vertices on each side. Trivial lower and upper bounds on Q(µ, q,B) are

∀B ⊂ Zq, |B| = q : 2q − 1 ≤ Q(µ, q,B) ≤ q2
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In the proposition below we observe that known results on the edge density of graphs without
4-cycles already give us an q1.5 upper bound on the expected value of Q(µ, q,B) ← Q(µ, q). In
Section 6 we will prove an upper bound of q1+o(1) almost matching the lower bound.

Proposition 5.1 If µ ≥ q5 then E[Q(µ, q)] ≤ q1.5 + 3q.

Proof. We first observe that C(µ, q,B)← C(µ, q) has a 4-cycle with probability at most

Pr[G← C(µ, q) : G has a 4-cycle] ≤ q4/µ

The proposition now follows from a result by Naor and Verstraëte [11] who show that a bipartite
graph with q vertices on each side that does not contain a 4-cycle has at most q1.5 +2q edges. With
probability at most q4/µ ≤ 1/q we have a cycle, in which case we use the trivial q2 upper bound
which adds another q = q2/q to the expected value.

5.2 A Game on Three Round Feistel

x ∈ Zµ 0 ∈ Zρ

x a

b y

z c

�H1

�H3

� H2

x ∈ Zµ (v, 0) ∈ Zρ × Zρ

x a

b y

z c

�H1

�H3

� H2

Figure 2: (left) An unbalanced three-round Feistel network φ3f over Zµ×Zρ. (right) The three-
round Feistel network φ3F with an extra Zρ domain on the right side. This permutations define
evaluation functions of padding schemes π3f (x) = φ3f (x, 0) and π3F (x, v) = φ3F (x, v, 0) by fixing
the rightmost Zρ part of the input to 0.

In this section we describe a game, where an attacker A can query three randomly chosen
functions H1,H3 : Zµ → Zρ,H2 : Zρ → Zµ, which we think of as round functions of a Feistel
network φ3f as illustrated in Figure 2 (left). Informally, the adversary wins if she makes a fresh
query x to H1, such that the input z to H3 in the evaluation of φ3f (x, 0) has already been queried.
We will call this game the z-collision game and prove (in Lemma 5.2 below) an E[Q(µ, q)]/ρ upper
bound for any q-query adversary for the z-collision game.

Next, we will show that the same bound on the winning advantage holds for a similar game on
the Feistel-network φ3F as illustrated in Figure 2 (right), where we have an extra Zρ domain on
the right side. Here we say the adversary wins if she makes a query x ∈ Zµ such that there exists
a v ∈ Zρ such that in the evaluation of φ3F (x, v, 0) the input z is not fresh.

We will later use the bound on the winning advantage for the z-collision game on φ3F as key
technical lemma to prove the simulability of π4F . As in the simulability proof the random functions
are defined by lazy sampling (done by the simulator), we will already use lazy sampling in the proof
of our upper bound for the z-collision game. More precisely, we will consider functions Ĥ1, Ĥ2, Ĥ3

which initially are undefined on all inputs. The sets X ,Z ⊂ Zµ,Y ⊂ Zρ denote the inputs to Ĥ1, Ĥ3

and Ĥ2 on which the outputs have been defined, initially X ,Y,Z = ∅. Moreover we initialize a
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variable FAIL := 0, the adversary wins the game if at the end of the game FAIL > 0. We will
assume that Ĥ2 is a random injective function as this will make the proofs a bit cleaner. One
cannot distinguish a random from a random injective function with range Zµ making q queries
with advantage better than q2/µ. As we’ll later set µ ≥ ρ3, this term will be dominated by other
terms Ω(q/ρ) and thus we will simply ignore it.

The z-collision game on φ3f . Consider an adversary A who can make queries to the three
functions (at most most q to each) which are answered as follows:

Ĥ2 query y ∈ Zρ : If y 6∈ Y sample b← Zµ \ B and set Ĥ2(y) := b.6 Output Ĥ2(y).

Ĥ3 query z ∈ Zµ : If z 6∈ Z sample c← Zρ and set Ĥ3(z) := c. Output Ĥ3(z).

Ĥ1 query x ∈ Zµ : If x 6∈ X then

1. sample a← Zρ and set Ĥ1(x) := a.

2. If x+ Ĥ2(a) ∈ Z then FAIL := FAIL + 1.

Output Ĥ1(x).

A wins the z-collision game if at the end FAIL > 0. If we forget about the lazy sampling and
consider an A who plays the game against φ3f (i.e. instantiated with random function H1, . . . ,H3),
then A wins the z-collision game if at same point she makes a query x s.t. the inputs y, z to H2

and H3 (as in Figure 2) in the evaluation of φ3f (x, 0) have already been queried.
We will now upper bound the success probability of any adversary making at most q queries to

each of the three function to win the z-collision game (i.e. achieve FAIL > 0).
Trivial lower and upper bounds on the winning advantage of the z-collision game are q/ρ

and q2/r. We will now give an upper bound on the advantage in terms of Q(µ, q) introduced in
Section 5.1.

Lemma 5.2 The advantage of any q-query adversary A in winning the z-collision game on φ3f
(i.e. force FAIL > 0) is at most

Pr[FAIL > 0] ≤ E[Q(µ, q)]/ρ

Proof. We will only sketch the proof, as this lemma is used to get an intuition for Lemma 5.3
below.

Consider the queries X ,Y,Z made by A, and recall that B = Ĥ2(Y). Consider the (X ,Y)
subgraph of the Cayley graph C(µ, q,B). Now for any x ∈ X , let Bx = {b ∈ B : x + b ∈ Z} be
the number of edges from x to Z. The x query will increase FAIL iff the a ← Zρ we sampled is a
preimage of some b ∈ Bx (i.e. Ĥ2(a) = b ∈ Bx), this probability is |Bx|/ρ. Summing over all x ∈ X
we get E[FAIL] =

∑
x∈X |Bx|/ρ = Q(µ, q,B)/ρ. This is the expectation after B has been fixed, as B

is a random subset
E[FAIL] ≤ E[Q(µ, q)]/ρ (10)

Finally note that E[FAIL] ≥ Pr[FAIL = 1] as FAIL is an integer ≥ 0.
Let us mention that eq.(10) is tight and equality is achieved by the following attack strategy.

First make any q queries to Ĥ2 which gives us a random set B (as Ĥ2 is injective, |B| = |Y| = q).
Next, identify the sets X ,Z of size q s.t. the (X ,Z) subgraph of C(µ, q,B) has Q(µ, q,B) edges.
Make all Z queries to Ĥ3, followed by all X queries to Ĥ1.

6Note that we sample the output from Zµ \ B because we want Ĥ2 to behave like a random injective function.
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Ultimately, our goal is to prove simulability of a padding scheme. The above lemma is a
good start as it tells us that for the evaluation function π3f (x) = φ3f (x, 0) with probability 1 −
E[Q(µ, q)]/ρ the following holds: whenever a q-query adversary makes an x query to Ĥ1, the
resulting z input to Ĥ3 will be “fresh”, and thus we will be able to program the output c := Ĥ3(z)
such that it is consistent with F(x). By adding one more round to the Feistel network we will be
able to program also the left Zµ part of the input. Unfortunately, this will only work as long as the
inputs to this fourth function are fresh. As its inputs are over Zρ, there’s a Θ(q2/ρ) chance we have
a collision on these inputs and will not be able to program after all. Summing up, we are no better
than the q2/ρ bound we already got for the two round Feistel in Theorem 4.1. To overcome this
problem, we will simply increase the domain on the right side of the Feistel to Zρ×Zρ, but in order
to not increase the redundancy space, this extra Zρ space is used for the message, not redundancy.
We will now show that the z-collision game on this new π3F (x, v) = φ3F (x, v, 0) padding scheme is
still hard.

The z-collision game on φ3F .

Ĥ2 query y ∈ Zρ × Zρ : If y 6∈ Y sample b← Zµ \ B and set Ĥ2(y) := b. Output Ĥ2(y).

Ĥ3 query z ∈ Zµ : If z 6∈ Z sample c← Zρ × Zρ and set Ĥ3(z) := c. Output Ĥ3(z).

Ĥ1 query x ∈ Zµ : If x 6∈ X then

1. sample (a0, a1)← Zρ × Zρ and set Ĥ1(x) := (a0, a1).

2. For all (y0, y1) ∈ Y where a1 = y1 and x+ Ĥ2(y0, y1) ∈ Z set FAIL := FAIL + 1.

Output Ĥ1(x).

Lemma 5.3 The advantage of any q-query adversary A in winning the z-collision game on φ3F
(i.e. force FAIL > 0) is at most

Pr[FAIL > 0] ≤ E[Q(µ, q)]/ρ

Proof. Consider the queries X ,Y,Z made by A, and recall that B = Ĥ2(Y). For any query x ∈ X ,
let Bx = {b ∈ B : x + b ∈ Z}. Note that |Bx| is the number of edges from x to Z in the Cayley
graph C(µ, q,B). The expected value by which this x query will increase FAIL is

|Bx|/ρ.

To see this, note that for any b ∈ B, the probability that FAIL wil increase because of this b is 0
if x + b 6∈ Z (equivalently b 6∈ Bx), and 1/ρ otherwise. More precisely, FAIL will increase if the
(a0, a1) we sample and the preimage (y0, y1) of b (i.e. Ĥ2(y0, y1) = b) satisfy a1 = y1, and as a1 is
uniform, Pr[a1 = y1] = 1/ρ. By definition

∑
x∈X |Bx| is the number of edges of the (X ,Z) subgraph

of C(µ, q,B), we have for a fixed B

E[FAIL] ≤ Q(µ, q,B)/ρ

and as B is sampled uniformly at random

E[FAIL] = E[Q(µ, q)]/ρ.
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5.3 Simulating the Four-Round Feistel

In this section we prove Theorem 4.4. Recall that qA = qH + qF denotes total number of queries
made by A. As in the proof of Theorem 4.1 for the two-round Feistel our simulator SF (given access
to a random function F : Zµ ×Zρ → Zµ ×Zρ ×Zρ) will define fake random oracles Ĥi, i = 1, . . . , 4
by lazy sampling. The sets X ,Y,Z,W define the inputs on which Ĥ1, . . . , Ĥ4 have already been
defined. The sets A,B, C,D are the corresponding outputs, e.g. A = Ĥ1(X ). The simulator also
initializes variables FAILi := 0 for i ∈ {0, 1, 2, 3, 4} which will only be used in the proof. Informally,
whenever the simulator cannot define the Ĥi’s consistently, it sets FAILj := 1 (for which j depends
on the reason why it fails) and aborts, by this we mean it just stops giving any more outputs.

We now define how SF answers the qH queries to Ĥi, i ∈ {1, 2, 3, 4} and updates its state on
the qF queries to F .
• Ĥ2 query y ∈ Zρ × Zρ: If y 6∈ Y sample b← Zµ and set Ĥ2(y) := b. Output Ĥ2(y).

If x+ b = z for some x ∈ X , z ∈ Z set FAIL0 := 1 and abort.
• Ĥ4 query w ∈ Zρ: If w 6∈ W sample d← Zµ and set Ĥ4(w) := d. Output Ĥ4(w).
• Ĥ3 query z ∈ Zµ: If z 6∈ Z and there exist two distinct pairs of messages x, (y0, y1) and
x′, (y′0, y

′
1) in X × Y s.t. with (a0, a1) = Ĥ1(x), (a′0, a

′
1) = Ĥ1(x

′)

1. a1 = y1 and a′1 = y′1

2. z = Ĥ2(y0, y1) + x = Ĥ2(y
′
0, y
′
1) + x′

then set FAIL3 := 1 and abort. (Here we fail as z appears in two queries (x, y0 − a0, 0) and

(x′, y′0 − a′0, 0) to πĤ4F , and we won’t be able to program Ĥ3(z) to be consistent with both).
Otherwise, if z 6∈ Z and there exists exactly one pair x, (y0, y1) where a1 = y1 and z =

Ĥ2(y0, y1) + x, try to program Ĥ3, Ĥ4 s.t. πĤ4F (x, y0 − a0, 0) = F(x, y0 − a0) as follows:
1. Query (f0, f1, f2)← F(x, y0 − a0)
2. Ĥ3(z) := (f1 − y0, f2 − y1) (program Ĥ3(z))
3. If (f1, f2) ∈ W set FAIL4 := 1 and abort (fail due to collision on w value)
4. set Ĥ4(f1, f2) := f0 − z (program Ĥ4(w))

Otherwise, if z 6∈ Z and no such pair exists, sample c← Zρ × Zρ and set Ĥ3(z) := c.
Output Ĥ3(z).

• Ĥ1 query x ∈ Zµ: If x ∈ X output Ĥ1(x).
Otherwise, if x 6∈ X sample (a0, a1)← Zρ × Zρ, set Ĥ1(x) := (a0, a1), output Ĥ1(x).

Then for all (y0, y1) ∈ Y where a1 = y1 try to program Ĥ3, Ĥ4 s.t. πĤ4F (x, y0 − a0, 0) =
F(x, y0 − a0) as follows:

1. Query (f0, f1, f2)← F(x, y0 − a0)
2. If Ĥ2(y0, y1) + x ∈ Z set FAIL1 := 1 and abort (fail due to collision on z value)
3. for z = Ĥ2(y0, y1) + x set Ĥ3(z) := (f1 − y0, f2 − y1) (program Ĥ3(z))
4. If (f1, f2) ∈ W set FAIL2 := 1 and abort (fail due to collision on w value)
5. set Ĥ4(f1, f2) := f0 − z (program Ĥ4(w))

• F query (x, v) ∈ Zµ: Try to program the Ĥi s.t. πĤ4F (x, v, 0) = F(x, v) as follows: query

(a0, a1) ← Ĥ1(x) (as described above), then query b ← Ĥ2(v + a0, a1) and finally (c0, c1) ←
Ĥ3(x+ b) (note that we don’t have to query Ĥ4 explicitly as the Ĥ3 query already programs
Ĥ4.)

We will bound the probability that FAILi = 1 for i ∈ {0, 1, 2, 3, 4}, and then can use standard
arguments show that the advantage of distinguishing F , SF from πH,H is upper bounded by the
sum of these probabilities.

We start with bounding the sizes of X ,Y,Z,W which will give the same upper bounds on
A,B, C and D, respectively. As X and Y can only increase by at most 1 on a Ĥ1, Ĥ2 or F query,
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we have
|X | , |Y| ≤ qA (11)

Bounding |Z| and |W| is less trivial, as a Ĥ1 query can increase |Z| and |W| by as much as |Y|,
and thus we only get a q2A upper bound. Fortunately the expected increase of |Z|, |W| on a query

x to Ĥ1 is only |Y|/ρ ≤ qA/ρ ≤ 1 as (y0, y1) ∈ Y will increase |Z|, |W| if y1 = a1 for the randomly
chosen a1 ∈ Zρ. Moreover a Ĥ3 or Ĥ4 query can increase |Z| and |W| by at most 1. We get a
bound on the expected size of Z,W of (we have a factor 2 below, as an F query invokes a Ĥ1 and
Ĥ3 query.)

E[|Z|] , E[|W|] ≤ 2qA (12)

Below, we will also need an upper bound on E[|W|2]. As mentioned, the expected increase of
|W| with every x query is |Y|/ρ, the case which maximizes E[|W|2] is when this increase is ei-
ther |Y| (with probability ρ−1) or 0, as this maximizes the variance of |W|, and thus also the
expectation E[|W|2]. The probability that we increase by |Y| more than t times is at most
(qA/ρ)t. Setting t := − log ρ/ log(qA/ρ) = log ρ/ log(ρ/qA) this is (qA/ρ)t = 2− log ρ = 1/ρ we

get Pr
[
|W| ≥ qA · log ρ

log(ρ/qA)

]
≤ 1/ρ. The same bound holds for |Z|, and from now on we’ll assume

|Z| , |W| ≤ qA · log ρ/log(ρ/qA) (13)

We can safely ignore the tiny 1/ρ probability that this fails to hold.
We will now bound the probability that FAIL0 := 1 will be set in any of the queries to Ĥ2.

There are at most |X ||Z| possible b ∈ Zµ s.t. x+ b = z for some x ∈ X , z ∈ Z, thus a random b will
fall in this set with probability at most |X ||Z|/µ. Taking the union bound over all ≤ qA queries to
Ĥ2

Pr[FAIL0 = 1] ≤ qAE[|X ||Z|]
µ

≤
q2AE[|Z|]

µ
≤

2q3A
µ

(14)

Next, we will bound the probability that FAIL2 := 1 will be set in any of the at most qA queries to
Ĥ1. We set FAIL2 := 1 if the uniformly random (f1, f2) falls into the set W, which happens with
probability |W|/ρ2. Taking the union bound over the at most |W| times we will go into step 4. of
the Ĥ1 query and (13) in the second step

Pr[FAIL2 = 1] ≤ E[|W|2]
ρ2

≤
q2A
ρ2
·
(

log ρ

log(ρ/qA)

)2

(15)

We get the same bound with the same argument for Pr[FAIL4 = 1].
To bound the probability that FAIL1 := 1 will be set, we observe that from an adversary A

who manages to set FAIL := 1 when interacting with F ,SF , we can get an adversary Ã which wins
the z-collision game on φ3F with at least the same probability. Using this observation with the
bound from Lemma 5.3 and the upper bound on |Z| as given (13) would give Pr[FAIL1 = 1] ≤
E[Q(µ, qA log ρ/ log(ρ/qA))]/ρ. We can get a better bound using E[|Z|] ≤ 2qA and the fact that for
any c ≥ 1, Q(µ, q) increases by at most a factor c if we allow the Z in (9) to have size cq instead
of q (this follows from the maximality of Z.) In particular this gives

Pr[FAIL1 = 1] ≤ 2E[Q(µ, qA)]/ρ (16)

We will now bound Pr[FAIL3 = 1]. To have FAIL3 = 1 it must be the case that at some point
the adversary makes a fresh query y 6∈ Y s.t. the random output Ĥ3(y) = b satisfies x+ b = x′ + b′

for some (x, x′, b′) ∈ X × X × B (note that if the x query was made after the y query, then Ĥ(z)
would already be defined). As there are at most |X |2|Y| ≤ q3A triples, (x′, b′, x), each giving rise to
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one possible “target” b = x′ + b′ − x, the probability to hit any of them in the at most qA queries
is at most

Pr[FAIL3 = 1] ≤
q4A
µ

Finally, we can bound

|Pr[Aπ
H,H(1n) = 1]− Pr[AF ,S

F
(1n) = 1]|

≤
4∑
i=0

Pr[FAILi = 1] (17)

≤ 2E[Q(µ, qA)]

ρ
+

2q4A
µ

+
2q2A
ρ2
·
(

log ρ

log(ρ/qA)

)2

using standard arguments like in the proof of Theorem 4.1.

6 Size of Subgraphs of Random Cayley Graphs

In this section we shall give a tail estimate for the random variable Q(µ, q) introduced in Section 5.1.
Recall that Q(µ, q) ranges over randomly chosen B ⊂ Zµ, |B| = q, and takes value

Q(µ, q,B) = max
X ,Z⊂Zµ,|X |=|Z|=q

|{(x, z) | x ∈ X , z ∈ Z, z − x ∈ B}| (18)

Theorem 6.1 For 0 < a < 1/2 and α > 2a2, there is some β > 0 such that

Pr[Q(µ, µa) ≥ µa+α] ≤ O(exp(−µβ))

Intuition. The proof of Lemma 6.1 is by a compression argument. We will show that a set B
satisfying Q(µ, q,B) ≥ µa+α has a lot of constant size linear relation between its elements, which
allows us to describe B with less than log

(
µ
µa

)
bits (the latter is the number of bits needed to

describe B without the condition). The number of bits saved will be µβ for some β > 0, implying
the bound in Lemma 6.1 on the probability. In fact, we are going to encode only a subset D ⊆ B,
|D| = µγ more efficiently than usual, while we encode the rest, D = B \ D, in the usual way.

Assume that D is already given, and there are some fixed x, z ∈ Zµ such that all elements b ∈ D
can be expressed as b = z−x− ε1b1− . . .− εlbl, where b1, . . . , bl ∈ D and ε1, . . . , εl ∈ {1,−1}. Then,
after the minimal overhead of specifying z and x (once for the entire D), we can describe b with
only l × (log |D| + 1) bits instead of (1 − a) logµ bits. This gives us an advantage, when l ≤ 1−a

2a ,
since log |D| ≤ log |B| = a logµ. The gain will be |D|1−a2 (logµ− 1

a) bits.

Proof. Consider a B that satisfies Q(µ, q,B) ≥ µa+α via X ,Z ⊆ Zµ (there may be numerous such
set-pair certificates; we pick one). Let G be the bipartite graph with bipartition X ,Z and edge set

e(G) = {(x, z) | x ∈ X , z ∈ Z, z − x ∈ B}.

It is easy to see that G has an induced subgraph G′ of G such that G′ still has Ω(na+α) edges,
moreover all degrees are at least nα/4. Consider any point x ∈ X ∩ V (G′). For our proof the
following definition is crucial:

Definition 6.2 Let Pi for i = 1, 2, . . . be the set of all those paths π of length i that satisfy:
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1. π starts at x

2. No two edges edges of π have identical labels, where a label of an edge (x, z) is by definition
z − x.

Note that every path in Pi has at most i continuations that are not in Pi+1. Thus the over-
whelming majority of paths from x of length i belongs to Pi. In fact, because every degree in G′ is
at least µα/4, the number of different path in Pi is at least

i−1∏
j=0

(
µα

4
− j
)
>

1

2

µiα

4i

if µ is sufficiently large. Set i to be a/α + 1, assuming this is an integer. (If not, we set it to
da/α+ 1e.) So there must be a z ∈ X , if i = a/α+ 1 is even, or z ∈ Z, if i = a/α+ 1 is odd, such
that at least 1

2
µα

4i
paths from Pi end in z (since |X |, |Z| ≤ µa). Let T be the set of the paths that

end in this z. For a path π let `(π) denote the set of labels that occur on its edges. Notice that the
number of path π for which `(π) is a given fixed set of i different labels is at most i!, a constant.
This implies that the size of the set system

T = {`(π) | π ∈ T}

is at least 1
i!
1
2
µα

4i
, which further implies that its basic set (i.e. ∪`(π)∈T `(π)) is of size at least(

1
i!
1
2
µα

4i

)1/i
= Ω(µα/i). Let D0 be this basic set. We are going to define a subdivision B = D ∪ D

with the property that |D| = Ω(µα/i) and every element in D can be written as b = z − x− ε1b1 −
. . . − εi−1bi−1, where b1, . . . , bi−1 ∈ D, ε1, . . . , εi−1 ∈ {1,−1}, and x and z are the fixed starting-
and end-point of the paths in T. First select every element of B that are not in D0 into D. The
existence of the desired D is now going to be guaranteed by a probabilistic construction. Recall that
in a probabilistic construction all we have to show is that the desired event occurs with non-zero
probability. We throw every element of D0 with probability 1− 1/i also into D. For every element
b ∈ D0 there is a π ∈ T such that b ∈ `(π) (we designate this π to b before doing the random
drawing with the understanding that there can be more bs whom we designate the same π). The

probability that all elements of `(π) with the exception of b is thrown into D is 1
i

(
1− 1

i

)i−1
> 1

4i .
We put every such b into D, and all the rest into D. Notice that now every such b is of the form

b = z − x− ε1b1 − . . .− εi−1bi−1,

where b1, . . . , bi−1 are the labels on the path `(π) other than b. This probabilistic construction
shows that there is choice for D of size at least 1

4i |D0| with the desired property.
In summary, what we have proven:

Lemma 6.3 If Q(µ, q,B) ≥ µa+α there is a subdivision D,D of B such that |D| = cµα/i for
i = a/α + 1 and for some constant c = c(a) such, that every element in D can be written as
b = z−x− ε1b1− . . .− εi−1bi−1 for some b1, . . . , bi−1 ∈ D, ε1, . . . , εi−1 ∈ {1,−1} with fixed z and x.

From the lemma we get that the number of Bs for which Q(µ, q,B) ≥ µa+α is at most

µ2
(

µ

µa − cµα/i

)
×
(

(2µa)a/α
)cµα/i

.

20



Here µ2 comes from specifying x and z;
( µ
µa−cµα/i

)
comes from specifying D; 2µa in the second term

comes from specifying εj and bj , where 1 ≤ j ≤ a/α = i− 1, and the outer exponent of the second
term comes from that we have to do this for all b ∈ D. The expression can be estimated from above
as

µ2
(
µ

µa

)
× 2µacµ

α/i

µcµ
α/i
×
(

(2µa)a/α
)cµα/i

.

This is significantly smaller than
(
µ
µa

)
when 2a2 < α.
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