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Abstract. In a proxy re-encryption (PRE) scheme, a proxy is given a re-encryption key and has the
ability to translate a ciphertext under one key into a ciphertext of the same message under a different
key, without learning anything about the message encrypted under either key. PREs have been widely
used in many exciting applications, such as email forwarding and law enforcement. Based on a good
observation on the applications of PREs, we find that a PRE receiver needs an ability, just like what
is provided by public-key encryption with non-interactive opening, to non-interactively and efficiently
convince third parties of what he obtains from a particular (transformed) ciphertext, while still keeping
the security of his secret key and other ciphertexts.
To meet such a practical requirement, we first introduce proxy re-encryption with non-interactive
opening (PRENO), and formally define the notions of security against chosen ciphertext attacks (CCA)
and proof soundness. Our security model is natural and strong since we allow the CCA adversary to
adaptively choose public keys for malicious users (i.e., a chosen key model), and a scheme secure in
previous models (i.e., knowledge of secret key models) is not necessarily secure in our model. Then, we
present an efficient PRENO scheme which satisfies our security notions based on the decisional bilinear
Diffie-Hellman (DBDH) assumption in the standard model. Compared with two previous PRE schemes,
our scheme is competitive in several aspects. First, its CCA security is proved in a strong security model
under a well-studied assumption in the standard model. Second, it has a good overall performance in
terms of ciphertext length and computational cost. Third, it first provides non-interactive opening for
PRE schemes.

1 Introduction

In 1998, Blaze, Bleumer, and Strauss [5] proposed the notion of “atomic proxy re-encryption”, in
which a semi-trusted proxy is given a re-encryption key that allows it to translate a ciphertext
under one key into a ciphertext of the same message under a different key, without seeing the
underlying plaintext. Blaze et al. [5] called a proxy re-encryption (PRE) scheme is bidirectional
if a re-encryption key rk1,2 allows the proxy to translate ciphertexts under the delegator’s public
key pk1 to ciphertexts under the delegatee’s public key pk2 and vice versa, and called a scheme
is unidirectional if a re-encryption key rk1,2 only allows the proxy to translate ciphertexts under
pk1 to ciphertexts under pk2. They also gave another method to classify PRE schemes, namely,
a scheme is single-hop [34,44,35] if the ciphertext can only be transformed once, otherwise it is
multi-hop [9].

In the last decade, proxy re-encryption has attracted many researchers’ attention [5,9,34,39] and
has plenty of exciting applications in key management [5], email forwarding [30,27], law enforcement
[24], publish/subscribe systems [29], multicast [40], secure file systems [2,3], telemedicine [26], digital
right management [43] and so on.

When examining those applications, we find that a PRE receiver has a critical requirement
to efficiently convince third parties of that the decryption of some particular ciphertext is what
he claims. A naive solution of this requirement is to reveal the receiver’s secret key. However,



such a solution compromises the security of all other ciphertexts of the receiver, and may not be
necessary for practical applications. Actually, a similar requirement has been introduced in the
public-key encryption setting, and been satisfied by public-key encryption with non-interactive
opening (PKENO) proposed by Damg̊ard and Thorbek [14].

We try to introduce the “non-interactive opening” ability to proxy re-encryption, while keeping
the security of the receiver’s secret key and other ciphertexts. We call this new primitive “proxy
re-encryption with non-interactive opening” (PRENO). At first, we prefer to recall two applications
where PREs are used and PRENOs are very useful.

Key Escrow System. In a key escrow system (e.g., [38,18,32,24]), a trusted party is set to mediate
the conflicts between users and law enforcement agencies. The problem is to allow the law
enforcement agency (without knowing users’ secret keys) to read messages encrypted for a set
of users, for a limited period of time. In a traditional solution, a key escrow agent holds all
users’ secret keys, such that whenever the law enforcement agency wants to read a message
belonging to a user, the key escrow agent first decrypts the message and then re-encrypts it
with the law enforcement agency’s public key. In order to prevent the key escrow agent from
knowing users’ secret keys and plaintexts, Ivan and Dodis [24] used proxy re-encryption scheme
in their system, namely, the key escrow agent only holds proxy keys between users and the law
enforcement agency, and transforms ciphertexts under users’ public keys into ciphertexts under
the law enforcement agency’s public key when necessary.

Ivan and Dodis’s [24] solution for a key escrow system works perfectly so far. However, if we
go a step further, it is easy to find that there are still other problems needed to be concerned.
For example, whenever finding some criminal messages of a user, say Eve, the law enforcement
agency may take those messages as evidence to charge Eve in court. To convince the judge and
the public, it is very necessary for the law enforcement agency to prove those illegal messages
are indeed the results of decrypting Eve’s ciphertexts.

Telemedicine. A telemedicine system (e.g., [17,41,26]) involves patients, doctors and electronic
medical records (EMR) servers. In such a system, patients’ health information such as blood
pressure and blood sugar readings which is collected by portable devices, is sent to the EMR
server in encrypted form under the server’s public key. Then, the server decrypts the data, and
re-encrypts it to corresponding doctors. After making an evaluation, doctors will provide con-
sultations to patients. To protect patients’ private information from the EMR server, Kailasam
et al. [26] used proxy re-encryption in their telemedicine system–Arogyasree.

A practical telemedicine system can bring good healthcare to patients, especially for those living
in an area lacking of doctors. However, we should take care of the doctor-patient relationship,
since there are always conflicts between patients and doctors in the real world (e.g., the recent
widely concerned trial of pop star Michael Jackson’s doctor). Thus, both types of users (i.e.,
doctors and patients) in telemedicine systems (e.g., [26]) may wish to effectively protect their
own interests in probable medical accidents. The most important thing for each user is to keep all
the transcripts, and to prove those are actually the decryption results of his received ciphertexts
if necessary.

Note that, all receivers in the above applications have to convince others of what they obtain
from a ciphertext alone, since the sender might be absent or be unwilling to help prove a claim
that would result in negative effects on his own interests. Thus, it is very important to give a
mechanism that provides a receiver the ability to non-interactively achieve such a goal. Also, if
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taking account of practical factors, the mechanism should be efficient, and still keep the security of
the receiver’s other ciphertexts. As one of our contributions, PRENO is an ideal candidate to handle
this problem1. Besides, there are many other promising applications for PRENOs, such as Mailing
lists [30], publish-subscribe systems [29], multicast key management [40], and securing distributed
storage [28].

1.1 Related Work.

In Eurocrypt 2007, Damg̊ard and Thorbek [14] introduced the notion of public-key encryption with
non-interactive opening (PKENO). Later, two generic constructions [13,45] from identity-based en-
cryption (IBE) to PKENO have been proposed. Galindo et al. [19] gave another generic construction
from any robust non-interactive threshold encryption (TPKE) to PKENO. Most recently, Lai et
al. [31] constructed a PKENO scheme by combining the identity-based techniques in [8] and [7].

As for proxy re-encryption, Mambo and Okamoto [37] proposed the idea of delegating decryp-
tion rights. Blaze et al. [5] later introduced the notion of “atomic proxy re-encryption”, and gave
a bidirectional scheme. Since then, many works of handling different problems appeared in the
literature [25,24,46,2,3]. However, almost all the constructions above are only secure against chosen
plaintext attacks (CPA), which may not meet the security requirement in some applications (e.g.,
encrypted email forwarding [9]).

In CCS 2007, Canetti and Hohenbergery [9] studied the security against chosen ciphertext
attacks (CCA) for bidirectional PRE schemes, and proposed a scheme that satisfied their security
definition in the standard model. They also left an open problem to construct a CCA secure
unidirectional PRE scheme (in the standard model). Later, Libert and Vergnaud [34,35] considered
the security for single-hop unidirectional proxy re-encryption scheme in the sense of replayable
chosen ciphertext attacks (RCCA) [10]. Informally, in the RCCA security game, the challenger
rejects any decryption query that the underlying plaintext is either m0 or m1 in the second phase2.
Libert et al. [34] proposed the first RCCA secure single-hop unidirectional PRE scheme based on
the 3-Quotient Decision Bilinear Diffie-Hellman (3-QDBDH) assumption in the standard model.
As in [9], they used the CHK technique [8] to achieve RCCA security, with a price of increasing
computational cost and ciphertext length.

There are several unidirectional PRE schemes [2,42,11] in the random oracle model. In PKC
2009, Shao et al. [42] constructed a unidirectional single-hop PRE scheme without pairings. Con-
cretely, they constructed a scheme based on the DDH assumption over ZN2 in the random oracle
model. As the big size of the modulus N is needed (at least 1024 bits), Shao et al. noticed that
their scheme needs more time for computation and more storage for ciphertext than the scheme
using pairings in the standard model [34]3.

In 2010, Weng et al. [44] proposed a single-hop unidirectional scheme also based on the 3-
QDBDH assumption. They tried to use pseudorandom functions (PRFs) to achieve CCA security,
and a possibly implicit assumption in their security proof is that the outputs of PRFs with two
related keys and the same inputs are mutually independent and still pseudorandom. As far as we

1 Non-interactive Zero Knowledge proof (NIZK) is another possible solution, but as far as we know, NIZKs (in the
standard model) are too inefficient to be practical.

2 m0,m1 are the two equal length messages submitted by the adversary in the challenge phase.
3 Shao et al. [42] claimed their scheme is CCA secure, but a following work [11] pointed out that Shao et al.’s scheme

is vulnerable to chosen ciphertext attacks. However, the attack can be fixed with one more check in the decryption
algorithm.
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know, it is unclear whether PRFs can provide such a guarantee. Moreover, they claimed that their
scheme could allow the adversary to adaptively corrupt users, but their scheme essentially follows
the routine of [34]. The strategy of using Coron’s technique [12], namely determining whether a
key is honestly generated or not beforehand by taking random coins, may not work in the PRE
setting due to the second phase re-encryption key queries especially from the challenge public key
to honestly generated ones (i.e., predetermined for users’ corruption but the adversary did not
corrupt).

Libert et al. [35] considered a more natural and realistic security model for PREs (also in the
sense of RCCA), namely, the chosen key (CK) model wherein the adversary itself can adaptively
choose malicious users’ public keys. They also noted that almost all previous schemes only consid-
ered security in the knowledge of secret key (KOSK) model, which they conjectured to be weaker
than the CK model although they “did not find a strict separation in the context of proxy re-
encryption”. Besides, they proposed a temporary PRE scheme proved RCCA secure in the CK
model.

More recently, Hanaoka et al. [22] gave a generic construction from threshold public key encryp-
tion (TPKE) with special property (i.e., what they called resplittable TPKE [22]) to PRE. Their
strategy is clear, but the instantiation is somewhat inefficient. We also note that Hanaoka et al.’s
generic construction [22] seems not to give light on how to obtain a PRENO scheme. Besides, there
are many other fruitful results on proxy cryptography, such as identity-based PRE schemes [21,36],
key-private PRE schemes [1], and proxy re-signature schemes (PRS) [4,33].

1.2 Our Contribution.

In this paper, we first consider a strong CCA security model for PRE(NO) schemes, namely, the
CK model wherein the adversary can adaptively choose public keys for malicious users. Then, we
give a single-hop unidirectional PRENO scheme, which satisfies our security notions under DBDH
assumption in the standard model. Our PRENO scheme is very efficient and very useful in practice.

Many previous PRE schemes (e.g.,[34,42,44]) are only proved secure in the KOSK model, where
the challenger generates all users’ public keys and can (and perhaps must) make use of the malicious
users’ secret keys to go through the security proof. Libert et al. [35] noted that the KOSK model
might be somewhat unrealistic in practice. In fact, the “knowledge of secret key” requirement
is relatively strong in the context of unidirectional PRE, since it is hard and not necessary for
the delegator to check whether a given delegatee’s public key is properly generated (e.g., when
generating the re-encryption key). Thus, our CK model seems more natural and powerful. Actually,
we show that the scheme in [34] proved secure in the KOSK model is not secure in our CK model,
which gives a strict separation between KOSK and CK.

As for non-interactive opening, maybe the simplest way is to give third parties the ability to
decrypt the particular ciphertext. Several previous PKENO schemes are constructed from identity-
based encryption (IBE) schemes where a user’s secret key is the IBE scheme’s master secret key,
and each ciphertext is associated with a unique identity. Then, the proof of a particular ciphertext
is given by the secret key corresponding to the unique identity in the ciphertext.

We try to follow the idea from IBE to PKENO, but in the single-hop unidirectional PRENO
setting, this becomes somewhat difficult. Since there are two types of ciphertext at two levels, and we
require that both levels’ ciphertexts can be treated as “identity-based” ciphertexts. Unfortunately,
we find no existing PRE schemes that already have the desired form. To achieve our goals, we
imagine the re-encryption algorithm plays a similar role as the “bootstrapping strategy” in Fully
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Homomorphic Encryption (FHE) schemes introduced by Gentry [20]. Concretely, the re-encryption
algorithm “decrypts” the incoming ciphertext and “encrypts” the resulting message under another
public key at the same time by using the re-encryption key4. Finally, we obtain a PRENO scheme
that is CCA secure in our CK model. Compared with two well-known single-hop unidirectional
PRE schemes [34,42], our scheme is competitive in several aspects. This probably shows that our
new treatment for re-encryption algorithm could be used to design other efficient and secure PRE
schemes with/without random oracles.

Stronger security. Libert et al.’s scheme [34] is proved secure under the 3-QDBDH assumption,
which the authors claimed to be hard in generic groups according to the results of Dodis and
Yampolskiy [16]. But given an oracle solving DBDH problem, it is easy to solve the 3-QDBDH
problem. Thus, it seems more confident to construct cryptographic schemes based on the DBDH
assumption rather than the 3-QDBDH assumption. We also note that their scheme [34] is only
secure in the sense of RCCA which is strictly weaker than CCA. The scheme in [42] is based on
the decision Diffie Hellman assumption over Z∗N2 in the random oracle model, where N is a big
modulus. But it is well-known that a security proof in the random oracle model may not guarantee
its security in the standard model, thus, should be avoided whenever possible. Besides, both above
schemes [34,42] are only proved secure in the KOSK model.

We employ the “decryption and check” idea to achieve CCA security in a fashion similar to [6]
by using collision resistant hash functions and universal hash functions, and finally establish our
scheme’s CCA security in the CK model based on the collision resistance of hash functions, the
generalized leftover hash lemma [15], as well as the DBDH assumption in the standard model. One
byproduct of our “decryption and check” strategy is that the proof algorithm only gives proofs for
valid ciphertexts (i.e., the decryption results are not equal to ⊥), which might not be necessary for
“non-interactive opening”. However, we note that our scheme is still useful and satisfactory for the
applications mentioned before where only valid ciphertexts make sense (e.g., the law enforcement
agency is not likely to use ‘⊥’ as an evidence to charge someone in court, and the doctor may not
be willing to give any consultation as a response to an incoming message ‘⊥’).

Better efficiency. We use the technique introduced by Hohenberger and Waters in [23] to avoid
using one-time signatures. Briefly, we attach “two tags” to each ciphertext, one is randomly chosen
and the other is uniquely determined by other elements in the ciphertext. This greatly reduces
our scheme’s overhead both in computation and communication. In Section 5, we give a detailed
comparison between our scheme and two well-known single-hop unidirectional PRE schemes in
[34,42], and the result shows that our scheme has a competitive overall performance in terms of
computational cost and ciphertext size.

1.3 Organization.

The rest of this paper is organized as follows. After a brief preliminaries section, we give definitions
and security models for single-hop unidirectional PRENOs in Section 3. In Section 4, we propose
our PRENO scheme. A comparison of related single-hop unidirectional PRE schemes is given in
Section 5, and finally we conclude in Section 6.

4 Note that unlike in FHE schemes, the re-encryption key cannot simply be a ciphertext of the delegator’s secret
key under the delegatee’s public key due to the security of PREs.
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2 Preliminaries

2.1 Notation

If x is a string, |x| denotes its length, and if S is a set, |S| denotes its size. Denote x‖y as the
bit concatenation of two strings x, y ∈ {0, 1}∗. We use 1k to denote the string of k ones for some
positive integer k. We use the notation ← to denote randomly choosing an element from some
set (distribution) or indicate the output of some algorithm. For example, s ← S means that we
randomly choose an element s from the set (distribution) S, and z ← A(x, y, . . . ) means that the
output of algorithm A with inputs x, y, . . . , is z. We say a function f(n) is negligible if for every
c > 0, there exists a N such that f(n) < 1/nc for all n > N . Usually, we denote an unspecific
negligible function by negl(n). We say a probability is overwhelming if it is 1− negl(n).

2.2 Bilinear Groups and Assumptions

Let positive integer k be the security parameter, G and GT be two cyclic groups of prime order
p ≥ 2k, and e : G×G→ GT be a bilinear pairing. The decisional bilinear Diffie-Hellman (DBDH)
assumption states that the two distributions (gx, gy, gz, e(g, g)xyz) and (gx, gy, gz, e(g, g)r), where
x, y, z, r are randomly and independently chosen from Zp, are indistinguishable for any polynomial
time adversary. Formally, for any probabilistic polynomial time adversary A, its advantage

Advdbdh
PG,A (k) = |Pr[A(gx, gy, gz, e(g, g)xyz) = 1]− Pr[A(gx, gy, gz, e(g, g)r) = 1]|

is negligible in security parameter k, where the probability is over the random choices of x, y, z, r
in Zp and the random bits of A.

2.3 Families of Hash Functions

Let H = {H : X → Y }H∈H be a family of hash functions. We say H is collision resistant (CR), if
there is no polynomial-time algorithm that given a randomly chosen H ← H, outputs an element
x1, x2 in X and x1 6= x2, such that H(x1) = H(x2) holds with non-negligible probability, where
the probability is over the random choices of H, and the random bits of the algorithm. We say H
is universal if for all x1 6= x2 we have PrH←H[H(x1) = H(x2)] = 1/|Y |.

For a pair of (possibly correlated) random variables A and B, the average min-entropy of A
given B is defined as

H̃∞(A|B) = − log
(
Expb←B

[
max
a

Pr[A = a|B = b]
])

= − log
(
Expb←B

[
2−H̃∞(A|B=b)

])
.

Lemma 1 (Generalized Leftover Hash Lemma [15]). If H = {H : X → Y }H∈H is a family
of universal hash functions. Then, for any random variables W , I, the statistical difference between

(H,H(W ), I) and (H,U, I) is at most 1
2 ·
√

2−H̃∞(W |I)|Y |, where H and U are uniformally distributed
over H and Y , respectively.
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3 Proxy Re-encryption with Non-interactive Opening

Several works have studied single-hop unidirectional PRE schemes [34,42,22]. In this paper, we also
concentrate on single-hop unidirectional PRENO scheme, which consists of the following algorithms:

Setup(1k): Given the security parameter 1k, return a public parameter param, which specifies
plaintext space P, ciphertext space C and randomness space R.

KeyGen(param): Given the parameter param, return a public-secret key pair (pk, sk).
ReKeyGen(ski, pkj): Given a secret key ski of user i (i.e., delegator) and a public key pkj of user
j (i.e., delegatee), return the re-encryption key rki→j .

Enc(pki,m, δi): Given a public key pki, a message m ∈ P and a ciphertext type δi ∈ {1st, 2nd},
return a δi level ciphertext Ci.

ReEnc(rki→j , Ci): Given a re-encryption key rki→j and a 2nd level ciphertext Ci, return a 1st level
ciphertext Cj under pkj or an error symbol ⊥.

Dec(ski, Ci, δi): Given a secret key ski and a δi ∈ {1st, 2nd} level ciphertext Ci, return a message
m ∈ P or an error symbol ⊥.

Prove(ski, Ci, δi): Given a secret key ski and a δi ∈ {1st, 2nd} level ciphertext Ci, return a proof
πi of the decryption result of Ci.

Ver(pki, Ci, δi,mi, πi): Given a public key pki, a δi ∈ {1st, 2nd} level ciphertext Ci, a message m
and a proof πi, return 1 if πi is a valid proof for (pki, Ci, δi,mi), else return 0.

For correctness, we require that for any key pair (pk, sk), any message m ∈ P, and any δ ∈
{1st, 2nd} level ciphertext of m under public key pk that is output by either Enc or ReEnc, the
following conditions hold with overwhelming probability.

– Dec(sk, C, δ) = m.
– Ver(pk, C, δ,m, Prove(sk, C, δ)) = 1.

Remark. Previous works usually define two encryption (decryption, resp.) algorithms for two
levels ciphertexts. Here, we use a parameter δ to specify which case is in related algorithms for
compactness.

3.1 Chosen-Ciphertext Security

Unlike previous KOSK models in [34,42], we consider the CK model, where the adversary can
adaptively choose public keys for malicious users. The CK model is strictly stronger than previous
KOSK models since in Appendix A, we show that the scheme in [34] is not secure in our CK model.
But as previous models [34,35], we also disallow the adversary to adaptively corrupt users5. We
provide a PRENO adversary the following oracles:

– Honest key generation oracle Ohkg(i): Compute (pki, ski)← KeyGen(i), and return pki.

– Re-encryption key oracle Orek(pki, pkj): Given public keys pki and pkj , return the re-encryption
key rki→j ← ReKeyGen(ski, pkj).

– Re-encryption oracleOrec(pki, pkj , Ci): Given public keys pki, pkj , and a 2nd level ciphertext Ci,
compute rki→j ← ReKeyGen(ski, pkj), and return a 1st level ciphertext Cj ← ReEnc(rki→j , Ci).

5 Note that the CK model does not necessarily mean the adversary can adaptively corrupt users, but it does imply
the adversary can statically corrupt users. Thus, there is no need to explicitly provide a malicious key generation
oracle as in previous models. Besides, it is still an open problem to handle fully adaptive corruptions [35].
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– Decryption oracle Odec(pki, Ci, δi): Given a public key pki and a δi ∈ {1st, 2nd} level ciphertext
Ci, return m← Dec(ski, Ci, δi).

– Proof oracle Opf(pki, Ci, δi): Given a public key pki and a δi ∈ {1st, 2nd} level ciphertext Ci,

return πi ← Prove(ski, Ci, δi).

Libert et al. [34] claimed that it is useless to explicitly provide a 2nd level decryption oracle to
the adversary. However, Hanaoka et al. [22] gave a counterexample that is insecure in the model
with a 2nd level decryption oracle while still secure in the model without. Thus, we allow the
adversary to make 2nd level decryption queries for stronger security.

For convenience, we say a public key pki is good if it is output by Ohkg(i), otherwise we say it

is bad (i.e., chosen by the adversary). Throughout the paper, we require all the public keys used as
the first inputs in Orek(·) and Orec(·), as well as the public keys in Odec(·) and Opf(·) are output

by Ohkg(·). This is natural, since other public keys are chosen by the adversary, the challenger

does not know the corresponding secret keys (it is very possible that the adversary does not know
them either). Moreover, we simply use the integer (i.e., i) as the unique identifier of a user. Note
that in our model, the adversary can arbitrarily assign a “public key” to a user even through he
may not know the corresponding secret key. Especially, the adversary can set the public key of user
j exactly equal to the public key of user i by setting pkj = pki. In this case, it is natural to treat
pkj as a bad public key no matter whether pki is bad or not.

To capture the CCA security for single-hop unidirectional PRENO schemes, we follow a routine
in [34,42,44] to separably consider the security of ciphertexts at two levels. First, we associate to a
PRENO adversary A the following PRENO-CCA abstract experiment with parameters (O′, δ),
where O′ is a set of oracles provided to A, and δ ∈ {1st, 2nd} specifies which level ciphertext that
A attacks. Both parameters will be instantiated in Definition 1 and Definition 2.

Experiment Exp
preno-cca
Πs,A (1k)

param← Setup(1k)

(pki∗ ,m0,m1)← AO
′
(param)

b← {0, 1}
C∗ ← Enc(pki∗ ,mb, δ)

b′ ← AO′(param,C∗)
If b = b′ return 1, else return 0

The advantage of A is defined as Adv
preno-cca
Πs,A (k) = |Pr[Exp

preno-cca
Πs,A (1k) = 1]− 1

2 |.

Definition 1 (CCA Security for the 2nd Level Ciphertext). For any single-hop unidirec-
tional PRENO Πs, we instantiate the PRENO-CCA experiment with O′ = {Ohkg,Orek,Orec,

Odec,Opf} and δ = 2nd. We require that pki∗ is good, |m0| = |m1|, and A never makes a query

Orek(pki∗ , pkj) where pkj is bad. A is also disallowed to make the following queries after seeing C∗:

– Decryption query Odec(pki∗ , C
∗, 2nd) or proof query Opf(pki∗ , C

∗, 2nd).

– Re-encryption query Orec(pki∗ , pkj , C
∗) where pkj is bad.

– Decryption query Odec(pkj , C
′, 1st) or proof query Opf(pkj , C

′, 1st) where

• C ′ = Orec(pki∗ , pkj , C
∗), [C1]

• or A has made a query rki∗→j ← Orek(pki∗ , pkj) and C ′ = ReEnc(rki∗→j , C
∗). [C2]
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We say Πs is secure against chosen-ciphertext attacks at the 2nd level if for any polynomial-time
adversary A, the advantage function Adv

preno-cca
Πs,A (k) is negligible in k.

Remark. The power of the CK model is implicitly covered by Definition 1, and one can figure
it out from the following two points: (1) The adversary can obtain the re-encryption key from any
good public key pki to any public key pkj by using a query Orek(pki, pkj), only with a restriction
that pkj cannot be chosen by the adversary if pki = pki∗ ; (2) The adversary can transform any
2nd level ciphertext Ci under good public key pki to a 1st level ciphertext under any public key
pkj by using a query Orec(pki, pkj , Ci), only with a restriction that (pki, Ci) 6= (pki∗ , C

∗) if pkj is
chosen by the adversary. This means the adversary still can use either pki∗ or C∗ (but not both) in
any re-encryption query. Moreover, all the restrictions in our definition only aim at ruling out the
trivial attacks, thus should be considered as the minimal requirements for non-trivial definitions.

In single-hop proxy re-encryption schemes, a 1st level ciphertext cannot be re-encrypted any
more, thus there is no need to keep re-encryption keys secret when considering ciphertexts’ security
at the 1st level. In fact, we give adversaries all re-encryption keys by providing a re-encryption key
oracle without restrictions (thus re-encryption oracle is useless). Formally,

Definition 2 (CCA Security for the 1st Level Ciphertext). For any single-hop unidirectional
PRENO Πs, we instantiate the PRENO-CCA experiment with O′ = {Ohkg,Orek,Odec,Opf} and

δ = 1st. We require that pki∗ is good, |m0| = |m1|, and that A is disallowed to make decryption
query Odec(pki∗ , C

∗, 1st) or proof query Opf(pki∗ , C
∗, 1st) after seeing ciphertext C∗. We say Πs

is secure against chosen-ciphertext attacks at the 1st level if for any polynomial-time adversary A,
the advantage function Adv

preno-cca
Πs,A (k) is negligible in k.

3.2 Proof Soundness

Informally, the proof soundness says that a dishonest receiver cannot convince others of a fake
claim, that the decryption result of a ciphertext c with underlying plaintext m is another message
m′ (i.e., m′ 6= m). In our definition, we allow the adversary to output a target ciphertext at either
level under any public key it chooses, as well as two proofs for two different messages respectively.
The adversary wins the experiment if and only if the verification algorithm accepts the two proofs
simultaneously. A formal definition is given in the following definition:

Definition 3 (Proof Soundness). A single-hop unidirectional PRENO scheme Πs is proof sound
if for any PPT adversary C, its advantage defined below is negligible

Adv
preno-pfsnd
Πs,C (k) = Pr[param← Setup(1k), (pk, C, δ,m, π,m′, π′)← C(param) :

Ver(pk,C, δ,m, π) = 1 = Ver(pk,C, δ,m′, π′) ∧m 6= m′]

Our proof soundness definition is similar to the committing property in the public key encryp-
tion with non-interactive opening setting [19], which is stronger than the original proof soundness
definition for PKENO [13].

4 A Unidirectional PRENO Scheme

In this section, we give a single-hop unidirectional PRENO scheme. Our scheme is very efficient,
and its CCA security is guaranteed by the DBDH assumption in the standard model.
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4.1 Our Construction

Let k be the security parameter, G and GT be groups of prime order p, and e : G × G → GT be
a bilinear map. Let H0 : G× {0, 1}l → Zp and H1 : GT → {0, 1}l1 be families of collision resistant
hash functions, and H2 : GT → {0, 1}l2 be a family of universal hash functions, where l = l1 + l2 is
a parameter related to the security parameter6. The message space is P = {0, 1}l2 . The description
of our single-hop unidirectional PRENO scheme Πs is given below.

Setup(1k): Given the security parameter 1k, randomly choose g, h1, h2, u, v, w ← G, H0 ← H0,
H1 ← H1 and H2 ← H2, and compute Y = e(h1, h2). Return the system parameter param =
(g, h1, h2, u, v, w, Y,H0, H1, H2).

KeyGen(param): Given the system parameter param, randomly choose αi, βi ← Zp, compute
public key pki = (pki,1 = hαi1 , pki,2 = gβi), and set secret key ski = (ski,1 = αi, ski,2 = βi).
Return the key pair (pki, ski).

ReKeyGen(ski, pkj): Given a secret key ski and a public key pkj , compute rki→j = (h2 ·pkj,2)1/ski,1 .
Return the re-encryption key rki→j .

Enc(pki,m, δi): Given a public key pki, a message m ∈ P, and a ciphertext type δi ∈ {1st, 2nd},
randomly choose r, s ← Zp, compute c0 = gr, c2 = H1(Y

r)||H2(Y
r) ⊕ m, and c3 = (utvsw)r,

where t = H0(c0, c2). Finally set c1 = pkri,1 if δi = 2nd, else c1 = Y r · e(h1, pkj,2)r, return the δi
level ciphertext Ci = (s, c0, c1, c2, c3).
For convenience, given a δi ∈ {1st, 2nd} level ciphertext Ci = (s, c0, c1, c2, c3) and a public key
pki, we define a function CheckCCA(pki, Ci, δi), which first computes t = H0(c0, c2) and returns
1 iff (1) e(c3, g) = e(utvsw, c0) and (2) e(c1, g) = e(pki,1, c0) if δi = 2nd.

ReEnc(rki→j , Ci): Given a re-encryption key rki→j and a 2nd level ciphertext Ci = (s, c0, c1, c2, c3),
if CheckCCA(pki, Ci, 2nd) 6= 1, return⊥. Otherwise, compute c′1 = e(c1, rki→j) = Y r·e(h1, pkj,2)r,
return the 1st level ciphertext Cj = (s, c0, c

′
1, c2, c3).

Dec(ski, Ci, δi): Given a secret key ski and a δi ∈ {1st, 2nd} level ciphertext Ci = (s, c0, c1, c2, c3),

return⊥ if CheckCCA(pki, Ci, δi) 6= 1. Otherwise, parse c2 = τ1||τ2, and computeK = e(c1, h
1/ski,1
2 )

if δi = 2nd, else K = c1/e(h
skj,2
1 , c0). If τ1 = H1(K), return m = τ2 ⊕H2(K), else return ⊥.

Prove(ski, Ci, δi): Given a secret key ski and a δi ∈ {1st, 2nd} level ciphertext Ci = (s, c0, c1, c2, c3),
if Dec(ski, Ci, δi) = ⊥, return ⊥. Otherwise, randomly choose γ ← Zp, if δi = 2nd, com-

pute d1 = pkγi,1, d2 = h
1/ski,1
2 (utvsw)γ , else compute d1 = gγ , d2 = h

skj,2
1 (utvsw)γ , where

t = H0(c0, c2). Finally, return the proof πi = (d1, d2).
Ver(pki, Ci, δi,mi, πi): Given a message m, a δi ∈ {1st, 2nd} level ciphertext Ci = (s, c0, c1, c2, c3),

a public key pki and a proof πi = (d1, d2), if πi = ⊥ or m = ⊥, return 0. Else the algorithm
returns 0 if CheckCCA(pki, Ci, δi) 6= 1, or δi = 2nd and e(pki,1, d2) 6= Y · e(d1, utvsw), or δi = 1st
and e(d2, g) 6= e(h1, pkj,2) · e(utvsw, d1), where t = H0(c0, c2). Otherwise, parse c2 = τ1||τ2,
compute K = e(c1,d2)

e(d1,c3)
if δi = 2nd, else K = c1·e(c3,d1)

e(d2,c0)
, and m′i = τ2⊕H2(K). If H1(K) = τ1 and

m′i = mi, return 1, else return 0.

Remark 1. We employ the “decryption and check” technique to ensure that a 1st level ci-
phertext is properly produced. This seems a little limited if compared to ciphertexts’ (fully) public
verifiability, especially when the proof algorithm only outputs a ⊥ for each invalid ciphertext7.

6 l1 and l2 must be set such that the generalized leftover hash lemma holds in respect to the security parameter k
in our security proof.

7 In fact, our scheme can provide proofs for any 2nd level ciphertexts, we omit it just for simple description. Besides,
one can consider our scheme has partial public verifiability of ciphertexts due to the CheckCCA function.
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However, for those applications (we mentioned before) where proofs are useful only for meaningful
message m (instead of ⊥), our scheme is still satisfactory.

Remark 2. Several optimizations are available. First, one can replace the two equations when
δi = 2nd in CheckCCA with e(cx3c

y
1, g) = e((utvsw)xpkyi,1, c0) by randomly choosing x, y ∈ Z∗p as

in [44]. Thus, two pairings are eliminated by only adding one multi-exponentiation. Second, the
pairing computation of c1 when δi = 1st in algorithm Enc can be eliminated if one pre-computes
the value Y2 = e(h1, pkj,2), and instead computes c1 = (Y ·Y2)r. Third, by the collision resistance of
H1, one can omit e(c3, g) = e(utvsw, c0) in algorithm Dec and Prove when δi = 1st, and compute

K = c1·e(c3,gx)
e((utvsw)x·h

skj,2
1 ,c0)

using randomly chosen x ∈ Z∗p instead, thus another pairing is eliminated.

Remark 3. Ateniese et al. [2] discussed several useful properties for proxy re-encryption
schemes. It’s easy to check that our scheme is unidirectional, non-interactive, proxy-invisible, key
optimal, and collusion-“safe” (or master secret secure), where the master secret security is implied
by the CCA security at the first level [34], we omit the details.

Correctness. A 2nd level ciphertext Ci under pki has a form of (s, c0 = gr, c1 = pkri,1, c2 =
H1(Y

r)||H2(Y
r) ⊕ m, c3 = (utvsw)r) where t = H0(c0, c2). Given a re-encryption key rki→j ,

Ci can be transformed into a 1st level ciphertext Cj under pkj with a form (s, c0 = gr, c1 =
Y r · e(h1, pkj,2)r, c2 = H1(Y

r)||H2(Y
r)⊕m, c3 = (utvsw)r). Also, we note that ciphertexts output

by ReEnc and Enc(·, ·, 1st) have the same distribution.
Correctness for Decryption. Note that CheckCCA always returns 1 for properly generated 1st

or 2nd level ciphertexts. Also, the decryption algorithm computes a temporary value K for either
level ciphertext, and if K = Y r, the correctness of our decryption algorithm is obvious. In fact,

for the 2nd level ciphertext, we have K = e(c1, h
1/ski,1
2 ) = e(pkri,1, h

1/ski,1
2 ) = Y r. For the 1st level

ciphertext, we have K = c1/e(h
skj,2
1 , c0) = Y r · (h1, pkj,2)r/e(h

skj,2
1 , gr) = Y r. This proves that our

decryption algorithm is correct.
Correctness for Proof. Our proof algorithm essentially outputs a temporary “decryption key” π

for each corresponding ciphertext. The verification algorithm first decrypts a ciphertext by using π,
and compares the resulting message m′ with a claimed message m, accepts the proof if and only if
m′ = m. Thus we just have to show that given π, the temporary value K is indeed equal to Y r. For
a 2nd level proof πi = (d1, d2), we have e(pki,1, d2) = Y · e(d1, utvsw) and K = e(c1, d2)/e(d1, c3) =
(pkri,1, d2)/e(d1, (u

svtw)r) = Y r. For a 1st level proof πj = (d1, d2), we have e(d2, g) = e(h1, pkj,2) ·
e(utvsw, d1) and K = c1 ·e(c3, d1)/e(d2, c0) = Y r ·e(h1, pkj,2)r ·e((usvtw)r, d1)/e(d2, g

r) = Y r. This
proves that our verification algorithm is correct.

Security. Our PRENO scheme’s security is formally summarized in the following theorem,

Theorem 1. Assume DBDH problem is hard, H0 and H1 are families of collision resistant hash
functions, and H2 is a family of universal hash functions, our single-hop unidirectional PRENO
scheme Πs is CCA secure at the 1st and 2nd level ciphertext, and is proof sound.

Due to space reason, we defer the proof to Appendix B.

5 Comparisons

In this section, we give a comparison among our scheme and two well-known single-hop unidirec-
tional PRE schemes in literatures. At first, we introduce some notations used in Table 1. We use
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Schemes Our scheme LV08 [34] SC09 [42]

Ciphertext Length 1st level |Zp|+ 3|G|+ l |svk|+ 4|G|+ |GT |+ |σ| 2k′ + 3|N2
X |+ |m|

2nd level |Zp|+ 2|G|+ |GT |+ l |svk|+ 2|G|+ |GT |+ |σ| k1 + 3|N2
X |+ 2|N2

Y |+ |m|
2nd level Enc tme + 3te tme + 2te + ts 5teN
1st level Enc tme + 3te tme + 4te + ts 5teN

Computational Cost ReEnc 3tp + 2tme 2tp + 4te + tv 2tmeN + 1teN
2nd level Dec 3tp + 2tme + te 3tp + 2te + tv 2tmeN + 2teN or 3tmeN + teN
1st level Dec 2tp + tme + te 5tp + 2te + tv 5teN or 1tmeN + 4teN

Security CCA RCCA CCA∗

Assumption DBDH 3-QDBDH DDH over ZN2

Standard model
√ √

×
Chosen key model

√
× ×

PRENO
√

× ×

Table 1. Comparisons of unidirectional PRE(NO) schemes in the standard model (where k′ and k1 are two security
parameters in [42]. Besides, the first level encryption algorithm is not directly given in [42].)

|svk|, |σ|, |G|, |GT |, and |Zp| to denote the bit-length of a verification key (of one-time signature
scheme in [34]), a signature for a ciphertext, an element in G, an element in GT , and an integer
in Zp respectively, where p is the order of G and GT . The notation l = l1 + l2 in our scheme,
namely, the total length of H0’s output length and the bit-length of the plaintext space. We also
denote tp, te, tme, ts and tv as the time for computing a bilinear pairing, an exponentiation, a multi-
exponentiation in the bilinear group, a signing algorithm and a verification algorithm, respectively.
And NX , NY are two safe-prime modulus with size at least 1024 bits [42], and teN and tmeN repre-
sent the time for computing an exponentiation and multi-exponentiation in the Z∗N2 , respectively.
The possibly different time for decryption in [42] is due to different secret key input.

Libert and Vergnaud [34] proposed a RCCA secure single-hop unidirectional scheme based on
the 3-QDBDH assumption. Later, Shao et al. [42] tried to construct a CCA secure unidirectional
single-hop PRE scheme based on the DDH assumption over ZN2 in the random oracle model, but
later their scheme was shown vulnerable to CCA attacks [11]. Due to the big modulus N , Shao et
al. observed that their scheme is less efficient than Libert et al.’s scheme [34] in both computation
cost and ciphertext length.

We note that all the notations in Table 1 may have different meanings when taking account of
details of each scheme in implementations, since the choices of all the parameters are closely related
to the security parameter, the hardness of the underlying assumption, the tightness of the security
reduction and so on. We only try to use the rough comparison in Table 1 to give some intuitive
impression, but the results may not be necessarily right for each time implementation. However, we
believe our scheme is competitive in terms of both ciphertext length and computational cost when
considering all possible differences among those schemes. Moreover, our construction is a PRENO
scheme and its CCA security is proved in the strong CK model based on the well-studied DBDH
assumption in the standard model.

6 Conclusion

In this paper, security notions of CCA security and proof soundness for single-hop unidirectional
PRENO scheme are considered. The proposed security model is a CK model, which is showed
stronger than previous KOSK models. Then, an efficient scheme which is proved secure in the
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given models is proposed. The scheme is based on the DBDH assumption, and is efficient compared
with two well-known single-hop unidirectional PRE schemes. Also, the definitions for unidirectional
PRENO scheme can be extended to the bidirectional setting.

Acknowledgments. We thank Hui Guo, Yanfei Guo, Xusheng Zhang and the anonymous reviewers
of CCS 2012 for their helpful comments and suggestions on an earlier version of this paper.
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34. Benôıt Libert and Damien Vergnaud. Unidirectional chosen-ciphertext secure proxy re-encryption. In Ronald
Cramer, editor, Public Key Cryptography - PKC 2008, volume 4939 of LNCS, pages 360–379. Springer Berlin /
Heidelberg, 2008.
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A The CK Model is Stronger Than the KOSK Model

In this section, we show that the CK model is stronger than the KOSK model by considering
the scheme in [34], which is secure in the KOSK model and is insecure in the CK model. For
completeness, we first recall the scheme in [34].

Let G and GT be groups of prime order p, and let e : G×G→ GT be a bilinear map. Let k be
the security parameter and p ≥ 2k.

Setup(1k): Take the security parameter 1k as input, randomly chooses g, u, v ← G and a strongly
unforgeable one-time signature scheme Sig = (G,S,V). Return the public parameters param =
(g, u, v,Sig). The plaintext space P = GT .

KeyGen(param): Take the parameter param as input, randomly choose xi ← Zp, return the public
key and secret key pair (pki, ski) = (gxi , xi).

ReKeyGen(ski, pkj): Take a secret key ski and a public key pkj as inputs, return the re-encryption

key rki→j = pk
1/xi
j = gxj/xi .

Enc2(pki,m): Take a public key pki and a message m ∈ P as inputs, randomly choose a one-time
signature key pair (ssk, svk)← G(1k), and r ← Z∗p, compute

c1 = svk, c2 = pkri , c3 = e(g, g)r ·m, c4 = (usvk · v)r, c5 = S(ssk, (c3, c4)).

Return a 2nd level ciphertext Ci = (c1, c2, c3, c4, c5).
Enc1(pkj ,m): Take a public key pkj and a message m ∈ P as inputs, randomly choose a one-time

signature key pair (ssk, svk)← G(1k), and r, t← Z∗p, compute

c1 = svk, c2 = pktj , c3 = e(g, g)r ·m, c4 = (usvk · v)r, c5 = S(ssk, (c3, c4)), c6 = g1/t, c7 = pkrtj .
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Return a 1st level ciphertext Ci = (c1, c2, c3, c4, c5, c6, c7).
ReEnc(rki→j , Ci): Take a re-encryption key rki→j = gxj/xi and a 2nd level ciphertext Ci =

(c1, c2, c3, c4, c5) as inputs, check whether e(c2, u
c1v) = e(pki, c4) and V(c1, c5, (c3, c4)) = 1.

If not, return ⊥. Otherwise, randomly choose t← Zp, and compute

c′2 = pkti , c6 = rk
1/t
i→j , c7 = ct2.

return the 1st level ciphertext Cj = (c1, c
′
2, c3, c4, c5, c6, c7).

Dec2(ski, Ci): Take a secret key ski and a 2nd level ciphertext Ci = (c1, c2, c3, c4, c5) as inputs, If
e(c2, u

c1v) = e(pki, c4) and V(c1, c5, (c3, c4)) = 1, return m = c3/e(c2, g
1/xi), else return ⊥.

Dec1(skj , Cj): Take a secret key skj and a 1st level ciphertext Cj = (c1, c2, c3, c4, c5, c6, c7) as
inputs, If e(c2, c6) = e(pkj , g), e(c7, u

c1v) = e(c2, c4) and V(c1, c5, (c3, c4)) = 1, return m =
c3/e(c6, c7)

1/xj , else return ⊥.

Now, we show that the above scheme is insecure in the CK model. As for the CCA security at
the 1st level, the adversary can make any re-encryption key generation queries from the challenge
public key to any other public keys. After seeing the challenge ciphertext, the adversary only needs
to make one re-encryption key queries to decrypt the challenge ciphertext. Concretely, assuming
the challenge ciphertext has a form of Cj = (c1, c2, c3 = e(g, g)r · m, c4, c5, c6 = g1/t, c7 = pkrtj )

where pkj is the challenge public key. Now the adversary can set c6 = g1/t as the public key
pkj′ of another user j′ (i.e., pkj′ = g1/t), and ask a re-encryption key rkj→j′ from pkj to pkj′ .

Note that rkj→j′ = pk
1/xj
j′ = g1/(xjt), thus the adversary can decrypt the ciphertext by computing

e(c7, rkj→j′) = e(g, g)r, thus the 1st level ciphertext can not be secure in the CK model.
As for the 2nd level ciphertext, the adversary only needs one more re-encryption queries to

transform a 2nd level ciphertext under the challenge public key to any honest public key since
he cannot directly ask a re-encryption key from the challenge public key to malicious public key.
Specifically, given a 2nd level challenge ciphertext Ci = (c1, c2 = pkri , c3 = e(g, g)r ·m, c4, c5), the
adversary first makes a re-encryption queries from Ci to Cj under public key pkj of any honest user j
(this query is always allowed). Then, we have Cj = (c1, c2, c3 = e(g, g)r ·m, c4, c5, c6 = gxj/(xit), c7 =
ct2 = pkrti ) for some unknown t. Now, the adversary can attack the resulting ciphertext and set
c6 = gxj/(xit) as the public key pkj′ of another user j′ (i.e., pkj′ = gxj/(xit)), and ask a re-encryption

key rkj→j′ from pkj to pkj′ (this query is also allowed). Note that rkj→j′ = pk
1/xj
j′ = g1/(xit), thus

the adversary can decrypt the ciphertext by computing e(c7, rkj→j′) = e(g, g)r, thus the 2st level
ciphertext can not be secure in the CK model. Finally, we have shown the CK model is strictly
stronger than the KOSK model.

B Proof of Theorem 1

In this section, we give the proof of Theorem 1. Equivalently, we prove the following three lemmas.

Lemma 2. Assume H1 is a family of collision resistant hash functions, our single-hop unidirec-
tional PRENO scheme is proof sound.

Proof. Note that given a δ level ciphertext C = (s, c0, c1, c2 = τ1‖τ2, c3) under public key pk, and a
proof-message pair (π,m), the verification algorithm treats π as a “decryption key” and computes
a temporary value K, and accepts (π,m) (i.e., Ver(pk,C, δ,m, π) = 1) if and only if H1(K) = τ1
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and m = τ2 ⊕ H2(K). Thus, for the same ciphertext C = (s, c0, c1, c2 = τ1‖τ2, c3), and any two
proof-message pairs (π,m) and (π′,m′). Let K be the temporary value for (π,m), and K ′ be the
temporary value for (π′,m′). If the verification algorithm accepts both (π,m) and (π′,m′), we must
have H1(K) = τ1 = H1(K

′). By the collision resistance of H1, we have K = K ′. Finally, we have
m = τ2 ⊕ H2(K) = τ2 ⊕ H2(K

′) = m′. Thus, for any ciphertext C, all the valid proofs (that
the verification algorithm accepts) for C must be corresponding to the same message m, which
completes our proof.

Lemma 3. Assume DBDH problem is hard, H0 and H1 are families of collision resistant hash
functions, and H2 is a family of universal hash functions, our single-hop unidirectional PRENO
scheme is CCA secure at the 2nd level.

Proof. We assume there is a polynomial-time algorithm A that makes at most qhkg honest key
generation queries, attacks our unidirectional PRENO scheme at the 2nd level with non-negligible
advantage ε. We construct an algorithm B that solves the DBDH problem. Note that B is given
(g, ga, gb, gc, Z), and he wants to decide whether Z = e(g, g)abc or random. The description of B
that simulates the PRENO-CCA game at the second level for A is given below:

Setup. Randomly choose H0 ← H0, H1 ← H1 and H2 ← H2. Set h1 = ga, h2 = gb, Y = e(h1, h2).
Randomly choose xv ← Z∗p, and xw, yu, yv, yw ← Zp. Then compute u = h1g

yu ,v = hxv1 g
yv ,w =

hxw1 gyw . Finally, set the system parameter param = (g, h1, h2, u, v, w, Y,H0, H1, H2). B also
chooses integer k∗ ← {1, . . . , qhkg} randomly, and hopes A will use the public key produced
by the k∗-th honest key generation query as the challenge public key. It is easy to know the
probability that B guesses right is at least 1/qhkg.

Phase 1. B answers A’s queries as follows:
– Ohkg(i): Randomly choose αi, βi ← Z∗p. If it is the k∗-th honest key generation query, let

i∗ = i, and compute pki∗,1 = gαi∗ , pki∗,2 = gβi∗ (B implicitly sets ski∗,1 = αi∗/a, ski∗,2 = βi∗).
Otherwise, compute pki,1 = hαi1 , pki,2 = h−12 gβi (B implicitly sets ski,1 = αi, ski,2 = βi − b).
Finally, return pki = (pki,1, pki,2).

– Orek(pki, pkj): B distinguishes the following cases:
Case a1 pki 6= pki∗ : Run ReKeyGen by using ski,1, and return whatever it outputs.
Case a2 pki = pki∗ and pkj is good : Compute rki→j = (h2 · pkj,2)1/ski∗,1 = (ga)βj/αi∗

Case a3 pki = pki∗ and pkj is bad : Return a random bit and abort.
– Orec(pki, pkj , Ci): Parse Ci = (s, c0, c1, c2, c3), if CheckCCA(pki, Ci, 2nd) 6= 1, return ⊥.

Otherwise, B distinguishes the following cases:
Case b1 pki 6= pki∗ or pkj is good : Run ReEnc by using rki→j , and return whatever it

outputs.
Case b2 pki = pki∗ and pkj is bad : Compute t = H0(c0, c2), if t + sxv + xw = 0, output

a random bit and abort. Else compute hr1 = (c3/c
tyu+syv+yw
0 )1/(t+sxv+xw), and c′1 =

e(hr1, h2 · pkj,2) = Y r · e(h1, pkj,2)r. Return Cj = (s, c0, c
′
1, c2, c3) to A.

Note that c0 = gr, c1 = pkri∗,1, c3 = (utvsw)r = (h
(t+sxv+xw)
1 gtyu+syv+yw)r for some

unknown r, we have hr1 = (c3/c
tyu+syv+yw
0 )1/(t+sxv+xw).

– Odec(pki, Ci, δi): Parse Ci = (s, c0, c1, c2, c3), if CheckCCA(pki, Ci, δi) 6= 1, return ⊥. Other-
wise, B distinguishes the following cases:
Case c1 δi = 2nd and pki 6= pki∗ : Run Dec by using ski,1, and return whatever it outputs.
Case c2 δi = 1st and pki = pki∗ : Run Dec by using ski,2, and return whatever it outputs.
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Case c3 Otherwise: Compute t = H0(c0, c2), if t+ sxv + xw = 0, output a random bit and
abort. Else, compute hr1 = ( c3

ctyu+syv+yw0

)1/(t+sxv+xw), and K = e(hr1, h2) if δi = 2nd, else

K = c1
e(hr1,pkj,2)

. Parse c2 = τ1||τ2, if τ1 = H1(K), return m = τ2 ⊕H2(K), else return ⊥.

– Opf(pki, Ci, δi): Parse Ci = (s, c0, c1, c2, c3), if CheckCCA(pki, Ci, δi) 6= 1, return ⊥. Else, B
distinguishes the following cases:

Case d1 δi = 2nd and pki 6= pki∗ : Run Prove by using ski,1, and return whatever it outputs.
Case d2 δi = 1st and pki = pki∗ : Run Prove by using ski,2, and return whatever it outputs.
Case d3 Otherwise: Compute t = H0(c0, c2), if t + sxv + xw = 0, output a random bit

and abort. Else, compute hr1 = ( c3
ctyu+syv+yw0

)1/(t+sxv+xw), and K = e(hr1, h2) if δi = 2nd,

else K = c1
e(hr1,pkj,2)

. Parse c2 = τ1||τ2, if τ1 6= H1(K), return ⊥. Else, randomly choose

γ ← Zp, if δi = 2nd, compute

d1 = (gb)−1/(t+sxv+xw)pki,1
γ , d2 = (gb)

− tyu+syv+yw
αi(t+sxv+xw) (utvsw)γ ,

else, compute

d1 = (gb)
1

(t+sxv+xw) · gγ , d2 = hβi1 · (g
b)
tyu+syv+yw
t+sxv+xw · (utvsw)γ ,

Finally, B returns πi = (d1, d2) to A.
Note that if δi = 2nd, we have pki = pki∗ , if let γ̂ = γ − b

αi∗ (t+sxv+xw)
, we have d1 =

pkγ̂i∗,1, d2 = h
1/ski∗,1
2 (utvsw)γ̂ . Else, if let γ̂ = γ + b

(t+sxv+xw)
, we have d1 = gγ̂ , d2 =

h
ski,2
1 (utvsw)γ̂ . Thus, the proof is perfectly simulated in both cases.

Challenge. Once A decides that Phase 1 is over, it outputs two equal-length messages m0,m1 ∈ P
and a target public key pk∗. If pk∗ 6= pki∗ , B outputs a random bit and aborts. Otherwise, B
picks a random coin b ∈ {0, 1}, and computes c∗0 = gc, c∗1 = (gc)αi∗ , and c∗2 = H1(Z)||H2(Z)⊕mb

(implicitly set r∗ = c). Then compute t∗ = H0(c
∗
0, c
∗
2) and s∗ = − t∗+xw

xv
(thus t∗+s∗xv+xw = 0).

Finally, B computes c∗3 = (gc)t
∗yu+s∗yv+yw , returns C∗ = (s∗, c∗0, c

∗
1, c
∗
2, c
∗
3) to A.

Phase 2. B answers A’s queries as follows:

– Ohkg(i): B responds as in Phase 1.

– Orek(pki, pkj): B responds as in Phase 1.
– Orec(pki, pkj , Ci): Parse Ci = (s, c0, c1, c2, c3), if CheckCCA(pki, Ci, 2nd) 6= 1, return ⊥.

Otherwise, B distinguishes the following cases:

Case e1 pki 6= pki∗ or pkj is good : Run ReEnc by using rki→j , and return whatever it
outputs.

Case e2 pki = pki∗ and pkj is bad and Ci = C∗: Return ⊥.
Case e3 pki = pki∗ and pkj is bad and Ci 6= C∗: Compute t = H0(c0, c2), if t+sxv+xw = 0,

output a random bit and abort. Else compute hr1 = (c3/c
tyu+syv+yw
0 )1/(t+sxv+xw), and

c′1 = e(hr1, h2 · pkj,2) = Y r · e(h1, pkj,2)r. Return Cj = (s, c0, c
′
1, c2, c3) to A.

– Odec(pki, Ci, δi): Parse Ci = (s, c0, c1, c2, c3), if CheckCCA(pki, Ci, δi) 6= 1, return ⊥. Other-
wise, B distinguishes the following cases:

Case f1 δi = 2nd and pki 6= pki∗ : Run Dec by using ski,1, and return whatever it outputs.
Case f2 δi = 2nd and (pki, Ci) = (pki∗ , C

∗): Return ⊥.
Case f3 δi = 1st and pki = pki∗ : Run Dec by using ski,2, and return whatever it outputs.
Case f4 δi = 1st and pki 6= pki∗ and (s, c0, c2, c3) = (s∗, c∗0, c

∗
2, c
∗
3): Return ⊥.
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Case f5 Otherwise: Compute t = H0(c0, c2), if t+sxv +xw = 0 holds, output a random bit
and abort. Else compute hr1 = ( c3

ctyu+syv+yw0

)1/(t+sxv+xw), and K = e(hr1, h2) if δi = 2nd,

else K = c1
e(hr1,pki,2)

. Parse c2 = τ1||τ2, if τ1 = H1(K), return m = τ2⊕H2(K), else return

⊥.
– Opf(pki, Ci, δi): Parse Ci = (s, c0, c1, c2, c3), if CheckCCA(pki, Ci, δi) 6= 1, return ⊥. Other-

wise, B distinguishes the following cases:
Case g1 δi = 2nd and pki 6= pki∗ : Run Prove2 by using ski,1, and return whatever it

outputs.
Case g2 δi = 2nd and (pki, Ci) = (pki∗ , C

∗): Return ⊥.
Case g3 δi = 1st and pki = pki∗ : Run Prove1 by using skj,2, and return whatever it

outputs.
Case g4 δi = 1st and pki 6= pki∗ and (s, c0, c2, c3) = (s∗, c∗0, c

∗
2, c
∗
3): Return ⊥.

Case g5 Otherwise: Compute t = H0(c0, c2), if t + sxv + xw = 0, output a random bit
and abort. Else, compute hr1 = ( c3

ctyu+syv+yw0

)1/(t+sxv+xw), and K = e(hr1, h2) if δi = 2nd,

else K = c1
e(hr1,pki,2)

. Parse c2 = τ1||τ2, if τ1 6= H1(K), return ⊥. Else, randomly choose

γ ← Zp, if δi = 2nd, compute

d1 = (gb)−1/(t+sxv+xw)pki,1
γ , d2 = (gb)

− tyu+syv+yw
αi(t+sxv+xw) (utvsw)γ ,

else, compute

d1 = (gb)
1

(t+sxv+xw) · gγ , d2 = hβi1 · (g
b)
tyu+syv+yw
t+sxv+xw · (utvsw)γ ,

Finally, B returns πi = (d1, d2) to A.

Finally, A outputs a guess b′ ∈ {0, 1}. If b = b′, B outputs 1, else outputs 0.

Analysis. To give a final analysis, we first define the following events:

– E1: B aborts in Case a3 or in the Challenge phase.
– E2: B aborts in any of the Cases b2, c3, d3, e3, f5, g5 due to t+ sxv + xw = 0.
– E3: A submits a ciphertext Cj under pkj in either Cases f4, g4 such that Cj is a valid re-

encryption ciphertext of C∗, and A never makes a query Orek(pk∗, pkj) and Cj is not an output
of a query Orec(pk∗, pkj , C

∗).

Note that if Events E1 and E2 never happen, then B will not abort in the simulation. And if E3

does not happen, the simulation for Cases f4, g4 is perfect according to our security model.
Thus, if all the events above do not happen throughout the simulation, then B almost perfectly

simulates an attack environment for A. In fact, if Z = e(g, g)abc, we have C∗ is a real ciphertext
for mb with randomness c. Thus, A will guess b′ = b with the same probability as in the real
game. If Z is random, since H2 is a universal hash function, we have H2(Z) is statistically close to
uniform even given H1(Z), thus c∗2 statistically hides mb, and the probability that A guesses b′ = b
is 1/2 + negl(k).

The remaining work is to estimate the probability for each events. Actually, since k∗ is randomly
chosen, thus 1−Pr[E1] = Pr[pk∗ = pki∗ ] ≥ 1/qhkg. Besides, since A has no information about xv, xw
in the first phase, thus the probability Pr[t + sxv + xw = 0] ≤ 1/p. Though A could obtain the
information t∗ + s∗xv + xw = 0 from the challenge ciphertext C∗, there are still p possible pair
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(xv, xw) satisfying the equation. Thus, Pr[t+sxv +xw = 0|(s, t) 6= (s∗, t∗)] is still at most 1/p. Note
that in Cases e3, f5, g5, we almost always have (s, t) 6= (s∗, t∗), or else B could find collisions for
H0. Hence, we have Pr[E2] is negligible.

Intuitively, E3 says that A can transform a valid 2nd level ciphertext Ci under pki to a valid
1st level ciphertext Cj under pkj without knowing the re-encryption key rki→j , the information
of ski, skj , and without accessing the corresponding re-encryption proxy. Thus, one can infor-
mally consider this as the security of the re-encryption key. Assuming the challenge ciphertext
C∗ = (s∗, c∗0 = gr

∗
, c∗1 = pkr

∗
i∗,1, c

∗
2 = H1(Y

r∗)||H2(Y
r∗) ⊕ m, c∗3 = (ut

∗
vs
∗
w)r

∗
) for some r∗ ∈ Zp

and t∗ = H0(c
∗
0, c
∗
2). If A makes E3 happens, he must output a ciphertext C ′ = (s∗, c∗0, c1, c

∗
2, c
∗
3)

under public key pki′ 6= pki∗ . Since both the decryption and proof algorithm would check whether

H1(c1/e(h
ski′,2
1 , c∗0)) = H1(Y

r∗), and by the collision resistance of H1, we have C ′ is valid if and only
if c1 = Y r∗ · e(h1, pki′,2)r

∗
. Note that A never makes a re-encryption key query from pki∗ to pki′ ,

and C ′ is not output by the re-encryption query. Now, we construct an algorithm C that makes
good use of the above two conditions to solve computational BDH problem by interacting with A
that makes E3 happen with non-negligible probability.

Technically, given a BDH instance (ga, gb, gc), if we embed the BDH problem by setting h1 =
ga, pki′,2 = gb and r∗ = c, then we can solve BDH problem by computing e(h1, pki′,2)

r∗ = c1/Y
r∗ .

However, under our DBDH assumption, it is not an easy task to check whether c1 has the right
form. Fortunately, if A only makes qhkg times honest key generation queries, q2 times decryption
and proof queries. Then, C can randomly choose another two integers k∗1 ← {1, . . . , qhkg}, k∗2 ←
{1, . . . , q2}, and hopes that E3 will happen for the first time at the k∗2-th decryption and proof
query with the public key pki′ output by the k∗1-th honest key generation query. It is easy to
check that C will guess (k∗, k∗1, k

∗
2) right with non-negligible probability (i.e., at least 1/q2hkgq2).

To simulate the attack environment for A, C sets param = (g, h1 = ga, h2 = gxh , u = h1g
yu , v =

hxv1 g
yv , w = hxw1 gyw , Y = e(h1, h2), where xh, xv, xw, yu, yv, yw ← Zp. C also honestly generates

public keys pki = (pki,1 = hαi1 , pki,2 = gβi) for i 6= {i∗, i′}, and embeds BDH problem by setting
pki∗ = (pki∗,1 = gαi∗ , pki∗,2 = gβi∗ ), pki′ = (pki′,1 = h

αi′
1 , pki′,2 = (gb)βi′ ), and C∗ = (s∗, c∗0 =

gc, c∗1 = (gc)αi∗ , c∗2 = H1(Z)||H2(Z) ⊕ mb, c
∗
3 = (gc)t

∗yu+s∗yv+yw) where Z = Y c = e(ga, gc)xh ,
t∗ = H0(c

∗
0, c
∗
2) and s∗ = − t∗+xw

xv
. Obviously, C∗ is valid ciphertext under pki∗ with randomness c.

Moreover, with the knowledge of (xh, xv, xw, yu, yv, yw) and {αi, βi}, C almost can perfectly answer
all queries if he guesses (k∗, k∗1, k

∗
2) right. Note that if E3 happens for the first time at the k2∗-th

decryption and proof query with public key pki′ output by the k1∗-th honest key generation query
and ciphertext C ′ = (s∗, c∗0, c1, c

∗
2, c
∗
3), we have c1 = Y c ·e(h1, pki′,2)c = e(ga, gc)xh ·e(ga, gb)cβi′ , thus

C can solve BDH problem by computing e(g, g)abc = (c1/e(g
a, gc)xh)1/βi′ . Thus, under our DBDH

assumption, Pr[E3] is negligible. We defer a detailed proof to a full version.

In all, the probability that all the events do not happen is at least 1/qhkg − negl(k), thus the
advantage that B solves DBDH problem is at least 1/qhkg · ε− negl(k), which completes the proof.

Lemma 4. Assume DBDH problem is hard, H0 and H1 are families of collision resistant hash
functions, and H2 is a family of universal hash functions, our single-hop unidirectional PRENO
scheme is CCA secure at the 1st level.

Note that in the proof of Lemma 3, B can always generate re-encryption keys from honest
generated public keys except the challenge one to malicious public keys, and that the 1st level
ciphertexts output by the re-encryption algorithm and the encryption algorithm have the same
distribution. Thus, to prove this Lemma, B can keep an extra 2nd level “challenge” public key in the
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mind (not provide to A), and generates the challenge public key as for the honest ones in the proof
of Lemma 3, and normally generates all other public keys (i.e., by first choosing the secret keys).
Thus, the proof of Lemma 3 can be adapted to this lemma. Actually, one can construct an algorithm
B that sets the system parameters as in the proof of Lemma 3, Then, B honestly generates all the
public-secret key pairs except the challenge one pk∗ = (pki∗,1 = h

αi∗
1 , pki∗,2 = h−12 gβi∗ ). Finally, B

sets the challenge ciphertext C∗ = (s∗, c∗0 = gc, c∗1 = e(h1, g
c)βi∗ , c∗2 = H1(Z)||H2(Z) ⊕ mb, c

∗
3 =

(gc)t
∗yu+s∗yv+yw) where t∗ = H0(c

∗
0, c
∗
2) and s∗ = − t∗+xw

xv
. Thus, all A’s queries can be perfectly

simulated by B as in the proof of Lemma 3, we omit the details.
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