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Abstract. In a Ciphertext-Policy Attribute-Based Encryption (CP-ABE) system, decryption privi-
leges are defined over attributes that could be shared by multiple users. If some of the users leak their
decryption privileges to the public or to some third party, say for profit gain, a conventional CP-ABE
has no tracing mechanism for finding these malicious users out. There are two levels of traceability
for tackling this problem: (1) given a well-formed decryption key, a White-Box tracing algorithm can
find out the original key owner; and (2) given a decryption-device while the underlying decryption
algorithm or key may not be given, a Black-Box tracing algorithm, which treats the decryption-device
as an oracle, can find out at least one of the malicious users whose keys have been used for construct-
ing the decryption-device. In this paper we propose the first Expressive Black-box Traceable CP-ABE
system which has two main merits: (1) it supports fully collusion-resistant black-box traceability, that
is, an adversary is allowed to access an arbitrary number of keys of its own choice when building the
decryption-device, and (2) it is highly expressive, that is, the system supports policies expressed in any
monotonic access structures. In addition, the traceability of this new system is public, that no secret
input is required and no authority needs to be called in, instead, anyone can run the tracing algorithm.
We show that the system is secure against adaptive adversaries in the standard model, and is efficient,
that when compared with the expressive (non-traceable) CP-ABE due to Lewko et al. in Eurocrypt
2010, our new system adds fully collusion-resistant black-box traceability with the price of adding only
O(

√
K) elements into the ciphertext and public key, rather than increasing the sizes linearly with K,

which is the number of users in the system.
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1 Introduction

Ciphertext-Policy Attribute-Based Encryption (CP-ABE), introduced by Goyal et al. [15], provides
a new flexible and efficient mechanism for realizing one-to-many encryption, and due to its flexible
expressiveness it is regarded as a promising tool for enforcing fine-grained access control over
encrypted data. For example, suppose Alice wants to encrypt some messages to all PhD students
and alumni in the Department of Computer Science, but she does not know or is not possible to
find out the identities of all the eligible receivers. One way to think about this problem is to have
Alice encrypt the messages with an access policy defined over some descriptive attributes such
as “(COMPUTER SCIENCE AND (PhD STUDENT OR ALUMNI))”, so that only receivers
who have attributes satisfying this policy can decrypt. Traditional Public Key Encryption (PKE)
and Identity-Based Encryption (IBE) [31,4] are designed for one-to-one encryption and therefore,
will be very inefficient for solving this problem. Broadcast Encryption (BE) [12] is not suitable
either, as in a BE system the encryptor must know and specify the exact identities/indices of the
receivers. CP-ABE provides an elegant solution to the application above. In a CP-ABE system,



each user is issued a decryption key by an authority according to the attributes he possesses. An
encryptor decides what attributes an eligible receiver should have by encrypting a message with
an access policy defined over some attributes. If and only if a user’s attributes satisfy the access
policy of a ciphertext, can he decrypt the ciphertext. Since the first CP-ABE scheme was proposed
by Bethencourt, Sahai and Waters [3], a series of work [10,14,33,21,28,16] has been done to achieve
better expressiveness, efficiency or security. In particular, the schemes by Lewko et al. [21] and
by Okamoto and Takashima [28] are expressive, efficient and provably secure against adaptive
adversaries in the standard model. And the most recent advances are duo to Lewko and Waters
[22], where they proposed a new proof technique and obtained two new CP-ABE schemes that are
also expressive, efficient and fully secure in the standard model. Additionally their new CP-ABE
schemes eliminate the one-use restriction (i.e. a single attribute could only be used once in a policy)
which the schemes in [21,28] suffer from3.

However, there is a major issue that needs to be solved as it limits the applications of CP-
ABE to date. The advantage of efficiency and policy expressiveness of CP-ABE comes from the
fact that the access policies do not have to contain identity-related attributes such as identities or
names, and are always built over role-based attributes, which implies that decryption keys with
eligible attributes corresponding to the access policies generally do not have identity information
embedded, i.e., those decryption keys are non-traceable by nature, as the attributes are generally
shared by multiple users. For example, both Bob (with attributes {Bob, PhD, Computer Science})
and Tom (with attributes {Tom, PhD, Computer Science}) could share a decryption key with
attributes {PhD, Computer Science} and be able to decrypt ciphertexts in the example above, and
the decryption key may not have any identity information. At the same time, as the decryption
privileges corresponding to the common attributes could be shared by multiple users rather than
being exclusively owned by one user, a malicious user with some decryption privileges, shared with
multiple users, might have an intention to leak partial or even all the decryption privileges to
someone else, for example, for financial gain or for some other incentives, as there is little risk of
getting caught. This is referred to as Malicious Key Delegation. As a result, it is very crucial for a
practical CP-ABE system to defend against malicious key delegation, and to support the traceability
of decryption keys. However by far, none of the aforementioned CP-ABE systems is traceable, not
even in a white-box model, that is, a malicious user creates a new well-formed decryption key
from his own key and tries to prevent anyone from finding out from which decryption key that
the new well-formed decryption key is. In other words, White-Box Traceability means that given
a well-formed decryption key as input a tracing algorithm can trace to the key owner. Due to the
strong requirement of well-formed decryption key as input, the white-box traceability is sometimes
not considered to be strong enough in practice. A stronger and more practical notion is Black-Box
Traceability, where given a decryption-device while the decryption algorithm and key may remain
unknown, a black-box tracing algorithm, which treats the decryption-device as an oracle, can find
out the malicious user whose key must have been used in the construction of the decryption-device.
Furthermore, it is desirable if the black-box traceability is fully collusion-resistant, that is, the
tracing algorithm should work even if an adversary is allowed to access an arbitrary number of
keys of its own choice (in other words, when an arbitrary number of malicious users collude) during
the construction of the decryption-device. We say that a CP-ABE system supports t-collusion-

3 The schemes in [21,28] can be extended to allow reuse of attributes by setting a fixed bound on the maximum
number of times an attribute may be used and having separate parameters for each use, but this approach will
incur a very significant loss in efficiency. The details are referred to [21,22].
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resistant black-box traceability, if an adversary is restricted to have no more than t decryption
keys when building the decryption-device. Note that collusion-resistant traceability is orthogonal
to collusion-resistant security, which is the primary requirement of CP-ABE.

The problem of building a secure CP-ABE scheme resisting malicious key delegation has recently
been studied in [17,24,23,25]. The work by Hinek et al. [17] focuses on deterring a user from leaking
the decryption keys by embedding the user’s “personal information” (such as credit card number)
into the decryption keys, and their system relies on a trusted third party that interacts with the
user each time when the user wants to decrypt a ciphertext, and which makes their system less
practical. The systems in [24,23,25] try to achieve traceability without such a trusted third party.
However, as we will review shortly that an expressive Black-box Traceable CP-ABE system is yet to
be constructed: (1) the ciphertext policies in [24,23] only support a single AND gate with wildcard;
(2) the traceability in [24] is in the white-box model only; (3) although [23] made attempts to achieve
black-box traceability, the traceability is not collusion-resistant, that is, the adversary is not allowed
to have more than one decryption key when building the decryption-device, otherwise, their tracing
algorithm cannot find out the malicious users; and (4) the traceable CP-ABE scheme in [25] is as
expressive (i.e. supporting any monotonic access structures), secure (i.e. provably secure against
adaptive adversaries in the standard model) and efficient as the conventional CP-ABE scheme in
[21], but the traceability is only in the white-box model.

1.1 Our Results

We propose a black-box traceable CP-ABE system whose traceability is fully collusion-resistant
and public, that is, anyone can run the tracing algorithm with no additional secret needed or any
authority involved. The system is also highly expressive as it supports policies expressed in any
monotonic access structures. On its security, we show that it is provably secure and (fully collusion-
resistant black-box) traceable against adaptive adversaries in the standard model. Compared with
the CP-ABE scheme due to Lewko et al. in [21], i.e. a representative work 4 of the efficient and
expressive conventional (non-traceable) CP-ABE systems, our new system adds the properties of
public and fully collusion-resistant black-box traceability with the price of adding only O(

√
K)

elements in the ciphertext and public key, rather than expanding the sizes linearly with K, where
K is the number of users in the system, while the private key size and decryption efficiency mainly
remain comparable and are independent of the value of K.

To the best of our knowledge, this is the first CP-ABE scheme supporting both (public) fully
collusion-resistant black-box traceability and high expressiveness simultaneously, and for a system
with fully collusion-resistant black-box traceability, sub-linear growth in ciphertext size is the most
efficient one to date. Table 1 compares our scheme with that in [21] and [25] in terms of both
performance and feature (i.e. traceability), as all the three schemes are secure against adaptive
adversaries and highly expressive, that is, supporting any monotonic access structures.

In Sec. 2, we formalize Black-box Traceable CP-ABE (or BT-CP-ABE for short) by adding a
Trace algorithm to the definition of the conventional CP-ABE. Then, we formalize the full collusion-
resistance for black-box traceability using GameTR: given a decryption-device D, whose decryption

4 In the most recent work of conventional (non-traceable) CP-ABE due to Lewko and Waters [22], they proposed
two CP-ABE schemes, both being expressive, efficient, fully secure in the standard model, and free from the one-
use restriction. In particular, they first proposed an construction on composite group which closely resembles the
construction of CP-ABE in [21], then obtained a prime order construction by combining their composite order
construction and proof with the translation techniques developed by Lewko [20]. Noticed this close resemblance,
we expect that our techniques of obtaining traceability are equally applicable to the CP-ABE schemes in [22].
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Table 1. Comparison with the conventional CP-ABE in [21] and the traceable CP-ABE in [25]

Ciphertext Private Key Public Key Pairing Computation Traceability
Size Size Size in Decryption

CP-ABE in [21] 2L + 2 |S| + 2 |S| + 3 2|I| + 1 No

CP-ABE in [25] 2L + 3 |S| + 4 |S| + 4 2|I| + 1 white-box

Our CP-ABE 2L + 8
√
K |S| + 3 |S| + 7 + 8

√
K 2|I| + 5 public, black-box,

in this paper fully collusion-resistant
1 All the three schemes are secure against adaptive adversaries and highly expressive (i.e. supporting any

monotonic access structures).
2 Let L be the size of an access policy, |S| the size of the attribute set of a private key, |S| the size of the

attribute universe, and |I| the number of attributes in a key that satisfy the ciphertext’s policy.

privilege is described by a non-empty attribute set SD, Trace should be able to extract at least one
guilty user whose attribute set is a superset of SD.

On the construction of BT-CP-ABE, instead of building such a system directly, we first build
a simpler primitive called Augmented CP-ABE (or AugCP-ABE for short), then we extend it to
a BT-CP-ABE system. In Sec. 3.1 we define AugCP-ABE, which is similar to BT-CP-ABE but
without the Trace algorithm, namely (SetupA,KeyGenA,EncryptA,DecryptA), and the encryption al-
gorithm EncryptA(PK,M,A, k̄) takes one more parameter k̄ ∈ {1, . . . ,K+1} than Encrypt(PK,M,A)
does, and the encrypted message M can be recovered using private key SKk,S , which is identified
by k ∈ {1, . . . ,K} and described by an attribute set S, if and only if (k ≥ k̄)∧ (S satisfies A). Here
A is an access policy. Also, we define the security model for AugCP-ABE. In Sec. 3.2 we show that
a secure AugCP-ABE system can be converted directly to a secure BT-CP-ABE system. In partic-
ular, suppose ΣA = (SetupA,KeyGenA,EncryptA,DecryptA) is a secure AugCP-ABE system, we set
Encrypt(PK,M,A) = EncryptA(PK,M,A, 1), then build the Trace algorithm using a standard tech-
nique from the broadcast encryption [7,8,13]. We show thatΣ = (SetupA,KeyGenA,Encrypt,DecryptA,
Trace) is a secure BT-CP-ABE system. By taking the approach outlined above, in the rest of the
paper, we describe the details of building a secure, expressive and efficient BT-CP-ABE system.

Related Work. In Sec. 6, we go through some related work, which includes various traceability
notions in the settings of Key-Policy ABE [34,32], broadcast encryption [11,7,27,26,8,13], and pred-
icate encryption [19].

2 Definitions of Black-box Traceable CP-ABE

A Black-box Traceable CP-ABE (BT-CP-ABE) system is a CP-ABE system with an additional
tracing algorithm. Following the notations of the traitor tracing systems in [7,8], a decryption-
device (or decoder for short) D is viewed as a probabilistic circuit that takes as input a ciphertext
CT and outputs a message M or ⊥. In our BT-CP-ABE system, a decoder D is associated with
a non-empty attribute set SD to describe its decryption ability in that, for the ciphertexts whose
policy are satisfied by SD, D is able to decrypt them correctly with high probability.

Before giving the formal definition of our BT-CP-ABE system, we first explain the reasonability
of using a non-empty attribute set to describe a decoder. (1) In practice, if the seller does not
explicitly give the decryption ability of a decoder D, the potential buyers are unable to evaluate
the price of the decoder and would not buy the decoder. Furthermore, if the decryption ability of a
decoder is unknown, the buyer of the decoder has no idea about what ciphertexts he should use the
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decoder to decrypt. In other words, to some extent, it can be said that a decoder whose decryption
ability is unknown is a useless decoder. (2) In different settings of traceability, the decoders are
described in different ways. For example, in the Trace and Revoke systems (e.g. [8]) in the setting of
broadcast encryption, the decryption ability of a decoder is described by an index set YD to imply
that the decoder can decrypt a ciphertext if the authorized index set of the ciphertext contains
some index in YD, and in the traceable predicate encryption systems by Katz and Schröder [19],
the decryption ability of a decoder is described by a vector vD to imply that the decoder can
decrypt a ciphertext if the ciphertext is encrypted using vD. (3) In the setting of CP-ABE, as the
ciphertexts are associated with access policies and the private keys are associated with attribute
sets, the natural way of describing the decryption ability of a decoder D is to give an attribute
set SD implying that D can decrypt the ciphertexts whose policies can be satisfied by SD. Note
that if SD is empty, D cannot decrypt any ciphertext and is useless, thus a useful decoder should
be described by a non-empty attribute set. In practice, a decoder may be described by multiple
non-empty attribute sets, and can decrypt a ciphertext if the associated policy of the ciphertext
can be satisfied by any one of the attribute sets. Note that such a decoder can be regarded as being
composed of multiple sub-decoders each of which is described by a non-empty attribute set, and
our system can be easily extended to handle such a decoder. (4) Another possible way of describing
the decryption ability of a decoder D in the setting of CP-ABE is to give an access policy AD
implying that D can decrypt the ciphertexts whose access policies are exactly AD. Note that this
way is unnatural to the setting of CP-ABE and requires the decoders to only have the restricted
decryption ability (i.e. assumes that the attackers only construct such restricted decoders). In this
paper, we consider the natural way of using a non-empty attribute set to describe the decryption
ability of a decoder in CP-ABE, but we believe that our techniques are applicable to the setting
where the decoder is described by an access policy and can decrypt only the ciphertexts associated
with the same access policy.

A BT-CP-ABE system consists of the following five algorithms:

Setup(λ,S,K)→ (PK,MSK). The algorithm takes as input the security parameter λ, the attribute
universe S, and the number of users K in the system. The algorithm runs in polynomial time
in λ and outputs the public parameters PK and a master secret key MSK.

KeyGen(PK,MSK, S)→ SKk,S . The algorithm takes as input the public parameters PK, the master
secret key MSK, and an attribute set S, and outputs a private key SKk,S , which is assigned and
identified by a unique index k ∈ {1, . . . ,K}.

Encrypt(PK,M,A) → CT . The algorithm takes as input the public parameters PK, a message
M , and an access policy A over S, and outputs a ciphertext CT such that only users whose
attributes satisfy A should be able to recover M . A is implicitly included in CT .

Decrypt(PK, CT, SKk,S) → M or ⊥. The algorithm takes as input the public parameters PK, a
ciphertext CT associated with an access policy A, and a private key SKk,S . If S satisfies A, the
algorithm outputs a message M , otherwise it outputs ⊥ indicating the failure of decryption.

TraceD(PK, SD, ε)→ KT ⊆ {1, . . . ,K}. The algorithm is an oracle algorithm that interacts with a
decoder D. The algorithm is given as input the public parameters PK, the associated attribute
set SD of D, and a parameter ε, and runs in time polynomial in λ and 1/ε. Only if D can decrypt
eligible ciphertexts (i.e. the ciphertexts whose policies are satisfied by SD) with probability at
least ε and ε is non-negligible, they are considered valid inputs to Trace. The algorithm outputs
an index set KT ⊆ {1, . . . ,K} of the guilty users.
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We define the security of a BT-CP-ABE system in the following two games. Although the index
of each user is assigned by the KeyGen algorithm, to capture the security that an attacker can
adaptively choose keys to corrupt, we allow the adversary to specify the index when he makes a
key query. i.e., to make a private key query for attribute set S the adversary will submit (k, S) to
the challenger where k will be the index assigned to the corresponding key.

GameMH. The first game, called Message Hiding Game, is a typical semantic security game,
which is almost same to that for the conventional CP-ABE security against adaptive adversaries
[21], except that each key is identified by a unique index. In particular, the game is defined between
a challenger and an adversary A (both are given K and λ as input):

Setup. The challenger runs Setup(λ,S,K) and gives the public parameters PK to A.
Phase 1. For i = 1 to q1, A adaptively submits (ki, Ski) to the challenger, and the challenger

responds with SKki,Ski
. Note that q1 ≤ K, ki ∈ {1, . . . ,K}, and ki 6= kj ∀1 ≤ i 6= j ≤ q1.

Challenge. A submits two equal-length messages M0,M1 and an access policy A∗. The challenger
flips a random coin b ∈ {0, 1}, and sends to A an encryption of Mb under A∗.

Phase 2. For i = q1 + 1 to q, A adaptively submits (ki, Ski) to the challenger, and the challenger
responds with SKki,Ski

. Note that q ≤ K, ki ∈ {1, . . . ,K}, and ki 6= kj ∀1 ≤ i 6= j ≤ q.
Guess. A outputs a guess b′ ∈ {0, 1} for b.

A wins the game if b′ = b under the restriction that A∗ cannot be satisfied by any of the queried
attribute sets Sk1 , . . . , Skq . The advantage of A is defined as MHAdvA = |Pr[b′ = b]− 1

2 |.
Note that the above definitions ensure that a BT-CP-ABE system has all the virtues of a

conventional CP-ABE system, and the traceability will be its additional advantage. We note that
the above model can easily be extended to handle chosen-ciphertext attacks (CCA) by allowing for
decryption queries in Phase 1 and Phase 2.

GameTR. The second game captures the notion of fully collusion-resistant traceability. The
tracing game ensures that the tracing algorithm successfully traces a decoder, no matter how many
private keys were used to create the decoder. The adversary’s goal is to build a decoder D that
will decrypt the ciphertexts whose policies are satisfied by SD. The tracing algorithm’s goal is to
extract at least one of the users whose keys have been used for building D. The game is defined
between a challenger and an adversary A (both are given K, λ and ε as input) as follows:

Setup. The challenger runs Setup(λ,S,K) and gives the public parameters PK to A.
Key Query. For i = 1 to q, A adaptively submits (ki, Ski) to the challenger, and the challenger

responds with SKki,Ski
. Note that q ≤ K, ki ∈ {1, . . . ,K}, and ki 6= kj ∀1 ≤ i 6= j ≤ q.

Decoder Generation. A outputs a decoder D associated with a non-empty attribute set SD ⊆ S.
D is a probabilistic circuit that takes as input a ciphertext and outputs some message M .

Tracing. The challenger runs TraceD(PK, SD, ε) to obtain an index set KT ⊆ {1, . . . ,K}.

Let KD = {ki|1 ≤ i ≤ q} be the index set of keys corrupted by the adversary. We say that the
adversary A wins the game if the following conditions hold:

– If an access policy A is satisfied by SD, then for a randomly chosen message M , we have that

Pr[D(Encrypt(PK,M,A)) = M ] ≥ ε.

A decoder satisfying this condition is said to be a useful decoder.
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– KT = ∅, or KT 6⊆ KD, or (SD 6⊆ Skt ∀kt ∈ KT ).

We denote by TRAdvA the probability that adversary A wins this game.

Remark: To be a traceable CP-ABE system, when a useful decoder D is found, the traced KT

must satisfy (KT 6= ∅)∧ (KT ⊆ KD)∧ (∃kt ∈ KT s.t. Skt ⊇ SD). (1) (KT 6= ∅)∧ (KT ⊆ KD) captures
the preliminary traceability that the tracing algorithm can extract at least one guilty user and the
coalition of guilty users cannot frame any innocent user. Note that such a preliminary traceability
is a weak traceability that is not suitable in practice. Specifically, consider a decoder D which is
built using the private keys of users k1 and k2 who were authorized high-value attribute set Sk1 and
low-value attribute set Sk2 respectively, and assume that Sk2 6⊇ Sk1 and the decryption privilege
of D is described by SD = Sk1 , e.g., SD = Sk1 = {Senior Manager}, Sk2 = {Intern}. A scheme is
considered to achieve such weak traceability even if its Trace algorithm only extracts k2 from D as
the guilty user. This is unsatisfying, as D having the decryption privilege of attribute set {Senior
Manager} implies that there must be some user who is authorized attribute “Senior Manager”
involved in building D (this follows from the collusion-resistant security of CP-ABE, which is
defined in GameMH), yet the algorithm was only able to trace D to an “Intern”. Furthermore, in
practice a CP-ABE scheme with only weak traceability may suffer from the dilemmas (consider
the above example again): the traced user k2 can argue that in a secure CP-ABE system there
is no ground to accuse him of building D because he was authorized only attribute “Intern” and
the collusion-resistant security of CP-ABE implies that he does not have the ability to help D to
obtain the decryption privilege of attribute set {Senior Manager}; or the decoder is deliberately
designed to sacrifice the low-value user to protect the high-value guilty user when it is necessary
as the low-value user often has less to lose even if he is caught. (2) (∃kt ∈ KT s.t. Skt ⊇ SD)
captures the desirable strong traceability that the Trace algorithm can extract at least one guilty
user whose private key enables D to have the decryption privilege corresponding to SD, i.e., whose
attribute set is a superset of SD. Note that comparable weak and strong traceability notions in the
setting of predicate encryption were considered in [19]. While [19] presented formal definitions and
constructions for both weak and strong traceability in the setting of predicate encryption, in this
paper we focus on only the practical strong traceability of CP-ABE, and unless stated otherwise,
by the traceability we mean the strong traceability.

The tracing game above does not limit the number of colluded users. Furthermore, the decoder
does not need to be prefect. It only needs to decrypt with success probability ε. Also note that we
are modeling a stateless (resettable) decoder – the decoder is just an oracle and maintains no state
between activations.

Definition 1. A K-user Black-box Traceable CP-ABE system is secure if for all polynomial-time
adversaries A the advantages MHAdvA and TRAdvA are negligible functions of λ.

3 Augmented CP-ABE

3.1 Definitions of Augmented CP-ABE

An Augmented CP-ABE (AugCP-ABE) system is a CP-ABE system where each user (private key)
is described by an attribute set S and identified by an index k. During encryption, the encryptor
encrypts a message with an access policy A and an index k̄. For a user with private key SKk,S , if
and only if (S satisfies A)∧ (k ≥ k̄), can he decrypt the corresponding ciphertext. In particular, an
AugCP-ABE system consists of the following four algorithms:
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SetupA(λ,S,K)→ (PK,MSK). The algorithm takes as input the security parameter λ, the attribute
universe S, and the number of users K in the system. The algorithm runs in polynomial time
in λ and outputs the public parameters PK and a master secret key MSK.

KeyGenA(PK,MSK, S) → SKk,S . The algorithm takes as input the public parameters PK, the
master secret key MSK, and an attribute set S, and outputs a private key SKk,S , which is
assigned and identified by a unique index k ∈ {1, . . . ,K}.

EncryptA(PK,M,A, k̄)→ CT . The algorithm takes as input the public parameters PK, a message
M , an access policy A over S, and an index k̄ ∈ {1, . . . ,K + 1}, and outputs a ciphertext CT .
A is included in CT , but the value of k̄ is not.

DecryptA(PK, CT,SKk,S) → M or ⊥. The algorithm takes as input the public parameters PK, a
ciphertext CT associated with an access policy A, and a private key SKk,S . If S satisfies A, the
algorithm outputs a message M , otherwise it outputs ⊥ indicating the failure of decryption.

Correctness. The system must satisfy the following correctness property: for all attribute sets
S ⊆ S, all k ∈ {1, . . . ,K}, all access policies A over S, all k̄ ∈ {1, . . . ,K + 1}, and all messages M :
Let (PK,MSK) ← SetupA(λ,S,K), SKk,S ← KeyGenA(PK,MSK, S), CT ← EncryptA(PK,M,A, k̄).
If (S satisfies A) ∧ (k ≥ k̄) then DecryptA(PK, CT, SKk,S) = M .

Security. We define the security of an AugCP-ABE system in the following three games.
The first two games, called Message Hiding Game, are defined by the following game for k̄ = 1
(the first game, GameAMH1

) or k̄ = K + 1 (the second game, GameAMHK+1
) between a challenger and

an adversary A (both are given K and λ as input):

Setup. The challenger runs SetupA(λ,S,K) and gives the public parameters PK to A.
Phase 1. For i = 1 to q1, A adaptively submits (ki, Ski) to the challenger, and the challenger

responds with SKki,Ski
. Note that q1 ≤ K, ki ∈ {1, . . . ,K}, and ki 6= kj ∀1 ≤ i 6= j ≤ q1.

Challenge. A submits two equal-length messages M0,M1 and an access policy A∗. The challenger
flips a random coin b ∈ {0, 1}, and sends CT ← EncryptA(PK,Mb,A∗, k̄) to A.

Phase 2. For i = q1 + 1 to q, A adaptively submits (ki, Ski) to the challenger, and the challenger
responds with SKki,Ski

. Note that q ≤ K, ki ∈ {1, . . . ,K}, and ki 6= kj ∀1 ≤ i 6= j ≤ q.
Guess. A outputs a guess b′ ∈ {0, 1} for b.

GameAMH1
. In the Challenge phase the challenger sends CT ← EncryptA(PK,Mb,A∗, 1) to A. A wins

the game if b′ = b under the restriction that A∗ cannot be satisfied by any of the queried attribute
sets Sk1 , . . . , Skq . The advantage of A is defined as MHA

1AdvA = |Pr[b′ = b]− 1
2 |.

GameAMHK+1
. In the Challenge phase the challenger sends CT ← EncryptA(PK,Mb,A∗,K+ 1) to A.

A wins the game if b′ = b. The advantage of A is defined as MHA
K+1AdvA = |Pr[b′ = b]− 1

2 |.

GameAIH. The third game, called Index Hiding Game, says that for any non-empty attribute
set S∗ ⊆ S, defining the strictest access policy AS∗ = ∧x∈S∗x, an adversary cannot distinguish
between an encryption using (AS∗ , k̄) and one using (AS∗ , k̄+1) without a private key SKk̄,Sk̄

where

Sk̄ ⊇ S∗. The game takes as input a parameter k̄ ∈ {1, . . . ,K} which is given to both the challenger
and the adversary A. The game proceeds as follows:

Setup. The challenger runs SetupA(λ,S,K) and gives the public parameters PK to A.
Key Query. For i = 1 to q, A adaptively submits (ki, Ski) to the challenger, and the challenger

responds with SKki,Ski
. Note that q ≤ K, ki ∈ {1, . . . ,K}, and ki 6= kj ∀1 ≤ i 6= j ≤ q.
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Challenge. A submits a message M and a non-empty attribute set S∗. The challenger flips a
random coin b ∈ {0, 1}, and sends CT ← EncryptA(PK,M,AS∗ , k̄ + b) to A.

Guess. A outputs a guess b′ ∈ {0, 1} for b.

A wins the game if b′ = b under the restriction that none of the queried pairs {(ki, Ski)}1≤i≤q can
satisfy (ki = k̄) ∧ (Ski satisfies AS∗), i.e., (ki = k̄) ∧ (Ski ⊇ S∗). The advantage of A is defined as
IHAAdvA[k̄] = |Pr[b′ = b]− 1

2 |.

Definition 2. A K-user Augmented CP-ABE system is secure if for all polynomial-time adver-
saries A the advantages MHA

1AdvA, MHA
K+1AdvA and IHAAdvA[k̄] for k̄ = 1, . . . ,K are negligible

functions of λ.

3.2 Reducing BT-CP-ABE to AugCP-ABE

Let ΣA = (SetupA,KeyGenA,EncryptA,DecryptA) be a secure AugCP-ABE system. Then the derived
BT-CP-ABE system is defined as Σ = (SetupA,KeyGenA,Encrypt,DecryptA,Trace) where

Encrypt(PK,M,A) = EncryptA(PK,M,A, 1).
TraceD(PK, SD, ε) → KT ⊆ {1, . . . ,K}: For a given decoder D associated with a non-empty at-

tribute set SD and probability ε > 0, the tracing algorithm works as follows: 5

1. For k = 1 to K + 1, do the following:
(a) The algorithm repeats the following 8λ(K/ε)2 times:

i. Sample M from the message space at random.
ii. Let CT ← EncryptA(PK,M,ASD , k), where ASD is the strictest access policy of SD.

iii. Call oracle D on input CT which contains ASD , and compare the output of D to M .
(b) Let p̂k be the fraction of times that D decrypted the ciphertexts correctly.

2. Let KT be the set of all k ∈ {1, . . . ,K} for which p̂k − p̂k+1 ≥ ε/(4K).
3. Output the set KT as the index set of guilty private keys.

Remark: Note that the strictest access policy is used in the Index Hiding game GameAIH and the
tracing algorithm Trace. It is worth noticing that such a strictest access policy is not a limitation
of the traceable CP-ABE system. Actually, it is the most efficient way to guarantee that the traced
guilty users are the reasonable suspects who have been entitled supersets of SD and have the
ability to construct D. As a decoder D is designed to decrypt the ciphertexts whose access policy
can be satisfied by SD, a ciphertext associated with the strictest access policy ASD is a normal and
reasonable input to D. Although it may be more appealing for the AugCP-ABE scheme to have
the index hiding property for any access policy, the following Theorem 1 shows that the strictest
access policy is sufficient for guaranteeing the traceability of the derived BT-CP-ABE scheme.

Theorem 1. If ΣA is a secure AugCP-ABE, then Σ is a secure BT-CP-ABE.

Proof. Without considering the algorithm Trace, Σ is just a special case of ΣA where the encryption
algorithm always sets k̄ = 1. Consequently, the game GameMH for Σ is same as the game GameAMH1

for ΣA. It implies that the quantity MHAdvA for Σ in GameMH is same with the quantity MHA
1AdvA

for ΣA in GameAMH1
. i.e., if ΣA is a secure AugCP-ABE, then MHAdvA is negligible.

Now we show that if ΣA is a secure AugCP-ABE then the quantity TRAdvA for Σ in GameTR
is also negligible. In the following proof sketch that is similar to that of [7,8,13], we show that if

5 The tracing algorithm uses a standard technique from the broadcast encryption [7,8,13].
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the decoder output by the adversary is a useful decoder then the traced KT will satisfy (KT 6=
∅) ∧ (KT ⊆ KD) ∧ (∃kt ∈ KT s.t. Skt ⊇ SD) with overwhelming probability, which implies that the
adversary can win the game GameTR only with negligible probability, i.e., TRAdvA is negligible.

Let D be the decoder output by the adversary, and SD be the attribute set describing D. Define

pk̄ = Pr[D(EncryptA(PK,M,ASD , k̄)) = M ].

We have that p1 ≥ ε and pK+1 is negligible. The former follows from the fact that D is a useful
decoder. The later follows directly from the AugCP-ABE message hiding game GameAMHK+1

. Then
there must exist some k ∈ {1, . . . ,K} such that pk − pk+1 ≥ ε/(2K). By the Chernoff bound it
follows that with overwhelming probability, p̂k − p̂k+1 ≥ ε/(4K). Hence, the set KT output by
TraceD(PK, SD, ε) is non-empty.

For any k ∈ KT (i.e., p̂k−p̂k+1 ≥ ε
4K), we know, by Chernoff, that with overwhelming probability

pk−pk+1 ≥ ε/(8K). Clearly (k ∈ KD)∧ (Sk ⊇ SD) since otherwise, such a D can be directly used to
win the AugCP-ABE index hiding game for ΣA. Hence, we have (KT ⊆ KD)∧ (SD ⊆ Sk ∀k ∈ KT ).

4 Background

Linear Secret-Sharing Schemes. As of previous work, in this paper we use linear secret-sharing
schemes (LSSS) to realize the monotonic access structures that are associated with the ciphertexts
to specify the access policies. The formal definitions of access structures and LSSS can be found
in Appendix A. Informally, an LSSS is a share-generating matrix A whose rows are labeled by
attributes. When we consider the column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to
be shared and r2, . . . , rn ∈ Zp are randomly chosen, then Av is the vector of l shares of the secret
s. A user’s set of attributes S satisfies the LSSS access matrix if the rows labeled by the attributes
in S have the linear reconstruction property, which means there exist constants {ωi} such that, for
any valid shares {λi} of a secret s according to the LSSS matrix, we have

∑
i ωiλi = s. Essentially,

a user will be able to decrypt a ciphertext with access matrix A if and only if the rows of A labeled
by the user’s attributes include the vector (1, 0, . . . , 0) in their span.

Composite Order Bilinear Groups. Our AugCP-ABE system works on composite order bilin-
ear groups [6]. Let G be the group generator, which takes a security parameter λ and outputs
(q, p, p2, p3,G,GT , e) where q, p, p2, p3 are distinct primes, G and GT are cyclic groups of order
N = qpp2p3, and e : G×G→ GT is a map such that: (1) (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) =
e(g, h)ab, (2) (Non-Degenerate) ∃g ∈ G such that e(g, g) has order N in GT . Assume that group
operations in G and GT as well as the bilinear map e are computable in polynomial time with
respect to λ. Let Gq, Gp, Gp2 and Gp3 be the subgroups of order q, p, p2 and p3 in G, respectively.
Note that for any g and h that are from different subgroups of prime order, e(g, h) = 1.

Complexity Assumptions. The Message Hiding property of our AugCP-ABE scheme will be based
on three assumptions (Assumption 1, 2 and 3 in [21]) that are used by [21] to achieve full security of
their CP-ABE system, and the Index Hiding property will be based on three assumptions (Decision
(Modified) 3-party Diffie-Hellman Assumption, Diffie-Hellman Subgroup Decision Assumption, and
Bilinear Subgroup Decision Assumption in [8]) that are used by [8] to achieve traceability in the
setting of broadcast encryption. The details of these assumptions can be found in Appendix B.
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5 An Efficient Augmented CP-ABE System

We construct an AugCP-ABE system that is as secure and expressive as the CP-ABE system in
[21]. To obtain traceability in the derived BT-CP-ABE system we will use the standard tracing
techniques which were used by [7,8,13] in the setting of broadcast encryption. The challenge is to
apply the tracing techniques to the setting of CP-ABE securely and efficiently.

5.1 Our Approach

In a CP-ABE system, the encryptor will not know or specify the identities of the receivers, so it will
be tempting to try naively by combining a Traitor Tracing system (where all the users in the system
are always the authorized receivers) and a CP-ABE system for building a CP-ABE system with
the traitor tracing property. However, the resulting system cannot achieve the desirable security
objective (i.e., strong traceability). Consider the following (misguided) approach. Suppose that we
created both a CP-ABE system and a Traitor Tracing system each for K users, where each user
has the same index in both systems. To encrypt a message M , an algorithm splits the message
randomly into two pieces MP and MI such that MP · MI = M , then encrypts MP under the
CP-ABE system and MI under the Traitor Tracing system. In order to decrypt a message a user
will need to be able to decrypt under both systems. It is obvious that such an approach can add
only weak traceability to the CP-ABE systems 6. In particular, if two users, Alice with attribute
set SA in the CP-ABE system and index kA in both systems, and Bob with attribute set SB in the
CP-ABE system and index kB in both systems, assuming SB ∩ SA = ∅, collude to make a decoder
D with attribute set SD ⊆ SA. The decoder will simply use Alice’s key (the part corresponding to
SA) to decrypt the ciphertext from the CP-ABE system and Bob’s key (the part corresponding to
kB) to decrypt the ciphertext from the Traitor Tracing system. The tracing algorithm will be able
to only identify Bob as the guilty user involved in building D, although Bob’s attribute set SB is
uncorrelated to SD.

The idea behind the techniques of achieving (strong) traceability is to set a user’s private key
such that it must be simultaneously used for both the CP-ABE and the Tracing portions in a
traceable CP-ABE. Boneh and Waters handled a similar situation in [8] where they intertwined
a Broadcast Encryption system of [5] and a Traitor Tracing system of [7] together to build an
Augmented Broadcast Encryption (AugBE) system which implies a Trace and Revoke system.
We follow a similar route to their work by applying a tracing technique used in some broadcast
encryption systems [7,8,13] to a CP-ABE system of [21]. However, the challenge comes from the
setting that in a CP-ABE system the decryption privilege of a user is determined by his attributes
rather than by his index as in broadcast encryption systems. In particular, in the AugBE system of
[8], each user is identified by an index k ∈ {1, . . . ,K} which also determines his decryption privilege,
i.e., the encryption algorithm EncryptAugBE(PK,M, Y, k̄) will encrypt a message M using an index
set Y ⊆ {1, . . . ,K} and an index k̄ ∈ {1, . . . ,K + 1} so that a user k can decrypt the ciphertext
only if (k ∈ Y ) ∧ (k ≥ k̄). As Y is an index set (for the Broadcast Encryption portion) and k̄ is an
index (for the Tracing portion), they are essentially correlated, and the condition (k ∈ Y )∧ (k ≥ k̄)
naturally intertwines the two portions together by k. Actually, the construction and proof of Index
Hiding property of the AugBE scheme [8] are based on the correlation of k̄ and Y in that only if
a user possesses a key indexed k̄ and k̄ ∈ Y can he distinguish between an encryption to (Y, k̄)

6 A similar approach was used in [19] to propose the generic construction of adding weak traceability to any predicate
encryption.
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and one to (Y, k̄ + 1). However, the situation in CP-ABE system is fundamentally different. In a
traceable CP-ABE system each user is identified by an index k that is uncorrelated to his attribute
set Sk which determines his decryption privilege, i.e., in an AugCP-ABE system the encryption
algorithm EncryptA(PK,M,A, k̄) will encrypt a message M using an access policy A (defined over
attributes) and an index k̄ ∈ {1, . . . ,K + 1} so that a user with (k, Sk) can decrypt the ciphertext
only if (Sk satisfies A) ∧ (k ≥ k̄), where (Sk, A) are for the CP-ABE portion and (k, k̄) for the
Tracing portion. As the index k and the attribute set Sk are independent from each other, novelty
in construction and proof is needed to correlate A and k̄ and consequently intertwine the CP-ABE
and Tracing portions. A straightforward modification and combination will result in schemes that
are either not provably secure or inefficient with ciphertext of size O(

√
K · |A|) where |A| is the

size of the access policy. In the following, we propose a secure AugCP-ABE system which is also
efficient with ciphertext of size O(

√
K + |A|).

5.2 Notations

We will express our AugCP-ABE system using the same index notation as the tracing systems
[7,8,13] in broadcast encryption. We assume the number of users, K in the system equals m2 for
some m.7 We arrange the users in an m × m matrix. Each user is assigned and identified by a
unique tuple (i, j) where 1 ≤ i, j ≤ m, and a user in position (i, j) has the index k = (i−1)∗m+ j.
For simplicity, we also directly use (i, j) as the index where (i, j) ≥ (̄i, j̄) means that (i > ī) or
(i = ī ∧ j ≥ j̄). The use of pairwise notation (i, j) is purely a notational convenience for describing
the systems, as k = (i− 1) ∗m+ j defines a bijection between {(i, j)|1 ≤ i, j ≤ m} and {1, . . . ,K}.

5.3 AugCP-ABE Construction

SetupA(λ,S,K = m2) → (PK,MSK). Let G be a bilinear group of order N = qpp2p3 (4 distinct
primes, whose size is determined by λ), Gq,Gp,Gp2 and Gp3 the subgroups of order q, p, p2 and p3

respectively in G, and gq, hq, fq ∈ Gq, gp, hp, fp ∈ Gp, X3 ∈ Gp3 the generators of corresponding
subgroups. The algorithm chooses random exponents

β, γ, δ ∈ ZN , {ri, zi, αi ∈ ZN}1≤i≤m, {cj ∈ ZN}1≤j≤m, {ux ∈ ZN}x∈S.

The public parameters PK include the description of the group and the following elements:(
g = gqgp, h = hqhp, f = fqfp, G = gδgγp , H = hδ, Gq = gβq , Fq = fβq ,

{Gi = gri , Gq,i = gβriq , Hi = hri , Hq,i = hβriq , Ĝi = gzi , Ei = e(g, g)αi , Eq,i = e(gq, gq)
βαi}1≤i≤m,

{Ḡj = gcj}1≤j≤m, {Ux = gux}x∈S
)
.

The master secret key is set to MSK = ( r1, . . . , rm, c1, . . . , cm, α1, . . . , αm, X3 ).
In addition, a counter ctr = 0 is implicitly included in MSK.

KeyGenA(PK,MSK, S) → SK(i,j),S . The algorithm first sets ctr = ctr + 1 and computes the cor-
responding index in the form of (i, j) where 1 ≤ i, j ≤ m and (i − 1) ∗m + j = ctr. Then it
randomly chooses σi,j ∈ ZN and R,R′, R′′, Rx(x ∈ S) ∈ Gp3 , and outputs a private key

SK(i,j),S =
(
Ki,j = gαigricjfσi,jR, K ′i,j = gσi,jR′, K ′′i,j = Ĝ

σi,j
i R′′, {Ki,j,x = U

σi,j
x Rx}x∈S

)
.

7 If the number of users is not a square, we can add some “dummy” users to pad out to the next square.
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EncryptA(PK,M,A = (A, ρ), (̄i, j̄))→ CT . A is an L×D LSSS matrix and ρ maps each row Al of
A to an attribute ρ(l) ∈ S. It is required that ρ would not map two different rows to the same
attribute 8. The algorithm first chooses random exponents

κ, τ, sī, . . . , sm, d1, . . . , dm, t1, . . . , tm, µ1, . . . , µj̄−1 ∈ ZN ,
(ν1,1, ν1,2, ν1,3), . . . , (νī−1,1, νī−1,2, νī−1,3) ∈ Z3

N ,

(ξ1, . . . , ξL) ∈ ZLN , v = (π, v2, . . . , vD) ∈ ZDN .

Then it creates ciphertext 〈(A, ρ), (Ri, R̄i, Qi, Q̄i, Q̂i, Ti)
m
i=1, (Cj , C̄j)

m
j=1, (Pl, P̄l)

L
l=1〉 as follows:

1. For each row i ∈ {1, . . . ,m}:
– if i > ī: Ri = Gsiq,i, R̄i = Hκsi

q,i , Qi = Gτsiq , Q̄i = F τsiq Ĝdii f
π, Q̂i = gdi , Ti = M ·Eτsiq,i .

– if i = ī: Ri = Gsii , R̄i = Hκsi
i , Qi = gτsi , Q̄i = f τsiĜdii f

π, Q̂i = gdi , Ti = M ·Eτsii .

– if i < ī: Ri = gνi,1 , R̄i = hκνi,1 , Qi = gνi,2 , Q̄i = fνi,2Ĝdii f
π, Q̂i = gdi , Ti = e(g, g)νi,3 .

2. For each column j ∈ {1, . . . ,m}:
– if j ≥ j̄: Cj = Ḡτjh

κtj , C̄j = gtj .

– if j < j̄: Cj = Ḡτjh
κtjHκµj , C̄j = gtjGµj .

3. For each l ∈ {1, . . . , L}: Pl = fAl·vU−ξlρ(l) , P̄l = gξl .

DecryptA(PK, CT, SK(i,j),S)→M or⊥. The algorithm parses CT to 〈(A, ρ), (Ri, R̄i, Qi, Q̄i, Q̂i, Ti)
m
i=1,

(Cj , C̄j)
m
j=1, (Pl, P̄l)

L
l=1〉. If S does not satisfy (A, ρ), the algorithm outputs ⊥, otherwise it

1. Computes constants {ωl ∈ ZN} such that
∑

ρ(l)∈S ωlAl = (1, 0, . . . , 0), then computes

DP =
∏
ρ(l)∈S

(
e(K ′i,j , Pl)e(Ki,j,ρ(l), P̄l)

)ωl =
∏
ρ(l)∈S

(
e(gσi,j , fAl·v)

)ωl = e(gσi,j , f)π.

2. Computes DI =
(
e(Ki,j , Qi) · e(K ′′i,j , Q̂i) · e(R̄i, C̄j)

)
/
(
e(K ′i,j , Q̄i) · e(Ri, Cj)

)
.

3. Computes M ′ = Ti/(DP ·DI) as the output message. Assume the encrypted message is M
and the encryption index is (̄i, j̄), it can be verified that only when (i > ī) or (i = ī∧ j ≥ j̄),
M ′ = M will hold. The correctness details can be found in Appendix C.

Remarks: (1) In the Tracing portion of the ciphertext, while (Ri, R̄i, Qi, Ti, Cj , C̄j) are same to that

of [8], Q̄i is different and Q̂i is a new component we design. Ĝdii (in Q̄i) is the crucial component
that intertwines the Tracing portion (F τsiq for i > ī and f τsi for i = ī) and the CP-ABE portion

(fπ) securely and efficiently. In a straightforward combination without Ĝdii (i.e., Q̄i = F τsiq fπ for
i > ī, and Q̄i = f τsifπ for i = ī), the index hiding property will be hard to prove. And to obtain
provable index hiding property, different πi has to be used for different i (i.e., Q̄i = F τsiq fπi for
i > ī, and Q̄i = f τsifπi for i = ī), so that the CP-ABE portion of the resulting system will have
ciphertext size of O(

√
K ·L), rather than O(L) as above. (2) In the construction above, the size of

the public parameters grows linear with |S|, the size of the attribute universe. Note that using the
techniques in [21] we can obtain a large attribute universe construction as [21] does, where the size
of public parameters is independent of |S|.
8 This restriction is inherited from the underlying CP-ABE scheme in [21] whose security proof relies on such a

restriction, and can be removed with the techniques in [21] similarly. In the most recent (non-traceable) CP-ABE
schemes in [22], this restriction is eliminated using a new proof technique, but the (composite order) construction
in [22] still closely resembles that of [21], so we expect that our techniques of obtaining traceability are applicable
to the new CP-ABE schemes in [22].
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5.4 AugCP-ABE Security

The security of our AugCP-ABE construction follows from the following Theorem 2, 3 and 4.

Theorem 2. Suppose that Assumptions 1, 2, and 3 in [21] hold. Then no polynomial time adver-
sary can win GameAMH1

with non-negligible advantage.

Proof. The CP-ABE scheme in [21] is proved secure against adaptive adversaries in the standard
model, based on Assumptions 1, 2, and 3. Note that the structures of CP-ABE portion of our
AugCP-ABE scheme are similar to that of the CP-ABE scheme in [21], this theorem can be proved
using similar proof. The proof details can be found in Appendix D.1.

Theorem 3. No polynomial time adversary can win GameAMHK+1
with non-negligible advantage.

Proof. The argument for security of GameAMHK+1
is very straightforward since an encryption to

index K + 1 = (m + 1, 1) contains no information about the message. The simulator simply runs
actual SetupA and KeyGenA algorithms and encrypts the message Mb by the challenge access policy
A and index K + 1. Since for all i = 1 to m, the values of Ti = e(g, g)νi,3 contains no information
about the message, the bit b is perfectly hidden and MHA

K+1AdvA = 0.

Theorem 4. Suppose that the Decision (Modified) 3-party Diffie-Hellman, Bilinear Subgroup Deci-
sion, and Diffie-Hellman Subgroup Decision assumptions hold. Then no polynomial time adversary
can win GameAIH with non-negligible advantage.

Proof. Theorem 4 follows from the following Lemma 1 and Lemma 2 immediately.

Lemma 1. Suppose that the Decision (Modified) 3-party Diffie-Hellman Assumption holds. Then
for j̄ < m no polynomial time adversary can distinguish between an encryption to (̄i, j̄) and an
encryption to (̄i, j̄ + 1) in GameAIH with non-negligible advantage.

Proof. In GameAIH, the adversary A will eventually behave in one of two different ways:

Case I: In Key Query phase, A will not submit ((̄i, j̄), S(̄i,j̄)) for some attribute set S(̄i,j̄) to obtain
the corresponding private key. In Challenge phase, A sends a message M and an attribute set
S∗ to B. There is not any restriction on S∗.

Case II: In Key Query phase, A will submit ((̄i, j̄), S(̄i,j̄)) for some attribute set S(̄i,j̄) to obtain
the corresponding private key. In Challenge phase, A sends a message M and an attribute set
S∗ to B with the restriction that S(̄i,j̄) does not satisfy AS∗ (i.e., S∗ \ S(̄i,j̄) 6= ∅).

At the beginning of the game, the simulator B does not know which case A will behave in. B will
guess it by flipping a random coin b̃ ∈ {0, 1}. We will show that in both cases B’s output will be
the same as that in the real game, i.e., the value of b̃ is hidden from A. Then B can finish the
simulation with probability 1/2.

The simulation for Case I is very similar to that of [8] because the simulator does not need to
generate private key indexed (̄i, j̄) and there is not any restriction on the attribute set S∗.

The Case II captures the security that even when a user has a key indexed (̄i, j̄) he cannot
distinguish between an encryption to (AS∗ , (̄i, j̄)) and one to (AS∗ , (̄i, j̄ + 1)) if the corresponding
attribute set S(̄i,j̄) is not a superset of S∗. With the crucial components Ĝdii (in Q̄i) and Q̂i = gdi in
the ciphertext, our particular construction guarantees that B can successfully finish the simulation
with probability |S∗ \ S(̄i,j̄)|/|S|, which is at least 1/|S| since S∗ \ S(̄i,j̄) 6= ∅.

The proof details of Lemma 1 can be found in Appendix D.2.

14



Lemma 2. Suppose that the Decision (Modified) 3-party Diffie-Hellman, Bilinear Subgroup Deci-
sion, and Diffie-Hellman Subgroup Decision assumptions hold. Then no polynomial time adversary
can distinguish between an encryption to (̄i,m) and one to (̄i+ 1, 1) in GameAIH with non-negligible
advantage.

Proof. Similar to the proof of Lemma 5.3 in [8], to prove this lemma we define the following hybrid
experiments: H1: Encrypt to (̄i, j̄ = m); H2: Encrypt to (̄i, j̄ = m+1); and H3: Encrypt to (̄i+1, 1).
Lemma 2 follows from the following Claim 1 and Claim 2.

Claim 1. Suppose that the Decision (Modified) 3-party Diffie-Hellman assumption holds. Then
no polynomial time adversary can distinguish between experiments H1 and H2 with non-negligible
advantage.

Proof. The proof of Claim 1 is identical to that of Lemma 1.

Claim 2. Suppose that the Decision (Modified) 3-party Diffie-Hellman, Bilinear Subgroup Deci-
sion, and Diffie-Hellman Subgroup Decision assumptions hold. Then no polynomial time adversary
can distinguish between experiments H2 and H3 with non-negligible advantage.

Proof. The indistinguishability of H2 and H3 can be proved using similar proof to that of Claim 5.5,
5.6 and 5.7 in [8], which were used to prove the indistinguishability of similar hybrid experiments
for their Augmented Broadcast Encryption (AugBE) scheme. The proof details can be found in
Appendix D.3.

Remarks: (1) Our construction works on a composite order group, and the security is based on six
assumptions. Recently, Lewko [20] proposed a general methodology for converting composite order
pairing-based cryptosystems into the prime order setting, and the security of the resulting systems
is based on a standard assumption over prime order group (Decisional Linear Assumption). We
note that Lewko’s technique is applicable to our construction. The resulting construction will work
on a prime order group, and the security will be based on two standard assumptions (Decisional
Linear Assumption and Decision 3-party Diffie Hellman Assumption). (2) While we proved our
construction secure under chosen-plaintext attacks, it is not difficult to modify it slightly and apply
the methods of Canetti, Halevi, and Katz [9] for security against chosen-ciphertext attacks.

6 Related Work

Sahai and Waters [30] introduced Attribute-Based Encryption (ABE) for addressing the fuzzy
identity matching problem in IBE. Goyal et al. [15] later formalized the notions of CP-ABE and
Key-Policy ABE (KP-ABE). In a KP-ABE system, each ciphertext comes with a set of attributes
and each user has a decryption key associated with an access policy issued by an authority. Appli-
cations of KP-ABE include “audit-log” and “pay-TV” [15], and KP-ABE systems available in the
literature include [29,21,28,1], however, these system do not address the malicious key delegation
problem. [34,32] are among the first KP-ABE systems to consider traceability. The system in [34]
supports expressive key-policy, but its black-box traceability is not collusion-resistant. Supporting
only limited key-policy (i.e., a single threshold gate), the system in [32] achieves t-collusion-resistant
black-box traceability at the expense of adding overhead in the order of O(t2 logK) to the underlying
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system [30], where K is the number of users in the system. Note that to achieve fully collusion-
resistant traceability, t is equal to K, and therefore, the overhead will be in the order of O(K2 logK),
which is very big and might not be practical for large K.

In broadcast encryption, traceability is also an important feature. There are three types of sys-
tems: (1) in a Broadcast Encryption [12,5] system, a broadcaster encrypts messages for an arbitrary
subset Y ⊆ {1, . . . ,K} of users in the system; (2) in a Traitor Tracing [11,7] system, a broadcaster
encrypts messages so that all K users can decrypt, while if some of the users collude and jointly
build a pirate decryption-device D, a tracing algorithm Trace by taking D as an input can output
the identity of at least one of the malicious users; (3) a Trace and Revoke [27,26,8,13] system pro-
vides both Broadcast Encryption and Traitor Tracing. Note that achieving fully collusion-resistant
black-box traceability at the expense of sub-linear size ciphertext is the best result currently avail-
able for broadcast encryption, and our attempt here is to achieve a comparable result in the setting
of CP-ABE, which is very different from that of broadcast encryption.

Katz and Schröder [19] introduced the notion of traceability in the context of predicate en-
cryption [18]. In a predicate encryption scheme, each ciphertext is associated (by the encryptor)
with an attribute and each user has a decryption key associated with a predicate issued by an
authority, and a ciphertext associated with attribute I can be decrypted using a decryption key
associated with predicate f only if f(I) = 1. [19] proposed a generic construction that adds trace-
ability to any inner-product predicate encryption (IPE) scheme. Note that although IPE (e.g., the
most expressive schemes to date in [18]) is general enough to cover IBE, BE and KP-ABE, it does
not cover CP-ABE, especially expressive CP-ABE. Also note that the construction of [19] adds
overhead linear in K (the number of users) to the original scheme and it is left as an open problem
to propose more efficient constructions even for specific IPE schemes. The advances of our paper
is making are twofold in the sense that we add traceability (1) to an existing expressive CP-ABE
scheme (2) at the expense of sub-linear (i.e.,

√
K) overhead, although our result is specific rather

than generic as [19] is.

7 Conclusion

We constructed the first expressive Black-box Traceable CP-ABE system that simultaneously sup-
ports fully collusion-resistant (and public) black-box traceability and high expressiveness (i.e., sup-
porting any monotonic access structures). The system is proven secure and traceable against adap-
tive adversaries in the standard model. Compared with the representative work of the efficient
conventional (non-traceable) CP-ABE systems currently available for high expressiveness, our new
CP-ABE system adds fully collusion-resistant black-box traceability with the price of adding only
O(
√
K) elements in the ciphertext and public key. Instead of directly building a Black-box Traceable

CP-ABE system, we constructed a simpler primitive called Augmented CP-ABE, and showed that
a secure Augmented CP-ABE system is sufficient for constructing a Black-box Traceable CP-ABE
system with fully collusion-resistant traceability.
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A Access Policy

Definition 3 (Access Structure [2]). Let {P1, P2, . . . , Pn} be a set of parties. A collection A ⊆
2{P1,P2,...,Pn} is monotone if ∀ B,C : if B ∈ A and B ⊆ C then C ∈ A. An access structure
(respectively, monotone access structure) is a collection (respectively, monotone collection) A of
non-empty subsets of {P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn} \ {∅}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In ABE systems, the role of the parties is taken by the attributes. Thus, the access structure
A contains the authorized sets of attributes. As of previous work, we focus on monotone access
structures in this paper. It is shown in [2] that any monotone access structure can be realized by a
linear secret sharing scheme. Here we use the definition from [2,33].

Definition 4 (Linear Secret-Sharing Schemes (LSSS) [33]). A secret sharing scheme Π over
a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix A called the share-generating matrix for Π. The matrix A has l rows and

n columns. For i = 1, . . . , l, the ith row Ai of A is labeled by a party ρ(i)(ρ is a function from
{1, . . . , l} to P). When we consider the column vector v = (s, r2, . . . , rn), where s ∈ Zp is the
secret to be shared and r2, . . . , rn ∈ Zp are randomly chosen, then Av is the vector of l shares
of the secret s according to Π. The share λi = (Av)i, i.e., the inner product Ai · v, belongs to
party ρ(i).

It is shown in [2] that every linear secret-sharing scheme according to the above definition also
enjoys the linear reconstruction property, defined as follows: Suppose that Π is an LSSS for access
structure A. Let S ∈ A be an authorized set, and let I ⊂ {1, . . . , l} be defined as I = {i : ρ(i) ∈ S}.
There exist constants {ωi ∈ Zp}i∈I such that if {λi} are valid shares of any secret s according to
Π, then

∑
i∈I ωiλi = s. Furthermore, these constants {ωi} can be found in time polynomial in the

size of the share-generating matrix A. For any unauthorized set, no such constants exist. In this
paper, as of previous work, we use an LSSS matrix (A, ρ) to express an access policy associated to
a ciphertext.
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B Assumptions

In Assumptions 1, 2, and 3 below, G is a bilinear group of order N = qp2p3 where q, p2, p3 are
distinct primes. Let Gq, Gp2 , Gp3 , Gqp2 and Gqp3 be the subgroups of order q, p2, p3, qp2 and qp3

in G, respectively.

Assumption 1 (Subgroup decision problem for 3 primes) [21] Given a group generator G,

define the following distribution: (q, p2, p3,G,GT , e)
R←− G, N = qp2p3, g

R←− Gq, X3
R←− Gp3,

D = ((N,G,GT , e), g,X3), T1
R←− Gqp2, T2

R←− Gq. The advantage of an algorithm A in breaking
Assumption 1 is:

Adv1G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 5. G satisfies Assumption 1 if Adv1G,A(λ) is a negligible function of λ for any polyno-
mial time algorithm A.

Assumption 2 [21] Given G, define the following distribution: (q, p2, p3,G,GT , e)
R←− G, N =

qp2p3, g,X1
R←− Gq, X2, Y2

R←− Gp2, X3, Y3
R←− Gp3, D = ((N,G,GT , e), g,X1X2, X3, Y2Y3), T1

R←−
G, T2

R←− Gqp3. The advantage of an algorithm A in breaking Assumption 2 is:

Adv2G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 6. G satisfies Assumption 2 if Adv2G,A(λ) is a negligible function of λ for any polyno-
mial time algorithm A.

Assumption 3 [21] Given G, define the following distribution: (q, p2, p3,G,GT , e)
R←− G, N =

qp2p3, α, s
R←− ZN , g

R←− Gq, X2, Y2, Z2
R←− Gp2, X3

R←− Gp3, D = ((N,G,GT , e), g, g
αX2,

X3, g
sY2, Z2), T1 = e(g, g)αs, T2

R←− GT . The advantage of an algorithm A in breaking Assumption
3 is:

Adv3G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 7. G satisfies Assumption 3 if Adv3G,A(λ) is a negligible function of λ for any polyno-
mial time algorithm A.

Assumption 4 (Decision (Modified) 3-party Diffie-Hellman Assumption) [8] Given a group

generator G, define the following distribution: (p,Gp,GT , e)
R←− G, gp

R←− Gp, a, b, c
R←− Zp,

D = ((p,Gp,GT , e), gp, g
a
p , g

b
p, g

c
p, g

b2
p ), T = gabcp , R

R←− Gp. The advantage of an algorithm A in
breaking the decision 3-party Diffie-Hellman Assumption is:

AdvD3DHG,A(λ) := |Pr[A(D,T ) = 1]− Pr[A(D,R) = 1]|.

Definition 8. G satisfies the Decision (Modified) 3-party Diffie-Hellman Assumption if AdvD3DHG,A(λ)
is a negligible function of λ for any polynomial time algorithm A.

Assumption 5 (Diffie-Hellman Subgroup Decision Assumption) [8] Given a group gener-

ator G, define the following distribution: (q, p,G,GT , e)
R←− G, N = qp, g, h

R←− G, vp
R←− Gp,

a
R←− Zq, b

R←− ZN , D = ((N,G,GT , e), g, h, g
bvp, h

b, gpa, hpa), T1
R←− Gq, T2

R←− G. The advan-
tage of an algorithm A in breaking the Diffie-Hellman Subgroup Decision Assumption is:

AdvDHSDG,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.
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Definition 9. G satisfies the Diffie-Hellman Subgroup Decision Assumption if AdvDHSDG,A(λ) is
a negligible function of λ for any polynomial time algorithm A.

Assumption 6 (Bilinear Subgroup Decision Assumption) [8] Given a group generator G,

define the following distribution: (q, p,G,GT , e)
R←− G, N = qp, gq

R←− Gq, gp
R←− Gp, g = gqgp,

T
R←− Gp, R

R←− G, D = ((N,G,GT , e), gp, gq), T1 = e(g, T ), T2 = e(g,R). The advantage of an
algorithm A in breaking the Bilinear Subgroup Decision Assumption is:

AdvBSDG,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 10. G satisfies the Bilinear Subgroup Decision Assumption if AdvBSDG,A(λ) is a neg-
ligible function of λ for any polynomial time algorithm A.

C Correctness of Our AugCP-ABE Construction

Correctness. Assume the encrypted message is M and the encryption index is (̄i, j̄), we have

– If i > ī, j ≥ j̄,

DI =
(
e(gαigricjfσi,j , Gτsiq )e(Ĝ

σi,j
i , gdi)e(Hκsi

q,i , g
tj )
)
/
(
e(gσi,j , F τsiq Ĝdii f

π)e(Gsiq,i, Ḡ
τ
jh

κtj )
)

=
(
e(gαigricjfσi,j , gβτsiq )e(hβriκsiq , gtj )

)
/
(
e(gσi,j , fβτsiq fπ)e(gβrisiq , gcjτhκtj )

)
=e(g, gq)

βαiτsi/e(gσi,j , fπ)

– If i > ī, j < j̄,

DI =
(
e(gαigricjfσi,j , Gτsiq )e(Ĝ

σi,j
i , gdi)e(Hκsi

q,i , g
tjGµj )

)
/
(
e(gσi,j , F τsiq Ĝdii f

π)e(Gsiq,i, Ḡ
τ
jh

κtjHκµj )
)

=
(
e(gαigricjfσi,j , gβτsiq )e(hβriκsiq , gtjgδµjg

γµj
p )

)
/
(
e(gσi,j , fβτsiq fπ)e(gβrisiq , gcjτhκtjhδκµj )

)
=e(g, gq)

βαiτsi/e(gσi,j , fπ)

– If i = ī, j ≥ j̄,

DI =
(
e(gαigricjfσi,j , gτsi)e(Ĝ

σi,j
i , gdi)e(Hκsi

i , gtj )
)
/
(
e(gσi,j , f τsiĜdii f

π)e(Gsii , Ḡ
τ
jh

κtj )
)

=
(
e(gαigricjfσi,j , gτsi)e(hriκsi , gtj )

)
/
(
e(gσi,j , f τsifπ)e(grisi , gcjτhκtj )

)
=e(g, g)αiτsi/e(gσi,j , fπ)

– If i = ī, j < j̄,

DI =
(
e(gαigricjfσi,j , gτsi)e(Ĝ

σi,j
i , gdi)e(Hκsi

i , gtjGµj )
)
/
(
e(gσi,j , f τsiĜdii f

π)e(Gsii , Ḡ
τ
jh

κtjHκµj )
)

=
(
e(gαigricjfσi,j , gτsi)e(hriκsi , gtjgδµjg

γµj
p )

)
/
(
e(gσi,j , f τsifπ)e(grisi , gcjτhκtjhδκµj )

)
=e(g, g)αiτsi · e(h, gp)riκsiγµj/e(gσi,j , fπ)

Then from the values of Ti, DP and DI , we have that

M ′ = Ti/(DP ·DI) =



M, if i > ī ∧ j ≥ j̄,
M, if i > ī ∧ j < j̄,

M, if i = ī ∧ j ≥ j̄,
M · e(h, gp)−riκsiγµj , if i = ī ∧ j < j̄,

has no relation with M, if i < ī.
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D Proofs

D.1 Proof of Theorem 2

Note that the structures of CP-ABE portion of our AugCP-ABE scheme are similar to that of the
CP-ABE scheme in [21], the proof of Theorem 2 is also similar to that of [21]. Due to the space
restriction and for simplicity, here we prove the theorem by reducing message hiding security of
our AugCP-ABE scheme in GameAMH1

to the security of CP-ABE scheme in [21]. Theorem 2 follows
from the following Lemma 3 and Lemma 4.

Lemma 3. [21] If Assumptions 1, 2, and 3 hold, then the CP-ABE scheme in [21] is secure.

Proof. This lemma follows from the Theorem 1 of [21] immediately.

Lemma 4. Suppose the CP-ABE scheme in [21] is secure. Then for our AugCP-ABE scheme
no polynomial time adversary can win the Message Hiding Game GameAMH1

with non-negligible
advantage.

Proof. Suppose there is a PPT adversaryA that can break our AugCP-ABE scheme ΣA in GameAMH1

with non-negligible advantage MHA
1AdvA, we construct a PPT algorithm B to break the CP-ABE

scheme (denoted by Σcpabe) in [21] with advantage AdvBΣcpabe, which equals to MHA
1AdvA.

The game of B attacking Σcpabe is played in the subgroup GÑ of order Ñ = qp2p3 in a composite

group GN of order N = qpp2p3. B is given the values of Ñ and p, 9 but does not know the values
of q, p2 or p3. Since the game is played in the subgroup GÑ , B chooses for itself everything in the
subgroup Gp in the following simulation.

Setup. B receives the public parameters 10 PKcpabe = (Ñ ,X3, gq, g
ã
q , e(gq, gq)

α̃, {Uq,x = gũxq }x∈S)
from the challenger, where gq ∈ Gq and X3 ∈ Gp3 are generators of subgroups Gq and Gp3

respectively, and ã, α̃, ũx(x ∈ S) ∈ ZÑ are random exponents.
B chooses generators gp, fp ∈ Gp and random exponents

β, γ, δ ∈ ZN , {ri, zi, α′i ∈ ZN}1≤i≤m, {cj ∈ ZN}1≤j≤m, {up,x ∈ Zp}x∈S.

In addition, it randomly chooses θ ∈ ZN . Then B gives A the following public parameters PK:

g = gqgp, h = gθ, f = gãq fp, G = gδgγp , H = hδ, Gq = gβq , Fq = gãβq ,

{Gi = gri , Gq,i = gβriq , Hi = gθri , Hq,i = gθβriq , Ĝi = gzi ,

Ei = e(gq, gq)
α̃e(g, g)α

′
i , Eq,i = (e(gq, gq)

α̃e(gq, gq)
α′i)β }1≤i≤m,

{Ḡj = gcj}1≤j≤m, {Ux = Uq,xg
up,x
p }x∈S.

Note that B implicitly chooses α1, . . . , αm, ux(∀x ∈ S) ∈ ZN , hq, fq ∈ Gq and hp ∈ Gp such that

α̃+ α′i ≡ αi mod q ∀i ∈ {1, . . . ,m}, α′i ≡ αi mod p ∀i ∈ {1, . . . ,m},
ũx ≡ ux mod q ∀x ∈ S, up,x ≡ ux mod p ∀x ∈ S,

hq = gθq , fq = gãq , hp = gθp.

9 The situation is similar to that of the proof in [7,8] in the sense that the challenge is given in a subgroup of a
composite group and the factors are given to the simulator.

10 Note that in the original scheme of [21] X3 is in the master secret key rather than in the public parameters, as X3

is never used in encryption and decryption. Publishing X3 in the public parameters will not affect the security of
the scheme, as in the proof the simulator receives X3 explicitly from the underlying assumptions (Assumption 1,
2, and 3) and can provide it to the adversary in the public parameters.
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Phase 1. A issues adaptive private key queries. To respond to a query for ((i, j), S(i,j)), B submits
S(i,j) to the challenger, and receives a decryption key

SKcpabe
S(i,j)

=
(
K̃ = gα̃q g

ãσ̃
q R, K̃ ′ = gσ̃qR

′, {K̃x = U σ̃q,xRx}x∈S(i,j)

)
,

where σ̃ ∈ ZÑ , R,R
′, Rx(x ∈ S(i,j)) ∈ Gp3 are randomly chosen and unknown to B.

B randomly chooses σp,i,j ∈ Zp and R′′ ∈ Gp3 , then gives A

SK(i,j),S(i,j)
=
(
Ki,j , K

′
i,j , K

′′
i,j , {Ki,j,x}x∈S(i,j)

)
=
(
K̃gα

′
igricjf

σp,i,j
p , K̃ ′g

σp,i,j
p , (K̃ ′g

σp,i,j
p )ziR′′, {K̃xg

up,xσp,i,j
p }x∈S(i,j)

)
.

Note that R′′ makes the Gp3 part of K ′′i,j uncorrelated to the Gp3 part of K ′i,j , this is why our
simulator needs X3. The distribution of the private keys is same with that of the real scheme,
where σi,j is implicitly chosen such that σ̃ ≡ σi,j mod q and σp,i,j ≡ σi,j mod p.

Challenge. A submits to B an LSSS matrix (A∗, ρ) of size L×D and two equal length messages
M0,M1. B submits ((A∗, ρ),M0,M1) to the challenger, and receives the challenge ciphertext in
the form of

CT cpabe = 〈(A∗, ρ), C̃ = Mb · e(gq, gq)α̃π̃, C̃0 = gπ̃q , {C̃l = g
ãA∗l ·ṽ
q U−ξ̃lq,ρ(l), C̃

′
l = gξ̃lq }Ll=1〉,

where ṽ = (π̃, ṽ2, . . . , ṽD) ∈ ZD
Ñ

and {ξ̃l ∈ ZÑ}
L
l=1 are randomly chosen and unknown to B.

B first chooses random exponents

κ, τ, s′1, . . . , s
′
m, d1, . . . , dm, t1, . . . , tm ∈ ZN ,

(ξ′1, . . . , ξ
′
L) ∈ ZLN , v′ = (π′, v′2, . . . , v

′
D) ∈ ZDN ,

then creates challenge ciphertext CT = 〈(A∗ρ), (Ri, R̄i, Qi, Q̄i, Q̂i, Ti)
m
i=1, (Cj , C̄j)

m
j=1, (Pl, P̄l)

L
l=1〉

for (̄i = 1, j̄ = 1) as follows:
1. For each i ∈ {1, . . . ,m}:

– if i > 1:

Ri = G
s′i
q,iC̃

ri/τ
0 , R̄i = H

κs′i
q,i C̃

θκri/τ
0 , Qi = G

τs′i
q C̃0, Q̄i = F

τs′i
q Ĝdii f

π′ , Q̂i = gdi ,

Ti = C̃ · e(gα
′
i

q , C̃0) · Eτs
′
i

q,i .

– if i = 1:

Ri = G
s′i
i C̃

ri/τ
0 , R̄i = H

κs′i
i C̃

θκri/τ
0 , Qi = gτs

′
iC̃0, Q̄i = f τs

′
iĜdii f

π′ , Q̂i = gdi ,

Ti = C̃ · e(gα
′
i

q , C̃0) · Eτs
′
i

i .

2. For each j ∈ {1, . . . ,m}: Cj = Ḡτjh
κtj , C̄j = gtj .

3. For each l ∈ {1, . . . , L}: Pl = fA
∗
l ·v
′
U
−ξ′l
ρ(l)/C̃l, P̄l = gξ

′
l/C̃ ′l .

Note that B implicitly chooses s1, . . . , sm ∈ ZN , (ξ1, . . . , ξL) ∈ ZLN , and v = (π, v2, . . . , vD) ∈ ZDN
such that

π′ − π̃ ≡ π mod q, π′ ≡ π mod p,

s′1 + π̃/τ ≡ s1 mod q, s′1 ≡ s1 mod p,

∀i ∈ {2, . . . ,m} : s′i +
π̃

βτ
≡ si mod q, s′i ≡ si mod p,

∀l ∈ {1, . . . , L} : ξ′l − ξ̃l ≡ ξl mod q, ξ′l ≡ ξl mod p,

∀d ∈ {2, . . . , D} : v′d − ṽd ≡ vd mod q, v′d ≡ vd mod p.
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Phase 2. Same with Phase 1.

Guess. A gives B a b′. B gives b′ to the challenger.

Note that the distributions of the public parameters, private keys and challenge ciphertext that B
gives A are same as the real scheme, we have AdvBΣcpabe = MHA

1AdvA.

D.2 Proof of Lemma 1

Proof. Suppose there exists a polynomial time adversary A that breaks the Index Hiding Game
with advantage ε. We build a simulator B to solve a Decision (Modified) 3-party Diffie-Hellman
problem instance as follows.

B receives the Decision (Modified) 3-party Diffie-Hellman challenge from the challenger as

(gp, A = gap , B = gbp, C = gcp, D = gb
2

p , T ).

The challenge will be given in the subgroup Gp of prime order p in a composite group GN of order
N = qpp2p3. B is given the factors q, p, p2, p3. Since the game is played in the subgroup Gp, B
chooses for itself everything in the subgroups Gq and Gp3 in the following simulation.

At this point B does not know which case A will behave in, so B will guess it by flipping a
random coin b̃ ∈ {0, 1}. We will show that in both cases B’s output will be the same as that in the
real game, i.e., the value of b̃ is hidden from A. Then B can finish the simulation with probability
1/2. If b̃ = 0, B will behave in the following Case I, otherwise Case II.

Case I:

Setup. B chooses generators gq, hq, fq ∈ Gq, X3 ∈ Gp3 , and random exponents

β, γ, δ ∈ ZN , {rq,i ∈ Zq, r′p,i ∈ Zp, zi, αi ∈ ZN}1≤i≤m,
{cq,j ∈ Zq, c′p,j ∈ Zp}1≤j≤m, {ux ∈ ZN}x∈S.

In addition, it randomly chooses η ∈ Zp. Then B gives A the following public parameters PK:

g = gqgp, h = hqB, f = fqg
η
p , G = gδgγp , H = hδ, Gq = gβq , Fq = fβq ,

{Gi = g
rq,i
q g

r′p,i
p , Hi = h

rq,i
q Br′p,i}1≤i≤m,i 6=ī, Gī = g

rq,̄i
q B

r′
p,̄i , Hī = h

rq,̄i
q D

r′
p,̄i ,

{Gq,i = g
βrq,i
q , Hq,i = h

βrq,i
q , Ĝi = gzi , Ei = e(g, g)αi , Eq,i = e(gq, gq)

βαi}1≤i≤m,

{Ḡj = g
cq,j
q g

c′p,j
p }1≤j≤m,j 6=j̄ , Ḡj̄ = g

cq,j̄
q C

c′
p,j̄ , {Ux = gux}x∈S.

Note that B implicitly chooses r1, . . . , rm, c1, . . . , cm ∈ ZN and hp, fp ∈ Gp such that

rq,i ≡ ri mod q ∀i ∈ {1, . . . ,m}, r′p,i ≡ ri mod p ∀i ∈ {1, . . . ,m} \ {̄i}, br′p,̄i ≡ rī mod p,

cq,j ≡ cj mod q ∀j ∈ {1, . . . ,m}, c′p,j ≡ cj mod p ∀j ∈ {1, . . . ,m} \ {j̄}, cc′p,j̄ ≡ cj̄ mod p,

hp = B, fp = gηp .

Key Query. A issues adaptive private key queries. To respond to a query for ((i, j), S(i,j)),
if (i, j) = (̄i, j̄), B aborts. Otherwise, B randomly chooses σi,j ∈ ZN and R,R′, R′′, Rx(x ∈
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S(i,j)) ∈ Gp3 , and creates the private key

SK(i,j),S(i,j)
=
(
Ki,j , K

′
i,j , K

′′
i,j , {Ki,j,x}x∈S(i,j)

)
=


(
gαig

rq,icq,j
q g

r′p,ic
′
p,j

p fσi,jR, gσi,jR′, gziσi,jR′′, {Uσi,jx Rx}x∈S(i,j)

)
, : i 6= ī, j 6= j̄(

gαig
rq,icq,j
q Br′p,ic

′
p,jfσi,jR, gσi,jR′, gziσi,jR′′, {Uσi,jx Rx}x∈S(i,j)

)
, : i = ī, j 6= j̄(

gαig
rq,icq,j
q Cr

′
p,ic
′
p,jfσi,jR, gσi,jR′, gziσi,jR′′, {Uσi,jx Rx}x∈S(i,j)

)
. : i 6= ī, j = j̄

Challenge. A submits a message M and an attribute set S∗. B constructs the LSSS matrix (A, ρ)
for AS∗ . Let L×D be the size of (A, ρ), B chooses random exponents

κ, d1, . . . , dm, t′1, . . . , t
′
m ∈ ZN ,

τq, sq,̄i, . . . , sq,m, µq,1, . . . , µq,j̄−1 ∈ Zq,
s′p,̄i, µ′p,1, . . . , µ

′
p,j̄−1 ∈ Zp,

(ν1,1, ν1,2, ν1,3), . . . , (νī−1,1, νī−1,2, νī−1,3) ∈ Z3
N ,

(ξ1, . . . , ξL) ∈ ZLN , v = (π, v2, . . . , vD) ∈ ZDN .

Then B creates the ciphertext 〈(A, ρ), (Ri, R̄i, Qi, Q̄i, Q̂i, Ti)
m
i=1, (Cj , C̄j)

m
j=1, (Pl, P̄l)

L
l=1〉 as

follows:
1. For each i ∈ {1, . . . ,m}:

– if i > ī:

Ri = g
βrq,isq,i
q , R̄i = h

βrq,iκsq,i
q , Qi = g

βτqsq,i
q ,

Q̄i = f
βτqsq,i
q gzidifπ, Q̂i = gdi , Ti = M · e(gq, gq)βαiτqsq,i .

– if i = ī:

Ri = g
rq,isq,i
q g

r′p,is
′
p,̄i

p , R̄i = h
rq,iκsq,i
q B

r′
p,̄i
κs′

p,̄i , Qi = g
τqsq,i
q A

s′
p,̄i ,

Q̄i = f
τqsq,i
q A

ηs′
p,̄igzidifπ, Q̂i = gdi , Ti = M · e(gq, gq)αiτqsq,i · e(gp, A)

αis
′
p,̄i .

– if i < ī:

Ri = gνi,1 , R̄i = hκνi,1 , Qi = gνi,2 , Q̄i = fνi,2gzidifπ, Q̂i = gdi , Ti = e(g, g)νi,3 .

2. For each j ∈ {1, . . . ,m}:
– if j > j̄: Cj = g

cq,jτq
q hκt

′
j , C̄j = A−c

′
p,j/κgt

′
j .

– if j = j̄: Cj = g
cq,jτq
q T c

′
p,jhκt

′
j , C̄j = gt

′
j .

– if j < j̄: Cj = g
cq,jτq
q g

µ′p,j
p hκt

′
j , C̄j = gt

′
j .

3. For each l ∈ {1, . . . , L}: Pl = fAl·vU−ξlρ(l) , P̄l = gξl .
Note that B implicitly chooses τ, sī, . . . , sm, t1, . . . , tm, µ1, . . . , µj̄−1 ∈ ZN such that

τq ≡ τ mod q, a · b ≡ τ mod p,

sq,i ≡ si mod q ∀i ∈ {̄i, . . . ,m}, s′p,̄i/b ≡ sī mod p,

∀j ∈ {1, . . . , j̄ − 1} :

t′j − δµq,j ≡ tj mod q, t′j − (δ + γ)(c′p,jab− µ′p,j)/(bκγ) ≡ tj mod p,

µq,j ≡ µj mod q, (c′p,jab− µ′p,j)/(bκγ) ≡ µj mod p,

∀j ∈ {j̄ + 1, . . . ,m} :

t′j ≡ tj mod q, t′j − ac′p,j/κ ≡ tj mod p.
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If T = gabcp , then the ciphertext is a well-formed encryption to the index (̄i, j̄) with implicitly
setting tj̄ = t′

j̄
. If T is randomly chosen, say T = grp for some random r ∈ Zp, the ciphertext is

a well-formed encryption to the index (̄i, j̄ + 1) with implicitly setting tj̄ and µj̄ such that

t′j̄ − δµq,j̄ ≡ tj̄ mod q, t′j̄ − (δ + γ)c′p,j̄(abc− r)/(bκγ) ≡ tj̄ mod p,

µq,j̄ ≡ µj̄ mod q, c′p,j̄(abc− r)/(bκγ) ≡ µj̄ mod p,

for some random µq,j̄ ∈ Zq.
Guess. A outputs a guess b′ ∈ {0, 1} to B, then B outputs this b′ to the challenger as its answer

to the Decision (Modified) 3-party Diffie-Hellman game.

Note that the distributions of the public parameters, private keys and challenge ciphertext are same
as the real scheme, B’s advantage in the Decision (Modified) 3-party Diffie-Hellman game will be
exactly equal to A’s advantage in the Index Hiding Game.

Case II:

Setup. Firstly, B randomly chooses an attribute x̄ ∈ S to guess that x̄ will be in S∗ \ S(̄i,j̄). Then
B chooses generators gq, hq, fq ∈ Gq, X3 ∈ Gp3 , and random exponents

β, γ, δ ∈ ZN , {rq,i, zq,i ∈ Zq, r′p,i, z
′
p,i ∈ Zp, αi ∈ ZN}1≤i≤m, {cq,j ∈ Zq, c′p,j ∈ Zp}1≤j≤m,

{ux ∈ ZN}x∈S\{x̄}, uq,x̄ ∈ Zq, u′p,x̄ ∈ Zp.

In addition, it randomly chooses η ∈ Zp. B gives A the following public parameters PK:

g = gqgp, h = hqB, f = fqB
r′
p,̄igηp , G = gδgγp , H = hδ, Gq = gβq , Fq = fβq ,

{Gi = g
rq,i
q g

r′p,i
p , Hi = h

rq,i
q Br′p,i , Ĝi = g

zq,i
q Bz′p,i}1≤i≤m,i 6=ī,

Gī = g
rq,̄i
q B

r′
p,̄i , Hī = h

rq,̄i
q D

r′
p,̄i , Ĝī = g

zq,̄i
q g

z′
p,̄i
p ,

{Gq,i = g
βrq,i
q , Hq,i = h

βrq,i
q , Ei = e(g, g)αi , Eq,i = e(gq, gq)

βαi}1≤i≤m,

{Ḡj = g
cq,j
q g

c′p,j
p }1≤j≤m,j 6=j̄ , Ḡj̄ = g

cq,j̄
q C

c′
p,j̄ ,

{Ux = gux}x∈S\{x̄}, Ux̄ = g
uq,x̄
q Bu′p,x̄ .

Note that B implicitly chooses r1, . . . , rm, c1, . . . , cm, z1, . . . , zm, ux̄ ∈ ZN and hp, fp ∈ Gp

such that

rq,i ≡ ri mod q ∀i ∈ {1, . . . ,m}, r′p,i ≡ ri mod p ∀i ∈ {1, . . . ,m} \ {̄i}, br′p,̄i ≡ rī mod p,

cq,j ≡ cj mod q ∀j ∈ {1, . . . ,m}, c′p,j ≡ cj mod p ∀j ∈ {1, . . . ,m} \ {j̄}, cc′p,j̄ ≡ cj̄ mod p,

zq,i ≡ zi mod q ∀i ∈ {1, . . . ,m}, bz′p,i ≡ zi mod p ∀i ∈ {1, . . . ,m} \ {̄i}, z′p,̄i ≡ zī mod p,

uq,x̄ ≡ ux̄ mod q, bu′p,x̄ ≡ ux̄ mod p, hp = B, fp = B
r′
p,̄igηp .

Key Query. A issues adaptive private key queries. To respond to a query for ((i, j), S(i,j)), if
(i, j) 6= (̄i, j̄), B randomly chooses σi,j ∈ ZN . Otherwise (i.e., (i, j) = (̄i, j̄)), if x̄ ∈ S(i,j) then
B aborts, otherwise B randomly chooses σq,i,j ∈ Zq, σ′p,i,j ∈ Zp and sets the value of σi,j by
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implicitly setting σq,i,j ≡ σi,j mod q, σ′p,i,j − cc′p,j ≡ σi,j mod p. In addition B randomly chooses
R,R′, R′′, Rx(x ∈ S(i,j)) ∈ Gp3 . B creates the private key

SK(i,j),S(i,j)
=
(
Ki,j , K

′
i,j , K

′′
i,j , {Ki,j,x}x∈S(i,j)

)

=



(
gαig

rq,icq,j
q g

r′p,ic
′
p,j

p fσi,jR, gσi,jR′, Ĝ
σi,j
i R′′, {Uσi,jx Rx}x∈S(i,j)

)
, : i 6= ī, j 6= j̄(

gαig
rq,icq,j
q Br′p,ic

′
p,jfσi,jR, gσi,jR′, Ĝ

σi,j
i R′′, {Uσi,jx Rx}x∈S(i,j)

)
, : i = ī, j 6= j̄(

gαig
rq,icq,j
q Cr

′
p,ic
′
p,jfσi,jR, gσi,jR′, Ĝ

σi,j
i R′′, {Uσi,jx Rx}x∈S(i,j)

)
, : i 6= ī, j = j̄(

gαig
rq,icq,j
q f

σq,i,j
q (B

r′
p,̄igηp)σ

′
p,i,jC−ηc

′
p,jR, g

σq,i,j
q g

σ′p,i,j
p C−c

′
p,jR′,

g
zq,iσq,i,j
q (g

σ′p,i,j
p C−c

′
p,j )z

′
p,iR′′, {(gσq,i,jq g

σ′p,i,j
p C−c

′
p,j )uxRx}x∈S(i,j)

)
. : i = ī, j = j̄

Challenge. A submits a message M and an attribute set S∗. If x̄ /∈ S∗ then B aborts. Otherwise,
B constructs the LSSS matrix (A, ρ) for AS∗ . Let L×D be the size of (A, ρ).
Note that S∗ \ {x̄} does not satisfy AS∗ , B first computes a vector w ∈ ZDN that has first entry
equal to 1 and is orthogonal to all of the rows Al of A such that ρ(l) ∈ S∗ \ {x̄} (such a vector
must exist since S∗ \ {x̄} fails to satisfy (A, ρ), and it is efficiently computable).
B chooses random exponents

κ, t′1, . . . , t
′
m ∈ ZN ,

τq, sq,̄i, . . . , sq,m, dq,1, . . . , dq,m, µq,1, . . . , µq,j̄−1 ∈ Zq,
s′p,̄i, d′p,1, . . . , d

′
p,m, µ′p,1, . . . , µ

′
p,j̄−1 ∈ Zp,

(ν1,1, ν1,2, ν1,3), . . . , (νī−1,1, νī−1,2, νī−1,3) ∈ Z3
N ,

{ξq,l ∈ Zq, ξ′p,l ∈ Zp}∀l∈{1,...,L} s.t. ρ(l)=x̄, πq ∈ Zq, π′p ∈ Zp,
{ξl ∈ ZN}∀l∈{1,...,L} s.t. ρ(l)6=x̄, v′ ∈ ZDN ,

with the first entry of v′ equal to zero.
Implicitly setting

πq ≡ π mod q, π′p − as′p,̄i ≡ π mod p, v = πw + v′,

ξq,l ≡ ξl mod q, ξ′p,l − ar′p,̄is
′
p,̄i(Al ·w)/u′p,x̄ ≡ ξl mod p ∀l ∈ {1, . . . , L} s.t. ρ(l) = x̄,

B creates the ciphertext 〈(A, ρ), (Ri, R̄i, Qi, Q̄i, Q̂i, Ti)
m
i=1, (Cj , C̄j)

m
j=1, (Pl, P̄l)

L
l=1〉 as follows:

1. For each i ∈ {1, . . . ,m}:
– if i > ī:

Ri = g
βrq,isq,i
q , R̄i = h

βrq,iκsq,i
q ,

Qi = g
βτqsq,i
q , Q̄i = f

βτqsq,i+πq
q g

zq,idq,i
q (B

r′
p,̄igηp)π

′
pA
−ηs′

p,̄iBz′p,id
′
p,i , Q̂i = g

dq,i
q g

d′p,i
p A

r′
p,̄i

s′
p,̄i

z′
p,i ,

Ti = M · e(gq, gq)βαiτqsq,i .

– if i = ī:

Ri = g
rq,isq,i
q g

r′
p,̄i
s′
p,̄i

p , R̄i = h
rq,iκsq,i
q B

r′
p,̄i
κs′

p,̄i ,

Qi = g
τqsq,i
q A

s′
p,̄i , Q̄i = f

τqsq,i+πq
q (B

r′
p,̄igηp)π

′
pg
zq,̄idq,̄i
q g

z′
p,̄i
d′
p,̄i

p , Q̂i = g
dq,̄i
q g

d′
p,̄i
p ,

Ti = M · e(gq, gq)αiτqsq,i · e(gp, A)
αis
′
p,̄i .
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– if i < ī:

Ri = gνi,1 , R̄i = hκνi,1 ,

Qi = gνi,2 , Q̄i = fνi,2f
πq
q g

zq,idq,i
q (B

r′
p,̄igηp)π

′
pA
−ηs′

p,̄iBz′p,id
′
p,i , Q̂i = g

dq,i
q g

d′p,i
p A

r′
p,̄i
s′
p,̄i
/z′p,i ,

Ti = e(g, g)νi,3 .

2. For each j ∈ {1, . . . ,m}:
– if j > j̄: Cj = g

cq,jτq
q hκt

′
j , C̄j = A−c

′
p,j/κgt

′
j .

– if j = j̄: Cj = g
cq,jτq
q T c

′
p,jhκt

′
j , C̄j = gt

′
j .

– if j < j̄: Cj = g
cq,jτq
q g

µ′p,j
p hκt

′
j , C̄j = gt

′
j .

3. For each l ∈ {1, . . . , L}:
– if ρ(l) 6= x̄: since Al ·w = 0, we have Al · v = Al · (πw + v′) = Al · v′, then

Pl = fAl·v′U−ξlρ(l) , P̄l = gξl .

– if ρ(l) = x̄:

Pl =f
πq(Al·w)
q (B

r′
p,̄igηp)π

′
p(Al·w)A

−ηs′
p,̄i

(Al·w)
fAl·v′g

−uq,x̄ξq,l
q B−u

′
p,x̄ξ

′
p,l ,

P̄l =g
ξq,l
q g

ξ′p,l
p A

−r′
p,̄i
s′
p,̄i

(Al·w)/u′p,x̄ .

Note that B implicitly chooses τ, sī, . . . , sm, t1, . . . , tm, d1, . . . , dm, µ1, . . . , µj̄−1 ∈ ZN such that

τq ≡ τ mod q, a · b ≡ τ mod p,

sq,i ≡ si mod q ∀i ∈ {̄i, . . . ,m}, s′p,̄i/b ≡ sī mod p,

dq,i ≡ di mod q ∀i ∈ {1, . . . ,m}, d′p,i + ar′p,̄is
′
p,̄i/z

′
p,i ≡ di mod p ∀i ∈ {1, . . . ,m} \ {̄i},

d′p,̄i ≡ dī mod p,

∀j ∈ {1, . . . , j̄ − 1} :

t′j − δµq,j ≡ tj mod q, t′j − (δ + γ)(c′p,jab− µ′p,j)/(bκγ) ≡ tj mod p,

µq,j ≡ µj mod q, (c′p,jab− µ′p,j)/(bκγ) ≡ µj mod p,

∀j ∈ {j̄ + 1, . . . ,m} :

t′j ≡ tj mod q, t′j − ac′p,j/κ ≡ tj mod p.

If T = gabcp , then the ciphertext is a well-formed encryption to the index (̄i, j̄) with implicitly
setting tj̄ = t′

j̄
. If T is randomly chosen, say T = grp for some random r ∈ Zp, the ciphertext is

a well-formed encryption to the index (̄i, j̄ + 1) with implicitly setting tj̄ and µj̄ such that

t′j̄ − δµq,j̄ ≡ tj̄ mod q, t′j̄ − (δ + γ)c′p,j̄(abc− r)/(bκγ) ≡ tj̄ mod p,

µq,j̄ ≡ µj̄ mod q, c′p,j̄(abc− r)/(bκγ) ≡ µj̄ mod p,

for some random µq,j̄ ∈ Zq.
Guess. A outputs a guess b′ ∈ {0, 1} to B, then B outputs this b′ to the challenger as its answer

to the (Modified) 3-party Diffie-Hellman game.

Note that S∗ \ S(ī,j̄) 6= ∅, we have that B can guess a right x̄ and finish the simulation with
probability |S∗ \ S(ī,j̄)|/|S|, which is at least 1/|S|. Also note that the distributions of the public
parameters, private keys and challenge ciphertext are same as the real scheme, B’s advantage in
the (Modified) 3-party Diffie-Hellman game will be at least ε/|S|.
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D.3 Proof of Claim 2

Boneh and Waters [8] proposed an AugBE schemeΣAugBE = (SetupAugBE,EncryptAugBE,DecryptAugBE)
and proved that ΣAugBE has index hiding property. In their proof of Lemma 5.3 in [8], two hybrid
experiments

– HAugBE
2 : Encrypt to (̄i,m+ 1), (corresponding to H2 in [8])

– HAugBE
3 : Encrypt to (̄i+ 1, 1), (corresponding to H5 in [8])

were defined and proved indistinguishable by a sequence of hybrid sub-experiments and correspond-
ing claims (Claim 5.5, 5.6 and 5.7 in [8]). Our Claim 2 can be proved using similar proof, but due
to the space restriction and for simplicity, we prove Claim 2 by a reduction from the indistinguisha-
bility of H1 and H2 for our AugCP-ABE scheme ΣA to that of HAugBE

2 and HAugBE
3 for the AugBE

scheme ΣAugBE in [8]. Claim 2 follows from the following Claim 3 and 4.

Claim 3. [8] Suppose that the Decision (Modified) 3-party Diffie-Hellman, Bilinear Subgroup De-
cision, and Diffie-Hellman Subgroup Decision assumptions hold. Then for scheme ΣAugBE no poly-

nomial time adversary can distinguish between experiments HAugBE
2 and HAugBE

3 with non-negligible
advantage.

Proof. This claim follows from the Claim 5.5, 5.6 and 5.7 in [8].

Claim 4. Suppose that for scheme ΣAugBE in [8] no polynomial time adversary can distinguish

between experiments HAugBE
2 and HAugBE

3 with non-negligible advantage. Then for our AugCP-ABE
scheme ΣA no polynomial time adversary can distinguish between experiments H2 and H3 with
non-negligible advantage.

Proof. Suppose there is a PPT adversaryA that can distinguish between H2 and H3 for our AugCP-
ABE scheme ΣA with non-negligible advantage, we construct a PPT algorithm B to distinguish
between HAugBE

2 and HAugBE
3 for ΣAugBE with non-negligible advantage.

The game of B distinguishing between HAugBE
2 and HAugBE

3 is played in the subgroup GÑ of

order Ñ = qp in a composite group GN of order N = qpp2p3. B is given the values of Ñ , p2 and p3,
but does not know the values of q or p. Since the game is played in the subgroup GÑ , B chooses
for itself everything in the subgroup Gp3 , i.e., X3 ∈ Gp3 .

Setup. The challenger gives B the public key PKAugBE, and due to (̄i,m+1) /∈ {(i, j)|1 ≤ i, j ≤ m},
the challenger gives B all private keys in the set {SKAugBE

(i,j) |1 ≤ i, j ≤ m} as follows:

PKAugBE =
(
g, h, G = gδgγp , H = hδ, Gq = gβq ,

{Gi = gri , Gq,i = gβriq , Hi = hri , Hq,i = hβriq , Ei = e(g, g)αi , Eq,i = e(gq, gq)
βαi}1≤i≤m,

{Ḡj = gcj , fj , Fq,j = fβq,j}1≤j≤m
)
,

SKAugBE
(i,j) =

(
K̃i,j , K̃

′
i,j , {K̃i,j,j̃}1≤j̃≤m,j̃ 6=j

)
=
(
gαigricjf

σi,j
j , gσi,j , {fσi,j

j̃
}1≤j̃≤m,j̃ 6=j

)
,

where generators gq, hq, fq,1, . . . , fq,m ∈ Gq, gp, hp, fp,1, . . . , fp,m ∈ Gp and exponents {ri, αi ∈
ZÑ}1≤i≤m, {cj ∈ ZÑ}1≤j≤m, β ∈ Zq, γ ∈ Zp, δ ∈ ZÑ , σi,j(1 ≤ i, j ≤ m) ∈ ZÑ are randomly
chosen, and g = gqgp, h = hqhp, fj = fq,jfp,j(1 ≤ j ≤ m).
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B randomly chooses z1, . . . , zm, ux(x ∈ S) ∈ ZN , then gives A the following public parameters
PK:

g, h, f =
∏

1≤j≤m
fj , G, H, Gq, Fq =

∏
1≤j≤m

Fq,j ,

{Gi, Gq,i, Hi, Hq,i, Ĝi = gzi , Ei, Eq,i}1≤i≤m,
{Ḡj}1≤j≤m, {Ux = gux}x∈S.

Note that B implicitly chooses fq ∈ Gq, fp ∈ Gp such that fq =
∏

1≤j≤m fq,j , fp =
∏

1≤j≤m fp,j .
Key Query. A issues adaptive private key queries. To respond to a query for ((i, j), S(i,j)), B

randomly chooses R,R′, R′′, Rx(x ∈ S(i,j)) ∈ Gp3 , and creates the private key SK(i,j),S(i,j)
from

SKAugBE
(i,j) as follows

SK(i,j),S(i,j)
=
(
Ki,j , K

′
i,j , K

′′
i,j , {Ki,j,x}x∈S(i,j)

)
=
(
K̃i,j ·

∏
1≤j̃≤m,j̃ 6=j

K̃i,j,j̃ ·R, K̃
′
i,j ·R′, (K̃ ′i,j)

zi ·R′′, {(K̃ ′i,j)ux ·Rx}x∈S(i,j)

)
.

Challenge. A submits a message M and an attribute set S∗. Note that (̄i,m + 1) /∈ {(i, j)|1 ≤
i, j ≤ m}, B sets Y = {(i, j)|1 ≤ i, j ≤ m} and submits (M,Y ) to the challenger. The challenger

gives B the challenge ciphertext CTAugBE = 〈(R̃i, ˜̄Ri, Q̃i,
˜̄Qi, T̃i)

m
i=1, (C̃j ,

˜̄Cj)
m
j=1, Y 〉, which is

encrypted to (i∗, j∗) ∈ {(̄i,m+ 1), (̄i+ 1, 1)} and in the form of
1. For each i ∈ {1, . . . ,m}:

– if i > i∗: R̃i = Gsiq,i,
˜̄Ri = Hκsi

q,i , Q̃i = Gτsiq , ˜̄Qi = (
∏
ĵ∈Yi Fq,ĵ)

τsi , T̃i = M · Eτsiq,i .

– if i = i∗: R̃i = Gsii ,
˜̄Ri = Hκsi

i , Q̃i = gτsi , ˜̄Qi = (
∏
ĵ∈Yi fĵ)

τsi , T̃i = M · Eτsii .

– if i < i∗: R̃i = gνi,1 , ˜̄Ri = hκνi,1 , Q̃i = gνi,2 , ˜̄Qi = (
∏
ĵ∈Yi fĵ)

νi,2 , T̃i = e(g, g)νi,3 .
2. For each j ∈ {1, . . . ,m}:

– if j ≥ j∗: C̃j = Ḡτjh
κtj , ˜̄Cj = gtj .

– if j < j∗: C̃j = Ḡτjh
κtjHκµj , ˜̄Cj = gtjGµj .

where κ, τ, si∗ , . . . , sm, t1, . . . , tm, µ1, . . . , µj∗−1 ∈ ZÑ , (ν1,1, ν1,2, ν1,3), . . . , (νi∗−1,1, νi∗−1,2, νi∗−1,3)
∈ Z3

Ñ
are randomly chosen and Yi denotes the set of all values j such that (i, j) in the set Y ,

i.e., Yi = {j|(i, j) ∈ Y }.
Note that Y = {(i, j)|1 ≤ i, j ≤ m} so that Yi = {1, . . . ,m} for all 1 ≤ i ≤ m, we have

that ˜̄Qi = (
∏
ĵ∈Yi Fq,ĵ)

τsi = F τsiq for i > i∗, ˜̄Qi = (
∏
ĵ∈Yi fĵ)

τsi = f τsi for i = i∗, and ˜̄Qi =
(
∏
ĵ∈Yi fĵ)

νi,2 = fνi,2 for i < i∗. B constructs the LSSS matrix (A, ρ) for AS∗ . Let L×D be the

size of (A, ρ). B randomly chooses d1, . . . , dm ∈ ZN , (ξ1, . . . , ξL) ∈ ZLN , v = (π, v2, . . . , vL) ∈ ZDN ,

then creates the ciphertext 〈(A, ρ), (Ri, R̄i, Qi, Q̄i, Q̂i, Ti)
m
i=1, (Cj , C̄j)

m
j=1, (Pl, P̄l)

L
l=1〉 as follows:

1. For each i ∈ {1, . . . ,m}: Ri = R̃i, R̄i = ˜̄Ri, Qi = Q̃i, Q̄i = ˜̄Qi · Ĝdii fπ, Q̂i = gdi , Ti = T̃i.

2. For each j ∈ {1, . . . ,m}: Cj = C̃j , C̄j = ˜̄Cj .

3. For each l ∈ {1, . . . , L}: Pl = fAl·vU−ξlρ(l) , P̄l = gξl .
Guess. A outputs a guess b′ ∈ {0, 1} to B, then B outputs this b′ to the challenger as its answer

to distinguish between HAugBE
2 and HAugBE

3 for scheme ΣAugBE.

Note that the distributions of the public parameters, private keys and challenge ciphertext that B
gives A are same as the real scheme, B’s advantage in distinguishing between HAugBE

2 and HAugBE
3

for scheme ΣAugBE will be exactly equal to A’s advantage in distinguishing between H2 and H3 for
scheme ΣA.
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