Two is Greater than One

Joppe W. Bos ${ }^{1}$, Craig Costello ${ }^{1 \star}$, Huseyin Hisil ${ }^{2}$, and Kristin Lauter ${ }^{1}$
1 Microsoft Research, Redmond, USA
${ }^{2}$ Yasar University, Izmir, Turkey

Abstract

In this paper we highlight the benefits of using genus-2 curves in public-key cryptography. Compared to the standardized genus-1 curves, or elliptic curves, arithmetic on genus- 2 curves is typically more involved but allows us to work with moduli of half the size. We give a taxonomy of the best known techniques to realize genus-2 based cryptography, which includes fast formulas on the Kummer surface and efficient 4-dimensional GLV decompositions. By studying different modular arithmetic approaches on these curves, we present a range of genus-2 implementations. On one core of an Intel Core i7-3520M, our implementation on the Kummer surface breaks the 120 thousand cycle barrier which sets a new software speed record at the 128 -bit security level for side-channel resistant scalar multiplications compared to all previous genus-1 and genus- 2 implementations.

1 Introduction

Since its invention in the 1980's, elliptic curve cryptography [39,48] has become a popular and standardized approach to instantiate public-key cryptography. The use of elliptic curves, or genus- 1 curves, has been well studied and consequently all of the speed records for fast curve-based cryptography are for elliptic curves (cf. the ECRYPT online benchmarking tool eBACS [9]). Jacobians of hyperelliptic curves of high genus have also been considered for cryptographic purposes, but for large genus there are subexponential attacks on the discrete logarithm problem [2, 25, 21, 18]. Subexponential attacks are not known, however, for genus-2 curves. In [27], Gaudry showed that scalar multiplication on the Kummer surface associated with the Jacobian of a genus-2 curve is much faster than scalar multiplication on the Jacobian itself. Thus, it was proposed (cf. [6]) that hyperelliptic curve cryptography in genus-2 has the potential to be competitive with its genus-1 elliptic curve cryptography counterpart. One significant hurdle for genus-2 cryptography to overcome is the difficulty of generating secure genus-2 curves: that is, such that the Jacobian has a large prime or almost prime group order. In particular, for fast cryptographic implementations it is advantageous to work over special prime fields, where the underlying field arithmetic is fast, and to generate curves over those fields with suitable group order. A major catalyst for this work is that genus-2 point counting methods and complex multiplication (CM) methods for constructing genus-2 curves with a known group order have become more practical. Hence, the time is ripe to give a taxonomy and cross-comparison of all of the best known techniques for genus-2 curves over prime fields. The focus on prime fields is motivated by the recommendations made by the United States' National Security Agency Suite B of Cryptographic Protocols [53].

In this paper we set new performance speed records at the 128 -bit security level using genus- 2 hyperelliptic curves. For instance, using the Kummer surface given by Gaudry and Schost [32], we present the fastest curve based scalar multiplication over prime fields to date this improves on the recent prime field record for elliptic curves from Longa and Sica presented

[^0]at Asiacrypt 2012 [46]. As an additional bonus, our implementations on the Kummer surface are inherently side-channel resistant, so we present the fastest protected software for curve based cryptography compared to all prior implementations.

Another advantage for genus- 2 curves is that the endomorphism ring is larger than for genus-1 curves, so higher dimensional scalar decomposition is possible without passing to an extension field $[24,23]$. For prime fields we implement 4-dimensional GLV decompositions on Buhler-Koblitz (BK) curves [14] and on Furukawa-Kawazoe-Takahashi (FKT) curves [22], both of which are faster than all prior eBACS-documented implementations. To optimize overall performance, we present implementations based on two different methods that achieve fast modular arithmetic: one based on the special form of the prime using "NIST-like" reduction [61] and another based on the special form of the prime when using Montgomery multiplication [49].

In addition, we put forward a multi-faceted case for (a special class of) Buhler-Koblitz curves of the form $y^{2}=x^{5}+b$. The curves we propose are particularly flexible in applications because they facilitate both a Kummer surface implementation and a GLV decomposition. Thus, a simple Diffie-Hellman style key exchange can be instantiated using the fast (and automatically side-channel protected) formulas on the Kummer surface, but if a more complicated protocol requires further group operations, one has the option to instead exploit a 4-dimensional GLV implementation using the same curve. Our implementations show that both scenarios provide fast public-key cryptography.

The paper is organized as follows. In Section 2 we recall the necessary background for this paper. Section 3 outlines the two different approaches for the modular arithmetic. Section 4, 5 and 6 summarize the state-of-the-art in "generic", Kummer surface and GLV implementations respectively, together with the specific choices and optimizations we made in each scenario. Section 7 presents our performance results. In Section 8 we propose a particular family of curves that allow both Kummer surface and GLV implementations. Section 9 concludes the paper.

2 Preliminaries

We start by recalling some basic facts and notation concerning genus-2 curves in Section 2.1. In Section 2.2 we outline the CM method, which is used several times in this work to generate secure curves. In Section 2.3 we briefly review the main techniques used to compute scalar multiplications.

2.1 Genus-2 Curves

A hyperelliptic genus- 2 curve over a field of odd characteristic K can be defined by an affine model $C: y^{2}=f(x)$, where $f(x)$ has degree 5 or 6 and has no double roots. We call such a curve real hyperelliptic if the degree of f is 6 , and if such an $f(x)$ has a rational root in K, then we can birationally transform the curve so that f has degree 5 instead, in which case we say C is imaginary hyperelliptic. Arithmetic is currently slightly faster in the imaginary case.

Unlike genus-1 elliptic curves, in genus-2, the points on the curve do not form a group. Roughly speaking, unordered pairs of points on the curve form a group, where the group operation adds two pairs of points by passing a cubic through the four points, finding the other two points of intersection with the curve, and then reflecting them over the x-axis. More formally, we denote this group by $\operatorname{Jac}(C)$, the Jacobian of C, which consists of degree zero divisors on the curve modulo principal divisors. For genus-2 hyperelliptic curves, each class has
a unique reduced representative divisor consisting of at most two rational points (which are not reflections of each other) minus the point(s) at infinity. General Jacobian elements can be represented by encoding these two points via a pair of polynomials, where the x-coordinates of the points are the roots of the first polynomial and the second polynomial is a line passing through the two points. Throughout this paper we abbreviate this Mumford representation of general divisors $D=\left(x^{2}+u_{1} x+u_{0}, y-\left(v_{1} x+v_{0}\right)\right)$, and instead write $D=\left(u_{1}, u_{0}, v_{1}, v_{0}\right)$. This will avoid confusion when x and y are used as two of the Kummer coordinates in Section 5. When working in homogeneous projective space, we write such divisors as $D=\left(U_{1}: U_{0}: V_{1}\right.$: $\left.V_{0}: Z\right)$, where $u_{i}=U_{i} / Z$ and $v_{i}=V_{i} / Z$ for $i=0,1$ and $Z \neq 0$.

2.2 The CM Method

There are two high-level strategies for constructing cryptographically strong genus- 2 curves. The first strategy is "point-counting", which typically involves fixing a particular genus-2 curve C (over an underlying field) and using the classical Schoof-Pila $[59,56]$ algorithm to compute \# $\mathrm{Jac}(C)$, repeating the process for different curves until this group order is prime or almost prime. Until recently, using this technique to compute the group orders of Jacobians of curves which target the 128-bit security level was infeasible. However, in their record-breaking work, Gaudry and Schost [32] presented a fast version of the general Schoof-Pila algorithm that manages to compute the order of the Jacobian corresponding to any such a curve in around 1000 CPU hours. They further integrated an early abort strategy into this extended pointcounting routine to find a 128 -bit secure curve in over $1,000,000$ CPU hours. The Kummer surface associated to the curve they found is especially attractive for fast implementations, and we use it to obtain record performance numbers in this work. Even more recently, on families of curves which have been constructed to have known real multiplication (RM), Gaudry, Kohel and Smith [31] gave an accelerated Schoof-Pila algorithm and set a record for RM-pointcounting, computing a 128-bit secure Jacobian in about 3 hours.

The second strategy for finding cryptographically secure genus- 2 curves is the CM method, which we use several times throughout this paper to find curves defined over special prime fields that facilitate fast field arithmetic. The CM method works as follows. For a smooth, projective, irreducible genus- 2 curve, C, over a prime field \mathbb{F}_{p} with ordinary Jacobian $\operatorname{Jac}(C)$, the Frobenius endomorphism has a quartic characteristic polynomial $f(t)=t^{4}-s_{1} t^{3}+s_{2} t^{2}-$ $p s_{1} t+p^{2}$. Let K be the quartic CM field defined by the polynomial f and fix an embedding of K into the complex numbers. We denote by π a complex root of the polynomial $f(t)$. The roots of f consist of conjugate pairs with the property $\pi \bar{\pi}=p$. If a solution to $\pi \bar{\pi}=p$ exists in the field K, then there exists an ideal $\mathfrak{p}=(\pi)$ in \mathcal{O}_{K} with relative norm $\mathfrak{p p}=p$. Thus, given a CM field K and a prime p, the ordinary genus- 2 curves over \mathbb{F}_{p} with CM by K (i.e. with $\left.\operatorname{End}(\operatorname{Jac}(C)) \cong \mathcal{O}_{K}\right)$ correspond to generators of principal ideals with relative norm p such that $|\pi|=\sqrt{p}$. Note that a generator may have to be scaled by a root of unity in K to ensure that $|\pi|=\sqrt{p}$. Since $\# \operatorname{Jac}(C)\left(\mathbb{F}_{p}\right)=(1-\pi)(1-\bar{\pi})\left(1-\pi^{\prime}\right)\left(1-\bar{\pi}^{\prime}\right)$, in order to know the possible group orders for genus-2 curves with CM by K, it suffices to find the prime ideal decomposition of p in \mathcal{O}_{K} (which determines all possible π 's). For primes which split completely into principal ideals in the reflex field of K, there are always 2 possible group orders when $K \neq \mathbb{Q}\left(\zeta_{5}\right)$ is Galois cyclic and 4 possible group orders when K is non-Galois (see [20, Proposition 4] for the possibilities).

When a CM field K gives rise to a suitable group order over \mathbb{F}_{p}, the next problem is to construct a genus- 2 curve with the desired number of points. We use Shimura's theory which
shows that CM abelian varieties correspond to ideal classes in \mathcal{O}_{K}, and their invariants are values of genus-2 Siegel modular functions defined by Igusa; these invariants can be computed modulo p as roots of the Igusa class polynomials. These Igusa class polynomials have coefficients in \mathbb{Q} and are computationally expensive to compute. There are three general methods of approaching this computation: the complex analytic method [69], the Chinese remainder theorem (CRT) method [20], and the p-adic method [30]. All of the class polynomials we used in this work were taken from Kohel's comprehensive Echidna database [41]. Upon computing the Igusa invariants, we can then reconstruct the curve C / \mathbb{F}_{p} using the Mestre-Cardona-Quer algorithm [47].

Depending on the scenario, we use the CM method in one of two ways. We either start by fixing a prime field \mathbb{F}_{p} and searching through many CM fields until we find a curve whose Jacobian has prime or almost prime group order, or conversely, we start with a fixed CM field K and search over many prime fields until we find a suitable curve. The first approach is used when we do not require curves corresponding to a particular CM field or when the defining equation for C is not important, which is the case when searching for "generic" curves (see Section 4.2) and for curves facilitating arithmetic on the Kummer surface (see Section 5.5). Alternatively, we use the second approach when we need either a certain defining equation for C (e.g. the GLV curves in Section 6.2), or if we need to fix a particular CM field (e.g. the van Wamelen curves in Section 8.5). Roughly speaking, if we can afford flexibility in the curves we search for, then this allows us to be picky with the underlying fields we choose. Conversely, being picky with the curves we seek usually means we have to be more flexible with the primes we search with.

2.3 Scalar Multiplication

There are many different ways to compute the scalar multiplication. Most approaches, like the double-and-add algorithm, are based on addition chains [58] and a typical optimization to lower the number of point additions is using windows [12] of a certain width $w>1$. Given the input point P, we compute a lookup table consisting of the multiples $[c] P$ such that $0 \leq c<2^{w}$, and perform a point addition once every w bits (instead of at most once per bit). After adding a precomputed multiple, we can "slide" to the next set-bit in the binary representation of the scalar; such sliding windows [65] lower the number of point additions required and halve the size of the lookup table since only the odd multiples of P are required. When computing the negation of a point is inexpensive, which is the case for both elliptic and genus- 2 curves, we can either add or subtract the precomputed point, reducing the total number of group operations even further; this is called signed windows [52]. See [8] for a summary of these techniques.

Adding an affine point to a projective point to obtain another projective point, often referred to as mixed addition, is typically faster than adding two projective points. In order to use these faster formulas, a common approach is to convert the precomputed projective points into their affine form. This requires an inversion for each point in the table. Using Montgomery's simultaneous inversion method [50], I independent inversions can be replaced by $3(I-1)$ multiplications and a single inversion, which is typically much faster.

3 Fast Modular Arithmetic using Special Primes

When computing arithmetic modulo a prime p in practice, it is common to use primes of a special form since this allows fast reduction. For instance, in the FIPS 186-3 standard [66],

NIST recommends the use of five prime fields when using the elliptic curve digital signature algorithm (but see also [4]). Such special primes have been studied from both a theoretical and practical point of view. A study of a software implementation of the NIST-recommended elliptic curves over prime fields on the x86 architecture is given by Brown et al. [13], and in [10] a comparison is made between the performance when using Montgomery multiplication [49] and specialized multiplication using the NIST primes. In this section we describe two different approaches to obtain fast modular arithmetic. We use the prime $p_{1271}=2^{127}-1$ to illustrate both methods, since this prime is used in some of our implementations (cf. Section 4 and Section 5).

3.1 Generalized Mersenne Primes

Primes which allow fast reduction are typically of the form $2^{s} \pm \delta$, where $s \in \mathbb{Z}$ and $0<\delta \in \mathbb{Z}$ is small compared to the word-size of the target architecture, which is typically 32 - or 64-bit. Another popular choice are generalized Mersenne primes of the form $2^{s}+\sum_{i \in S} i$, where S is a set of integers $\pm 2^{j}$ such that $\left|2^{j}\right|<2^{s}$ and the cardinality of S is small. For example, fast reduction modulo $p=2^{s}-\delta$ can be done as follows. For integers $0 \leq a, b, c_{h}, c_{\ell}, \delta<2^{s}$, write $c=a \cdot b=c_{h} \cdot 2^{s}+c_{\ell} \equiv c_{\ell}+\delta c_{h} \bmod 2^{s}-\delta$ where $0 \leq c_{\ell}+\delta c_{h}<(\delta+1) 2^{s}$. At the cost of a multiplication by δ (which might be a shift depending on the form of δ) and an addition, compute $c^{\prime} \equiv c \bmod p$ where c^{\prime} is (much) smaller than c, depending on the size of δ. This is the basic idea behind Solinas' reduction scheme [61], which is used to implement fast arithmetic modulo the NIST primes [66]. We refer to this type of reduction as NIST-like reduction. When computing $a \cdot b \bmod p_{1271}$ with $0 \leq a, b<p_{1271}$, one can first compute the multiplication $c=a \cdot b=c_{1} \cdot 2^{128}+c_{0}$ for $0 \leq c_{1}, c_{0}<2^{128}$. A first reduction step can be computed as $c^{\prime}=\left(c_{0} \bmod 2^{127}\right)+2 \cdot c_{1}+\left\lfloor c_{0} / 2^{127}\right\rfloor \equiv c \bmod p_{1271}$ such that $0 \leq c^{\prime}<2^{128}$. One can then reduce c^{\prime} further using conditional subtractions. Modular reduction in the case of p_{1271} can therefore be computed without using any multiplications.

3.2 Montgomery-Friendly Primes

Montgomery multiplication [49] involves transforming each of the operands into their Montgomery representations and replacing the conventional modular multiplications by Montgomery multiplications. One of the advantages of this method is that the computational complexity is usually better than the classical method by a constant factor.

Let $r=2^{b}$ be the radix of the system and b be the bit-length of a word. Let p be an n word odd prime such that $r^{n-1} \leq p<r^{n}$, and suppose we have the integer $X=\sum_{i=0}^{n-1} x_{i} \cdot r^{i}$. The Montgomery radix $R=r^{n}$ is a fixed integer such that $\operatorname{gcd}(R, p)=1$. The Montgomery residue of X is defined as $\widetilde{X}=X \cdot R \bmod p$. The Montgomery product of two integers is defined as $M(\widetilde{X}, \widetilde{Y})=\widetilde{X} \cdot \widetilde{Y} \cdot R^{-1} \bmod p$. Practical instances of Montgomery multiplication use the precomputed value $\mu=-p^{-1} \bmod r$. The interleaved Montgomery multiplication algorithm, where the multiplication and the reduction are combined, computes $C=M(A, B)$ for $0 \leq A, B<p$. Let $A=\sum_{i=0}^{n-1} a_{i} \cdot r^{i}$ and start with $C=0$. For all $0 \leq i<n$, the result C is updated as

$$
C \leftarrow C+a_{i} \cdot B, \quad C \leftarrow(C+((\mu \cdot C) \bmod r) \cdot p) / r
$$

The division by r can be implemented by a shift since the precomputed value μ ensures that the least significant digit $(b$-bits $)$ of $(C+((\mu \cdot C) \bmod r) \cdot p)$ is zero. It can be shown that
the final Montgomery product C is bounded as $0 \leq C<2 \cdot p$, and therefore a final conditional subtraction is needed when complete reduction is required. In order to avoid handling additional carries in the Montgomery multiplication, which requires more instructions, our implementations prefer 127 -bit moduli over 128 -bit moduli. In [43] it is noticed that fixing part of the modulus can have advantages for Montgomery multiplication. For instance, the precomputation of μ can be avoided when $-p^{-1} \equiv \pm 1 \bmod r$, which also avoids computing a multiplication by μ for every iteration inside the Montgomery multiplication routine. This technique has been suggested in $[38,1,34]$ as well. When μ is small, e.g. $\mu= \pm 1$, one could lower the cost of the multiplication of p with $\left(\mu \cdot c_{0}\right) \bmod r$ by choosing the $n-1$ most significant words of p in a similar fashion as the generalized Mersenne primes: $\left\lfloor p / 2^{b}\right\rfloor=2^{s}+\sum_{i \in S} i$.

Consider the prime p_{1271} on 64 -bit architectures: $r=2^{64}$ and we have $\mu=-p_{1271}^{-1} \bmod$ $2^{64}=1$, so that the multiplication by μ can be avoided. Write $C=c_{2} \cdot 2^{128}+c_{1} \cdot 2^{64}+c_{0}$ with $0 \leq$ $c_{2}, c_{1}, c_{0}<2^{64}$. Due to the shape of the most-significant word of $p_{1271}=\left(2^{63}-1\right) \cdot 2^{64}+\left(2^{64}-1\right)$, the result of $\frac{C+((\mu \cdot C) \bmod r) \cdot p}{r}$ can be obtained using only two shift and two 64 -bit addition instructions by computing $c_{2} \cdot 2^{64}+c_{0} \cdot 2^{63}+c_{1}$. Similar to the NIST-like reduction, Montgomery reduction in the setting of p_{1271} can be computed without using any multiplications.

3.3 Other Arithmetic Operations

Besides fast multiplication and reduction, the whole spectrum of modular operations is required to implement curve arithmetic. Here we outline the different approaches we use.

Modular Inversion. When using the regular representation of integers, one can either use the (binary) extended GCD algorithm to compute the modular inversion or use the special form of the modulus to compute the inverse by using modular exponentiations. For instance, in the case of p_{1271} one can compute $a^{2^{127}-2} \equiv a^{-1} \bmod p_{1271}$. The situation when working in Montgomery form is slightly different. Given the Montgomery form $\tilde{a}=a 2^{b n} \bmod p$ of an integer a, we want to compute the Montgomery inverse $\tilde{a}^{-1} 2^{2 b n} \equiv a^{-1} 2^{b n} \bmod p$. This would require a classical inversion and modular multiplication, however we found that the approach presented in [11] (which uses the binary version of the Euclidean algorithm from [36]) is faster in practice. The first step of this approach computes a value $\tilde{a}^{-1} 2^{k} \equiv a^{-1} 2^{k-b n} \bmod p$ for some $0 \leq k<2 b n$. This value is then corrected via a Montgomery multiplication with $2^{3 b n-k}$. This last multiplication typically requires a lookup table with the different precomputed values $2^{3 r n-k} \bmod p$. In the case of $p=2^{127}-1$, one can avoid this lookup table since $2^{t} \bmod 2^{127}-1=$ $2^{t \bmod 127}$.

Modular Addition/Subtraction. Let $0 \leq a, b<2^{k}-c$. We compute $(a+b) \bmod \left(2^{k}-c\right)$ as $\left(\left(((a+c)+b) \bmod 2^{k}\right)-c \cdot\left(1-\operatorname{carry}\left((a+c)+b, 2^{k}\right)\right)\right) \bmod 2^{k}$. The carry function carry (x, y) returns either zero or one if $x<y$ or $x \geq y$ respectively. The output is correct and bounded by $2^{k}-c$ since if $a+b+c<2^{k}$, then $a+b<2^{k}-c$, while if $a+b+c \geq 2^{k}$, then $(a+b+c) \bmod 2^{k}=a+b-\left(2^{k}-c\right)<2^{k}-c$. Note that since $a+c<2^{k}$, the addition requires no carry propagation. Furthermore, c is multiplied with either one or zero such that this multiplication amounts to data movement.

The modular subtraction $(a-b) \bmod \left(2^{k}-c\right)$ is performed by computing $(((a-b) \bmod$ $\left.2^{k}\right)-c$ • borrow $\left.(a-b)\right) \bmod 2^{k}$. Analogous to the carry function, the borrow function borrow (x) returns zero or one if $x \geq 0$ or $x<0$ respectively. If $a<b$, then $0 \leq(a-b) \bmod 2^{k}-c=$
$a-b+\left(2^{k}-c\right)<2^{k}-c$, and if $a \geq b$, then $0 \leq a-b<2^{k}-c$. In some scenarios one can compute additions as $\left(\left((a+b) \bmod 2^{k}\right)+c \cdot \operatorname{carry}\left((a+b), 2^{k}\right)\right) \bmod 2^{k}$, but we note that here the output may not be completely reduced and can be $\geq 2^{k}-c$.

4 "Generic" Genus-2 Curves and their Arithmetic

To give a concrete idea of the advantage gained when working on the Kummer surface or when exploiting GLV endomorphisms, we also consider the generic scenario that employs neither technique.

4.1 Explicit formulas

We make use of the fast formulas for arithmetic on imaginary quadratic curves from [17], which employed homogeneous projective coordinates and focused on reducing the total number of multiplications in projective point doublings, point additions and mixed additions. ${ }^{3}$ Due to the small size of our fields the cost of modular addition and subtraction compared to modular multiplication is relatively high. Hence, we optimize the formulas from [17] for 128-bit fields by trading some addition and subtractions for multiplications (see Algorithms 1, 2 and 3).

We assume that our curves are of the form $C: y^{2}=x^{5}+f_{3} x^{3}+f_{2} x^{2}+f_{1} x+f_{0}$, and count multiplications by the f_{i} as full multiplications, unless they are zero. ${ }^{4}$ Letting \mathbf{m}, \mathbf{s} and a be the cost of \mathbb{F}_{p}-multiplications, \mathbb{F}_{p}-squarings and \mathbb{F}_{p}-additions or subtractions respectively, we summarize the modified counts as follows. For $D=\left(U_{1}: U_{0}: V_{1}: V_{0}: Z\right)$, one can compute $[2] D$ in $34 \mathbf{m}+6 \mathbf{s}+34 \mathbf{a}$ - see Algorithm 1. For the special GLV curves in Section 6, which have $f_{2}=f_{3}=0$, the projective doubling can be computed using $32 \mathbf{m}+6 \mathbf{s}+32 \mathbf{a}$. For $D=\left(U_{1}: U_{0}: V_{1}: V_{0}: Z\right)$ and $D^{\prime}=\left(U_{1}^{\prime}: U_{0}^{\prime}: V_{1}^{\prime}: V_{0}^{\prime}: Z^{\prime}\right)$, one can compute the projective addition $D+D^{\prime}$ in $44 \mathbf{m}+4 \mathbf{s}+29 \mathbf{a}-$ see Algorithm 2. For the mixed addition between the projective point $D=\left(U_{1}: U_{0}: V_{1}: V_{0}: Z\right)$ and the affine point $D^{\prime}=\left(u_{1}^{\prime}: u_{0}^{\prime}: v_{1}^{\prime}: v_{0}^{\prime}\right)$, one can compute the projective result $D+D^{\prime}$ in $37 \mathbf{m}+5 \mathbf{s}+29 \mathbf{a}-$ see Algorithm 3. Full and mixed additions cost the same on the special GLV curves. Given these operation counts, our "generic" implementations performed fastest when using 4-bit signed sliding windows (see Section 2.3).

4.2 Curves

To find "generic" curves for comparison against the GLV and Kummer techniques, we searched Kohel's Echidna database [41] with two fixed primes that facilitate our chosen techniques for field arithmetic. We terminated the search when we found curves with Jacobians of prime order. While these curves are not general in the sense that their CM field is chosen in advance, there is no reason that the corresponding timings obtained will differ from any other generic curves over the same prime fields, unless such curves are real (degree-6) curves which cannot be transformed into imaginary (degree-5) curves.

Generic curve over $\boldsymbol{p}=\mathbf{2}^{\mathbf{1 2 7}} \mathbf{- 1}$. The CM field $K=\mathbb{Q}[x] /\left(x^{4}+137 x+4429\right)$ has class number $6[41]$ and gives rise to a curve C over \mathbb{F}_{p} whose Jacobian has prime order

$$
r=28948022309329048848169239995659025138451177973091551374101475732892580332259
$$

[^1]```
Algorithm 1 Projective
doubling for general divisors
on the Jacobian of \(C: y^{2}=\)
\(x^{5}+f_{3} x^{3}+f_{2} x^{2}+f_{1}+f_{0}\).
Input: \(P=\left(U_{1}: U_{0}: V_{1}: V_{0}: Z\right)\)
 and \(f_{2}, f_{3}\) (curve constants)
Output: [2] \(P\)
 \(=\left(U_{1}^{\prime \prime}: U_{0}^{\prime \prime}: V_{1}^{\prime \prime}: V_{0}^{\prime \prime}: Z^{\prime \prime}\right)\).
 \(U_{0}^{\prime \prime} \leftarrow U_{0} \cdot Z, t_{1} \leftarrow Z^{2}\),
 \(t_{2} \leftarrow U_{1}^{2}, t_{3} \leftarrow 2 \cdot t_{2}\),
 \(t_{4} \leftarrow 2 \cdot U_{0}^{\prime \prime}, \quad t_{5} \leftarrow t_{3}+t_{4}\),
 \(t_{5} \leftarrow t_{5} \cdot U_{1}, t_{6} \leftarrow V_{1}^{2}\),
 \(t_{7} \leftarrow f_{2} \cdot t_{1}, \quad t_{6} \leftarrow t_{7}-t_{6}\),
 \(t_{6} \leftarrow t_{6} \cdot Z, t_{6} \leftarrow t_{6}+t_{5}\),
 \(t_{1} \leftarrow f_{3} \cdot t_{1}, \quad t_{1} \leftarrow t_{1}+t_{2}\),
 \(t_{4} \leftarrow t_{1}-t_{4}, t_{4} \leftarrow t_{4}+t_{3}\),
 \(V_{0}^{\prime \prime} \leftarrow V_{0} \cdot Z, \quad t_{1} \leftarrow U_{1} \cdot V_{1}\),
 \(t_{2} \leftarrow 2 \cdot t_{1}, \quad t_{1} \leftarrow t_{1}+V_{0}^{\prime \prime}\),
 \(t_{2} \leftarrow t_{2}-V_{0}^{\prime \prime}, t_{3} \leftarrow t_{3}+U_{0}^{\prime \prime}\),
 \(t_{3} \leftarrow V_{1} \cdot t_{3}, t_{5} \leftarrow t_{3} \cdot t_{4}\),
 \(t_{7} \leftarrow t_{6} \cdot t_{2}, t_{5} \leftarrow t_{5}-t_{7}\),
 \(t_{6} \leftarrow t_{6} \cdot V_{1}, \quad t_{4} \leftarrow t_{4} \cdot t_{1}\),
 \(t_{4} \leftarrow t_{4}-t_{6}, t_{3} \leftarrow t_{3} \cdot V_{1}\),
 \(t_{1} \leftarrow t_{1} \cdot t_{2}, \quad t_{3} \leftarrow t_{3}-t_{1}\),
 \(t_{1} \leftarrow t_{5} \cdot t_{4}, t_{2} \leftarrow t_{3} \cdot t_{4}\),
 \(t_{4} \leftarrow t_{4}^{2}, t_{6} \leftarrow U_{0}^{\prime \prime} \cdot t_{4}\),
 \(t_{7} \leftarrow t_{4} \cdot Z, t_{4} \leftarrow t_{4} \cdot U_{1}\),
 \(t_{3} \leftarrow 2 \cdot t_{3}, t_{3} \leftarrow t_{3}^{2}\),
 \(t_{3} \leftarrow t_{3} \cdot Z, \quad t_{2} \leftarrow 2 \cdot t_{2}\),
 \(U_{0}^{\prime \prime} \leftarrow t_{2} \cdot Z, \quad V_{1}^{\prime \prime} \leftarrow V_{1} \cdot U_{0}^{\prime \prime}\),
 \(V_{0}^{\prime \prime} \leftarrow V_{0}^{\prime \prime} \cdot t_{2}, t_{2} \leftarrow t_{1}-t_{4}\),
 \(t_{5} \leftarrow t_{5}^{2}, t_{8} \leftarrow 2 \cdot t_{3}\),
 \(t_{8} \leftarrow t_{8}-t_{2}, t_{8} \leftarrow t_{8}-t_{1}\),
 \(t_{8} \leftarrow t_{8} \cdot U_{1}, t_{8} \leftarrow t_{8}+t_{5}\),
 \(t_{5} \leftarrow 2 \cdot V_{1}^{\prime \prime}, t_{8} \leftarrow t_{8}+t_{5}\),
 \(V_{1}^{\prime \prime} \leftarrow t_{6}+V_{1}^{\prime \prime}, t_{6} \leftarrow t_{6} \cdot t_{2}\),
 \(U_{1}^{\prime \prime} \leftarrow 2 \cdot t_{2}, \quad U_{1}^{\prime \prime} \leftarrow U_{1}^{\prime \prime}-t_{3}\),
 \(t_{2} \leftarrow U_{1}^{\prime \prime}-t_{2}, t_{4} \leftarrow t_{4}-U_{1}^{\prime \prime}\),
 \(t_{4} \leftarrow t_{4} \cdot t_{2}, t_{4} \leftarrow t_{4} \cdot Z\),
 \(Z^{\prime \prime} \leftarrow U_{0}^{\prime \prime} \cdot Z, t_{1} \leftarrow t_{1}-U_{1}^{\prime \prime}\),
 \(U_{1}^{\prime \prime} \leftarrow U_{1}^{\prime \prime} \cdot Z^{\prime \prime}, U_{0}^{\prime \prime} \leftarrow t_{8} \cdot U_{0}^{\prime \prime}\),
 \(V_{1}^{\prime \prime} \leftarrow V_{1}^{\prime \prime}-t_{8}, \quad V_{1}^{\prime \prime} \leftarrow V_{1}^{\prime \prime} \cdot t_{7}\),
 \(V_{1}^{\prime \prime} \leftarrow t_{4}-V_{1}^{\prime \prime}, \quad V_{0}^{\prime \prime} \leftarrow V_{0}^{\prime \prime} \cdot t_{7}\),
 \(t_{1} \leftarrow t_{1} \cdot t_{8}, \quad t_{1} \leftarrow t_{1}-t_{6}\),
 \(V_{0}^{\prime \prime} \leftarrow t_{1}-V_{0}^{\prime \prime}, \quad Z^{\prime \prime} \leftarrow Z^{\prime \prime} \cdot t_{7}\),
```

```
\(\overline{\text { Algorithm } 2 \text { Projective ad- }}\)
dition between general divi-
sors on the Jacobian of \(C\) :
\(\frac{y^{2}=x^{5}+f_{3} x^{3}+f_{2} x^{2}+f_{1}+f_{0} .}{\text { Input: } P=\left(U_{1}: U_{0}: V_{1}: V_{0}: Z\right)}\),
 \(Q=\left(U_{1}^{\prime}: U_{0}^{\prime}: V_{1}^{\prime}: V_{0}^{\prime}: Z^{\prime}\right)\).
Output: \(P+Q\)
 \(=\left(U_{1}^{\prime \prime}: U_{0}^{\prime \prime}: V_{1}^{\prime \prime}: V_{0}^{\prime \prime}: Z^{\prime \prime}\right)\).
 \(U_{1}^{\prime \prime} \leftarrow U_{1} \cdot Z^{\prime}, \quad U_{0}^{\prime \prime} \leftarrow U_{0} \cdot Z^{\prime}\),
 \(t_{1} \leftarrow V_{0} \cdot Z^{\prime}, t_{2} \leftarrow V_{0}^{\prime} \cdot Z\),
 \(t_{1} \leftarrow t_{1}-t_{2}, \quad t_{2} \leftarrow U_{0}^{\prime} \cdot Z\),
 \(t_{3} \leftarrow U_{1}^{\prime} \cdot Z, t_{4} \leftarrow t_{3} \cdot t_{2}\),
 \(t_{2} \leftarrow t_{2}-U_{0}^{\prime \prime}, \quad t_{5} \leftarrow U_{1}^{\prime \prime}-t_{3}\),
 \(t_{6} \leftarrow U_{1}^{\prime \prime} \cdot U_{0}^{\prime \prime}, t_{4} \leftarrow t_{4}-t_{6}\),
 \(t_{6} \leftarrow V_{1}^{\prime} \cdot Z, \quad Z^{\prime \prime} \leftarrow Z \cdot Z^{\prime}\),
 \(t_{7} \leftarrow V_{1} \cdot Z^{\prime}, t_{8} \leftarrow t_{7}-t_{6}\),
 \(t_{6} \leftarrow t_{7}+t_{6}, \quad t_{9} \leftarrow U_{1}^{\prime \prime 2}\),
 \(t_{10} \leftarrow Z^{\prime \prime} \cdot t_{2}, \quad t_{10} \leftarrow t_{9}+t_{10}\),
 \(t_{11} \leftarrow t_{3}^{2}, \quad t_{3} \leftarrow U_{1}^{\prime \prime}+t_{3}\),
 \(t_{12} \leftarrow t_{10}-t_{11}, t_{11} \leftarrow t_{9}+t_{11}\),
 \(t_{9} \leftarrow t_{4} \cdot t_{8}, t_{4} \leftarrow t_{4} \cdot t_{5}\),
 \(t_{5} \leftarrow t_{1} \cdot t_{5}, \quad t_{1} \leftarrow t_{1} \cdot t_{12}\),
 \(t_{8} \leftarrow t_{2} \cdot t_{8}, \quad t_{2} \leftarrow t_{2} \cdot t_{12}\),
 \(t_{1} \leftarrow t_{9}+t_{1}, \quad t_{5} \leftarrow t_{5}+t_{8}\),
 \(t_{2} \leftarrow t_{2}-t_{4}, t_{4} \leftarrow t_{5} \cdot Z^{\prime \prime}\),
 \(t_{8} \leftarrow t_{2} \cdot t_{4}, \quad t_{2} \leftarrow t_{2}^{2}\),
 \(t_{5} \leftarrow t_{5} \cdot t_{4}, t_{4} \leftarrow t_{1} \cdot t_{4}\),
 \(U_{1}^{\prime \prime} \leftarrow U_{1}^{\prime \prime} \cdot t_{5}, t_{9} \leftarrow 2 \cdot t_{4}\),
 \(t_{9} \leftarrow t_{9}-t_{2}, \quad t_{12} \leftarrow t_{5} \cdot t_{3}\),
 \(t_{9} \leftarrow t_{9}-t_{12}, \quad t_{2} \leftarrow t_{9}-t_{2}\),
 \(t_{2} \leftarrow t_{2} \cdot t_{3}, t_{11} \leftarrow t_{5} \cdot t_{11}\),
 \(t_{2} \leftarrow t_{2}+t_{11}, t_{2} \leftarrow t_{2} / 2\),
 \(t_{12} \leftarrow Z^{\prime \prime} \cdot t_{5}, \quad U_{0}^{\prime \prime} \leftarrow U_{0}^{\prime \prime} \cdot t_{12}\),
 \(t_{12} \leftarrow t_{8} \cdot t_{12}, \quad t_{11} \leftarrow Z^{\prime} \cdot t_{12}\),
 \(V_{0}^{\prime \prime} \leftarrow t_{11} \cdot V_{0}, \quad V_{1}^{\prime \prime} \leftarrow t_{11} \cdot V_{1}\),
 \(t_{11} \leftarrow t_{4}-t_{9}, \quad t_{4} \leftarrow U_{1}^{\prime \prime}-t_{4}\),
 \(t_{1} \leftarrow t_{1}^{2}, \quad t_{6} \leftarrow t_{8} \cdot t_{6}\),
 \(t_{1} \leftarrow t_{1} \cdot Z^{\prime \prime}, \quad t_{1} \leftarrow t_{1}+t_{6}\),
 \(t_{1} \leftarrow t_{1}-t_{2}, \quad t_{2} \leftarrow t_{1}-U_{0}^{\prime \prime}\),
 \(t_{5} \leftarrow t_{2} \cdot t_{5}, \quad t_{2} \leftarrow t_{9} \cdot t_{11}\),
 \(t_{11} \leftarrow t_{1} \cdot t_{11}, t_{6} \leftarrow U_{1}^{\prime \prime} \cdot t_{4}\),
 \(t_{6} \leftarrow t_{6}+t_{2}, \quad t_{5} \leftarrow t_{6}+t_{5}\),
 \(t_{4} \leftarrow U_{0}^{\prime \prime} \cdot t_{4}, \quad t_{11} \leftarrow t_{4}+t_{11}\),
 \(t_{9} \leftarrow t_{9} \cdot t_{8}, \quad U_{1}^{\prime \prime} \leftarrow t_{9} \cdot Z^{\prime \prime}\),
 \(U_{0}^{\prime \prime} \leftarrow t_{1} \cdot t_{8}, t_{5} \leftarrow t_{5} \cdot Z^{\prime \prime}\),
 \(V_{1}^{\prime \prime} \leftarrow t_{5}-V_{1}^{\prime \prime}, \quad V_{0}^{\prime \prime} \leftarrow t_{11}-V_{0}^{\prime \prime}\),
 \(Z^{\prime \prime} \leftarrow Z^{\prime \prime} \cdot t_{12}\),
```

Algorithm 3 Mixed addition between general divisors on the Jacobian of $C: y^{2}=$ $\frac{x^{5}+f_{3} x^{3}+f_{2} x^{2}+f_{1}+f_{0} .}{\text { Input: } P=\left(U_{1}: U_{0}: V_{1}: V_{0}: Z\right),}$ $Q=\left(u_{1}, u_{0}, v_{1}, v_{0}\right)$.
Output: $P+Q$
$=\left(U_{1}^{\prime \prime}: U_{0}^{\prime \prime}: V_{1}^{\prime \prime}: V_{0}^{\prime \prime}: Z^{\prime \prime}\right)$.
$t_{1} \leftarrow v_{0} \cdot Z, \quad V_{0}^{\prime \prime} \leftarrow V_{0}-t_{1}$,
$t_{1} \leftarrow v_{1} \cdot Z, \quad t_{2} \leftarrow t_{1}+V_{1}$,
$t_{1} \leftarrow t_{1}-V_{1}, \quad V_{1}^{\prime \prime} \leftarrow u_{1} \cdot Z$,
$t_{3} \leftarrow V_{1}^{\prime \prime}+U_{1}, t_{4} \leftarrow u_{0} \cdot Z$,
$t_{5} \leftarrow V_{1}^{\prime \prime} \cdot t_{4}, t_{6} \leftarrow U_{1} \cdot U_{0}$,
$t_{6} \leftarrow t_{6}-t_{5}, \quad U_{0}^{\prime \prime} \leftarrow U_{0}-t_{4}$,
$t_{5} \leftarrow V_{1}^{\prime \prime 2}, t_{7} \leftarrow U_{1}^{2}$,
$U_{1}^{\prime \prime} \leftarrow V_{1}^{\prime \prime}-U_{1}, t_{8} \leftarrow t_{5}-t_{7}$,
$t_{5} \leftarrow t_{5}+t_{7}, \quad t_{7} \leftarrow Z \cdot U_{0}^{\prime \prime}$,
$t_{8} \leftarrow t_{7}+t_{8}, t_{7} \leftarrow t_{6} \cdot t_{1}$,
$t_{1} \leftarrow U_{0}^{\prime \prime} \cdot t_{1}, \quad U_{0}^{\prime \prime} \leftarrow U_{0}^{\prime \prime} \cdot t_{8}$,
$t_{6} \leftarrow t_{6} \cdot U_{1}^{\prime \prime}, \quad U_{1}^{\prime \prime} \leftarrow V_{0}^{\prime \prime} \cdot U_{1}^{\prime \prime}$,
$t_{8} \leftarrow V_{0}^{\prime \prime} \cdot t_{8}, \quad t_{7} \leftarrow t_{7}-t_{8}$,
$t_{1} \leftarrow t_{1}-U_{1}^{\prime \prime}, \quad U_{0}^{\prime \prime} \leftarrow U_{0}^{\prime \prime}-t_{6}$,
$t_{8} \leftarrow U_{0}^{\prime \prime 2}, \quad t_{6} \leftarrow t_{1} \cdot Z$,
$U_{0}^{\prime \prime} \leftarrow U_{0}^{\prime \prime} \cdot t_{6}, \quad t_{1} \leftarrow t_{1} \cdot t_{6}$,
$V_{1}^{\prime \prime} \leftarrow t_{1} \cdot V_{1}^{\prime \prime}, t_{5} \leftarrow t_{1} \cdot t_{5}$,
$V_{0}^{\prime \prime} \leftarrow t_{7} \cdot t_{6}, t_{6} \leftarrow t_{6}^{2}$,
$t_{7} \leftarrow t_{7}^{2}, t_{4} \leftarrow t_{4} \cdot t_{6}$,
$t_{6} \leftarrow U_{0}^{\prime \prime} \cdot t_{6}, U_{1}^{\prime \prime} \leftarrow 2 \cdot V_{0}^{\prime \prime}$,
$U_{1}^{\prime \prime} \leftarrow U_{1}^{\prime \prime}-t_{8}, \quad t_{2} \leftarrow U_{0}^{\prime \prime} \cdot t_{2}$,
$t_{7} \leftarrow t_{7} \cdot Z, t_{7} \leftarrow t_{7}+t_{2}$,
$t_{2} \leftarrow t_{1} \cdot t_{3}, \quad U_{1}^{\prime \prime} \leftarrow U_{1}^{\prime \prime}-t_{2}$,
$t_{8} \leftarrow U_{1}^{\prime \prime}-t_{8}, t_{3} \leftarrow t_{3} \cdot t_{8}$,
$t_{3} \leftarrow t_{3}+t_{5}, \quad t_{3} \leftarrow t_{3} / 2$,
$t_{7} \leftarrow t_{7}-t_{3}, t_{8} \leftarrow V_{1}^{\prime \prime}-V_{0}^{\prime \prime}$,
$V_{0}^{\prime \prime} \leftarrow V_{0}^{\prime \prime}-U_{1}^{\prime \prime}, t_{5} \leftarrow t_{7}-t_{4}$,
$V_{1}^{\prime \prime} \leftarrow V_{1}^{\prime \prime} \cdot t_{8}, \quad t_{1} \leftarrow t_{1} \cdot t_{5}$,
$t_{1} \leftarrow t_{1}+V_{1}^{\prime \prime}, \quad V_{1}^{\prime \prime} \leftarrow U_{1}^{\prime \prime} \cdot V_{0}^{\prime \prime}$,
$V_{1}^{\prime \prime} \leftarrow V_{1}^{\prime \prime}+t_{1}, \quad t_{4} \leftarrow t_{4} \cdot t_{8}$,
$V_{0}^{\prime \prime} \leftarrow V_{0}^{\prime \prime} \cdot t_{7}, \quad V_{0}^{\prime \prime} \leftarrow t_{4}+V_{0}^{\prime \prime}$,
$t_{4} \leftarrow t_{6} \cdot v_{1}, \quad V_{1}^{\prime \prime} \leftarrow V_{1}^{\prime \prime}-t_{4}$,
$U_{1}^{\prime \prime} \leftarrow U_{1}^{\prime \prime} \cdot Z, \quad U_{1}^{\prime \prime} \leftarrow U_{1}^{\prime \prime} \cdot U_{0}^{\prime \prime}$,
$U_{0}^{\prime \prime} \leftarrow t_{7} \cdot U_{0}^{\prime \prime}, \quad V_{1}^{\prime \prime} \leftarrow Z \cdot V_{1}^{\prime \prime}$,
$Z^{\prime \prime} \leftarrow Z \cdot t_{6}, t_{7} \leftarrow Z^{\prime \prime} \cdot v_{0}$,
$V_{0}^{\prime \prime} \leftarrow V_{0}^{\prime \prime}-t_{7}$,
which is 254 bits. A possible degree 5 model is $C: y^{2}=x^{5}+f_{3} x^{3}+f_{2} x^{2}+f_{1} x+f_{0}$, where

$$
\begin{array}{ll}
f_{3}=34744234758245218589390329770704207149, & f_{2}=132713617209345335075125059444256188021, \\
f_{1}=90907655901711006083734360528442376758, & f_{0}=6667986622173728337823560857179992816 .
\end{array}
$$

Generic curve over $\boldsymbol{p}=\mathbf{2}^{\mathbf{1 2 8}} \mathbf{- 1 7 3}$. The CM field $K=\mathbb{Q}[x] /\left(x^{4}+41 x+389\right)$ has class number $1[41]$ and gives rise to a curve $C$ over $\mathbb{F}_{p}$ whose Jacobian has prime order

$$
r=115792089237316195429342203801033554170931615651881657307308068079702089951781
$$

which is 257 bits. A possible degree 5 model is $C: y^{2}=x^{5}+f_{3} x^{3}+f_{2} x^{2}+f_{1} x+f_{0}$, where

$$
\begin{array}{ll}
f_{3}=318258242717201709453901384328569236653, & f_{2}=75380722035796344355219475510170298006 \\
f_{1}=129416082603460579272847694630998099237, & f_{0}=143864072772599444046778416709082679388
\end{array}
$$

## 5 The Kummer Surface

Gaudry [27] built on earlier observations by the Chudnovsky brothers [15] to show that scalar multiplication in genus- 2 can be greatly accelerated by working on the Kummer surface associated to a Jacobian, rather than on the Jacobian itself. Although the Kummer surface is not technically a group, it is close enough to a group to be able to define scalar multiplications on it, and is therefore an attractive setting for Diffie-Hellman like protocols that do not require any further group operations [60].

### 5.1 The Squares-only Kummer Routine

The Kummer surface that was originally proposed for cryptography in [27] is a surface whose constants are completely parameterized by the four fundamental Theta constants $(a, b, c, d)=$ $\left(\vartheta_{1}(0), \vartheta_{2}(0), \vartheta_{3}(0), \vartheta_{4}(0)\right)$, and whose coordinates come from the four fundamental Theta functions $(x, y, z, t)=\left(\vartheta_{1}(\mathbf{z}), \vartheta_{2}(\mathbf{z}), \vartheta_{3}(\mathbf{z}), \vartheta_{4}(\mathbf{z})\right)$, all of which are values of the classical genus- 2 Riemann Theta function. Bernstein [6] pointed out that one can work entirely with the squares of the fundamental Theta constants without loss of efficiency. This provides more flexibility when transforming a given genus-2 curve into an associated Kummer surface, and makes it easier to control the size of squared fundamental Theta constants, for which small values can give worthwhile speedups.

Cosset [16] formally presented the "squares-only" setting, in which the Kummer surface $\mathcal{K}$ is completely defined by the squared fundamentals $\left(a^{2}, b^{2}, c^{2}, d^{2}\right)$ as

$$
\mathcal{K}: \quad E^{\prime} x y z t=\left(\left(x^{2}+y^{2}+z^{2}+t^{2}\right)-F(x t+y z)-G(x z+y t)-H(x y+z t)\right)^{2}
$$

where

$$
\begin{align*}
& E^{\prime}=4 E^{2} a^{2} b^{2} c^{2} d^{2}, \quad E=\frac{A B C D}{\left(a^{2} d^{2}-b^{2} c^{2}\right)\left(a^{2} c^{2}-b^{2} d^{2}\right)\left(a^{2} b^{2}-c^{2} d^{2}\right)}, \\
& F=\frac{a^{4}-b^{4}-c^{4}+d^{4}}{a^{2} d^{2}-b^{2} c^{2}}, \quad G=\frac{a^{4}-b^{4}+c^{4}-d^{4}}{a^{2} c^{2}-b^{2} d^{2}}, \quad H=\frac{a^{4}+b^{4}-c^{4}-d^{4}}{a^{2} b^{2}-c^{2} d^{2}}, \\
& {\left[\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right] }=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & -1 & 1 \\
1 & -1 & -1 \\
1
\end{array}\right]\left[\begin{array}{l}
a^{2} \\
b^{2} \\
c^{2} \\
d^{2}
\end{array}\right] . \tag{1}
\end{align*}
$$

```
Algorithm 4 The Hadamard
transform (H).
Input: \((x, y, z, t)\)
Output: \(\mathrm{H}(x, y, z, t)\)
 \(t_{1} \leftarrow x+y, t_{2} \leftarrow z+t\),
 \(t_{3} \leftarrow x-y, t_{4} \leftarrow z-t\).
2. \(x \leftarrow t_{1}+t_{2}, \quad y \leftarrow t_{1}-t_{2}\),
 \(z \leftarrow t_{3}+t_{4}, t \leftarrow t_{3}-t_{4}\).
3 . return \((x, y, z, t)\).
```

```
Algorithm 5 Doubling, \(\mathcal{K}(\) DBL).
Input: \(P=(x: y: z: t)\) and constants \(y_{0}, z_{0}, t_{0}, y_{0}^{\prime}, z_{0}^{\prime}, t_{0}^{\prime}\).
Output: \([2] P=\operatorname{DBL}(P)\).
 . \(x, y, z, t \leftarrow \mathrm{H}(x, y, z, t)\).
 \(x \leftarrow x^{2}, y \leftarrow y^{2}, z \leftarrow z^{2}, t \leftarrow t^{2}\).
 \(y \leftarrow y \cdot y_{0}^{\prime}, \quad z \leftarrow z \cdot z_{0}^{\prime}, \quad t \leftarrow t \cdot t_{0}^{\prime}\).
4. \(x, y, z, t \leftarrow \mathrm{H}(x, y, z, t)\).
5. \(x \leftarrow x^{2}, y \leftarrow y^{2}, z \leftarrow z^{2}, t \leftarrow t^{2}\).
6. \(y \leftarrow y \cdot y_{0}, \quad z \leftarrow z \cdot z_{0}, t \leftarrow t \cdot t_{0}\).
 7. return \((x: y: z: t)\).
```

We write $(x: y: z: t)=\left(\vartheta_{1}(\mathbf{z})^{2}: \vartheta_{2}(\mathbf{z})^{2}: \vartheta_{3}(\mathbf{z})^{2}: \vartheta_{4}(\mathbf{z})^{2}\right)$ for the coordinates of a projective point on $\mathcal{K}$. We present here the four algorithms needed to achieve scalar multiplication on a Kummer surface using the squared coordinates. Algorithm 4, the Hadamard transform (H), is a building block used to improve efficiency throughout the entire routine: the linear algebra involved in computing $A, B, C, D$ from $\left(a^{2}, b^{2}, c^{2}, d^{2}\right)$ in (1) appears numerous times in the formulas for arithmetic on $\mathcal{K}$, and this is an optimized way to do those operations [6]. Algorithm $5, \mathcal{K}($ DBL $)$, computes the doubling $[2] P \in \mathcal{K}$ of a point $P \in \mathcal{K}$, while Algorithm 6, $\mathcal{K}($ DBLADD $)$, computes the pseudo-addition of the distinct points $P, Q \in \mathcal{K}$ with known difference $P-Q \in \mathcal{K}$. Both of these algorithms are the squares-only formulas from [16]. Algorithm 7 computes the scalar multiple $[k] P \in \mathcal{K}$ of $P \in \mathcal{K}$ using a genus- 2 version [27] of the Montgomery ladder [50]. The six surface constants that appear in the algorithms are defined as

$$
\begin{equation*}
y_{0}=\frac{a^{2}}{b^{2}}, \quad z_{0}=\frac{a^{2}}{c^{2}}, \quad t_{0}=\frac{a^{2}}{d^{2}}, \quad y_{0}^{\prime}=\frac{A}{B}, \quad z_{0}^{\prime}=\frac{A}{C}, \quad t_{0}^{\prime}=\frac{A}{D} \tag{2}
\end{equation*}
$$

Although the formulas in Algorithm 6 are presented for general inputs $P, Q$ and $P-Q$, the inputs to $\mathcal{K}$ (DBLADD) in the laddering algorithm are always of the form $[m] P$ and $[m+1] P$, so their difference is always the initial point $P$ (see lines 4 and 6 of Algorithm 7). Thus, the inversions in line 9 of Algorithm 6 can all be precomputed. In fact, since $\mathcal{K}$ is projective we can multiply each coordinate in this line by any scalar, say $\bar{x}$, such that Line 9 is modified to compute 3 multiplications: $y^{\prime} \leftarrow Y \cdot(\bar{x} / \bar{y}), z^{\prime} \leftarrow Z \cdot(\bar{x} / \bar{z})$, and $t^{\prime} \leftarrow T \cdot(\bar{t} / \bar{y})$, where the quotients in the parentheses are precomputed and stay fixed throughout the scalar multiplication [27, $6]$.

### 5.2 Extracting the Squared Kummer Surface Parameters from C

In [27] Gaudry showed the relationship between the Kummer surface and the isomorphic Rosenhain model of the genus- 2 curve, given as

$$
\begin{equation*}
C_{\operatorname{Ros}}: y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu), \tag{3}
\end{equation*}
$$

where the Rosenhain invariants $\lambda, \mu$ and $\nu$ are linked to the squared fundamentals by

$$
\lambda=\frac{a^{2} c^{2}}{b^{2} d^{2}}, \mu=\frac{c^{2}(A B+C D)}{d^{2}(A B-C D)}, \nu=\frac{a^{2}(A B+C D)}{b^{2}(A B-C D)},
$$

with $A, B, C, D$ as in (1). Since the three Rosenhain invariants are functions of the four squared fundamentals, there is a degree of freedom when inverting the equations to compute

```
Algorithm 6 Combined doubling and pseudo-
addition, \(\mathcal{K}\) (DBLADD).

Algorithm 6 Combined doubling and pseudoaddition, \(\mathcal{K}(\) DBLADD \()\).
```

Input: $P=(x: y: z: t), Q=\left(x^{\prime}: y^{\prime}: z^{\prime}: t^{\prime}\right)$,

```
Input: \(P=(x: y: z: t), Q=\left(x^{\prime}: y^{\prime}: z^{\prime}: t^{\prime}\right)\),
 \(P-Q=(\bar{x}: \bar{y}: \bar{z}: \bar{t})\), and \(y_{0}, z_{0}, t_{0}, y_{0}^{\prime}, z_{0}^{\prime}, t_{0}^{\prime}\).
 \(P-Q=(\bar{x}: \bar{y}: \bar{z}: \bar{t})\), and \(y_{0}, z_{0}, t_{0}, y_{0}^{\prime}, z_{0}^{\prime}, t_{0}^{\prime}\).
Output: \(([2] P, P+Q)=\operatorname{DBLADD}(P, Q, P-Q)\).
Output: \(([2] P, P+Q)=\operatorname{DBLADD}(P, Q, P-Q)\).
 1. \(x, y, z, t \leftarrow \mathrm{H}(x, y, z, t), x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime} \leftarrow \mathrm{H}\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)\).
 1. \(x, y, z, t \leftarrow \mathrm{H}(x, y, z, t), x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime} \leftarrow \mathrm{H}\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)\).
 2. \(X \leftarrow x \cdot x^{\prime}, \quad Y \leftarrow y \cdot y_{0}^{\prime}, Z \leftarrow z \cdot z_{0}^{\prime}, T \leftarrow t \cdot t_{0}^{\prime}\).
 2. \(X \leftarrow x \cdot x^{\prime}, \quad Y \leftarrow y \cdot y_{0}^{\prime}, Z \leftarrow z \cdot z_{0}^{\prime}, T \leftarrow t \cdot t_{0}^{\prime}\).
 3. \(x \leftarrow x^{2}, y \leftarrow y \cdot Y, z \leftarrow z \cdot Z, t \leftarrow t \cdot T\).
 3. \(x \leftarrow x^{2}, y \leftarrow y \cdot Y, z \leftarrow z \cdot Z, t \leftarrow t \cdot T\).
 4. \(Y \leftarrow Y \cdot y^{\prime}, \quad Z \leftarrow Z \cdot z^{\prime}, T \leftarrow T \cdot t^{\prime}\).
 4. \(Y \leftarrow Y \cdot y^{\prime}, \quad Z \leftarrow Z \cdot z^{\prime}, T \leftarrow T \cdot t^{\prime}\).
 5. \(x, y, z, t \leftarrow \mathrm{H}(x, y, z, t), X, Y, Z, T \leftarrow \mathrm{H}(X, Y, Z, T)\).
 5. \(x, y, z, t \leftarrow \mathrm{H}(x, y, z, t), X, Y, Z, T \leftarrow \mathrm{H}(X, Y, Z, T)\).
 6. \(x \leftarrow x^{2}, y \leftarrow y^{2}, z \leftarrow z^{2}, t \leftarrow t^{2}\).
 6. \(x \leftarrow x^{2}, y \leftarrow y^{2}, z \leftarrow z^{2}, t \leftarrow t^{2}\).
 7. \(X \leftarrow X^{2}, Y \leftarrow Y^{2}, Z \leftarrow Z^{2}, T \leftarrow T^{2}\).
 7. \(X \leftarrow X^{2}, Y \leftarrow Y^{2}, Z \leftarrow Z^{2}, T \leftarrow T^{2}\).
 8. \(y \leftarrow y \cdot y_{0}, \quad z \leftarrow z \cdot z_{0}, t \leftarrow t \cdot t_{0}\).
 8. \(y \leftarrow y \cdot y_{0}, \quad z \leftarrow z \cdot z_{0}, t \leftarrow t \cdot t_{0}\).
 9. \(x^{\prime} \leftarrow X / \bar{x}, y^{\prime} \leftarrow Y / \bar{y}, \quad z^{\prime} \leftarrow Z / \bar{z}, \quad t^{\prime} \leftarrow T / \bar{t}\).
 9. \(x^{\prime} \leftarrow X / \bar{x}, y^{\prime} \leftarrow Y / \bar{y}, \quad z^{\prime} \leftarrow Z / \bar{z}, \quad t^{\prime} \leftarrow T / \bar{t}\).
 0. return \((x: y: z: t),\left(x^{\prime}: y^{\prime}: z^{\prime}: t^{\prime}\right)\).
```

```
 0. return \((x: y: z: t),\left(x^{\prime}: y^{\prime}: z^{\prime}: t^{\prime}\right)\).
```

```

Algorithm 7 Scalar multiplication, \(\mathcal{K}(\) SMUL \()\).
Input: \(P=(x: y: z: t)\) and integer
 \(n=\sum_{i=0}^{\ell-1} n_{i} 2^{i}\) with \(n>2\).
Output: \([n] P \in \mathcal{K}\).
 \(P_{m} \leftarrow P, \quad P_{p}=\operatorname{DBL}(P)\).
 for \(i=\ell-2\) down to 0 do
 if \(n_{i}=1\) then
 \(\left(P_{p}, P_{m}\right) \leftarrow \operatorname{DBLADD}\left(P_{p}, P_{m}, P\right)\)
 else
 \(\left(P_{m}, P_{p}\right) \leftarrow \operatorname{DBLADD}\left(P_{m}, P_{p}, P\right)\)
 \((x: y: z: t) \leftarrow P_{m}\).
 return \((x: y: z: t)\).
\(\left(a^{2}, b^{2}, c^{2}, d^{2}\right)\) from \((\lambda, \mu, \nu)\). Thus, we can set \(d^{2}=1[29]\) and compute the other squared fundamentals as
\[
c^{2}=\sqrt{\frac{\lambda \mu}{\nu}}, \quad b^{2}=\sqrt{\frac{\mu(\mu-1)(\lambda-\nu)}{\nu(\nu-1)(\lambda-\mu)}}, \quad a^{2}=b^{2} c^{2} \frac{\nu}{\mu}
\]

Given a hyperelliptic curve \(C\) of genus-2, there are up to 120 unique Rosenhain triples \(\lambda, \mu, \nu\) that give an isomorphic representation \(C_{\text {Ros }} \cong C\) over the algebraic closure \([26, \S 2.2]\). So for a given curve with rational 2 -torsion, we can expect that there may be at least one Rosenhain triple for which the square roots above lie in the same field as \(\lambda, \mu\) and \(\nu\), so that the Kummer surface is also defined over the same field (but see Section 8.3). If the 2 -torsion is rational, then 16 must divide the cardinality of \(\operatorname{Jac}(C)\) [27].

\subsection*{5.3 Mapping from \(\mathcal{K}\) to \(\operatorname{Jac}(C)\)}

The maps from \(\mathcal{K}\) to \(\operatorname{Jac}(C)\) were originally given by Gaudry [27] and tweaked for the squares only case by Cosset [16]. We reproduce them here for completeness, correcting a sign mistake introduced in the computation of \(v_{0}\) in [16]. It should be noted that the map below is not directly to the Jacobian of \(C\), but rather to the Jacobian of the isomorphic curve \(C_{\text {Ros }}\) in Rosenhain form. The map takes \(P=(x, y, z, t) \in \mathcal{K}\) to \(D=\left(u_{1}, u_{0}, v_{1}, v_{0}\right)\) or \(D=\left(u_{1}, u_{0},-v_{1},-v_{0}\right)\), where the choice between these two possibilities is made when we choose the square root in the computation of \(v_{0}\) in (5).

We expand the first part of the map (to the \(u\)-polynomial of \(D\)), to write it as
\[
u_{0}=\frac{u_{x} x+u_{y} y+u_{z} z+u_{t} t}{d_{x} x+d_{y} y+d_{z} z+d_{t} t} \quad \text { and } \quad u_{1}=\frac{u_{x}^{\prime} x+u_{y}^{\prime} y+u_{z}^{\prime} z+u_{t}^{\prime} t}{d_{x} x+d_{y} y+d_{z} z+d_{t} t}-u_{0}-1
\]
where
\[
\begin{array}{lll}
u_{x}=-\vartheta_{1}^{2} \vartheta_{3}^{2} \vartheta_{8}^{2} \vartheta_{5}^{2} \vartheta_{9}^{2}, & u_{x}^{\prime}=-\vartheta_{7}^{2} \vartheta_{9}^{4} \vartheta_{5}^{2} \vartheta_{8}^{2}, & d_{x}=-\vartheta_{2}^{2} \vartheta_{4}^{2} \vartheta_{10}^{2} \vartheta_{6}^{2} \vartheta_{7}^{2}, \\
u_{y}=-\vartheta_{1}^{2} \vartheta_{3}^{2} \vartheta_{8}^{2} \vartheta_{6}^{2} \vartheta_{7}^{2}, & u_{y}^{\prime}=\vartheta_{7}^{2} \vartheta_{9}^{4} \vartheta_{5}^{2} \vartheta_{10}^{2}, & d_{y}=-\vartheta_{2}^{2} \vartheta_{4}^{2} \vartheta_{10}^{2} \vartheta_{5}^{2} \vartheta_{9}^{2}, \\
u_{z}=\vartheta_{1}^{2} \vartheta_{3}^{2} \vartheta_{8}^{2} \vartheta_{5}^{2} \vartheta_{7}^{2}, & u_{z}^{\prime}=\vartheta_{7}^{4} \vartheta_{9}^{2} \vartheta_{5}^{2} \vartheta_{8}^{2}, & d_{z}=\vartheta_{2}^{2} \vartheta_{4}^{2} \vartheta_{10}^{2} \vartheta_{6}^{2} \vartheta_{9}^{2}, \\
u_{t}=\vartheta_{1}^{2} \vartheta_{3}^{2} \vartheta_{8}^{2} \vartheta_{6}^{2} \vartheta_{9}^{2}, & u_{t}^{\prime}=-\vartheta_{7}^{4} \vartheta_{9}^{2} \vartheta_{5}^{2} \vartheta_{10}^{2}, & d_{t}=\vartheta_{2}^{2} \vartheta_{4}^{2} \vartheta_{10}^{2} \vartheta_{5}^{2} \vartheta_{7}^{2} . \tag{4}
\end{array}
\]

For the computation of \(v_{0}\) and \(v_{1}\), we have
\[
\begin{align*}
\ell= & -\left(\vartheta_{12}^{2}(\mathbf{z}) \vartheta_{7}(\mathbf{z})^{2} b^{2} c^{2} \vartheta_{9}^{4}+\vartheta_{11}^{2}(\mathbf{z}) \vartheta_{9}^{2}(\mathbf{z}) a^{2} d^{2} \vartheta_{7}^{4}+2 a^{2} b^{2} c^{2} d^{2}(x z+y t)\right. \\
& \left.+\left(x^{2}+y^{2}+z^{2}+t^{2}-F(x t+y z)-G(x z+y t)-H(x y+z t)\right) \frac{a^{2} c^{2}+b^{2} d^{2}}{E}\right), \\
v_{0}= & \sqrt{\ell \cdot \frac{\vartheta_{8}^{2} \vartheta_{3}^{4} \vartheta_{1}^{4} \vartheta_{14}^{2}(\mathbf{z})}{\left(\vartheta_{16}^{2}(\mathbf{z}) b^{2} d^{2} \vartheta_{10}^{2}\right)^{3}}}, \\
v_{1}= & \frac{u_{0}^{3}-u_{0}^{2}\left(u_{1}^{2}+u_{1}+\left(u_{1}+1\right)(\lambda+\mu+\nu)+\lambda \mu+\nu \lambda+\nu \mu\right)+u_{0} \lambda \mu \nu+u_{1} v_{0}^{2}}{2 v_{0} u_{0}}, \tag{5}
\end{align*}
\]
where the \(\lambda, \mu\) and \(\nu\) are the particular choice of Rosenhain invariants corresponding to \(C_{\text {Ros }}\) in (3). The six Theta constants \(\vartheta_{i}^{2}\) with \(i=5, \ldots, 10\) and the six Theta functions \(\vartheta_{j}^{2}(\mathbf{z})\) with \(j \in\{7,9,11,12,14,16\}\) are all exactly as in [27, §7.3-7.4].

\subsection*{5.4 Twist Security}

There is an additional security consideration when working on the Kummer surface because a random point on \(\mathcal{K}\) can map to either the curve \(C_{\text {Ros }} \cong C\) or its twist \(C_{\mathrm{Ros}}^{\prime} \cong C^{\prime}[27, \S 5.2]\). As long as the public generator \(P \in \mathcal{K}\) is chosen so that it maps back to \(\operatorname{Jac}\left(C_{\mathrm{Ros}}\right)\), then any honest party participating in a Diffie-Hellman style protocol computes with multiples of \(P\) that also map back to \(\operatorname{Jac}\left(C_{\text {Ros }}\right)\). However, an attacker could feed a party another point \(P^{\prime} \in \mathcal{K}\) that (unbeknownst to the party) maps back to \(C_{\text {Ros }}^{\prime}\), and on return of \([s] P^{\prime}\), attack the discrete logarithm problem on the twist instead. It is undesirable to include a check of which curve the Kummer points map to, because the maps above are so complicated. The best solution is to compute curves where both \(\operatorname{Jac}(C)\) and \(\operatorname{Jac}\left(C^{\prime}\right)\) have large prime order subgroups. Such curves and their associated Kummer surfaces are called twist-secure [32, 31].

\subsection*{5.5 Curves and their Kummers}

Our implementations use two different Kummer surfaces defined over the prime fields with \(p=2^{127}-1\) and \(p=2^{128}-237\). In the case of \(p=2^{127}-1\), we use the twist-secure curve found by Gaudry and Schost [32]. For the prime \(p=2^{128}-237\), we used the CM method to generate a cryptographically secure genus-2 curve over this fixed prime field. We searched through fields up to class number 144 in Kohel's Echidna database to find a curve whose Jacobian had order 16 times a (253 -bit) prime \({ }^{5}\), but this curve was not twist-secure (the largest prime factor on the twist was 222 bits) and did not have small surface parameters, which Gaudry and Schost prioritized in their search. Thus, the curve for \(p=2^{128}-237\) is only used for comparative purposes since it is not twist-secure.

Kummer Surface over \(\boldsymbol{p}=\mathbf{2}^{\mathbf{1 2 7}} \mathbf{- 1}\). Gaudry and Schost [32] label the curve as \(\mathcal{C}_{11,-22,-19,-3}\), since the squared fundamental Theta constants are \(\left(a^{2}, b^{2}, c^{2}, d^{2}\right)=(11,-22,-19,-3)\). A corresponding degree 5 isomorphic Rosenhain model is given by the constants
\[
\begin{gathered}
\lambda=28356863910078205288614550619314017618, \quad \mu=154040945529144206406682019582013187910, \\
\nu=113206060534360680770189432771018826227 .
\end{gathered}
\]

\footnotetext{
\({ }^{5}\) The quartic CM field is \(K=\mathbb{Q}[x] /\left(x^{4}+1990 x^{2}+989193\right)\).
}

The group orders of \(\operatorname{Jac}(C) \cong \operatorname{Jac}\left(C_{\text {Ros }}\right)\) and \(\operatorname{Jac}\left(C^{\prime}\right) \cong \operatorname{Jac}\left(C_{\text {Ros }}^{\prime}\right)\) are given by \(2^{4} \cdot r\) and \(2^{4} \cdot r^{\prime}\) respectively, where
\[
\begin{gathered}
r=1809251394333065553414675955050290598923508843635941313077767297801179626051 \\
r^{\prime}=1809251394333065553571917326471206521441306174399683558571672623546356726339
\end{gathered}
\]
which are 250 - and 251 -bit primes respectively. The corresponding Kummer surface \(\mathcal{K}\) is parameterized by
\[
\begin{aligned}
E^{\prime} & =37299146226279590906389874065895056737, \quad F=145242473685766417331928186098925456110 \\
G & =81667768061025231231209905783624370749,
\end{aligned} \quad H=54058235547640725801037772083642107170
\]

Since the curve is twist-secure, we are free to choose any generator, for example the generator
\[
\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)=[2](1,1,1,78525529738642755703105688163803666634)
\]
has order \(r\) on \(\mathcal{K}\).

Kummer Surface over \(\boldsymbol{p}=\mathbf{2}^{\mathbf{1 2 8}}-\mathbf{2 3 7}\). For this prime we found a curve from Kohel's Echidna database over the (class number 2) quartic CM field \(K=\mathbb{Q}[x] /\left(x^{4}+41 x+389\right)\). One choice of the Rosenhain model is given by the constants
\[
\begin{gathered}
\lambda=128534436098496400337491922800626495083, \quad \mu=138365487282865177796922369720361855387, \\
\nu=328480392121026877111417192072570789522 .
\end{gathered}
\]

The group order of \(\operatorname{Jac}(C) \cong \operatorname{Jac}\left(C_{\text {Ros }}\right)\) is \(2^{4} \cdot r\), where
\[
r=7237005577332262214072797209406249707568321823640356418684124053756801466361
\]
is a 253 -bit prime. One choice of the squared fundamentals corresponding to the above Rosenhain triple is
\[
\begin{gathered}
a^{2}=239787395557946134106985933824874005295, \quad b^{2}=25872439158573675147402852447691114873, \\
c^{2}=20548760516608934922742512228704274345, \quad d^{2}=1 .
\end{gathered}
\]

The corresponding Kummer surface \(\mathcal{K}\) is parameterized by
\[
\begin{array}{ll}
E^{\prime}=332371133554703752153743957854113212587, & F=132548732776531240551503236526338110642, \\
G=198219842417172000280660546928795447629, & H=293899164222979967538360298717156893328 .
\end{array}
\]

A generator on \(\mathcal{K}\) with order \(r\) that maps back to \(\operatorname{Jac}\left(C_{\text {Ros }}\right)\) is
\[
P=[2](1,1,-1,706133183720512204201264210416943654) .
\]

We re-emphasize that this surface is not twist-secure (see Section 5.4), and was used for comparative purposes only.

\subsection*{5.6 Implementation Details and Side-channel Resistance}

From Algorithm 7 it is clear that for every bit in the scalar, except the first one, the combined double and pseudo-addition routine (Algorithm 6) is called. The main branch, i.e. checking if the bit is set (or not), can be converted into straight-line code by masking (pointers to) the inand output. Since no lookup tables are used, and all modern cache sizes are large enough to hold the intermediate values from Algorithm 6 when using 128-bit arithmetic, the algorithm becomes side-channel resistant almost for free. The only input-dependent value is the scalar \(n\) whose bit-size can differ, meaning that the total runtime could potentially leak the value of
the most significant bits. In order to make the implementation run in constant time, we can either increase the scalar via addition of the subgroup order, or we can artificially increase the running time by computing Algorithm 6 on dummy values such that the computation of \(\mathcal{K}\) (DBLADD) occurs exactly \(\left\lceil\log _{2}(r)\right\rceil-1\) times after calling \(\mathcal{K}(\mathrm{DBL})\) once only.

We note that we incur a cost of \(16 \mathbf{m}+9 \mathbf{s}+32\) a each time \(\mathcal{K}\) (DBLADD) is called, where 6 of the multiplications are by surface constants. For the curve over \(p=2^{127}-1\) found by Gaudry and Schost (see Section 5.5), the 6 surface constants are \(y_{0}=-1 / 2, z_{0}=-11 / 19, t_{0}=-11 / 3\), \(y_{0}^{\prime}=-3, z_{0}^{\prime}=-33 / 17\) and \(t_{0}^{\prime}=-33 / 49\), where it is immediately clear that the multiplications by \(y_{0}\) and \(y_{0}^{\prime}\) are less expensive than full \(\mathbb{F}_{p}\) multiplications. As we mentioned in Section 5.1, the projective nature of \(\mathcal{K}\) allows us to simultaneously multiply the coordinates of any point on \(\mathcal{K}\) by a constant factor. From Algorithm 6, we can see that this also permits us to rescale either set of the surface constants, i.e. we are free to scale those appearing on Line \(2\left(y_{0}, z_{0}\right.\) and \(\left.t_{0}\right)\) and/or those appearing on Line \(8\left(y_{0}^{\prime}, z_{0}^{\prime}\right.\) and \(\left.t_{0}^{\prime}\right)\) of Algorithm 6 by any non-zero factor in \(\mathbb{F}_{p}\). To determine the best scaling of the surface constants, we must first note that the expressions in (2) were already scaled so that two original constants \(x_{0}\) and \(x_{0}^{\prime}\) both became 1 (and were thus omitted), meaning that any scaling must be simultaneously applied to the four constants \(x_{0}, y_{0}, z_{0}\), and \(t_{0}\) or the four constants \(x_{0}^{\prime}, y_{0}^{\prime}, z_{0}^{\prime}\), and \(t_{0}^{\prime}\). As it stands, multiplications by \(z_{0}=-11 / 19\) and \(t_{0}=-11 / 3\) are treated as full multiplications in \(\mathbb{F}_{p}\), so suppose we clear the denominators of this first set of constants to instead take \(\left(x_{0}, y_{0}, z_{0}, t_{0}\right)=(-114,57,66,418)\). In this case all four of the multiplications are now by "single-word" constants, which are naturally faster than full \(\mathbb{F}_{p}\) multiplications where both operands occupy two machine words. In our implementations however, we found that the code ran faster when the constants were essentially left unchanged, save for the scaling of \(\left(x_{0}, y_{0}, z_{0}, t_{0}\right)=(1,-1 / 2,-11 / 19,-11 / 3)\) to \(\left(x_{0}, y_{0}, z_{0}, t_{0}\right)=(2,-1,-22 / 19,-22 / 3)\), where the multiplication by 2 is slightly faster than the division by 2 . We optimized all of the obvious combinations of scalings at the assembly level, such as clearing the smallest denominator only, but this always destroyed one of the constants being 1 , which was not made up for by the benefit of reducing two-word constants into one-word constants.

\section*{6 GLV in Genus-2}

The Gallant-Lambert-Vanstone (GLV) method [24] significantly speeds up scalar multiplication on algebraic curves that admit an efficiently computable endomorphism \(\phi\) of degree \(d>1\), by decomposing the scalar \(k\) into \(d\) "mini-scalars", all of which have bit-lengths that are approximately \(1 / d\) that of \(k\). The \(d\) scalar multiplications corresponding to each of these mini-scalars can then be computed as one multi-scalar multiplication of length \(\approx \log _{2}(k / d)\), which effectively reduces the number of required doublings by a factor of \(d\).

\subsection*{6.1 Endomorphisms}

In general, algebraic curves over prime fields do not come equipped with an useful endomorphism \(\phi\), which means we have to use special curves to take advantage of the GLV method. For genus-1 elliptic curves, Gallant et al. suggested the curves \(y^{2}=x^{3}+b\) and \(y^{2}=x^{3}+a x\), which allow a 2 -dimensional decomposition of scalars over prime fields. On the other hand, the genus-2 analogues of these curves, Buhler-Koblitz (BK) curves of the form \(y^{2}=x^{5}+b\) [14] and Furukawa-Kawazoe-Takahashi (FKT) curves of the form \(y^{2}=x^{5}+a x\) [22], have \(\phi\) 's whose minimal polynomials are of degree 4 , which means that we can achieve 4 -dimensional scalar
decompositions on genus- 2 curves over prime fields. Besides the two families above that offer 4-dimensional GLV decompositions, families of genus-2 curves with real multiplication (RM) facilitate 2-dimensional scalar decompositions [42,31]. To give an idea of the expected performance in such scenarios, we also present timings for a 2-dimensional GLV decomposition on FKT curves.

Dimension-4 GLV on Buhler-Koblitz Curves. To achieve a 4-dimensional GLV on curves of the form \(C: y^{2}=x^{5}+b\), we require \(p \equiv 1 \bmod 10\) so the non-trivial fifth roots of unity are in \(\mathbb{F}_{p}\). Buhler and Koblitz showed how we can compute the group order of \(\operatorname{Jac}(C)\) efficiently in this scenario [14] (also see [22, §6]) and we note that Jacobians of these curves can have prime order. Take any \(\xi_{5} \neq 1\) such that \(1=\xi_{5}^{5} \in \mathbb{F}_{p}\) and observe that if \((x, y) \in C\), then \(\left(\xi_{5} x, y\right) \in C\). This induces an endomorphism \(\phi\) on the Jacobian that is defined on full degree elements as \(\phi:\left(u_{1}, u_{0}, v_{1}, v_{0}\right) \mapsto\left(\xi_{5} u_{1}, \xi_{5}^{2} u_{0}, \xi_{5}^{4} v_{1}, v_{0}\right)\), which costs only 3 multiplications in \(\mathbb{F}_{p}\) as the \(\xi_{i}^{j}\) are all precomputed. The minimal polynomial of \(\phi\) is \(T^{4}+T^{3}+T^{2}+T+1=0\).

Dimension-4 GLV on FKT Curves. Curves of the form \(C: y^{2}=x^{5}+a x\) need to be defined over fields of characteristic \(p \equiv 1 \bmod 8\), so that the eighth roots of unity are all found in \(\mathbb{F}_{p}\). Computing the cardinality of \(\operatorname{Jac}(C)\) in this scenario is also efficient [22]. Since the point \((x, y)=(0,0) \in C\) induces a point of order 2 on \(\operatorname{Jac}(C)\), the best we can do is to find a curve whose Jacobian is two times a prime. Let \(\xi_{8} \neq 1\) be such that \(1=\xi_{8}^{8} \in \mathbb{F}_{p}\) and observe that if \((x, y) \in C\), then \(\left(\xi_{8}^{2} x, \xi_{8} y\right)\). The induced endomorphism on full degree Jacobian elements is \(\phi:\left(u_{1}, u_{0}, v_{1}, v_{0}\right) \mapsto\left(\xi_{8}^{2} u_{1}, \xi_{8}^{4} u_{0}, \xi_{8}^{7} v_{1}, \xi_{8} v_{0}\right)\), which costs 4 multiplications in \(\mathbb{F}_{p}\) and which satisfies the minimal polynomial \(T^{4}+1=0\).

Dimension-2 GLV on FKT Curves. The reason we chose FKT curves for the 2-dimensional example is because we can take the endomorphism \(\phi^{2}:\left(u_{1}, u_{0}, v_{1}, v_{0}\right) \mapsto\left(\xi_{8}^{4} u_{1}, u_{0}, \xi_{8}^{6} v_{1}, \xi_{8}^{2} v_{0}\right)\), which has minimal polynomial \(T^{2}+1=0\). For the Buhler-Koblitz curves, we can still get a 2-dimensional decomposition by defining \(\phi:(x, y) \mapsto\left(\left(\xi_{5}+\xi_{5}^{-1}\right) x, y\right)\) on \(C\) and extending \(\mathbb{Z}\)-linearly to general divisors under the canonical embedding of \(C\) in \(\operatorname{Jac}(C)\). In this case \(\phi\) satisfies the minimal polynomial \(T^{2}+T-1\) on \(\operatorname{Jac}(C)\).

\subsection*{6.2 Curves}

We searched for BK and FKT curves over 127-bit primes that are suited to Montgomery style reduction and over 128 -bit primes that are suited to the NIST-style modular reduction. There are only a few isomorphism classes for both types of curves over any particular prime field, so we had to search numerous primes before we found cryptographically suitable curves. Since the definitions of both prime forms encompass a vast number of primes, we were able to find a field that simultaneously gave a prime order BK and an FKT curve with an optimal cofactor of 2 .

GLV Curves over a 127 -bit Prime. Let \(p_{127 m}=\left(2^{63}-27443\right) \cdot 2^{64}+1\). This is a Montgomery-friendly prime (see Section 3.2) where \(\mu=-p_{127 m}^{-1} \bmod 2^{64}=-1\). The Jacobians of the curves \(C_{\mathrm{BK}} / \mathbb{F}_{p_{127 m}}: y^{2}=x^{5}+17\) and \(C_{\mathrm{FKT}} / \mathbb{F}_{p_{127 m}}: y^{2}=x^{5}+17 x\) have orders \(\# \mathrm{Jac}\left(C_{\mathrm{BK}}\right)=r\) and \(\# \mathrm{Jac}\left(C_{\mathrm{FKT}}\right)=2 \cdot r^{\prime}\), where
\[
\begin{aligned}
r & =28948022309328876595115567994214488524823328209723866335483563634241778912751, \\
r^{\prime} & =14474011154664438299023932553432254007696198466166455661883334092795880233441
\end{aligned}
\]

Table 1. Statistics for \(1,000,000\) scalar decompositions in each of the GLV scenarios. Each row reports a different scenario and the columns across a row show the percentage frequency corresponding to decompositions with a maximum "mini-scalar" length. The final column accounts for all decompositions whose maximum "miniscalar" length were below a particular bound.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
curve \(/\) prime- \\
GLV dimension
\end{tabular} & \begin{tabular}{c}
\(r\) \\
(bits)
\end{tabular} & \multicolumn{6}{c|}{\(\max \left\{\left|k_{\ell}\right|\right\}(\) bits \() /\) freq. (\%) } \\
\hline\(C_{\mathrm{BK}} / \mathbb{F}_{p_{127 m}}-4\) & 254 & \(64 / 21.0401\) & \(\mathbf{6 3 / 5 9 . 2 3 5 6}\) & \(62 / 18.1809\) & \(61 / 14.456\) & \(60 / 0.0928\) & \(\leq 59 / 0.0050\) \\
\(C_{\mathrm{FKT}} / \mathbb{F}_{p_{127 m}-4}\) & 253 & \(63 / 1.0009\) & \(\mathbf{6 2 / 6 0 . 2 8 5 2}\) & \(61 / 35.6103\) & \(60 / 2.9155\) & \(59 / 0.1773\) & \(\leq 58 / 0.0108\) \\
\(C_{\mathrm{FKT}} / \mathbb{F}_{p_{127 m}}-2\) & 253 & \(\mathbf{1 2 6} / \mathbf{5 0 . 0 5 4 6}\) & \(125 / 37.3918\) & \(124 / 9.3992\) & \(123 / 2.3752\) & \(122 / 0.5803\) & \(\leq 121 / 0.1989\) \\
\(C_{\mathrm{BK}} / \mathbb{F}_{p_{128 n}}-4\) & 256 & \(65 / 0.0006\) & \(64 / 37.5937\) & \(\mathbf{6 3} / \mathbf{5 6 . 1 6 4 7}\) & \(62 / 5.8495\) & \(61 / 0.3660\) & \(\leq 60 / 0.0255\) \\
\(C_{\mathrm{FKT}} / \mathbb{F}_{p_{128 n}}-4\) & 255 & \(64 / 23.3766\) & \(\mathbf{6 3 / 6 4 . 2 5 6 8}\) & \(62 / 11.6045\) & \(61 / 0.7160\) & \(60 / 0.0433\) & \(\leq 59 / 0.0028\) \\
\(C_{\mathrm{FKT}} / \mathbb{F}_{p_{128 n}}-2\) & 255 & \(\mathbf{1 2 7} / \mathbf{5 0 . 0 7 5 6}\) & \(126 / 37.4652\) & \(125 / 9.3466\) & \(124 / 2.3331\) & \(123 / 0.5841\) & \(\leq 122 / 0.1954\) \\
\hline
\end{tabular}
are 254 - and 253 -bit primes respectively.
GLV Curves over a 128-bit Prime. Let \(p_{128 n}=2^{128}-24935\). The Jacobians of the curves \(C_{\mathrm{BK}} / \mathbb{F}_{p_{128 n}}: y^{2}=x^{5}+3^{7}\) and \(C_{\mathrm{FKT}} / \mathbb{F}_{p_{128 n}}: y^{2}=x^{5}+3^{7} x\) have orders \(\# \mathrm{Jac}\left(C_{\mathrm{BK}}\right)=r\) and \(\# \mathrm{Jac}\left(C_{\mathrm{FKT}}\right)=2 \cdot r^{\prime}\) respectively, where
\[
\begin{aligned}
r & =115792089237316195401210495125503591471546519982099914586091636775415022457661 \\
r^{\prime} & =57896044618658097706542424143127279595817201688638085882569066869306899160801
\end{aligned}
\]
are 256 - and 255 -bit primes respectively.

\subsection*{6.3 Scalar Decomposition via Division}

At Eurocrypt 2002, Park, Jeong and Lim [55] gave an algorithm for performing GLV decomposition via division in the ring \(\mathbb{Z}[\phi]\) generated by \(\phi\). This algorithm is very simple and effective in decomposing the scalar \(k\) quickly: in both 4 -dimensional cases (BK and FKT) it takes 20 multiplications to fully decompose \(k\), and in the 2-dimensional case the decomposition totals just 6 multiplications.

For the curves we used, this algorithm performed slightly better on average than the (conservative) numbers quoted in [55, Table 4]. Table 1 gives the statistics from 1, 000, 000 decompositions of random scalars in \([0, r)\) in each scenario. Each of the columns report the percentage frequency at which \(k\) decomposed into vectors with the given maximal bit length. For example, consider the top row which reports the statistics corresponding to 4 -dimensional decompositions on Buhler-Koblitz curves with \(r\) being 254 bits. The first column indicates that around \(21 \%\) of scalars decomposed to 4 mini-scalars where the maximum bit length was 64 , whilst the second column reports that around \(59 \%\) of scalars decomposed to 4 mini-scalars \(\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}\) where the maximum bit length was 63 . The most common maximum length and its percentage frequency are shown in bold for each scenario.

\subsection*{6.4 Computing the Scalar Multiplication}

We describe the two approaches we used to implement the scalar multiplication. The decomposition of the scalar \(k\) results in \(d\) smaller scalars \(k_{\ell}\) for \(0 \leq \ell<d\). The first approach precomputes the \(2^{d}\) different points in a lookup table \(L_{i}=\sum_{\ell=0}^{d-1}\left[\left\lfloor\frac{i}{2^{\ell}}\right\rfloor \bmod 2\right] P_{\ell}\) for \(0 \leq i<2^{d}\). When processing the \(j^{\text {th }}\) bit of the scalar, the precomputed multiple \(L_{i}\) is added, for \(i=\sum_{\ell=0}^{d-1} 2^{\ell}\left(\left\lfloor\frac{k_{\ell}}{23}\right\rfloor \bmod 2\right)\). Hence, besides the minor bit-fiddling overhead to construct the
lookup table index, this requires computing at most a single curve addition and a single curve doubling per bit of the maximum of the \(k_{\ell}\) 's. The second approach [23] is very similar to using signed windows for a single scalar (see Section 2.3). We start by precomputing the multiples \(L_{\ell}(c)=[c] P_{\ell}\) for \(d\) different tables: one corresponding to each scalar \(k_{\ell}\). When computing the scalar multiplication, the \(j^{\text {th }}\) part (of width \(w\) bits) in the scalar \(k_{\ell}\) determines which point needs to be added (or subtracted), namely \(\sum_{\ell=0}^{d-1} \pm L_{\ell}\left(\left\lfloor\frac{k_{\ell}}{2^{w j}}\right\rfloor \bmod 2^{w}\right)\), where the addition or subtraction depends on the addition-subtraction chain used. Thus, an addition to the running value has to be made only once every \(w\) bits and combining the lookup table values take at most \(d-1\) additions, so one needs at most \(d\) additions per \(w\) bits. The optimal value for \(w\) depends on the dimension \(d\), the bit-size of \(k_{\ell}\) and the cost of (mixed) additions and doublings. There are multiple ways to save computations in this latter approach. After computing the multiples in the first lookup table \(L_{0}\), the values for the \(d-1\) other tables can be computed by applying the \(\phi\) map to the individual point in the lookup table [23]. Since the computation of the \(\phi\) map is only three or four multiplications (depending on the curve used), this is a significant saving compared to computing the group operation which is an order of magnitude slower. Furthermore, since the endomorphism costs the same in affine or projective space, one can convert the points in \(L_{0}\) to affine coordinates using Montgomery's simultaneous inversion method (see Section 2.3), and obtain all of the affine points in the other lookup tables cheaply through application of \(\phi\). This means the faster mixed addition formulas can be applied when adding any element in a lookup table. In our implementations, the first approach is faster in the 4-dimensional case and the second approach is faster in the 2-dimensional case.

\section*{7 Results and Discussion}

In Section 7.1 we discuss our code and the benchmarking environment we used. We present the main results in Section 7.2 and discuss them further in Section 7.3. In Section 7.4 we report timings in the case of key-pair generation, i.e. when a fixed public generator allows for precomputation before the scalar is known.

\subsection*{7.1 Benchmark Setting and Code}

All of the implementations in Table 2 were run on an Intel Core i7-3520M (Ivy Bridge) processor at 2893.484 MHz with hyperthreading turned off and over-clocking ("turbo boost") disabled. The implementations labeled (a) use the Montgomery-friendly primes. They have been compiled using Microsoft Visual Studio 10 and run on 64 -bit Windows, where the timings are obtained using the time stamp counter instruction rdtsc over several thousand scalar multiplications. The implementations labeled (b) use the NIST-like approach and have been compiled with gcc 4.6 .3 to run on 64 -bit Linux, where the timings are obtained using the SUPERCOP toolkit for measuring the performance of cryptographic software (see [9]). The implementations labeled (b) \({ }^{6}\) will be made publicly available through [9]. Both (a) and (b) perform a final modular inversion to ensure that the output point is in affine form: this is the standard setting when computing a Diffie-Hellman key-exchange.

\footnotetext{
\({ }^{6}\) The EBAT is now available through http://hhisil.yasar.edu.tr/files/hisil20121128genus2.tar.gz
}

Table 2. Performance timings in \(10^{3}\) cycles of various programs implementing a Diffie-Hellman key-exchange over a prime field, i.e. calculating a \(\left\lceil\log _{2}(r)\right\rceil\)-bit scalar multiplication.
\begin{tabular}{lccccccc}
Primitive & \(g\) & SCR & field char \(p\) & \(\left\lceil\log _{2}(r)\right\rceil\) & \#Aut & \(s\) & \(10^{3}\) cycles \\
\hline curve25519 [7] & 1 & \(\checkmark\) & \(2^{255}-19\) & 253 & 2 & 125.8 & 182 \\
ecfp256e [35] & 1 & \(\times\) & \(2^{256}-587\) & 255 & 2 & 126.8 & 227 \\
Longa-Sica 2-GLV [46] & 1 & \(\times\) & \(2^{256}-11733\) & 256 & 6 & 127.0 & 145 \\
surf127eps [33] & 2 & \(\checkmark\) & \(2^{127}-735\) & 251 & 2 & 124.8 & 236 \\
NISTp-224 [66, 37] & 1 & \(\checkmark\) & \(2^{224}-2^{96}+1\) & 224 & 2 & 111.8 & 302 \\
NISTp-256 [66] & 1 & \(?\) & \(2^{256}-2^{224}+2^{192}+2^{96}-1\) & 256 & 2 & 127.8 & 658 \\
\hline (a) generic127 & 2 & \(\times\) & \(2^{127}-1\) & 254 & 2 & 126.8 & 295 \\
(b) generic127 & 2 & \(\times\) & \(2^{127}-1\) & 254 & 2 & 126.8 & 248 \\
(b) generic128 & 2 & \(\times\) & \(2^{128}-173\) & 257 & 2 & 127.8 & 364 \\
(a) Kummer & 2 & \(\checkmark\) & \(2^{127}-1\) & 251 & 2 & 124.8 & 139 \\
(b) Kummer & 2 & \(\checkmark\) & \(2^{127}-1\) & 251 & 2 & 124.8 & 117 \\
(b) Kummer & 2 & \(\checkmark\) & \(2^{128}-237\) & 253 & 2 & 125.8 & 166 \\
(a) GLV-4-BK & 2 & \(\times\) & \(2^{64} \cdot\left(2^{63}-27443\right)+1\) & 254 & 10 & 125.7 & 156 \\
(a) GLV-4-FKT & 2 & \(\times\) & \(2^{64} \cdot\left(2^{63}-27443\right)+1\) & 253 & 8 & 125.3 & 156 \\
(a) GLV-2-FKT & 2 & \(\times\) & \(2^{64} \cdot\left(2^{63}-27443\right)+1\) & 253 & 8 & 125.3 & 220 \\
(b) GLV-4-BK & 2 & \(\times\) & \(2^{128}-24935\) & 256 & 10 & 126.7 & 164 \\
(b) GLV-4-FKT & 2 & \(\times\) & \(2^{128}-24935\) & 255 & 8 & 126.3 & 167 \\
(b) GLV-2-FKT & 2 & \(\times\) & \(2^{128}-24935\) & 255 & 8 & 126.3 & 261
\end{tabular}

\subsection*{7.2 Results}

Table 2 summarizes the performance and characteristics of various genus- \(g\) curve implementations. For the security estimate we assume that the fastest attacks possible are the "generic algorithms", where we specifically use the complexity of the Pollard rho [57] algorithm that exploits additional automorphisms [19, 70]. If \(r\) is the largest prime factor of a group with \#Aut automorphisms, we compute the security level \(s\) as \(s=\log _{2}\left(\sqrt{\frac{\pi r}{2 \# \text { Aut }}}\right)\). We also indicate if the implementation is side channel resistant [40].

The implementations in the top part of the table are obtained from eBACS, except for [66] and [46]. The standardized NIST curves [66], one of which is at a lower security level, are both obtained from the benchmark program included in OpenSSL 1.0.1. \({ }^{7}\) The implementation from [46] is not publicly available, but the authors gave us a precompiled binary which reported its own cycle count so that we could report numbers obtained in our test-environment. All these implementations are compiled and run on our hardware.

\subsection*{7.3 Discussion}

The first thing to observe from Table 2 is that the standard NISTp- 256 curve and the genus- 2 curve "generic128" (see Section 4) offer the highest level of security. This "generic" genus-2 implementation is our slowest performing implementation, yet is it still 1.80 times faster than the NIST curve at the same security level. Interestingly, all our Kummer and 4-dimensional GLV implementations manage to outperform the previous fastest genus-2 implementation [33]. Prior to this work, the fastest curve arithmetic reported on eBACS was by Bernstein [4], whilst Longa and Sica [46] held the overall software speed record over prime fields. We note that the former implementation is side-channel resistant, whilst the latter is not. Even though our GLV

\footnotetext{
\({ }^{7}\) Note, to enable this implementation, using the techniques described in [37], OpenSSL needs to be configured using "./Configure enable-ec_nistp_64_gcc_128".
}

Table 3. Performance timings in \(10^{3}\) cycles of \(y^{2}=f(x), \operatorname{deg}(f)=5\) with NIST-like reduction and precomputation.
\begin{tabular}{ccc|ccc}
field char & storage (KB) & \(10^{3}\) cycles & field char & storage (KB) & \(10^{3}\) cycles \\
\hline & 64 & 53 & & 64 & 81 \\
\(2^{127}-1\) & 128 & 42 & \(2^{128}-c\) & 128 & 62 \\
& 256 & 36 & & 256 & 53 \\
& 512 & 33 & & 512 & 49 \\
& 1024 & 33 & & 1024 & 49 \\
& 2048 & 33 & & 2048 & 49
\end{tabular}
implementations are currently not side-channel resistant, we note that they can be made into resistant implementations following, for instance, the techniques from [46]. Our (b) approach on the Kummer surface sets a new software speed record by breaking the 120 k cycle barrier for side-channel resistant implementations at the 128-bit security level.

We note that Table 2 reports implementations over prime fields only. For elliptic curves defined over quadratic extensions of large prime fields, Longa and Sica [46] report a scalar multiplication without side-channel resistance in 91,000 cycles on the Sandy Bridge architecture, whilst their side-channel resistant version runs in 137,000 cycles. Over binary fields, Aranha et al. [3] perform a scalar multiplication on the Koblitz curve K-283 in 99,000 cycles on Sandy Bridge, whilst Oliveira et al. [54] recently announced a new speed record of 75,000 cycles on the same architecture. We note that both of these binary field implementations are not side-channel resistant.

With respect to the different arithmetic approaches from Section 3, we can conclude that when using the prime \(2^{127}-1\), the NIST-like approach is the way to go. In the more general comparison of \(2^{128}-c_{1}\) versus \(2^{64}\left(2^{63}-c_{2}\right) \pm 1\) for NIST-like and Montgomery-friendly primes respectively, we found that the Montgomery-friendly primes outperform the former in practice. This was a surprising outcome and we hope that implementers of cryptographic schemes will consider this family of primes as well. The (b) implementations of "generic" and Kummer highlight the practical advantage of the prime \(2^{127}-1\) over the prime \(2^{128}-c\) : in both instances the former is around 1.4 times faster than the latter.

\subsection*{7.4 Generating key-pairs with precomputation}

Two cycle counts are reported for all of the implementations of Diffie-Hellman secret sharing benchmarked on eBACS [9]. The first is the "time to compute a shared secret", which corresponds to the variable point scalar multiplications that we reported in Table 2. The second is the "time to generate a key pair", which corresponds to fixed-point scalar multiplications that allow precomputations on a known public generator. Our timings for the second case are reported in Table 3, where our fixed-point scalar multiplications employ the fixed-point comb method [45] and simultaneous addition [44]. In both settings precomputed tables larger than 512 KB did not lower the cycle count. This is due to the size of the cache on our Intel Core i7, but this threshold size might be different on other platforms.

\section*{8 Kummer Chameleons}

In this section we explore curves that facilitate both efficient scalar multiplication on the Kummer surface and efficient scalar multiplication on the Jacobian using a GLV decomposition.

Such curves give cryptographers the option of taking either route depending on the protocol at hand: for Diffie-Hellman protocols, working on the associated Kummer surface is the most efficient option, but if the pseudo-addition law on the Kummer surface is insufficient, the GLV method can be used on an associated curve. Since these curves can morph depending on the scenario, we call them Kummer chameleons.

We primarily focus on the two families that facilitate 4-dimensional GLV decompositions. We start with the FKT family of curves to show an unfortunate drawback which prohibits us from using this Kummer/GLV duality over prime fields. We then move to the BK family of curves which does allow this duality in practice, and provide some example Kummer chameleons in this case. For these special families, we also show the benefits of computing the Kummer surface parameters analytically (i.e. over \(\mathbb{C}\)). This approach tells us when we can (or cannot) expect to find practical Kummer parameters using the technique of extracting \(\mathcal{K}\) from \(C_{\text {Ros }}\) in Section 5.2. It can additionally reveal when we are likely to find small surface constants, which guarantees solid speedups in practice. For an overview of computations involving the analytic Jacobian of a hyperelliptic curve, we refer to [67].

\subsection*{8.1 Recognising Kummer Parameters over \(\mathbb{C}\)}

We use an analytic approach to assist us in generating Kummer surfaces which are associated to a particular CM field. For each CM field, there is a collection of period matrices which correspond to the isomorphism classes of Jacobians of genus- 2 curves with CM by that field, and thus with known possible group orders (see [67]). The theta functions can be evaluated at these period matrices, and approximations of the complex values of quotients of the associated theta constants can be used to recognize the minimal polynomials that they satisfy.

Although it can be difficult to analytically recognize the theta constants themselves, for special families it is often possible to recognize quotients of certain theta constants. In Tables 4 and 6 we give the minimal polynomials satisfied by all of the parameters required for the Kummer surface implementation for the FKT and BK families: the values \(E^{\prime}, F, G, H, y_{0}\), \(z_{0}, t_{0}, y_{0}^{\prime}, z_{0}^{\prime}\) and \(t_{0}^{\prime}\) (as defined in Section 5). The coefficients of these minimal polynomials can be reduced modulo any prime \(p\), and so for any \(p\) where the polynomials have a consistent choice of roots modulo \(p\), they can be used to define a Kummer surface over \(\mathbb{F}_{p}\) such that the associated group order of \(\operatorname{Jac}(C)\) is known (from the CM field).

\subsection*{8.2 The Kummer Surface of FKT Curves}

For curves of the form \(y^{2}=x^{5}+a x\), the complex values (and corresponding minimal polynomials) of the required Kummer parameters are given in Table 4. We note that once we choose \(i=\sqrt{-1}\) by sufficiently extending \(\mathbb{F}_{p}\) (if necessary), all of the required constants are determined. Observe that two of the six surface constants that appear in each iteration of \(\mathcal{K}\) (SMUL) are 1, which immediately results in two fewer multiplications in Algorithm 6.

We further note that it is possible to recognize quotients of theta constants that appear in the maps from \(\mathcal{K}\) to \(\mathrm{Jac}\left(C_{\text {Ros }}\right)\) in (4). In the case of FKT curves, Table 5 gives the values

Table 4. Kummer parameters (and their minimal polynomials) over \(\mathbb{C}\) for the FKT family.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Kummer parameter & \(E\) & \(F, G, H\) & \(y_{0}, t_{0}\) & \(z_{0}\) & \(y_{0}^{\prime}, t_{0}^{\prime}\) & \(z_{0}^{\prime}\) \\
\hline Value (over C) & \(17+31 i\) & \((3+i) / 2\) & 1 & \(1-i\) & \(3+4 i\) & \(-3-4 i\) \\
\hline Min. polynomial & \(x^{2}-34 x+1250\) & \(2 x^{2}-6 x+5\) & \(x-1\) & \(x^{2}-2 x+2\) & \(x^{2}-6 x+25\) & \(x^{2}+6 x+25\) \\
\hline
\end{tabular}

Table 5. Quotients appearing in the maps from \(\mathcal{K}\) to the \(u\)-polynomial of \(D \in \operatorname{Jac}\left(C_{\mathrm{Ros}}\right)\) for FKT curves.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline\(u_{x} / u_{t}\) & \(u_{y} / u_{t}\) & \(u_{z} / u_{t}\) & \(u_{x}^{\prime} / u_{t}^{\prime}\) & \(u_{y}^{\prime} / u_{t}^{\prime}\) & \(u_{z}^{\prime} / u_{t}^{\prime}\) & \(d_{x} / d_{t}\) & \(d_{y} / d_{t}\) & \(d_{z} / d_{t}\) & \(u_{t} / d_{t}\) & \(u_{t}^{\prime} / d_{t}\) \\
\hline\(-1-i\) & \(\frac{i-1}{2}\) & 1 & \(2 i\) & \(-1-i\) & \(-1-i\) & \(\frac{i-1}{2}\) & \(-1-i\) & 1 & \(i\) & \(\frac{1-i}{2}\) \\
\hline
\end{tabular}
of all the quotients we need, which allows us to simplify the expressions in the map to the \(u\)-polynomial of a divisor \(D \in \operatorname{Jac}\left(C_{\text {Ros }}\right)\) as
\[
u_{0}=\frac{(2-2 i) x-(1+i) y+2 i z+2 i t}{(i-1) x-(2+2 i) y+2 z+2 t}, \quad u_{1}=\frac{(2+2 i) x-2 y-2 z+(1-i) t}{(i-1) x-(2+2 i) y+2 z+2 t}-u_{0}-1
\]

Although the expressions for the \(v\)-polynomial expand to be more complicated, leaving them in factored form allows similar simplifications.

The above maps take points on the Kummer surface to divisors on the Jacobian of the curve \(C_{\text {Ros }}: y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)\), for which we can also recognize the Rosenhain invariants in \(\mathbb{C}\) as \(\lambda=(i+1) / 2, \mu=i\) and \(\nu=i+1\). Now, if \(p \equiv 1 \bmod 4\), then \(i=\sqrt{-1} \in \mathbb{F}_{p}\) and the Rosenhain model defined by those values is defined over \(\mathbb{F}_{p}\). The curve \(C: y^{2}=x^{5}+a x\) can be rewritten as \(y^{2}=x(x-\alpha)(x+\alpha)(x-\alpha i)(x+\alpha i)\), where \(\alpha\) is a non-trivial fourth root of \(-a\). Clearly \(C\) and \(C_{\text {Ros }}\) can only be isomorphic over \(\mathbb{F}_{p}\) if \(\alpha \in \mathbb{F}_{p}\), which implies that \(\operatorname{Jac}(C)\) is isogenous over \(\mathbb{F}_{p}\) to the product of two elliptic curves [22, Lemma 4]. Thus \(C\) is not suitable for cryptographic applications in this case, since the group order of \(\operatorname{Jac}(C)\) is a product of factors of at most half the size of the total. If instead \(p \equiv 3 \bmod 4\), then \(i \in \mathbb{F}_{p^{2}} \backslash \mathbb{F}_{p}\), and from Table 4 it follows that the Kummer surface is defined over \(\mathbb{F}_{p^{2}}\), which destroys the arithmetic efficiency of the group law algorithms. Therefore, we conclude that the FKT family does not yield a secure and efficient Kummer surface over prime fields.

\subsection*{8.3 The Kummer Surface of Buhler-Koblitz Curves}

For curves of the form \(y^{2}=x^{5}+b\), the minimal polynomials for the required Kummer parameters are given in Table 6. Since these polynomials have degree larger than two, writing down the correct root corresponding to each Kummer parameter becomes more involved. Furthermore, these polynomials tell us that we can not expect any Kummer constants to automatically be of a small size. Nevertheless, they do help us deduce when it is possible to find practical Kummer parameters. For example, \(t_{0}\) is a root of \(\Phi_{5}\left(-x^{2}\right)\), which does not have any roots in \(\mathbb{F}_{p}\) when \(p \equiv 11 \bmod 20\), yet splits into linear factors when \(p \equiv 1 \bmod 20\). In fact, all of the polynomials in Table 6 split into linear factors in \(\mathbb{F}_{p}\) for \(p \equiv 1 \bmod 20\); this agrees with our experiments which always extracted working Kummer parameters for BK curves when \(p \equiv 1 \bmod 20\), and always failed to do so when \(p \equiv 11 \bmod 20\).

The only minor drawback for the Kummer surface associated to the BK family is that, for primes congruent to 1 modulo 5 , if the 2 -torsion of \(\operatorname{Jac}(C)\) or \(\operatorname{Jac}\left(C^{\prime}\right)\) is defined over \(\mathbb{F}_{p}\), then 5 divides at least one of the two group orders. Hence, even in the best case the two group orders have cofactors of 16 and 80 , which means either the curve or its twist will be around 1 bit less secure than the other. In this case, generators on the Kummer surface should be chosen which map back to the curve with cofactor 16 . We give two examples of these Kummer chameleons below.

Buhler-Koblitz Kummer Chameleon over a 127-bit Prime. Let \(p=2^{64} \cdot\left(2^{63}-\right.\) \(1035383)+1\), and let \(C / \mathbb{F}_{p}: y^{2}=x^{5}+7^{5}\), the quadratic twist \(C^{\prime}\) of which can be written as

Table 6. Kummer parameters (and their minimal polynomials) over \(\mathbb{C}\) for the Buhler-Koblitz family.
\begin{tabular}{|c|c|}
\hline Kummer parameter & Minimal polynomial \\
\hline\(E, F, G, H\) & \(x^{2}-20 x-400, x^{8}-11 x^{6}+46 x^{4}-96 x^{2}+121, x^{8}-11 x^{6}+46 x^{4}-96 x^{2}+121, x^{2}+x-1\) \\
\hline\(y_{0}, z_{0}\) & \(x^{4}-x^{3}+x^{2}-x+1, x^{8}-4 x^{6}+6 x^{4}+x^{2}+1\) \\
\hline\(t_{0}, y_{0}^{\prime}\) & \(x^{8}-x^{6}+x^{4}-x^{2}+1, x^{4}-16 x^{3}+46 x^{2}-16 x+1\) \\
\hline\(z_{0}^{\prime}, t_{0}^{\prime}\) & \(25 x^{8}-100 x^{7}+460 x^{6}+580 x^{5}+286 x^{4}+36 x^{3}-4 x^{2}-4 x+1\) \\
\hline
\end{tabular}
\(C^{\prime}: y^{2}=7\left(x^{5}+7^{5}\right)\). The group orders are \(\# \mathrm{Jac}(C)=2^{4} \cdot r\) and \(\# \mathrm{Jac}\left(C^{\prime}\right)=2^{4} \cdot 5 \cdot r^{\prime}\), where
\[
\begin{aligned}
r & =1809251394332659353210044721779965716777199535768060758956615770711891100371 \\
r^{\prime} & =361850278866531870644657474375793908062332565172509431488359127778261331091
\end{aligned}
\]
are 250 - and 248 -bit primes respectively. A degree 5 Rosenhain model \(C_{\text {Ros }}\) isomorphic to \(C\) is given by the constants
\[
\begin{gathered}
\lambda=10661186819665911293108276192639592333, \quad \mu=41446607883878104474654728233964584014 \\
\nu=127213099918419761245342755241553487702
\end{gathered}
\]
for which one choice of the squared fundamental theta constants is
\[
\begin{gathered}
a^{2}=84491026685045794598730782355659170339, \quad b^{2}=33186841131699432035082366865570982234, \\
c^{2}=85766492034541656770688027007588903688, \quad d^{2}=1 .
\end{gathered}
\]

The corresponding Kummer surface \(\mathcal{K}\) is parameterized by
\[
\begin{array}{cl}
E^{\prime}=13918006086331812549080199159745305770, & F=18762584066480003760134595205485259983, \\
G=137599581973583773482954213814600348679, & H=85766492034541656770688027007588903688 .
\end{array}
\]

A generator on \(\mathcal{K}\) with order \(r\) that maps back to \(\operatorname{Jac}\left(C_{\text {Ros }}\right)\) is
\[
P=[2](1,1,1,86011366689699880330600293725419043935)
\]

Buhler-Koblitz Kummer Chameleon over a 128-bit Prime. Let \(p=2^{128}-12091815\), and let \(C / \mathbb{F}_{p}: y^{2}=x^{5}+17^{5}\), the quadratic twist \(C^{\prime}\) of which can be written as \(C^{\prime}: y^{2}=\) \(17\left(x^{5}+17^{5}\right)\). The group orders are \(\# \operatorname{Jac}(C)=2^{4} \cdot r\) and \(\# \operatorname{Jac}\left(C^{\prime}\right)=2^{4} \cdot 5 \cdot r^{\prime}\), where
\[
\begin{aligned}
r & =7237005577332262215080031836658877787354274212851606663878680202836635096291, \\
r^{\prime} & =1447401115466452442573268257885216407322324444568217420589854251119792109811,
\end{aligned}
\]
are 253 - and 250 -bit primes respectively. A degree 5 Rosenhain model \(C_{\text {Ros }}\) isomorphic to \(C\) is given by the constants
\[
\begin{gathered}
\lambda=69750747073243793503741945404989703593, \quad \mu=150179622307743074988869416441414313355 \\
\nu=227997816177602308074873451087733623676
\end{gathered}
\]
for which one choice of the squared fundamental theta constants is
\[
\begin{gathered}
a^{2}=311378520185987879249636451466710084857, \quad b^{2}=194692299483499628396825108659644530161, \\
c^{2}=77818193869859233086004034646319310321, \quad d^{2}=1 .
\end{gathered}
\]

The corresponding Kummer surface \(\mathcal{K}\) is parameterized by
\[
\begin{aligned}
E^{\prime}=195234409713430807866582263199361727876, & F=142475655262409749610168226227930172175, \\
G & =25789434559921498757356883420864617479,
\end{aligned} \quad H=77818193869859233086004034646319310321 .
\]

A generator on \(\mathcal{K}\) with order \(r\) that maps back to \(\operatorname{Jac}\left(C_{\text {Ros }}\right)\) is
\[
P=[2](1,1,-1,330547215562037048968388688956419952626) .
\]

\subsection*{8.4 Kummer Chameleons with 2-dimensional GLV}

Although we have focused on two families of genus-2 curves that offer 4-dimensional GLV over prime fields, there are many more families that offer 2-dimensional GLV [42, 63, 31]. We especially mention the family due to Mestre [47], which was studied further in [31, §4.4]. This family might be particularly attractive since the techniques in [31] make it practical to find twist-secure instances over \(\mathbb{F}_{p}\) with \(p=2^{127}-1\). Working analytically, we observed that small Kummer constants are often obtained if we take special instances of the families with efficiently computable RM. An example from the family due to Tautz, Tops and Verberkmoes [64] (also see \([42, \S 5.1])\) is the Kummer surface associated to the curve \(y^{2}=x\left(x^{4}-x^{2}+1\right)\), which yields \(t_{0}=1\) over \(\mathbb{C}\), so the techniques in \([31, \S 4.4]\) could be used (over many primes) to find twist-secure curves that take can advantage of this.

\subsection*{8.5 GLV on the Kummer Surface?}

Gaudry [28] observed that there are a certain class of Kummer surfaces that come equipped with a simple endomorphism on the Kummer surface itself. If the squared fundamental theta constants are related by \(b^{2}=a^{2}-c^{2}-d^{2}\), then the doubling step in Algorithm 5 can be seen as a \(\operatorname{map} \phi: \mathcal{K} \rightarrow \mathcal{K}\) composed with itself, which means \(\phi^{2}=[2]\), and we must have that \(\phi=[\sqrt{2}]\) on \(\mathcal{K}\). It is natural to go looking for these Kummers within families of genus- 2 curves that have RM by \(\sqrt{2}\), whether the RM is explicit and efficiently computable \({ }^{8}\) on the Jacobian or not. One such instance comes from the curves defined over the rationals by van Wamelen [68], the second example of which has CM by the quartic CM field \(\mathbb{Q}(\sqrt{-2+\sqrt{2}})\). Over the two forms of prime field we prefer, we used the CM method to find many instances of these curves, and indeed we were always able to extract several Kummer parameterizations with \(b^{2}=a^{2}-c^{2}-d^{2}\) : two twist-secure examples of these are given at the end of this subsection. The question now becomes: can we exploit this endomorphism and perform GLV on the Kummer surface itself?

Since we are limited to pseudo-additions on \(\mathcal{K}\), the standard GLV technique of merging the mini-scalars and proceeding with a standard addition chain does not apply in this scenario. In this case, to compute \([k] P\) from \(P\) and \(\phi(P)\), we need a two-dimensional differentialaddition chain. Such chains have already been well studied because of their application to multi-exponentiations in Montgomery coordinates [51, 5, 62]: in the two-dimensional case this means computing \([m] P+[n] Q\) from the three starting values \(P, Q\) and \(P-Q\). This brings forward the main hurdle in achieving GLV on the Kummer surface, in that after computing \(Q=\phi(P)\), we only have two of the three values that are needed to start the addition chain. In order to proceed we need either \(Q+P\) or \(Q-P\) on \(\mathcal{K}\), which equivalently means we need an explicit and efficient way of computing the map \(\phi^{+}=\phi+[1]\) or the map \(\phi^{-}=\phi-[1]\) on \(\mathcal{K}\).

In estimating the performance gain that finding these maps would offer, we must mention two caveats. Firstly, we note that since the input difference into the pseudo-addition algorithm is no longer constant throughout the routine, we suffer an extra \(6 \mathbb{F}_{p}\) multiplications each time it is called - the inverses that were precomputed are now projectively scaled to on-the-fly multiplications. Furthermore, we are no longer performing additions and doublings concurrently throughout, and we therefore lose the benefit of the constant overlap between them. Nevertheless, using either of the chains given in [51,5] would mean performing less than half the total number of doubling and pseudo-addition operations than in the standard

\footnotetext{
\({ }^{8}\) These terms are made precise in [31, Def. 1,2].
}

Kummer case, and this is more than enough motivation to pose the problem of finding a setting where \(\phi^{+}\)and/or \(\phi^{-}\)are efficiently computable.

Van Wamelen " \([\sqrt{2}]\)-on- \(\mathcal{K}\) " Curve over a 127 -bit Prime. Let \(p\) be the Montgomeryfriendly prime \(p=2^{64} \cdot\left(2^{63}-107126\right)+2^{64}+1\). The group orders of the Jacobian of \(C / \mathbb{F}_{p}\) : \(y^{2}=-x^{5}+3 x^{4}+2 x^{3}-6 x^{2}-3 x+1\) and its twist \(C^{\prime}\) are given as \(\# \mathrm{Jac}(C)=2^{5} \cdot r\) and \(\# \operatorname{Jac}\left(C^{\prime}\right)=2^{4} \cdot r^{\prime}\), where
\[
\begin{aligned}
r & =904625697166511763040116799547618814004487139266761754879956154884593483799 \\
r^{\prime} & =1809251394333023526590934270642281340029094439228748499659037824507445397703
\end{aligned}
\]
are 249- and 250-bit primes respectively. An isomorphic Rosenhain model \(C_{\text {Ros }}\) of \(C\) is defined by the triple
\[
\begin{gathered}
\lambda=168171229223321177769186812485517969948, \quad \mu=9417430203573952280833540215738464957 \\
\nu=158753799019747225488353272269779504992
\end{gathered}
\]
for which one choice of the squared fundamental theta constants is
\[
a^{2}=150321345934746312135040529601365675926, \quad c^{2}=96985692613693010230188339033665775936
\]
with \(d^{2}=1\) and \(b^{2}=a^{2}-c^{2}-d^{2}\). The corresponding Kummer surface \(\mathcal{K}\) is parameterized by
\[
\begin{gathered}
E^{\prime}=16, \quad F=112722080887356168648583571057476016874, \\
G=39639675051441886978375755957603131604, \quad H=133526895531650151065292246583602218570 .
\end{gathered}
\]

A compact generator on \(\mathcal{K}\) is
\[
P=[2](1,1,-1,129889658466772916887665811107285236509)
\]

Van Wamelen " \([\sqrt{2}]\)-on- \(\mathcal{K}\) " Curve over a 128 -bit Prime. Let \(p\) be the prime \(p=\) \(2^{128}-6404735\). The group orders of the Jacobian of \(C / \mathbb{F}_{p}: y^{2}=-x^{5}+3 x^{4}+2 x^{3}-6 x^{2}-3 x+1\) and its twist \(C^{\prime}\) are given as \(\# \operatorname{Jac}(C)=2^{5} \cdot r\) and \(\# \operatorname{Jac}\left(C^{\prime}\right)=2^{4} \cdot r^{\prime}\), where
\[
\begin{aligned}
r & =3618502788666131107463347962322673561312709571881084013989949351691450367367 \\
r^{\prime} & =7237005577332262213019677201440096504580481109273330370637841367829704337687
\end{aligned}
\]
are both 252 -bit primes. An isomorphic Rosenhain model \(C_{\text {Ros }}\) of \(C\) is defined by the triple
\[
\begin{gathered}
\lambda=338853613323961976541294628448051393997, \quad \mu=161826994076915014352261046382941880808 \\
\nu=177026619247046962189033582065109513190,
\end{gathered}
\]
for which one choice of the squared fundamental theta constants is
\[
a^{2}=186055185429089423029499828889903742105, \quad c^{2}=293311051702477990348906969535446463740,
\]
with \(d^{2}=1\) and \(b^{2}=a^{2}-c^{2}-d^{2}\). The corresponding Kummer surface \(\mathcal{K}\) is parameterized by
\[
E^{\prime}=16, \quad F=308566990761521795503609453351512063008,
\]
\[
G=308454362983698080867749557083716129230, \quad H=293367365591389847666836917669344430628
\]

A compact generator on \(\mathcal{K}\) is
\[
P=[2](1,1,-1,328931498180381025899390285257510062396) .
\]

\section*{9 Conclusions}

We have given a taxonomy of the state-of-the-art in genus- 2 arithmetic over prime fields, with respect to its application to public-key cryptography. We studied two different approaches to achieve fast modular arithmetic and implemented these techniques in three settings: on "generic" genus-2 curves, on special genus-2 curves facilitating 2-and 4-dimensional GLV decompositions, and on the Kummer surface proposed by Gaudry [27]. Furthermore, we presented Kummer chameleons; curves which allow fast arithmetic on the Kummer surface as well as efficient arithmetic on the Jacobian that results from a GLV decomposition. Ultimately, we highlighted the practical benefits of genus-2 curves with our Kummer surface implementation - this sets a new software speed record at the 128 -bit security level for computing side-channel resistant scalar multiplications compared to all previous elliptic curve and genus-2 implementations.

Acknowledgements. We wish to thank Pierrick Gaudry for his Kummer help when this project began, Dan Bernstein and Tanja Lange for several fruitful discussions during the preparation of this work, and Patrick Longa for his advice on optimizing the GLV routines.

\section*{References}
1. T. Acar and D. Shumow. Modular reduction without pre-computation for special moduli. Technical report, Microsoft Research, 2010.
2. L. Adleman, J. DeMarrais, and M. Huang. A subexponential algorithm for discrete logarithms over hyperelliptic curves of large genus over GF(q). Theoretical Computer Science, 226(1-2):7-18, 1999.
3. D. F. Aranha, A. Faz-Hernández, J. López, and F. Rodríguez-Henríquez. Faster implementation of scalar multiplication on Koblitz curves. In A. Hevia and G. Neven, editors, LATINCRYPT, volume 7533 of Lecture Notes in Computer Science, pages 177-193. Springer, 2012.
4. D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key Cryptography - PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages 207-228. Springer, Heidelberg, 2006.
5. D. J. Bernstein. Differential addition chains. URL: http://cr.yp.to/ecdh/diffchain-20060219.pdf, February 2006.
6. D. J. Bernstein. Elliptic vs. Hyperelliptic, part I. Talk at ECC (slides at http://cr.yp.to/talks/2006. 09.20/slides.pdf), September 2006.
7. D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security signatures. In B. Preneel and T. Takagi, editors, CHES, volume 6917 of Lecture Notes in Computer Science, pages 124-142. Springer, 2011.
8. D. J. Bernstein and T. Lange. Analysis and optimization of elliptic-curve single-scalar multiplication. In G. L. Mullen, D. Panario, and I. E. Shparlinski, editors, Finite Fields and Applications, volume 461 of Contemporary Mathematics Series, pages 1-19. American Mathematical Society, 2008.
9. D. J. Bernstein and T. Lange (editors). eBACS: ECRYPT Benchmarking of Cryptographic Systems. http://bench.cr.yp.to, accessed 4 October 2012.
10. J. W. Bos. High-performance modular multiplication on the Cell processor. In M. A. Hasan and T. Helleseth, editors, Arithmetic of Finite Fields - WAIFI 2010, volume 6087 of Lecture Notes in Computer Science, pages 7-24. Springer, Heidelberg, 2010.
11. J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery. Solving a 112-bit prime elliptic curve discrete logarithm problem on game consoles using sloppy reduction. International Journal of Applied Cryptography, 2(3):212-228, 2012.
12. A. Brauer. On addition chains. Bulletin of the American Mathematical Society, 45:736-739, 1939.
13. M. Brown, D. Hankerson, J. López, and A. Menezes. Software implementation of the NIST elliptic curves over prime fields. In D. Naccache, editor, CT-RSA, volume 2020 of Lecture Notes in Computer Science, pages 250-265. Springer, Heidelberg, 2001.
14. J. Buhler and N. Koblitz. Lattice basis reduction, Jacobi sums and hyperelliptic cryptosystems. Bulletin of the Australian Mathematical Society, 58(1):147-154, 1998.
15. D. V. Chudnovsky and G. V. Chudnovsky. Sequences of numbers generated by addition in formal groups and new primality and factorization tests. Advances in Applied Mathematics, 7:385-434, December 1986.
16. R. Cosset. Factorization with genus 2 curves. Math. Comput., 79(270):1191-1208, 2010.
17. C. Costello and K. Lauter. Group law computations on Jacobians of hyperelliptic curves. In A. Miri and S. Vaudenay, editors, Selected Areas in Cryptography, volume 7118 of Lecture Notes in Computer Science, pages 92-117. Springer, 2011.
18. C. Diem. On the discrete logarithm problem in class groups of curves. Mathematics of Computation, 80:443-475, 2011.
19. I. M. Duursma, P. Gaudry, and F. Morain. Speeding up the discrete log computation on curves with automorphisms. In K.-Y. Lam, E. Okamoto, and C. Xing, editors, Asiacrypt 1999, volume 1716 of Lecture Notes in Computer Science, pages 103-121. Springer, Heidelberg, 1999.
20. K. Eisentrager and K. Lauter. A CRT algorithm for constructing genus 2 curves over finite fields. AGCT11, 2007.
21. A. Enge. Computing discrete logarithms in high-genus hyperelliptic Jacobians in provably subexponential time. Mathematics of Computation, 71:729-742, 2002.
22. E. Furukawa, M. Kawazoe, and T. Takahashi. Counting points for hyperelliptic curves of type \(\mathrm{y}^{2}=\mathrm{x}^{5}+\) ax over finite prime fields. In M. Matsui and R. J. Zuccherato, editors, Selected Areas in Cryptography, volume 3006 of Lecture Notes in Computer Science, pages 26-41. Springer, 2003.
23. S. D. Galbraith, X. Lin, and M. Scott. Endomorphisms for faster elliptic curve cryptography on a large class of curves. J. Cryptology, 24(3):446-469, 2011.
24. R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point multiplication on elliptic curves with efficient endomorphisms. In J. Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 190-200. Springer, 2001.
25. P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves. Eurocrypt, 1807:1934, 2000.
26. P. Gaudry. Algorithmique des courbes hyperelliptiques et applications à la cryptologie. PhD thesis, École polytechnique, http:/www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/, 2000.
27. P. Gaudry. Fast genus 2 arithmetic based on theta functions. Journal of Mathematical Cryptology JMC, 1(3):243-265, 2007.
28. P. Gaudry. Genus 2 formulae based on Theta functions and their implementation. Talk at ECC http: //mathsci.ucd.ie/~gmg/ECC2007Talks/ecc07-gaudry2.pdf, September 2007.
29. P. Gaudry. Personal communication, 2011.
30. P. Gaudry, T. Houtmann, D. R. Kohel, C. Ritzenthaler, and A. Weng. The 2-adic CM method for genus 2 curves with application to cryptography. In X. Lai and K. Chen, editors, ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 114-129. Springer, 2006.
31. P. Gaudry, D. R. Kohel, and B. A. Smith. Counting points on genus 2 curves with real multiplication. In D. H. Lee and X. Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages 504-519. Springer, 2011.
32. P. Gaudry and É. Schost. Genus 2 point counting over prime fields. J. Symb. Comput., 47(4):368-400, 2012.
33. P. Gaudry and E. Thomé. The \(\mathrm{mpF}_{q}\) library and implementing curve-based key exchanges. In Software Performance Enhancement for Encryption and Decryption - SPEED 2007, pages 49-64, 2007. www.loria. fr/~gaudry/publis/mpfq.pdf.
34. M. Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint Archive, Report 2012/309, 2012. http://eprint.iacr.org/.
35. H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards curves revisited. In J. Pieprzyk, editor, Asiacrypt 2008, volume 5350 of Lecture Notes in Computer Science, pages 326-343. Springer, Heidelberg, 2008.
36. B. S. Kaliski Jr. The Montgomery inverse and its applications. IEEE Transactions on Computers, 44(8):1064-1065, 1995.
37. E. Käsper. Fast elliptic curve cryptography in OpenSSL. In G. Danezis, S. Dietrich, and K. Sako, editors, Financial Cryptography Workshops, volume 7126 of Lecture Notes in Computer Science, pages 27-39. Springer, 2012.
38. M. Knežević, F. Vercauteren, and I. Verbauwhede. Speeding up bipartite modular multiplication. In M. Hasan and T. Helleseth, editors, Arithmetic of Finite Fields - WAIFI 2010, volume 6087 of Lecture Notes in Computer Science, pages 166-179. Springer Berlin / Heidelberg, 2010.
39. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203-209, 1987.
40. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In N. Koblitz, editor, Crypto 1996, volume 1109 of Lecture Notes in Computer Science, pages 104-113. Springer, Heidelberg, 1996.
41. D. R. Kohel. Databases for Elliptic Curves and Higher Dimensional Analogues (Echidna). http:// echidna.maths.usyd.edu.au/kohel/dbs/.
42. D. R. Kohel and B. A. Smith. Efficiently computable endomorphisms for hyperelliptic curves. In F. Hess, S. Pauli, and M. E. Pohst, editors, ANTS, volume 4076 of Lecture Notes in Computer Science, pages 495-509. Springer, 2006.
43. A. K. Lenstra. Generating RSA moduli with a predetermined portion. In K. Ohta and D. Pei, editors, Asiacrypt'98, volume 1514 of Lecture Notes in Computer Science, pages 1-10. Springer Berlin / Heidelberg, 1998.
44. C. H. Lim and H. S. Hwang. Speeding up elliptic scalar multiplication with precomputation. In J. Song, editor, Information Security and Cryptology - ICISC'99, volume 1787 of Lecture Notes in Computer Science, pages 102-119. Springer, 2000.
45. C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation. In Y. Desmedt, editor, CRYPTO, volume 839 of Lecture Notes in Computer Science, pages 95-107. Springer, 1994.
46. P. Longa and F. Sica. Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. In X. Wang and K. Sako, editors, Asiacrypt 2012, volume 7658 of Lecture Notes in Computer Science, pages 718-739. Springer, 2012.
47. J.-F. Mestre. Couples de jacobiennes isogenes de courbes hyperelliptiques. Preprint, arXiv http://arxiv. org/abs/0902.3470, or see http://www.lix.polytechnique.fr/~smith/Mestre---families.pdf, 2009.
48. V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor, Crypto 1985, volume 218 of Lecture Notes in Computer Science, pages 417-426. Springer, Heidelberg, 1986.
49. P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation, 44(170):519-521, April 1985.
50. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation, 48(177):243-264, 1987.
51. P. L. Montgomery. Evaluating recurrences of form \(x_{m+n}=f\left(x_{m}, x_{n}, x_{m-n}\right)\) via lucas chains. URL: ftp://ftp.cwi.nl/pub/pmontgom/Lucas.ps.gz, 1992.
52. F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using addition-subtraction chains. Informatique Théorique et Applications/Theoretical Informatics and Applications, 24:531-544, 1990.
53. National Security Agency. Fact sheet NSA Suite B Cryptography. http://www.nsa.gov/ia/programs/ suiteb_cryptography/index.shtml, 2009.
54. T. Oliveira, F. Rodríguez-Henríquez, and J. López. New timings for scalar multiplication using a new set of coordinates. Rump session talk at ECC2012, October 2012.
55. Y.-H. Park, S. Jeong, and J. Lim. Speeding up point multiplication on hyperelliptic curves with efficientlycomputable endomorphisms. In L. R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 197-208. Springer, 2002.
56. J. Pila. Frobenius maps of abelian varieties and finding roots of unity in finite fields. Math. Comp, 55(192):745-763, 1990.
57. J. M. Pollard. Monte Carlo methods for index computation \((\bmod p)\). Mathematics of Computation, 32(143):918-924, 1978.
58. A. Scholz. Aufgabe 253. Jahresbericht der deutschen Mathematiker-Vereingung, 47:41-42, 1937.
59. R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp, 44(170):483-494, 1985.
60. N. P. Smart and S. Siksek. A fast Diffie-Hellman protocol in genus 2. J. Cryptology, 12(1):67-73, 1999.
61. J. A. Solinas. Generalized Mersenne numbers. Technical Report CORR 99-39, Centre for Applied Cryptographic Research, University of Waterloo, 1999.
62. M. Stam. Speeding up Subgroup Cryptosystems. PhD thesis, Technische Universiteit Eindhoven, May 2003.
63. K. Takashima. A new type of fast endomorphisms on Jacobians of hyperelliptic curves and their cryptographic application. IEICE Transactions, 89-A(1):124-133, 2006.
64. W. Tautz, J. Top, and A. Verberkmoes. Explicit hyperelliptic curves with real multiplication and permutation polynomials. Canad. J. Math, 43(5):1055-1064, 1991.
65. E. G. Thurber. On addition chains \(l(m n) \leq l(n)-b\) and lower bounds for \(c(r)\). Duke Mathematical Journal, 40:907-913, 1973.
66. U.S. Department of Commerce/National Institute of Standards and Technology. Digital Signature Standard (DSS). FIPS-186-3, 2009. http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf.
67. P. van Wamelen. Computing with the analytic Jacobian of a genus 2 curve. In W. Bosma, J. Cannon, M. Bronstein, A. M. Cohen, H. Cohen, D. Eisenbud, and B. Sturmfels, editors, Discovering Mathematics with Magma, volume 19 of Algorithms and Computation in Mathematics, pages 117-135. Springer Berlin Heidelberg, 2006.
68. P. B. van Wamelen. Examples of genus two CM curves defined over the rationals. Math. Comput., 68(225):307-320, 1999.
69. A. Weng. Constructing hyperelliptic curves of genus 2 suitable for cryptography. Mathematics of Computation, 72(241):435-458, 2003.
70. M. J. Wiener and R. J. Zuccherato. Faster attacks on elliptic curve cryptosystems. In S. Tavares and H. Meijer, editors, Selected Areas in Cryptography - (SAC) 1998, volume 1556 of Lecture Notes in Computer Science, pages 190-200. Springer New York, 1999.```

[^0]: * Part of this work was done while the second author was working in the Department of Mathematics and Computer Science at Technische Universiteit Eindhoven, Netherlands.

[^1]: ${ }^{3}$ Note that the formulas to compute the projective doubling from [17] can be sped up since the first multiplication to compute $U U$ is redundant.
 ${ }^{4}$ Over prime fields it is standard to zero the coefficient of the x^{4} term via an appropriate substitution.

