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Abstract

We investigate a lattice construction method for the Coppersmith technique for finding small solu-
tions of a modular equation. We consider its variant for simultaneous equations and propose a method
to construct a lattice by combining lattices for solving single equations. As applications, we consider
(i) a new RSA cryptanalysis for multiple short secret exponents, (ii) its partial key exposure situation,
and (iii) investigating the hardness of finding a certain amount of LSBs of the RSA secret exponent.
More precisely, our algorithm can factor an RSA modulus from ℓ ≥ 2 pairs of RSA public exponents
with the common modulus corresponding to secret exponents smaller than N (9ℓ−5)/(12ℓ+4), which im-
proves on the previously best known result N (3ℓ−1)/(4ℓ+4) by Sarkar and Maitra [41, 42]. For partial
key exposure situation, we also can factor the modulus if β − δ/2 + 1/4 < (3ℓ − 1)(3ℓ + 1), where
β and δ are bit-lengths /n of the secret exponent and its exposed LSBs, respectively. Particularly,
letting β = 1, which means that the secret exponent is full-sized, the necessary amount of exposed
bits is [5/2− 2(3ℓ− 1)/(3ℓ+ 1)]n, which is less than n for ℓ ≥ 3. Suppose we have an algorithm that
recovers the above amount of d from e and N satisfying e ≈ N . We showed that N can be factored in
polynomial time in logN under a heuristic assumption that the Coppersmith technique works. When
ℓ becomes large, the necessary amount becomes 0.5n bits. Hence, we conclude that recovering the
lower half of LSBs of d is polynomial time equivalent to the factoring under the heuristic assumption.
From the last result, we propose a half-amount conjecture that roughly, factoring RSA modulus is
polynomial-time equivalent to any continued bits of secret information such as p, q, d, p + q and p − q
(or dp and dq for RSA-CRT). It is supported from several results, e.g., Coppersmith [12] shows that
recovering the upper half of p is equivalent to factoring.

1 Introduction

Since the RSA cryptosystem [38] was proposed, its security has been intensively investigated. In
particular, polynomial-time algorithms for recovering short secret exponents have been studied [45, 3].

There are two main strategies for recovering a secret exponent in this situation. The first type of
approaches reduce this problem to the problem of finding a Diophantine approximation of a rational
number. The continued fraction algorithm was used in this approach [45] and several lattice based
extensions exist [25, 27, 22]. The other strategy is reduction to the problem of finding several roots of
a polynomial equation. For this, the Coppersmith technique [11, 12] has been used [3, 7, 16, 1]. In this
paper, we consider the latter technique.

Using the Coppersmith technique for finding small roots of a modular equation, Boneh and Durfee
[3] proposed an algorithm for recovering a small secret exponent from the corresponding public key
pair. The outline of their algorithm is (i) reducing the key finding problem to the problem of finding
a small integer solution of a modular equation such as F (x, y) ≡ 0 (mod W ), (ii) using a lattice basis
reduction algorithm, compute polynomials whose set of roots over integers contain all the small roots
of the original equation, and finally (iii) finding all small integers in the common roots of the computed
polynomials and recovering the secret exponent from them. Under several acceptable assumptions,
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the attack is guaranteed to work when the secret exponent is smaller than N0.292. This is the basic
strategy of the lattice based attack and followed by many works.

Although the original Coppersmith technique was designed to treat a single modular equation, the
method can be extended to multivariate simultaneous equations. For example, such situations are
considered by Coron et al. [15] in fault attacks on RSA-CRT, by Sarkar and Maitra [41, 42] in attacks
on RSA with small secret exponents, and by Herrmann [20] in analysis of the Φ-hiding assumption.
Their approaches first construct a single multivariate modular equation whose solutions are also those of
the simultaneous equations, and apply the standard Coppersmith technique. This may not be a better
strategy from the viewpoint of lattice construction because it does not consider individual equations.
May and Ritzenhofen [33] proposed an approach based on the Chinese remainder theorem to solve
simultaneous univariate modular equations. In this paper, we study an extension of the Coppersmith
technique that directly treats the original simultaneous multivariate equations. We expect that our
algorithm will improve several lattice based attacks.

In our formulation of the Coppersmith technique, it requires to construct a lattice of polynomial L
spanned by basis polynomials g1, . . . , gc, and to find “small” elements in the lattice by using a lattice
reduction algorithm. Here, the means of constructing better lattices is a key element. Several methods
for a single equation have been intensively studied [7, 26, 29]. On the other hand, there has been little
research on a general construction method for simultaneous equations [33, 37].

When one wants to solve simultaneous modular equations by the Coppersmith technique, it is
expected that, in many situations, better lattices for a single equation are already known. Therefore,
it is also likely that a better lattice can be constructed for the simultaneous equations by combining
them. We propose this combining method using the Minkowski sum of integer tuple sets.

Related works: Automatic lattice constructions for the Coppersmith technique for a single modular
equation have been widely studied. The first work by Coppersmith [11] gave a good lattice construc-
tion for any univariate modular equation. Recently, Aono et al. [2] has proven the optimality of
this construction. Blömer and May [8] proposed a construction method for bivariate equations, and
Jochemsz and May [26] improved this to a method for treating general multivariate equations. An-
other viewpoint was given by Kunihiro [29], who proposed a method for converting a lattice for an
n-variable equation f(x1, . . . , xn) ≡ 0 (mod W ) into a lattice for a new (n+1)-variable equation of the
form x0f(x1, . . . , xn) + C ≡ 0 (mod W ) where C is a constant. For simultaneous modular equations,
May and Ritzenhofen [33] considered a Chinese remainder theorem based approach. They proposed
a method for constructing a lattice in the univariate case and gave an application to RSA. Recently,
Ritzenhofen [37] improved this approach to multivariate simultaneous equations and proposed a lattice
construction method for equations with the common modulus. However, the case for coprime moduli
was not solved (see [37, Section 5.4]). We consider this problem.

On the hardness for finding partial information on d have been considered an important problem.
We introduce only two results on this theme. It is folklore that we can easily guess the upper half of d
when e = poly(logN). Since p+ q + 1 < N − φ < 3

√
N , we can easily found the upper half of φ(N).

Thus, by the relation ed = kφ(N) + 1 holds for some k < e, we can guess the polynomial number of
candidates of d’s upper half (see for example [5]). Therefore, if we have an algorithm for recovering
lower half of d, N is easily factored using this and the result by Coron and May [14] who proved
the polynomial time equivalence between recovering d and factoring N . Thus, for small e, it can be
shown that recovering lower half of d is polynomial time equivalent to factoring N . Boneh, Durfee and
Frankel [4] proposed a method for recovering d from a certain amount of d when e is a prime number

within the range [N1/4, N1/2], and this attack was improved [16, 26, 1] for several situations. By the
same argument, for e of these sizes, the polynomial time equivalence between recovering the amount
of information on d and factoring N . In this paper, we prove this type equivalence for full-size e, not
necessary to be a prime number, as one of application of our lattice construction.

1.1 Contributions of this work

Minkowski sum based lattice construction: We propose a method to construct a lattice for the
Coppersmith technique for simultaneous modular equations. We consider simultaneous equations such
as F1(x1, y) ≡ 0 (mod W1) and F2(x2, y) ≡ 0 (mod W2). Assume that we have better lattices spanned

by the sets of polynomials {g(1)1 , . . . , g
(1)
c1 } and {g(2)1 , . . . , g

(2)
c2 } for the equations, respectively. Then, we

propose the Minkowski sum based lattice construction, which is a method for generating a lattice basis
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for solving the simultaneous equations, as a set of polynomials of the form
∑

aλg
(1)
λ · g(2)λ′ . Our method

defines the range of suffixes (λ, λ′) and the coefficients aλ of the combination.

Cryptanalysis of multiple RSA short secret exponents and its partial key exposure sit-
uation: The above construction method can easily be extended to multivariate and multi-equation
situations. By this, we improve the cryptanalysis of RSA with short secret exponents studied in
[25, 22, 41, 42]. In this situation, the attacker has ℓ pairs of RSA public keys (ek, N) with the common
modulus, which correspond to secret exponents smaller than Nβ for some β ∈ (0, 1). Then, we prove
that the RSA modulus is efficiently factored if

β <
9ℓ− 5

12ℓ+ 4
.

Here, we assumed that all ek’s are full-sized i.e., they have the same bit sizes. This improves on the
previously known best result by Sarkar and Maitra [42], which achieved β < (3ℓ − 1)/(4ℓ + 4). For
large ℓ, both values converge to 3/4, while the result by Howgrave-Graham and Seifert [25] given below
becomes one:

β <
(2n+ 1) · 2n − (2n+ 1)

(
n

n/2

)
(2n− 2) · 2n + (4n+ 2)

(
n

n/2

) if n is even, and β <
(2n+ 1) · 2n − 4n

(
n−1

(n−1)/2

)
(2n− 2) · 2n + 8n

(
n−1

(n−1)/2

) if n is odd.

These results are compared in Figure 1. Particularly, for ℓ ≤ 46, our bound is the largest.

ℓ 2 3 4
HS99: [25] 0.357 0.400 0.441
SM10: [42] 0.416 0.500 0.550
Our result 0.464 0.550 0.596

Figure 1: Comparison of the result by Howgrave-Graham and Seifert [25], Sarkar and Maitra [42] and
our result

We then extend the attack to a partial key exposure situation studied in [4, 16], in which the attacker

has ℓ tuples (ek, N, d̃k) where ek and N are RSA public keys, and each d̃k is δn LSBs (least significant
bits) of the corresponding secret exponent smaller than Nβ. Then, we prove that the RSA modulus is
efficiently factored if

β − δ

2
+

1

4
<

3ℓ− 1

3ℓ+ 1
.

On the hardness of recovering partial information on d: Let β = 1 in the above result, i.e., the
secret exponents are full-sized, do not need to be short. Then the inequality becomes

δ <
5

2
− 2(3ℓ− 1)

3ℓ+ 1
.

The right-hand size is less than one for ℓ ≥ 3.

We can argue the hardness relationship between factoring N and recovering d̃k for large e. Suppose
we have an algorithm that recovers δn LSBs of d from e and N if gcd(e, φ(N)) = 1. If otherwise,
it returns a random bit string, i.e., an useless string for factoring. Assume that it is not possible to
decide whether the returned value is useful or useless. In this situation, we can construct an algorithm
for factoring N in polynomial time in logN using our version of the Coppersmith technique and this
recovering algorithm. Therefore, recovering the amount of LSBs of d corresponding to full-size e is
polynomial-time equivalent to factoring N . When ℓ becomes large, the necessary amount becomes
0.5n bits. Thus, we conclude that recovering the lower half of the LSBs of d is harder than factoring
under the heuristic assumption. This improves on the result by Coron and May [14] that proves the
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polynomial-time equivalence between the problem of recovering d and that of factoring N . Note that
their reduction needs no assumptions.

Following the above result, we propose the half-amount conjecture that factoring the RSA modulus
is polynomial-time equivalent to recovering any continued bits of secret information such as

p, q, d, p+ q or p− q for the original RSA,
dp or dq for RSA-CRT, and
q2, q3, . . . , qr−1 for Takagi’s RSA.

For example, Coppersmith [12] showed that recovering the upper half of p is equivalent to factoring.

Computer experiments: To verify the correctness of our lattice construction, we perform computer
experiments of the applications for RSA. Our experiments work well. Interestingly, in the partial key
exposure situation, the range of β and δ that we can factor N is slightly larger than that derived by
theory. It is expected that there exists a sublattice that achieves such good performance, as Boneh
and Durfee [3] extracted a sublattice achieving d < N0.292 from a lattice achieving d < N0.284 in their
cryptanalysis of RSA. However, we observed that the computed vector is a combination of all basis
vectors; i.e., the desired sublattice cannot be constructed by simply selecting some vectors from the
original basis.
Organization of this paper: Section 2 gives necessary definitions, technical lemmas, and an outline
of the Coppersmith technique. In Section 3, we consider the Coppersmith technique for the simul-
taneous equations and propose our Minkowski sum based lattice construction. Sections 4 and 5 give
applications to cryptanalysis of RSA with small secret exponents, its partial key exposure situations,
and demonstrate the hardness of finding a certain amount of LSBs of d. Section 6 gives experimental
results to verify our lattice construction. In Section 7, we suggest and discuss several open problems.
Finally, we give concluding remarks in Section 8.

2 Preliminaries

Here we introduce some definitions and technical lemmas. For any positive integer a and b, let [a] and
[a : b] be the set {1, . . . , n} and {a, a+ 1, . . . , b− 1, b}, respectively. For natural numbers x, A and N ,
the notation |x| < A (mod N) means that 0 ≤ x < A or N −A < x < N holds.

We use ≺ to denote the lexicographic order between integer tuples. For example, consider two
2-tuples, (i1, i2) and (i′1, i

′
2), then (i1, i2) ≺ (i′1, i

′
2) means that i1 < i′1 or [i1 = i′1 and i2 < i′2]

holds. We also use this to order monomials; e.g., xi11 x
i2
2 ≺ x

i′1
1 x

i′2
2 ⇔ (i1, i2) ≺ (i′1, i

′
2). Here, we

neglect the coefficients. These notations are used for general n-tuples and n-variable monomials. We
use x1, x2, . . . , xn−1 and y to denote the variables, and fix the priority of variables as y ≺ xn−1 ≺
· · · ≺ x1 to order the n-variable monomials. For example, consider four variables, x1, x2, x3, y, and
monomials 3x22x3 and x21x

3
2y. Then, 3x

2
2x3 ≺ x21x

3
2y holds since the corresponding tuples are (0, 2, 1, 0)

and (2, 3, 0, 1), respectively. Note that for any integer tuples T1, T2, S1, S2 of the same dimension,
T1 ≺ S1 and T2 ≺ S2 implies that T1 + T2 ≺ S1 + S2.

With respect to the above order, we can define the maximum element in a polynomial f(x1, . . . , xℓ, y).

Let axi11 · · ·xiℓℓ y
j be the non-zero maximum monomial in f . Then, we call it the head term of f and

denote it by HT(f). We also call a, xi11 · · ·xiℓℓ y
j and (i1, . . . , iℓ, j) head coefficient, head monomial and

head index, and denote them by HC(f), HM(f) and HI(f), respectively.

Minkowski sum: Let A and B be finite subsets of Zn, then their Minkowski sum is defined by the
set

A□+ B = {(a1 + b1, . . . , an + bn) : (a1, . . . , an) ∈ A, (b1, . . . , bn) ∈ B}.
Note that the sum of three or more sets is similarly defined.

2.1 Overview of the Coppersmith technique

We introduce the Coppersmith technique [11, 12] with necessary definitions and technical lemmas. Our
formulation is due to Howgrave-Graham [21] and Aono et al. [2]. See these papers for detailed analysis
of the algorithm.

We fix a polynomial F (x, y) ∈ Z[x, y] and X,Y,W ∈ N. Then consider the problem of finding all
integer solutions of

F (x, y) ≡ 0 (mod W ) (1)
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within the range of |x| < X and |y| < Y . While this problem is generally not easy, the Coppersmith
technique efficiently solves it if X and Y are much smaller than W . We can easily extend the problem
and the technique to three or more variables.

The basic strategy of the Coppersmith technique can be outlined as follows. Fix an integer m ≥ 2
and consider a set L of polynomials g(x, y) ∈ Z[x, y] satisfying

∀x, y ∈ Z [F (x, y) ≡ 0 (mod W ) ⇒ g(x, y) ≡ 0 (mod Wm)]. (2)

Note that L forms a lattice, i.e., it can easily see that g1, g2 ∈ L ⇒ g1− g2 ∈ L. Next, find polynomials
g(x, y) ∈ L satisfying

∀x, y ∈ Z, |x| < X, |y| < Y [g(x, y) ≡ 0 (mod Wm) ⇒ g(x, y) = 0]. (3)

Suppose two algebraically independent polynomials are found, then the original equation (1) can be
converted to simultaneous equations over integers, which are easily solved by the resultant technique
[19] or the Gröbner basis technique [10]. As we explain below, a polynomial with small coefficients
satisfies (3). Then, our tasks are to construct a polynomial lattice L, and to find such polynomials in
L.

Many algorithms are proposed to find small elements in a lattice, For example, the LLL algorithm
[30] is widely used. Unfortunately, most of them are designed for treating lattices in Euclidean spaces
Rn w.r.t. the standard Euclidean norms. To use them as a subroutine, a polynomial lattice needs to
be converted to a Euclidean lattice.
Converting polynomials to vectors: For a polynomial g(x, y) =

∑
i,j ai,jx

iyj and parameters X
and Y , define the vectorization of the polynomial by

V(g;X,Y ) = (a0,0, a1,0X, . . . , aiw,jwX
iwY iw).

Thus, it maps each term ai,jx
iyj to each coordinate ai,jX

iY j , respectively. It is a linear mapping with
respect to g. We note that the sequence of tuples {(ik, jk)}wk=1 is taken so that it covers all non-zero
terms in g(x, y). In the Coppersmith technique, some polynomials need to be converted to vectors. In
this situation, we fix a sequence of tuples. We define the polynomial norm w.r.t. the parameters X,Y
by |V(g;X,Y )|. W.r.t. this norm, the following lemma holds.

Lemma 1. (Howgrave-Graham [21], generalized in [26]) Fix X,Y,W ∈ N. Let g(x, y) ∈ Z[x, y]
be a polynomial consisting of w terms, and |V(g;X,Y )| < W/

√
w holds. Then we have

∀x, y ∈ Z, |x| < X, |y| < Y [g(x, y) ≡ 0 (mod W ) ⇔ g(x, y) = 0].

Hence, if a polynomial lattice L is given, our task is to find independent polynomials satisfying the
above lemma, which is performed by finding short vectors in a Euclidean lattice converted from L using
certain parameters.

Lattices: We introduce the notion of lattices in Euclidean spaces and polynomial spaces. Consider
linearly independent vectors b1, . . . ,bc in Zc̃ where c̃ ≥ c. Then, the Euclidean lattice spanned by them
is defined by

L(b1, . . . ,bc) = {a1b1 + · · ·+ acbc : ak ∈ Z for k ∈ [c]}.
We call b1, . . . ,bc the basis vectors. Following many papers, we assume that a lattice is represented
by its basis vectors.

To find short vectors in a lattice, we use the LLL algorithm [30] which computes an LLL-reduced
basis from a given basis. The following theorem bounds the lengths of first vectors in such bases.

Theorem 1. [7] Let L be a Euclidean lattice and v1, . . . ,vc be its LLL-reduced basis. Then, the
following inequality holds for k ∈ [c].

||vk|| ≤ 2{(c(c−1)+(k−1)(k−2)}/4(c−k+1)|det(L)|1/(c−k+1) (4)

Here, det(L) is the lattice determinant that is defined by using the Gram-Schmidt orthogonal basis
v∗
1, . . . ,v

∗
c as det(L) =

∏c
i=1 ||v∗

i ||.
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Input F (x, y) ∈ Z[x, y], W,X, Y ∈ N; Parameters c ≥ 1 and m ≥ 2;
Output All integer solutions of F (x, y) ≡ 0 (mod W ) satisfying |x| < X and |y| < Y .
Step 1: W.r.t. F (x, y) and W , define a sequence of independent polynomials G = {g1, . . . , gc} ⊂ Z[x, y]

satisfying (2).
Step 2: Convert the polynomial lattice to L(G;X,Y ) using X and Y ; Compute its LLL-reduced basis

v1, . . . ,vk.
Step 3: Convert h1(x, y) and h2(x, y) from v1 and v2 respectively. Find all small integer solutions of

h1(x, y) = h2(x, y) = 0, and output them.

Figure 2: Algorithm of the Coppersmith technique

Next, we define the polynomial lattice. Let G = {g1, . . . , gc} be a sequence of linearly independent
polynomials in Z[x, y]. Then, the polynomial lattice spanned by them is defined by

L(G) = L(g1, . . . , gc) = {a1g1 + · · ·+ acgc : ai ∈ Z for k ∈ [c]}.

We also consider the vectorization of polynomial lattices; i.e., for a basis G = {g1, . . . , gc}, consider
their vectorization V(g1;X,Y ), . . . ,V(gc;X,Y ) w.r.t. parameters X and Y . Here, the tuple sequence
is assumed to be fixed. Then, define the vectorization of L(G) by the Euclidean lattice spanned by
these vectors, and let it be L(G;X,Y ). We use det(G;X,Y ) to denote the determinant of L(G;X,Y ).

Outline and a working condition for the Coppersmith technique: For fixed X and Y , suppose
we have a polynomial lattice L(G) spanned by c independent polynomials satisfying (2), and it holds
that

2c/4 det(G;X,Y )1/c < Nm/w. (5)

Here, w is the length of tuple sequence used at vectorization, which is equal to the Euclidean dimension
of L(G;X,Y ), and bounds upper the number of terms of any polynomials in L(G). Then, compute the
LLL-reduced basis of L(G;X,Y ). By Theorem 1, the first two vectors v1 and v2 in the reduced basis are
shorter than Nm/w. Hence, the corresponding polynomials, i.e., hk(x, y) satisfying vk = V(hk;X,Y )
for k = 1, 2, also satisfy |V(hk;X,Y )| ≤ Nm/w. Thus, by Lemma 1, these polynomials satisfy

∀x, y ∈ Z, |x| < X, |y| < Y [F (x, y) ≡ 0 (mod W ) ⇒ hk(x, y) = 0].

Finally, finding small integer solutions of h1(x, y) = h2(x, y) = 0, we obtain the desired solutions.
Figure 2 shows the outline of the Coppersmith technique. As in many previous works, we regard the
following simplified condition as a working condition.

det(G;X,Y )1/c < Nm (6)

In many applications, the crucial problem is to construct a lattice G satisfying (6) for X and Y as
large as possible.

The algebraic independence of polynomials hk(x, y) is necessary to solve the final simultaneous equa-
tions over the integers. Unfortunately, this is generally not guaranteed. In this paper, again following
previous works, we assume this algebraic independence and justify it by computer experiments.

3 Coppersmith technique for simultaneous equations

We consider a variant of the Coppersmith technique for the simultaneous equations, and propose a
new method to construct polynomial lattices. For readability, we consider the following three variable
simultaneous equations with two equations having the shared variable y. Here, if no variable is shared,
the simultaneous equations have no meaning. Again note that the generalization for more variables
and more equations is trivial, but the notations become very complicated.

F1(x1, y) ≡ 0 (mod W1)
F2(x2, y) ≡ 0 (mod W2)

(7)
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Our objective is to find all integer solutions within the range of |x1| < X1, |x2| < X2 and |y| < Y .
The algorithm is similar to that in Figure 2; only the input and condition in Step 1 are different. The

inputs are two polynomials, F1(x1, y) and F2(x2, y), moduli W1 and W2, range of variables X1, X2, Y ,
and parameters c and m. The condition for three variable polynomials gi(x1, x2, y) is

∀x1, x2, y ∈ Z,
[
F1(x1, y) ≡ 0 (mod W1)
F2(x2, y) ≡ 0 (mod W2)

⇒ gi(x1, x2, y) ≡ 0 (mod (W1W2)
m)

]
. (8)

For a lattice L(G) with basis G = {g1, . . . , gc}, compute the LLL-reduced basis of L(G;X1, X2, Y ).
By the same argument as that in Section 2.1, we can prove the technique works if

det(G;X1, X2, Y )1/c < (W1W2)
m.

Hence, the problem is also finding the means of constructing better polynomial lattices.

3.1 Minkowski sum based lattice construction

When we want to solve simultaneous equations by the Coppersmith technique, it can be expected
that we already know better lattice constructions for solving individual equations. Even if this is not
true, we may expect that lattice construction for a single equation will be easier than for simultaneous
equations. We propose a method for constructing a lattice by combining lattices for solving single
equations. Again, consider the simultaneous equations (7).

For k = 1, 2, let L(Gk) be a polynomial lattice for solving Fk(xk, y) ≡ 0 (mod Wk) and its basis

be Gk = {g(k)1 , . . . , g
(k)
ck }. Here we assume that the parameter m is fixed. Then for any ℓ1 ∈ [c1] and

ℓ2 ∈ [c2], the polynomial g
(1)
ℓ1

· g(2)ℓ2
satisfies (8). Hence, the set

A =

 ∑
ℓ1∈[c1],ℓ2∈[c2]

aℓ1,ℓ2g
(1)
ℓ1

g
(2)
ℓ2

: aℓ1,ℓ2 ∈ Z


is a polynomial lattice for solving the simultaneous equations. Unfortunately, since the polynomials

{g(1)ℓ1
g
(2)
ℓ2

}ℓ1,ℓ2 are not generally independent over the integers, it cannot explicitly obtain the basis of A
and its determinant. Instead, we consider a sublattice of A and define its basis by using the Minkowski
sum of indices.

We can assume that each basis Gk has a strictly increasing degree order, i.e., HM(g
(k)
1 ) ≺ · · · ≺

HM(g
(k)
ck ) holds for k = 1, 2. If this is not true, an equivalent basis having this property can be computed

by Gaussian elimination; see [2]. Then, for each k, consider the set of indices Ik = {HI(g
(k)
ℓ ) : ℓ ∈

[ck]} ⊂ Z3 and let their Minkowski sum be I+. Noting that the elements of I1 and I2 have the form
(i1, 0, j) and (0, i2, j), respectively. For every (i1, i2, j) ∈ I+, define the polynomial g+i1,i2,j to be

g+i1,i2,j =
∑
(∗)

aλg
(1)
λ g

(2)
λ′ . (9)

Here, the range of sum (∗) is over all suffix pairs (λ, λ′) satisfying

HM(g
(1)
λ g

(2)
λ′ ) = xi11 x

i2
2 y

j

and the coefficients aλ are defined so that

HC(g+i1,i2,j) =GCD
(∗)

(HC(g
(1)
λ g

(2)
λ′ )), (10)

i.e., the greatest common divisor of all head coefficients within the range. It is easy to see that the
polynomial satisfies (8). We define the polynomial basis by G+ = {g+(i1,i2,j) : (i1, i2, j) ∈ I+}. Here, it
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is clear that the basis polynomials are linearly independent since the head monomials are distinct. We
call the polynomial lattice L(G+) the Minkowski sum lattice of L(G1) and L(G2). Clearly, L(G+) ⊂ A
holds.

The basic strategy of this construction is to minimize the head coefficient of g+i1,i2,j over all the pos-
sible integer combinations. It can be expected that the determinant of the combined lattice is reduced.
Note that a combination of aλ that attains (10) is generally not unique. Hence, care needs to be taken
regarding the determinant if the lattice is not triangular. If the lattice is lower triangular, the deter-
minant, which is computed by

∏
|HC(g+i1,i2,j)|X

i1
1 Xi2

2 Y j , is not changed for any allowed combination
of aλ. We consider the latter situation in our applications for RSA cryptanalysis.
Comparison with previous strategy: Many previous works, first consider the single equation by
multiplying both sides in (7) as

F1(x1, y)F2(x2, y) ≡ 0 (mod W1W2).

Then consider a lattice of polynomials gi(x1, x2, y) satisfying

∀x1, x2, y ∈ Z, [F1(x1, y)F2(x2, y) ≡ 0 (mod W1W2) ⇒ gi(x1, x2, y) ≡ 0 (mod (W1W2)
m)]

using the lattice construction strategy by Jochemsz and May [26]. Their strategy only considers

polynomials of the form xi11 x
i2
2 y

j(F1(x1, y)F2(x2, y))
t(W1W2)

m−t, whose variety of polynomial selection
is clearly smaller than our Minkowski sum construction. We provide a small example for our attack on
RSA with the short secret exponents in Appendix B.

3.2 Minkowski sum of lower triangular lattices

Suppose the lattices for single equations are lower triangular, that is, there exist sequences of tuples
{(i1(ℓ), j1(ℓ))}c1ℓ=1 and {(i2(ℓ), j2(ℓ))}c2ℓ=1, the polynomials in bases Gk can be written as

g
(1)
ℓ =

ℓ∑
ℓ′=1

aℓ,ℓ′x
i1(ℓ′)
1 yj1(ℓ

′) and g
(2)
ℓ =

ℓ∑
ℓ′=1

bℓ,ℓ′x
i2(ℓ′)
2 yj2(ℓ

′), where aℓ,ℓ ̸= 0 and bℓ,ℓ ̸= 0.

In this case, w.r.t. the above sequences of tuples, the Euclidean lattices L(Gk;Xk, Y ) are lower triangu-
lar. Since the determinant analysis is easy, lattices of this form are usually used in many applications.
We consider the Minkowski sum lattice of them and show that it is also lower triangular.

Theorem 2. For k = 1, 2, assume that the polynomial lattice basis Gk = {g(k)1 , . . . , g
(k)
ck } has a strictly

increasing degree order, and that they are lower triangular. Then the Minkowski sum lattice L(G+) is
also lower triangular.

Proof. Recall that Ik = {HI(g
(k)
ℓ ) : ℓ ∈ [ck]} ⊂ Z3 and I+ = I1 □+ I2. Fix any (i1, i2, j) ∈ I+. We

prove that g+i1,i2,j can be written as

g+i1,i2,j = axi11 x
i2
2 y

j + (terms whose indices are in I+ and smaller than xi11 x
i2
2 y

j).

By construction, it suffices to show that any g
(1)
λ g

(2)
λ′ in (9) can be written in this form. Fix a suffix

pair (λ, λ′) and consider the monomial expansion of g
(1)
λ g

(2)
λ′ . Then, any term in this polynomial is a

sum of the product of terms in g
(1)
λ and g

(2)
λ′ . Let them be Axī11 y

j̄1 and Bxī22 y
j̄2 ; i.e., g

(1)
λ g

(2)
λ′ can be

written as a sum of ABxī11 x
ī2
2 y

j̄1+j̄2 .
Since L(Gk) are lower triangular, (ī1, 0, j̄1) ∈ I1 and (0, ī2, j̄2) ∈ I2 hold. Thus, (ī1, ī2, j̄1+ j̄2) ∈ I+.

By construction, (ī1, 0, j̄1) ⪯ HI(g
(1)
λ ) and (0, ī2, j̄2) ⪯ HI(g

(2)
λ′ ). Hence, we have (ī1, ī2, j̄1 + j̄2) ⪯

HI(g
(1)
λ ) + HI(g

(2)
λ′ ) = HI(g+i1,i2,j).

Minkowski sum of three of more lattices: As with the situations of two lattices, the Minkowski
sum construction can be extended to three or more lattices. Moreover, we can show that the Minkowski
sum lattice of lower triangular lattices is also lower triangular. The detailed construction, theorem,
and its proof are left to Appendix A.

8



4 Cryptanalysis of RSA with short secret exponents

As an application of our Minkowski sum lattice construction, we analyze the RSA with multiple short
secret exponents with a common modulus.

Notations: We use the standard notations for the RSA cryptography. That is, p and q are large
primes, and let their product be the RSA modulus N . e and d are used to denote the public exponent
and secret exponent, respectively. The basic relation ed ≡ 1 (mod φ(N)) holds. Following [3], we
assume that e ≈ N and p+ q < 3N0.5.

In this section, we consider the situation in which the attacker has ℓ pairs of public keys with a
common modulus, let them be (e1, N), . . . , (eℓ, N), which correspond to small secret exponents satis-
fying d1, . . . , dℓ < Nβ for some β ∈ (0, 1). For simplicity, we assume that ei and ej are coprime to each
other for i ̸= j.

4.1 RSA equation and its limit

Following the work of Sarkar and Maitra [41, 42] (see Boneh and Durfee [3] for deriving single equation),
it can prove that the simultaneous equations

F1(x1, y) = −1 + x1(y +N) ≡ 0 (mod e1)
...

Fℓ(xℓ, y) = −1 + xℓ(y +N) ≡ 0 (mod eℓ)
(11)

have a small solution satisfying

|xk| < Nβ, for k ∈ [ℓ] and |y| < 3N0.5. (12)

Hence, our objective here is to find this solution by the Coppersmith technique.
On the other hand, if β is not small, the solution within the range is not unique. In this situation,

the number of solutions becomes exponential in logN ; thus, no polynomial-time algorithm exists. We
derive a heuristic condition in which a polynomial-time algorithm exists.

For any y′ such that y′ + N is coprime to all ek, setting x′k = (y′ + N)−1 (mod el), the tuple
(x′1, . . . , x

′
ℓ, y

′) is a solution of (11). Unfortunately, this solution cannot be used to recover the secret
keys since it does not generally satisfy (12).

Following the argument in [1], we consider a heuristic condition for β so that a found solution
satisfying (12) is expected to be usable for recovering the secret exponents. Assume that the solutions
of (11) are random numbers on {1, . . . , N}ℓ+1. Since the number of solutions is smaller than N , we
expect the number of solutions within the range (12) to be smaller than

N · (2N
β)ℓ × (6N0.5)

N ℓ+1
≈ N0.5+ℓ(β−1).

Thus, if β < (ℓ−0.5)/ℓ, then the above is smaller than one. From this observation, we set the following
heuristic assumption.

Heuristic assumption: For a natural number ℓ, assume that

β <
ℓ− 0.5

ℓ
. (13)

Then, the equation (11) has only one solution (x′1, . . . , x
′
ℓ, y

′) within the range of (12). By using this
solution, we can also recover the corresponding secret keys dk and can factor N .

4.2 Our lattice construction and bound

Here we give our polynomial lattice to solve the simultaneous equations (11) and a new security analysis
of RSA. As mentioned in Section 3.1, assume that lattices for solving single equation Fk(xk, y) =

9



−1+xk(y+N) ≡ 0 (mod ek) are given. We follow the work of Boneh and Durfee [3], and employ their
simple lower triangular lattice: fix an integer m ≥ 2 and set

g
(k)
i,j (xk, y) = xi−j

k Fk(xk, y)e
m−j
k and Gk = {g(k)i,j : (i, j) ∈ Z2, 0 ≤ j ≤ i ≤ m} (14)

for k = 1, . . . , ℓ. It is clear that g
(k)
i,j (xk, y) satisfies (2) w.r.t. Fk(xk, y) ≡ 0 (mod ek) and m.

For each k, ordering its basis in the lexicographic order in suffixes (i, j), the polynomial sequence

has strictly increasing order since HM(g
(k)
i,j ) = xiky

j and HI(g
(k)
i,j ) = (0, . . . , 0, i, 0, . . . , 0, j) ∈ Zℓ+1 (the

k-th and ℓ + 1-th coordinates are i and j, respectively). As shown in [3], the lattice L(Gk;Xk, Y )
is lower triangular. Thus these bases satisfy the assumption of Theorem 4 in Appendix A, and the
Minkowski sum lattice L(G+) is also lower triangular.

We explicitly give the Minkowski sum lattice. The index set corresponding to Gk is given by
Ik = {(0, . . . , 0, i, . . . , 0, j) : (i, j) ∈ Z, 0 ≤ j ≤ i ≤ m} and their Minkowski sum is

I+ = I1 □+ · · ·□+ Iℓ = {(i1, . . . , iℓ, j) : 0 ≤ i1, . . . , iℓ ≤ m and 0 ≤ j ≤ i1 + · · ·+ iℓ}.

Following Appendix A, for each (i1, . . . , iℓ, j) ∈ I+, construct a polynomial by

gi1,...,iℓ,j =
∑

j1,...,jℓ

aj1,...,jℓ · g
(1)
i1,j1

g
(2)
i2,j2

· · · g(ℓ)iℓ,jℓ
.

Following (9), the sum is over indices such that HM(g
(1)
i1,j1

g
(2)
i2,j2

· · · g(ℓ)iℓ,jℓ
) = xi11 · · ·xiℓℓ y

j . In this situation,

ik are fixed, and (j1, . . . , jℓ) moves over all integer tuples subject to 0 ≤ jk ≤ ik and j1 + · · ·+ jℓ = j.
Next we consider the coefficients; again as mentioned in Section 3.1, the coefficients aj1,...,jℓ are selected
so that

HC(gi1,...,iℓ,j) =GCD
j1,...,jℓ

(
HC(g

(1)
i1,j1

g
(2)
i2,j2

· · · g(ℓ)iℓ,jℓ
)
)
.

Note that HC(g
(1)
i1,j1

g
(2)
i2,j2

· · · g(ℓ)iℓ,jℓ
) = em−j1

1 · · · em−jℓ
ℓ . Since jk can move from zero to min(ik, j), the

greatest common divisor is e
m−min(i1,j)
1 · · · em−min(iℓ,j)

ℓ . Thus, we can take aj1,...,jℓ so that the head
coefficient of gi1,...,iℓ,j is this value.

Then, we set the Minkowski sum lattice by G+ = {gi1,...,iℓ,j : (i1, . . . , iℓ, j) ∈ I+} and the order is
the lexicographic order of suffixes. By Theorem 4, the converted lattice L(G+;X1, . . . , Xℓ, Y ) is lower
triangular. The diagonal element corresponding to (i1, . . . , iℓ, j) is

HC(gi1,...,iℓ,j)×Xi1
1 · · ·Xiℓ

ℓ Y
j = e

m−min(i1,j)
1 · · · em−min(iℓ,j)

ℓ Xi1
1 · · ·Xiℓ

ℓ Y
j .

Therefore, the determinant is

det(G+;X1, . . . , Xℓ, Y ) =
∏

(i1,...,iℓ,j)∈I+

[
e
m−min(i1,j)
1 · · · em−min(iℓ,j)

ℓ Xi1
1 · · ·Xiℓ

ℓ Y
j
]
.

As with the same argument in Section 2.1, the Coppersmith technique works if

det(G+;X1, . . . , Xℓ, Y )1/|I+| < (e1 · · · eℓ)m.

Here, |I+| denotes the number of elements in I+. Using approximations ek ≈ N for k ∈ [ℓ], X1 = · · · =
Xℓ = Nβ and Y ≈ N0.5, the condition can be rewritten as∑

(i1,...,iℓ,j)∈I+

[
0.5j + (i1 + · · ·+ iℓ)β −

ℓ∑
k=1

min(ik, j)

]
< 0. (15)

By computing the left-hand side (see Appendix C), we derive the condition(
− 3

16
ℓ2 +

5

48
ℓ+

(
ℓ2

4
+

ℓ

12

)
β

)
mℓ+2 + o(mℓ+2) < 0.

10



Thus, when m is sufficiently large, this condition is

β <
9ℓ− 5

12ℓ+ 4
. (16)

Appendix B gives a small example of this construction for ℓ = 2 and m = 1.

Heuristic improvement of lattice: Suppose β > 0.5, then for i1 = · · · = iℓ = m and j = ℓm, which

is a corner of the index set I+, the value 0.5j+(i1+ · · ·+iℓ)β−
∑ℓ

k=1min(ik, j) in the sum (15) is larger
than zero. In other words, the corresponding polynomial gm,...,m,ℓm has a negative contribution for the
bound. Therefore, considering a new index set I+ \ {(m, . . . ,m, ℓm)} and new polynomial lattice, the
bound increases. From this observation, we propose a heuristic improvement for lattice construction.
Roughly, the strategy is to remove polynomial whose index satisfies both j > max{i1, . . . , iℓ} and

0.5j + (i1 + · · · + iℓ)β −
∑ℓ

k=1min(ik, j) > 0. It can be shown that the new lattice is also lower
triangular. Appendix D provides the detailed argument. However, we have never derived an explicit
formula of the working condition.

5 Application to partial key exposure attack on RSA and on the
hardness of finding LSBs of d

Next, we consider the partial key exposure attack on RSA. Assume that the attacker has ℓ pairs of RSA
public keys (e1, N), . . . , (eℓ, N), and δn LSBs of the corresponding dk. Moreover, each dk is assumed
to be smaller than Nβ. Note that this situation may not happen in real life, whereas we can discuss
the hardness of revealing some amount of LSBs of secret exponents by considering β = 1.

Let M = 2⌊δn⌋ and the exposed parts be d̃k for k ∈ [ℓ]. Then, following the derivation of the single

equation for the situation that single (e,N, d̃) is given [16], we consider the simultaneous equations

F1(x1, y) = e1d̃1 − 1 + x1(y +N) ≡ 0 (mod e1M)
...

Fℓ(xℓ, y) = eℓd̃ℓ − 1 + xℓ(y +N) ≡ 0 (mod eℓM).

(17)

By the counting argument in Section 4.1, we can assume that if β − δ < (ℓ− 0.5)/ℓ, then the solution
satisfying |x1|, . . . , |xℓ| < Nβ and |y| < 3N0.5 is unique, and it can be used to factor N .

The basic lattice construction is the same as in the above section; i.e., we let

g
(k)
i,j = xi−j

k (Fk(xk, y))
j(ekM)m−j and Gk = {g(k)i,j : (i, j) ∈ Z2, 0 ≤ j ≤ i ≤ m}.

Note that only the constant terms and moduli differ between (11) and (17). Thus, L(Gk) for k ∈ [ℓ]
and their Minkowski sum L(G+) are also lower triangular. Moreover, the set of indices I1, . . . , Iℓ and
their Minkowski sum I+ are also the same as in Section 4.2.

For each (i1, . . . , iℓ, j) ∈ I+, we give the polynomial gi1,...,iℓ,j . First note that

HC(g
(1)
i1,j1

g
(2)
i2,j2

· · · g(ℓ)iℓ,jℓ
) = em−j1

1 · · · em−jℓ
ℓ M ℓm−j1−···−jℓ .

Thus, as Section 4.2, each jk can move from zero to min(ik, j), and we can take the coefficients in (9)
so that

HT(gi1,...,iℓ,j) = e
m−min(i1,j)
1 · · · em−min(iℓ,j)

ℓ M ℓm−jxi11 · · ·xiℓℓ y
j .

Hence, we have

det(G+;X1, . . . , Xℓ, Y ) =
∏

(i1,...,iℓ,j)∈I+

[
e
m−min(i1,j)
1 · · · em−min(iℓ,j)

ℓ ×M ℓm−jXi1
1 · · ·Xiℓ

ℓ Y
j
]
.
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By the approximations ek ≈ N , Xk = Nβ, Y ≈ N0.5 and M ≈ N δ, the attack works if∑
(i1,...,iℓ,j)∈I

[
(0.5− δ)j + (i1 + · · ·+ iℓ)β −

ℓ∑
k=1

min(ik, j)
]
< 0. (18)

When m becomes large, the condition is

β − δ

2
+

1

4
<

3ℓ− 1

3ℓ+ 1
. (19)

Here, the detailed computation to derive (19) from (18) is given in Appendix C.

5.1 Hardness of finding partial information of d corresponding to full-size e

We consider the situation β = 1; i.e., avoid the condition that d is small. Then, the condition (19) is

δ >
5

2
− 2(3ℓ− 1)

3ℓ+ 1
. (20)

Note that the right-hand side below than one when ℓ ≥ 3. For example, consider the case ℓ = 3; then

the above inequality is δ > 0.9. Thus, we can factor N when three tuples (ek, N, d̃k) are given, where

d̃k is 0.9n LSBs of corresponding dk.
This can demonstrate the difficulty of finding partial information of d from e and N having the same

bits. Suppose we have a revealing algorithm that computes LSBs from e and N if gcd(e, φ(N)) = 1,
and it returns a random bit string, i.e., useless information for factoring if gcd(e, φ(N)) ̸= 1. For a
given N , an n-bit RSA modulus, using Theorem 5 in Appendix E, we can obtain a sequence of n-bit
numbers a1, . . . , aR−1 of length R = O(log2N), in which contains at least three integers coprime to
φ(N) exist. For three elements in the sequence, let them be e1, e2 and e3, use the recovering algorithm

that returns d̃1, d̃2 and d̃3. If all ei’s are legitimate keys, i.e., they all satisfy gcd(ei, φ(N)) = 1, then the
returned values are the lower bits of the corresponding secret keys, and we can factor N in polynomial
time in logN by using our version of the Coppersmith technique. Trying all three elements in the
sequence, we can factor N in polynomial time deterministically, since the number of combinations is
O(log6N). Hence, under the assumption that the Coppersmith technique works, we conclude that the
problem of finding 0.9n LSBs of d from (e,N) is polynomial time equivalent to factoring. For the case
ℓ = 3, we verified this result by computer experiments.

Note that when ℓ becomes large, the constant 0.9 decreases to 0.5 + ε. Therefore, we have proven
the following theorem. Comparing to the result by Coron and May [14], the necessary amount of d is
decreased and the heuristic assumption is added.

Theorem 3. The problem of finding (0.5+ε)n LSBs of d from e and N with the same bits is polynomial
time equivalent to factoring N under the assumption that the Coppersmith technique works correctly.

Remark: Consider the situation where the unbalanced prime factor is used, i.e., p+ q < Nα holds for
some α ∈ (0.5, 1]. Then, the inequality (20) can be rewritten as δ > 2 + α − 2(3ℓ − 1)/(3ℓ + 1), and
the necessary amount of LSBs in Theorem 3 becomes α. Here, it could be extract a better sublattice
as a similar argument of Appendix D. This is also one of our future work.

6 Experimental results

We carried out computer experiments on our cryptanalyses of RSA presented in Sections 4.2 and 5.
The experiments were conducted on a standard workstation with 16GB of RAM and two Intel Xeon

X5675 processors running at 3.07GHz. We wrote our experimental program in the C++ language using
the following libraries. To compute the LLL reduced basis, we used Shoup’s NTL library [35] version
5.5.2 compiled with the GMP library [18] version 5.0.4. The polynomial computation was performed
using the GiNaC library [17] version 1.6.2. We compiled our source code using g++ version 4.5.4 with
the -O3 option. We also used Maple 15 to compute the resultant under modulo prime in the final step
of the experiments. We performed our experiments on the Windows 7 platform and ran our program
in a single thread.
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Parameters: ℓ: Number of RSA keys; n: RSA bit length; β: ratio of secret keys to n
Step 1: (Generate a sample RSA instance) Randomly choose ⌊n/2⌋-bit pseudoprimes p and q, and

let N = pq. Randomly choose ℓ ⌊βn⌋-bit odd integers d1, . . . , dℓ such that GCD(dk, (p −
1)(q−1)) = 1 for all k ∈ [ℓ]. Compute the corresponding ek by d−1

k (mod (p−1)(q−1)). For
each k ∈ [ℓ], define the RSA polynomial fk(xk, y) = −1 + xk(N + y) and let the solutions
x̄k = (1− ekdk)/(p− 1)(q − 1) and ȳ = 1− p− q corresponding to the secret keys.

Step 2: Set the bounds Xk = ⌊Nβ⌋ and Y = ⌊3N0.5⌋. Construct the polynomial lattice L(G) in
Section 4.2, and compute the Euclidean lattice L(G+;X1, . . . , Xℓ, Y ). Then, apply the LLL
algorithm to L(G+;X1, . . . , Xℓ, Y ).

Step 3: From the reduced basis, pick the first ℓ + 1 vectors v1, . . . ,vℓ+1. Then, compute
the corresponding polynomials hk(x1, . . . , xk, y), i.e., take polynomials so that vk =
V(hk;X1, . . . , Xk, Y ) for k ∈ [ℓ+ 1].

Step 4: First check hi(x̄1, . . . , x̄ℓ, ȳ) = 0 for all k ∈ [ℓ+1]. If it is not true, reject the instance. After
the polynomials pass the first check, compute the resultant of polynomials modulo prime
to check the algebraic independence. If the instance passes two checks, then we regard the
experiment as successful.

Figure 3: Procedure of our computer experiments

ℓ = 2

m 2 3 4 5 6 7 10 100 limit

β 0.386 0.405 0.416 0.424 0.430 0.434 0.442 0.461 0.464

dim 27 64 125 216 343 512 1331 1.03× 106 -

ℓ = 3

m 2 3 4 5 6 7 10 100 limit

β 0.464 0.486 0.500 0.508 0.514 0.519 0.527 0.547 0.550

dim 108 352 875 1836 3430 5888 21296 1.55×109 -

Table 1: Theoretical β bound and lattice dimension for small ℓ and several m

6.1 Experiments for short RSA secret exponents

Figure 3 shows the procedure of our computer experiments. This is essentially the same as with the
outline in Figure 2. In Step 1, “pseudoprime” means an odd integer that passes the Euler-Jacobi
primality testing for bases 2, 3, 5 and 7. In Step 2, we use the command LLL XD(L,0.99,0,0,1).
In the second-half of Step 4, we first generate a random 0.5n bit prime number P . Then, we erase
the variable x1 by computing rk = Resx1

(h1, hk) mod P for k = 2, . . . , ℓ + 1, and next we compute
Resx2

(r2, rk) mod P for k = 3, . . . , ℓ + 1 modulo P , and repeat this process. Finally, we obtain a
univariate polynomial R(y) and check R(ȳ) ≡ 0 (mod P ). We repeat this check for three distinct
prime numbers via Maple 15.

Parameters and results: Note first that if m and ℓ are fixed, condition (15) is written in a linear
function w.r.t. β, and the maximum β satisfying the inequality is easily computed. This β is a theoret-
ical bound when N becomes large along with neglecting several factors as described in Section 2.1. For
each m and ℓ we compute the maximum β and this is shown in Table 1. The column “limit” indicates
the right-hand side of (16).

We carried out our experiments to search for the practical bound of β for several choices of ℓ, m
and n. We executed our procedure for each β at intervals of 0.002. Table 2 shows the experimental
results. The column “βexp” indicates the experimental bound of β for parameters (l,m, n); that is, the
instance passed the final test at that β and failed at β+0.002. The columns “βthm” and “dim” are the
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ℓ m n βthm dim βexp LLL-time

2 2
512

0.386 27
0.386 3.2 sec

1024 0.386 10.55 sec.

2 3
512

0.405 64
0.406 5 min. 33 sec

1024 0.406 30 min. 44 sec.

2 4
512

0.414 125
0.416 3 hrs. 50 min.

1024 0.414 20hrs. 26min.

3 2
512

0.464 108
0.464 41 min. 25 sec.

1024 0.464 3 hrs. 17 min.

Table 2: Experimental results for short secret exponents

theoretical bound of β and the lattice dimension, respectively; which are the same as shown in Table 1.
The running time of the LLL algorithm for processing L(G+) is given in the column “LLL-time.”

We note that for ℓ = 3 and m = 2, the second half of Step 4 is not finished due to computa-
tional time. More precisely, Maple computed two bivariate polynomials, r1(x3, y) and r2(x3, y), from
h1, . . . , h4. It took over 120 hours to compute Resx3

(r1, r2), and we stopped the computation. However,
we can observe that h1, . . . , h4 are algebraically independent since they are reduced to the bivariate
polynomials, and can expect that the final resultant will be computed if more time is permitted. Hence,
we regard the experiment as a success. From the observation, we conclude that our algorithm works
well.

6.2 Experiments for partial key exposure situation

β δ LLL-time result

1.00 0.96 18 hrs. 59 min. + (passed)
1.00 0.94 16 hrs. 13 min. + (passed)
1.00 0.92 15 hrs. 46 min. × (fault)
0.96 0.90 15 hrs. 42 min. + (passed)
0.96 0.88 16 hrs. 9 min. + (passed)
0.96 0.84 14 hrs. 46 min. × (fault)

Figure 4: Experimental results for partial key exposure situation for (ℓ,m, n) = (3, 2, 1024). The area
2β − δ − 0.928 < 0 in the left figure is the theoretical bound.

Next we conducted our experiments on the partial key exposure situation. The experimental pro-
cedure is similar to in Figure 3. Different points are the definition of Fk(xk, y), and that M = 2⌊δn⌋

and d̃k = d mod M are added in Step 1.
We fixed the parameters ℓ = 3 and m = 2 since it could be used to verify the hardness result

described in Section 5.1 when ℓ ≥ 3,. Unfortunately, for this ℓ, only the lattice constructed with m = 2
can be reduced in reasonable time. The lattice dimension is 108 as in the above subsection. For several
choices of β and δ, we generated 1024-bit RSA sample instances and tested them.

Figure 4 shows the result. In the figure, the horizontal and vertical axes are β and δ, respectively.
Each mark represents one experiment (β, δ) at the point. The marks “+” and “×” mean that the
instance passed and was a fault, respectively. The left table in Figure 4 indicates the running time
of the LLL algorithm and experimental results for several β and δ close to β = 1. Again, note that
the final resultant computation was not finished and regard that the experiment is successful if Maple
computes two bivariate polynomials.
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Here, the left/upper area of the diagonal line indicates δ > 2β−0.928, which is derived from (18) for
ℓ = 3 and m = 2. Hence, it means that the experimental result is slightly better than the theory. We
think this gap is caused by an existence of a better sublattice that improves the original bound (18).
Unfortunately, we cannot extract this sublattice. For the constructed lattice basis B = (b1, . . . ,bn),
write the first vector in the reduced lattice by

∑n
i=1 aibi. We observed the coefficients are all non-

zero in our experiments. Therefore, the sublattice is not spanned by a subset of B. Extracting this
sublattice, or finding why the practical result is better than the theory are topics for our future work.

7 Discussion and open problems

Here we suggest and discuss several unsolved problems.

Minkowski sum lattice construction: Although our lattice construction works well, it is not
optimal. That is, in Section 3.1, L(G+) is a subset of the lattice A spanned by all possible combination
of polynomials. Providing a method to extract the lattice basis of A, and deriving the condition so
that L(G+) and A are equivalent are open problems.

A Similar situation is occurred in our partial key exposure attack for RSA. In computer experiments
in Section 6.2, for (ℓ,m) = (3, 2), we succeeded in factoring N from three pairs of (e,N) and corre-
sponding 0.94n LSBs of d by using the Coppersmith technique. This is slightly better than the bound
derived by the theory. We expect that a sublattice achieving a better bound exists in the constructed
lattice. Note that this is not an unrealistic situation. For instance, in the paper By Boneh and Durfee
[3], the lattice achieving d < N0.292 is a sublattice of the lattice achieving d < N0.284. Hence, as in
their paper, extracting a sublattice from the Minkowski sum lattice, i.e., selecting a suitable polynomial
basis, is an interesting open problem.

Consider the simultaneous equations F1(x1, y) = Ax1+y (mod B) and F2(x2, y) = Bx2+y (mod A).
For m = 1, a polynomial gi(x1, x2, y) = F1(x1, y)F2(x2, y) = ABx1x2 + Ax1y + Bx2y + y2 can be
considered; however, it is equivalent to Ax1y+Bx2y+y2 under modulo AB, which is expected to make
a better contribution toward lattice construction. In this situation, our Minkowski sum construction
does not give a better construction. Adopting our theory to these situations is also a target of future
work.
Cryptanalysis of RSA with small secret exponents: Both our bound (16) and that by Sarkar and
Maitra converge to N0.75 when ℓ becomes large. On the other hand, the bound by Howgrave-Graham
and Seifert [25] and that by the counting argument in Section 4.1 converge to N . Filling this gap poses
an interesting open problem. We expect that our heuristic improvement shown in Appendix D achives
this goal, though this is not proven.

Cryptanalysis of RSA in other situations and the half amount conjecture: The proposed
Minkowski sum based lattice construction can be applied to other situations of cryptanalysis of RSA
including revealed MSBs [16], RSA-CRT [26], Takagi’s RSA [28], small e [4, 7, 31], unbalanced p and
q situation [32], and special settings of e [34]. For more information, see [36, Chap. 10]. For these
situations, we speculate that recovering half amount of continuous bits is polynomially equivalent to
factoring N .

8 Concluding remarks

We proposed a method for constructing a lattice for solving simultaneous equations by combining
lattices for a single equation via the Minkowski sum of index sets.

As an application, we gave a new RSA cryptanalysis for two or more short secret exponents. We
showed that an RSA modulus can be factored from ℓ pairs of public keys corresponding to ℓ secret
exponents smaller than N (9ℓ−5)/(12ℓ+4), which improves the previously best known bound N (3ℓ−1)/(4ℓ+4)

given by Sarkar and Maitra [42].
Next we considered the partial key exposure situation with small secret exponents. In this situation,

from ℓ pairs of RSA public keys and δn LSBs of corresponding secret exponents that are smaller than
Nβ, the attacker can efficiently factor an RSA modulus if β − δ

2 + 1
4 < 3ℓ−1

3ℓ+1 . Letting β = 1 and ℓ
be a sufficiently large integer, this can provide a factoring algorithm using an algorithm that reveals
(0.5 + ε)n LSBs of the secret exponent from given (e,N). Thus, under the assumption that the
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Coppersmith technique works, finding (0.5 + ε)n LSBs of d is polynomial-time equivalent to factoring
N in the standard RSA.
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A Minkowski sum of three or more lattices

Here we give the detailed construction of the Minkowski sum of three or more lattices. For fixed integer

ℓ ≥ 3, consider polynomial lattice bases Gk = {g(k)1 , . . . , g
(k)
ck } for k ∈ [ℓ]. Again, assume that they

have strictly increasing degree order. For simplicity, we also assume that a polynomial g
(k)
i is bivariate

of variables xk and y; thus, only y is shared. Note that extending to a general case is trivial, but it
yields extremely complicated expressions.

For each k ∈ [ℓ], let Ik be the set of indices {HI(g
(k)
i ) : i ∈ [ck]} ⊂ Zℓ+1 and define the Minkowski

sum I+ = I1 □+ · · ·□+ Iℓ. Then, for every (i1, . . . , iℓ, j) ∈ I+, define the polynomial

g+i1,...,iℓ,j =
∑
(∗)

aλ1,...,λℓ
g
(1)
λ1

· · · g(ℓ)λℓ

where the range of sum (∗) is over all suffix tuples (λ1, . . . , λℓ) satisfying HM(g
(1)
λ1

· · · g(ℓ)λℓ
) = xi11 ·

· · · · xiℓℓ y
j , and the coefficients are defined so that the head coefficient of the polynomial g+i1,...,iℓ,j is

GCD(∗)(HC(g
(1)
λ1

· · · g(ℓ)λℓ
)). Using the above polynomials, define the Minkowski sum construction G+

by the lattice spanned by all g+i1,...,iℓ,j for (i1, . . . , iell, j) ∈ I+.
In a similar way to Theorem 2, it can be shown that the Minkowski sum of ℓ lower triangular lattice

is also lower triangular.

Theorem 4. Let ℓ ≥ 3 be an integer. For k ∈ [ℓ], assume that the polynomial lattice basis Gk =

{g(k)1 , . . . , g
(k)
ck } ⊂ Z[xk, y] has a strictly increasing degree order, and is lower triangular. Then, the

Minkowski sum lattice L(G+) is also lower triangular.

Proof. Since the bases Gk are all lower triangular, that is, for each k ∈ [ℓ], there exists a sequence

of integer pairs {(ik(1), jk(1)), (ik(2), jk(2)), . . . , (ik(ck), jk(ck))} and each polynomial g
(k)
i (xk, y) for

i ∈ [ck] can be written as

g
(k)
i (xk, y) =

i∑
i′=1

d
(k)
i,i′x

ik(i′)
k yjk(i

′), where di,i ̸= 0.

Fix any (i1, . . . , iℓ, j) ∈ I+. We show that g+i1,...,iℓ,j can be written as

H · xi11 · · ·xiℓℓ y
j + (terms whose indices are in I+ and smaller than xi11 · · ·xiℓℓ y

j).
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for any (i1, . . . , ik, j) ∈ I+. Here, H is the heading coefficient. Thus, as the proof of Theorem 2, we

show any g
(1)
λ1

· · · g(ℓ)λℓ
can be written as the above form for any allowed combination of (λ1, . . . , λℓ). Fix

a suffix tuple (λ1, . . . , λℓ) and consider the monomial expansion of g
(1)
λ1

· · · g(ℓ)λℓ
.

Pick any term in the polynomial g
(k)
λk

for k ∈ [ℓ] and let it be Akx
īk
k y

j̄k . The product of these is

A1 · · ·Akx
ī1
1 · · ·xīℓℓ y

j̄1+···+j̄ℓ . Thus, it is clear that the corresponding index (ī1, . . . , īℓ, j̄1 + · · ·+ j̄ℓ) is in
I+. By the relation (0, . . . , 0, īk, 0, . . . , 0, j̄k) ≺ HI(gk), we have

(ī1, . . . , īℓ, j̄1 + · · ·+ j̄ℓ)
= (ī1, 0, . . . , 0, j̄1) + (0, ī2, 0, . . . , 0, j̄2) + · · ·+ (0, . . . , īℓ, j̄ℓ)

≺ HI(g
(1)
λ1

) + · · ·+HI(g
(ℓ)
λℓ

) = HI(g+i1,...,iℓ,j).

Therefore, the lattice L(G+) spanned by all g+i1,...,iℓ,j for all (i1, . . . , iℓ, j) ∈ I+ is lower triangular.

B Small example of Minkowski sum construction for RSA with short
secret exponents

Here we give an example of the lattice construction in Section 4.2 for m = 1 and ℓ = 2.

For k = 1 and 2, the polynomials satisfying (2) are g
(k)
1 (xk, y) = ek, g

(k)
2 (xk, y) = ekxk and

g
(k)
3 (xk, y) = Fk(xk, y) = −1 + xk(y + N). The index sets are I1 = {(0, 0, 0), (1, 0, 0), (1, 0, 1)} and
I2 = {(0, 0, 0), (0, 1, 0), (0, 1, 1)}. Then, the Minkowski sum of these sets is

I+ = I1 □+ I2 = {(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 1, 2)}.

For all elements in this set, construct the polynomials satisfying (8) via (9):

g+0,0,0 = e1e2, g+0,1,0 = e1e2x2,

g+0,1,1 = e1F2(x2, y), g+1,0,0 = e1e2x1,

g+1,0,1 = e2F1(x1, y), g+1,1,0 = e1e2x1x2,

g+1,1,1 = a1e1x1F2(x2, y) + a2e2x2F1(x1, y), and

g+1,1,2 = F1(x1, y)F2(x2, y).

Here, for (i1, i2, j) = (1, 1, 1), there are two polynomial pairs (g
(1)
λ , g

(2)
λ′ ) such that HM(g

(1)
λ g

(2)
λ′ ) = x1x2y

in (9); that is, both g
(1)
2 g

(2)
3 and g

(1)
3 g

(2)
2 satisfy it. Hence, the coefficients of the integer combination are

taken so that HC(g+1,1,1) = GCD(HC(g
(1)
2 g

(2)
3 ),HC(g

(1)
3 g

(2)
2 )) = GCD(e1, e2) = 1. Thus, set integers a1

and a2 satisfying a1e1+a2e2 = 1, and g+1,1,1 = a1g
(1)
2 g

(2)
3 +a2g

(1)
3 g

(2)
2 = a1e1x1F2(x2, y)+a2e2x2F1(x1, y).

Therefore, the lattice L(G+;X1, X2, Y ) is given by

e1e2
e1e2X2

−e1 e1NX2 e1X2Y
e1e2X1

−e2 e2NX1 e2X1Y
e1e2X1X2

−a2e2X2 −a1e1X1 NX1X2 X1X2Y
1 −NX2 −X2Y −NX1 −X1Y N2X1X2 2NX1X2Y X1X2Y

2


. (21)

The determinant of this lattice is e51e
5
2X

5
1X

5
2Y

5 ≈ N12.5+10δ. Then, the condition (15) is 12.5 + 10δ <
16 ⇔ δ < 0.35.

On the other hand, the previous works consider the single equation

F1(x1, y)F2(x2, y) = (−1 + x1(y +N))(−1 + x2(y +N)) ≡ 0 (mod e1e2)
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and then construct a polynomial lattice using the strategy by Jochemsz and May [26], which selects a
polynomial basis as

g0,0,0 = e1e2, g0,1,0 = e1e2x2,
g0,1,1 = e1e2x2y, g1,0,0 = e1e2x1,
g1,0,1 = e1e2x1y, g1,1,0 = e1e2x1x2,
g1,1,1 = e1e2x1x2y, and g1,1,2 = F1(x1, y)F2(x2, y).

The determinant of the constructed lattice is e71e
7
2X

5
1X

5
2Y

5 ≈ N16.5+10δ, which is slightly higher than
our construction, and it does not satisfy the condition (15) for any δ > 0.

C Deriving bounds in Sections 4.2 and 5

We give a detailed explanation for evaluating

∑
(i1,...,iℓ,j)∈I+

[
0.5j + (i1 + · · ·+ iℓ)β −

ℓ∑
k=1

min(ik, j)

]
< 0 (15)

in Section 4.2, and

∑
(i1,...,iℓ,j)∈I+

[
(0.5− δ)j + (i1 + · · ·+ iℓ)β −

ℓ∑
k=1

min(ik, j)
]
< 0. (18)

in Section 5.

First note that the sum can explicitly be written as
∑

(i1,...,iℓ,j)∈I

=

m∑
i1=0

· · ·
m∑

iℓ=0

i1+···+iℓ∑
j=0

, and the follow-

ing formulas hold for any ℓ,m ∈ N and a, b ∈ [ℓ].

m∑
i1=0

· · ·
m∑

iℓ=0

iaib =


mℓ+2

3
+ o(mℓ+2) (a = b)

mℓ+2

4
+ o(mℓ+2) (a ̸= b)

(22)

By this, we have

m∑
i1=0

· · ·
m∑

iℓ=0

(i1 + · · ·+ in)
2 =

(
ℓ2 · m

ℓ+2

4
+ ℓ · m

ℓ+2

12

)
+ o(mℓ+2). (23)

Thus, ∑
(i1,...,iℓ,j)∈I+

j =

m∑
i1=0

· · ·
m∑

iℓ=0

i1+···+iℓ∑
j=0

j =

m∑
i1=0

· · ·
m∑

iℓ=0

{
(i1 + · · ·+ iℓ)

2

2
+ o(m)

}
=

(
ℓ2 · m

ℓ+2

8
+ ℓ · m

ℓ+2

24

)
+ o(mℓ+2).

and

∑
(i1,...,iℓ,j)∈I+

(i1 + · · ·+ iℓ) =

m∑
i1=0

· · ·
m∑

iℓ=0

i1+···+iℓ∑
j=0

(i1 + · · ·+ iℓ) =

m∑
i1=0

· · ·
m∑

iℓ=0

{
(i1 + · · ·+ iℓ)

2 + o(m)
}

=

(
ℓ2 · m

ℓ+2

4
+ ℓ · m

ℓ+2

12

)
+ o(mℓ+2).
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Next consider the sum
∑

(i1,...,iℓ,j)∈I

[ ℓ∑
k=1

min(ik, j)
]
. By symmetry, it suffices to calculate

∑
(i1,...,iℓ,j)∈I

min(i1, j).

Using the relation

i1+···+iℓ∑
j=0

min(i1, j) =

i1∑
j=0

j +

i1+···+iℓ∑
j=i1+1

i1 =
i1(i1 + 1)

2
+ (i2 + · · ·+ iℓ)i1,

we have ∑
(i1,...,iℓ,j)∈I

ℓ∑
k=1

min(ik, j) = ℓ
∑

(i1,...,iℓ,j)∈I

min(i1, j)

= ℓ

m∑
i1=0

· · ·
m∑

iℓ=0

[ i1(i1 + 1)

2
+ (i2 + · · ·+ iℓ)i1

]
=

(
ℓ2

4
− ℓ

12

)
mℓ+2 + o(mℓ+2).

(24)

C.1 Condition for RSA short secret exponents

Using the above formulas, the left-hand side of (15) is

∑
(i1,...,iℓ,j)∈II

[
0.5j + (i1 + · · ·+ iℓ)β −

ℓ∑
k=1

min(ik, j)

]
=

(
− 3

16
ℓ2 +

5

48
ℓ+

(
ℓ2

4
+

ℓ

12

)
β

)
mℓ+2+o(mℓ+2).

Thus, the condition is to be

β <
9ℓ− 5

12ℓ+ 4
, (16)

when m is sufficiently large.

C.2 Condition for RSA partial key exposure situation

The left-hand side of (18) is

∑
(i1,...,iℓ,j)∈I

[
(0.5− δ)j + (i1 + · · ·+ iℓ)β −

ℓ∑
k=1

min(ik, j)
]

=

(
1

4
− δ

2
+ β

)(
ℓ2

4
+

ℓ

12

)
mℓ+2 −

(
ℓ2

4
− ℓ

12

)
mℓ+2.

Hence, the condition is to be

β − δ

2
+

1

4
<

3ℓ− 1

3ℓ+ 1
, (19)

when m is sufficiently large.

D Heuristic improvement of lattices for small short secret exponents

Here we give the detailed argument for our improvement of lattices mentioned in Section 4.2. Fix the
parameters β > 0.5 and m. Consider a subset of I+:

I++ =

{
(i1, . . . , iℓ, j) ∈ I+ : j ≤ max{i1, . . . , iℓ} or 0.5j + (i1 + · · ·+ iℓ)β −

ℓ∑
k=1

min(ik, j) < 0

}
(25)

21



Thus, it deletes tuples such that j is large and terms in (15) are greater than zero. Then, construct
the lattice with basis G++ = {g+i1,...,iℓ,j : (i1, . . . , iℓ, j) ∈ I++} ⊂ G+.

Proposition 1. The lattice L(G++) is lower triangular.

Proof. As the proof of Theorem 2, it suffices to show for every (i1, . . . , iℓ, j) ∈ I++,

g+i1,...,iℓ,j = axi11 · · ·xiℓℓ y
j + (terms whose indices are in I++ and smaller than xi11 · · ·xiℓℓ y

j).

Recall that g
(k)
ik,jk

= xik−jk(−1 + xk(y+N))jkem−jk . Thus, it is easy to see that the polynomial is a

linear combination of xi
′
kyj

′
k such that the following three inequalities hold.

0 ≤ j′k, i′k ≤ ik and i′k − j′k ≥ ik − jk (26)

Since each term in g+i1,...,iℓ,j is a sum of the product of terms in g
(1)
i1,j1

, . . . , g
(ℓ)
iℓ,jℓ

, it can be written as

A · xi
′
1

1 · · ·xi
′
ℓ

ℓ y
j′1+···+j′ℓ . Thus, it suffices to show (i′1, . . . , i

′
ℓ, j

′) ∈ I++, where we let j′ = j′1 + · · ·+ j′ℓ.
First, we consider the situation that (i1, . . . , iℓ, j) satisfies the first inequality in the definition of

I++; that is, j ≤ max{i1, . . . , iℓ}. In this situation, we have

j′ = j′1 + · · ·+ j′ℓ
≤

∑
k

(i′k − ik + jk) ≤
∑
k

(i′k − ik) + max{i1, . . . , iℓ}

= max

{
i1 +

∑
k

(i′k − ik), . . . , iℓ +
∑
k

(i′k − ik)

}
≤ max{i1 + (i′1 − i1), · · · , iℓ + (i′ℓ − iℓ)} (since i′k ≤ ik)
= max{i′1, . . . , i′ℓ}.

Thus, (i′1, . . . , i
′
ℓ, j

′) ∈ I++.

Next we consider the situation that (i1, . . . , iℓ, j) satisfies 0.5j+(i1+· · ·+iℓ)β−
∑ℓ

k=1min(ik, j) < 0.
By Theorem 2, (i′1, . . . , i

′
ℓ, j

′) ∈ I+ is already shown; thus, for the case j′ ≤ max{i′1, . . . , i′ℓ}, the claim
is proved. Then consider another case. First note that j′ > max{i′1, . . . , i′ℓ} implies min(i′k, j

′) = i′k for
all k ∈ [ℓ]. Thus, we have,

0.5j′ + (i′1 + · · ·+ i′ℓ)β −
ℓ∑

k=1

min(i′k, j
′) = 0.5(j′1 + · · ·+ j′ℓ) + (i′1 + · · ·+ i′ℓ)(β − 1).

Then, by inequality (26),

0.5(j′1 + · · ·+ j′ℓ) + (i′1 + · · ·+ i′ℓ)(β − 1)
≤ 0.5(j1 + · · ·+ jℓ)− 0.5(i1 + · · ·+ iℓ) + (β − 0.5)(i′1 + · · ·+ i′ℓ)
≤ 0.5(j1 + · · ·+ jℓ)− 0.5(i1 + · · ·+ iℓ) + (β − 0.5)(i1 + · · ·+ iℓ)
= 0.5(j1 + · · ·+ jℓ) + (β − 1)(i1 + · · ·+ iℓ) < 0.

The last equality holds from (i1, . . . , iℓ, j) ∈ I++ Therefore, for both situations the tuple (i′1, . . . , i
′
ℓ, j

′)
is in I++ and L(G++) is lower triangular.

As the same argument in Section 4.2, the Coppersmith technique works if

∑
(i1,...,iℓ,j)∈I++

[
0.5j + (i1 + · · ·+ iℓ)β −

ℓ∑
k=1

min(ik, j)

]
< 0. (27)

The explicit formula has never been given. In Table 3, we show the comparison between the bounds
of β from (27) and (15), for several choices of m and ℓ. Interestingly, for ℓ = 14, m = 5 and β = 0.752,
it can see that (27) holds by a naive computation. Thus, it exceeds the limit of 3/4 given by our
Minkowski sum construction.
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ℓ = 5
m 3 4 5 6

βimprove 0.582 0.596 0.604 0.611

βoriginal 0.571 0.583 0.590 0.596
ℓ = 9

m 3 4 5 6

βimprove 0.677 0.688 0.697 0.702

βoriginal 0.641 0.649 0.655 0.659
ℓ = 14

m 3 4 5

βimprove 0.735 0.745 0.752

βoriginal 0.678 0.683 0.686

Table 3: Comparison of β bounds between the Minkowski sum construction and heuristic improvement

E Generating sequence that contains ℓ natural numbers coprime to
φ(N)

LetN be an n-bit RSA modulus, that is 2n−1 < N < 2n holds. To prove Theorem 3 in Section 5, it needs
to give an efficient way to generate a sequence of distinct natural numbers a0, . . . , aR−1 ∈ [2n−1 : 2n−1]
of length R = poly(logN) such that at least ℓ = O(logN) elements are coprime to φ(N).

Here, we give a method to compute natural numbers K and P so that the sequence ai = K+ iP for
i = 0, 1, . . . satisfies this condition by the following theorem. Note that the theorem holds for n ≥ 385.
For small n, the table of prime numbers near 2n−1 can be used for this purpose. Here, such primes are
coprime to φ(N); this is because the maximum prime factor of φ(N) is smaller than N/3 < 2n−1 since
4|φ(N) holds. Noting that the base of logarithm is two throughout this section.

Theorem 5. Let N be an n-bit RSA modulus whose factor is unknown, and assume that n ≥ 385.
For fixed integer ℓ, we can easily compute natural numbers K and P so that the sequence ai = K+ iP
for i = 0, . . . , R− 1 = 4ℓ logN + log2N satisfies conditions

(i) 2n−1 < ai < 2n − 1 for all i, and
(ii) at least ℓ elements of the sequence are coprime to φ(N).

Proof. Let B be the minimum integer so that B logB − 1 > logN holds. Note that we have
logN > B logB−1

2 and B ≥ 64 from logN ≥ 384.
Write p1, p2, . . . , pb be all odd prime numbers smaller than B. Then, define our P by their product∏

3≤pi<B pi. By the Chebychev inequality on prime numbers, we have

P < 4B < 4
2 log N

log B < N2/3 < 2n−1.

Next we define K. First set k3 ∈ {0, 1} so that 2n−1 +1+ 2k3 is coprime to 3. For this k3, next set
k5 ∈ {0, 1} so that 2n−1 + 1 + 2 · k3 + 2 · 3 · k5. Repeating this process, we find the natural number
defined by using integers kpi

∈ {0, 1},

K = 2n−1 + 1 + 2 · k3 + 2 · 3 · k5 + · · ·+ 2 · 3 · · · pb−1kpb
(28)

which is coprime to P .
Using the above K and P , define the sequence ai = K+iP for i = 0, 1, . . . , R−1 = 4ℓ logN+log2N .

We prove that this sequence satisfies our claims. First, since 1+2+2 · 3+ · · ·+2 · 3 · · · pb−1 < P holds,
we have ai < 2n−1 +R · P < 2n which is the claim (i).
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Next, we prove the claim (ii). Let us write the factoring of φ(N) as

φ(N) = S ·
L∏

j=1

q
ej
j ,

where S is the product of prime factors smaller than B, and qj be the prime numbers ≥ B. Here, note

that L < (logN)/(logB) holds since N > φ(N) = S ·
∏L

j=1 q
ej
j > BL. By the construction, all ai are

coprime to P =
∏

3≤pi<B pi. Thus, qj ̸ |ai for all j implies that ai is coprime to φ(N). We count such
ai.

Since the number of ai divisible by qi in the sequence is bounded upper by ⌈R/qi⌉, the number of
ai coprime to all q1, . . . , qL is bounded lower by

R− ⌈R/q1⌉ − · · · − ⌈R/qL⌉ ≥ R
(
1− 1

q1
− · · · 1

qL

)
− L

> R
(
1− L

B

)
− L

> R
(
1− logN

B logB

)
− logN

logB

= R
(
1− logN

B logB−1 + logN
B logB−1 − logN

B logB

)
− logN

logB

> R · logN
B logB(B logB−1) −

logN
logB (since we setB logB − 1 > logN)

> R · logN
(B logB−1)2 − logN

logB

= 4ℓ log2 N+log3 N+logN
(B logB−1)2 − logN

logB

> ℓ+ logN
4 − logN

logB (since we have logN > (B logB − 1)/2).

Finally, since B ≥ 64, the last term is larger than ℓ. This is our claim (ii).
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