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ABSTRACT
For data storage outsourcing services, it is important to al-
low data owners to efficiently and securely verify that the
storage sever stores their data correctly. To address this is-
sue, several proof-of-retrievability(POR) schemes have been
proposed wherein a storage sever must prove to a verifier
that all of a client’s data is stored correctly. While ex-
isting POR schemes offer decent solutions addressing var-
ious practical issues, they either have a non-trivial (linear or
quadratic) communication complexity, or only support pri-
vate verication - only the data owner can verify the remotely
stored data. It remains open to design a POR scheme that
achieves both public verifiability and constant communica-
tion cost simultaneously.

In this paper, we solve this open problem and propose
the first POR scheme with public verifiability and constant
communication cost. In our proposed scheme, the message
exchanged between the prover and verifier is composed of a
const number of the underlying group elements. Different
from existing private POR construction, our scheme allows
public verification and releases the data owners from burden
of being staying online. Thorough analysis and experiments
on Amazon S3 show that our proposed scheme is efficient
and practical. We prove the security of our scheme based on
Computational Diffie-Hellman Assumption, Strong Diffie-
Hellman Assumption and Bilinear Strong Diffie-Hellman As-
sumption.

Categories and Subject Descriptors
H.3.2 [Information Storage and Retrieval]: Information
Storage; D.4.6 [Security and Protection]: Cryptographic
controls
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1. INTRODUCTION
Due to a number of unprecedented advantages: resource

elasticity, on-demand self-service, location independent re-
source polling, etc[25], cloud storage is increasingly attract-
ing organizations and individuals to outsource their local
data to it. Currently, millions of users have been involved
into cloud storage services including Amazon S3, Microsoft
Skydrive, Google Cloud Storage and Dropbox. It is clear
that cloud storage is a raising trend to become a pervasive
service.

Despite the proliferation of cloud storage service, there are
also increasing security concerns caused by the shortages of
cloud servers. One significant concern is the data integrity,
i.e., whether the cloud server indeed stores its clients’ data
correctly. Recently, a number of data loss events have been
reported for those best-known storage providers[2, 1, 3, 4],
including Amazon S3, Dropbox. To ensure the clients’ confi-
dence for the integrity of data previously stored on the cloud
storage server, a reliable proof-of-retrievability(POR)[17] sys-
tem is desirable. Specifically, in a POR system, the data
storage server must prove that he actually stores the clients’
data correctly. At the same time, the client can verify
whether the proof generated by the server is valid. For the
construction of a POR system, there are several aspects that
mainly affect the performance of the system: 1) communica-
tion cost between server and client in a verification; 2) pri-
vate verifiability or public verifiability; 3) storage overhead
on server side and client side; 4) computation cost of server
and client for each verification. Although several POR tech-
niques[23, 11, 16] have been proposed, different limitations
are existed in them, especially for the communication cost
and the support of public verification.

By utilizing the idea of aggregating block integrity val-
ues, Shacham and Waters(SW)[23] proposed two fast POR
schemes. In their POR constructions, one scheme supports
the private POR verification and the other one achieves the
public POR verification. However, both public and private
SW schemes suffer from the communication cost, which is
linear to the number of elements in the data block. For
the integrity check of large data files, this kind of commu-
nication cost will obviously introduce high latency to the
schemes and even makes them unaffordable in some band-
width limited scenarios(e.g., mobile devices paid by limited



data plan). Therefore, it is desirable in SW schemes to re-
move the influence of s on the bandwidth consuming. To
overcome the limitation in Ref.[23], Xu et al.[16] construct a
private POR scheme with constant communication cost by
utilizing a recent proposed polynomial commitment tech-
nique. The main drawback of this scheme is that it only
supports private verification. This kind of verification will
cause heavy burden on both communication and computa-
tion to the data owner if he wants to share his data with
other clients. Because the owner has to stay online and per-
form verification for every integrity check request of other
clients. In Ref.[10], Dodis et al. enhance SW schemes by
reducing the challenge message size, but no change is made
to the response size, which is linear to the number of ele-
ments in the data block. To our best knowledge, there is no
existing solution proposed for the public POR with constant
communication cost. It is still an open problem problem as
mentioned in Ref.[16].

In this paper, we solve this problem and design a secure
and practical POR scheme with constant communication
cost and public verifiability, called PCPOR. The main idea
of our scheme can be summarized as follows: a data owner
first breaks an ensure coded file into n blocks {mi},1 ≤ i ≤ n
and generates a corresponding authentication tag {σi} for
each block. Then, all the data blocks and tags are out-
sourced to the cloud storage server. When a client wants
to retrieve the data from the server and check whether the
data is stored correctly, he can generate a challenge mes-
sage and send it to the cloud server. By receiving the
challenge message, the cloud server generates the proof for
the correct data storage based on the message, the public
key information and the previously stored tags, and then
returns it to the client as response. After receiving the
proof response, the client performs the verification algo-
rithm to check data integrity using the public key informa-
tion. In our PCPOR scheme, any client or auditing third-
party can perform verification process without contacting
the data owner, who can keep off-line after outsourcing his
data. By tailoring a constant size polynomial commitment
technique[18], our proposed scheme aggregates the proof in-
formation into a polynomial, which makes the size of proofs
independent to the number of elements in data block and
achieve better performance in storage cost than the existing
POR schemes. Through the unique incorporation of tech-
niques form Dotis et al.[10], our PCPOR reduces the chal-
lenge message complexity in Ref.[23] from O(λ2) to O(λ).
Experiments on Amazon EC2 Cloud platform show that our
PCPOR scheme is efficient and practical. Through the se-
curity analysis based on Computational Diffie-Hellman As-
sumption(CDH), Strong Diffie-Hellman(SDH) Assumption
and Bilinear Strong Diffie-Hellman(BSDH) Assumption, we
prove that our proposed scheme is secure.

Main contributions of this paper can be summarized as
below.

• We construct the first secure and efficient POR scheme
with constant communication cost and public verifia-
bility.

• Our proposed scheme solves the open problem pointed
out in Ref.[16] and omits the trade-off between com-
munication cost and storage cost in the public SW
scheme[23].

• We formally prove the security of our scheme. The

advantages of our proposed scheme are validated via
both numerical analysis and experimental results.

The rest of this paper is organized as follows: In section 2,
We review and discuss the related works. Section 3 describes
the system model, security model and assumptions. We in-
troduce the technique preliminaries of our work in Section 4,
which is followed by the the construction and security proof
of our proposed scheme in Section 5. We evaluate the per-
formance of our scheme in Section 6. Discussions about our
paper are provided in Section 7 and we conclude the paper
in Section 8

2. RELATED WORK
In Ref.[17], Juel et al. first defined the POR formally,

which allows a storage server to convince a client that it can
correctly retrieve a file previously stored at the server. In
their proposed POR scheme, disguised blocks hidden among
regular file blocks are utilized to detect data modified by the
server. However, the communication cost in this scheme is
inevitablely large, i.e. O(sλ2), where λ is the security pa-
rameter and s is the number of elements in each erasure
coded file block. This is because there are O(λ) file blocks
in the proof response, each of which has a size of O(λ). What
is more, the number of challenges supported by this scheme
is a fixed priori and thus limits its application. With similar
purpose of Ref.[17], Ateniese et al.[5] proposed an efficient
but weaker provable data possession model using homomor-
phic authentication tag. However, an adversary was later in-
troduced for this scheme by Shacham and Waters[23], which
can answer a fraction of queries correctly with non-negligible
probabilities.

To omit the limitation in Juel et al.’s POR scheme[17],
Shacham and Waters(SW)[23] proposed two fast POR schemes
based on the homomorphic linear authenticators[5], which
enables the storage server to reduce the proof complexity by
aggregating the authentication tags of individual file blocks.
In their constructions, one proposed POR schemes supports
private verification based on pseudorandom functions(PRFs)[13]
and the other one achieves public verifiability by utilizing
BLS signatures[7]. Compared to scheme in Ref.[17], the
communication cost for proof response in Ref.[23] is reduced
from O(sλ2) to O(sλ) and can support unlimited number of
challenges, where s is the number of elements in each era-
sure coded file block. At the same time, they first provide
a security proof against arbitrary adversaries in the formal
POR model. However, in SW schemes, the communication
size for proof response is still linear to the value of s and the
challenge cost is increased to O(λ2). When considering the
integrity verification of large data files, the bandwidth con-
suming will introduce high delay, which can be worse and
even unaffordable in some scenarios with restricted band-
width, such as mobile devices paid by limited data plan.

Following SW schemes[23], several POR schemes are pro-
posed recently to enhance it in terms of communication cost.
In Ref.[10], by using a (γ, δ)− hitter introduced by Goldre-
ich[19], Dodis et.al. reduce the size of challenge message
in SW scheme from O(λ2) to O(λ). Nevertheless, there is
still no change made in this scheme to the response size,
which is linear to the number of elements in a data block:
O(sλ). To further improve POR scheme and overcome the
limitations in previous ones, Xu et.al[16] proposed a private
POR scheme with constant communication cost based on a



Notation Description
Chall Challenge message for integrity check.
Prf Proof response for integrity check.

PK,SK System public key and private key
spk, ssk Public key and private key for signature scheme

s The number of elements in a data block.
n The number of data blocks in an encoded.

data file.
||G|| Size of a group element on G
l Number of blocks accessed in a verification.

f~m(x) A polynomial m0 +m1x+ · · ·+md−1x
d−1,

where ~m is the coefficient with dimension d.

Table 1: Notations used in this paper

recent proposed polynomial commitment technique[18] and
the result from Ref.[10]. By aggregating the proofs into a
polynomial, the limitation of communication cost in SW’s
private POR scheme is overcome in Xu et.al.’s construc-
tion[16]. The main drawback of this proposed scheme is that
the data owner has to stay online and perform onerous works
of verification for the each request of integrity check from
other clients, which will inevitably introduce heavy com-
munication cost and computation cost to the data owner,
especially when multiple clients submit integrity check at
the same time. How to support POR scheme with public
verifiability and constant communication cost is pointed out
as an open problem.

3. MODEL AND ASSUMPTION
The description of key notations used in this paper is sum-

marized in Table 1

3.1 System Model
In this work, we follow the POR model that is consistent

with most existing POR schemes[17, 23, 8, 16]. We consider
a POR system that has three participating entities: Data
owner, Client, and Cloud server. Data owner has a collec-
tion of data and stores them on cloud server after ensure
coding together with the corresponding authentication tags.
The client who shares the stored data with the owner can
access it with integrity check, which can also be performed
as an independent procedure. To check the integrity of data
files, the client generates a challenge message and sends it to
the cloud server. The cloud server then responses the com-
puted proof for the selected file blocks to the client. After
receiving the proof, the client can verify the integrity of data
files through the verification algorithm. W.l.o.g., we define
the 1-round version of our POR model, which contains four
algorithms, KeyGen, Setup, Prove and Verify, as below:

• KeyGen: Given a selected security parameter λ, the
randomized KeyGen algorithm outputs the system pub-
lic key and private key as (PK,SK).

• Setup: Given a data file M ∈ {0, 1}∗ and the public-
private key pair (PK,SK), the Setup algorithm gen-

erates the encoded file M̂ as well as the correspond-
ing authentication tag σ, which will be stored on the
server.

• Prove: Given the public key PK, encoded file M̂ ,
authentication tag σ and a challenge message Chall,
Prove algorithm produces a proof response Prf.

• Verify: Given the public key PK and the Prf, the
Verify algorithm checks the data integrity and outputs
result as either accept or reject.

3.2 Security Model
We consider the storage server as untrusted and poten-

tially malicious, which is consistent with existing POR schemes[17,
23, 16]. In our construction, we would like our POR scheme
to be correct and sound. For the correctness of our scheme,
we require that our Verify algorithm accepts a valid proof
generated from all key pairs (PK,SK), all files M ∈ {0, 1}∗,
all encoded files M̂ and authentication tags σ. For the
soundness of our scheme, if any malicious cloud server can
generate a proof and convince the Verify algorithm that it
actually stores M̂ correctly, it has to yield up the right M̂ for
the proof generation. By following Ref.[17, 23, 16], we define
the security game for the soundness of our POR scheme as
below.

Definition 3.1. Let ∇ = (KeyGen, Setup, Prove, V eiry)
be a POR scheme and A be a probabilistic polynomial-time
adversary. Consider the following security game among a
trust authority, a challenger and A.

• The trust authority runs KeyGen(1λ) → (PK,SK)
and gives PK to the adversary A.

• The adversary A choses a data file M and sends it to
the trust authority. The authority then runs Setup(M,SK,

PK)→ (σ, M̂) and responses the encoded data file M̂
together with the authentication tag σ back to A.

• With regard to the data file M chosen by adversary
A, the challenger picks a random challenge Chall and
sends it to A.

• According to the received challenge Chall, the adver-
sary A produces a proof response Prf by running an
arbitrary algorithm Art(M̂, σ, PK)→ Prf rather than
the Prove algorithm. The proof response Prf is sent
back to the challenger.

• The challenger verifies Prf by running Verify algo-
rithm with Prf and PK. The output of V erify(Prf, PK)
is denoted as Rst.

• The adversary wins the game if and only if he can pro-
duce a Prf with data file M̂ ′, M̂ ′ 6= M̂ and make the
challenger generate Rst as accept through the Verify
algorithm.

We say that ∇ is sound if any probabilistic polynomial-time
adversary A can win the game with at most a negligible
probability.

3.3 Assumption

Definition 3.2. Computational Diffie-Hellman (CDH)
Assumption[9]

Let a, b
R← Z∗p . Given input as (g, ga, gb), where g is a gen-

erator of a cyclic group G of order p. It is computationally
intractable to compute the value gab.



Definition 3.3. t-Strong Diffie-Hellman (t-SDH) As-
sumption[6]

Let α
R← Z∗p . Given input as a (t+1)−tuple (g, gα, · · · , gα

t

) ∈
Gt+1, where G is a cyclic group of prime order p and g is
the generator of G. For any probabilistic polynomial time
adversary(PPTAdv), the probability Pr[PPTAdv(g, gα, · · · ,
gα

t

) = (c, g
1

α+c )] is negligible for any value of c ∈ Z∗p/−α.

Definition 3.4. t-Bilinear Strong Diffie-Hellman (t-
SDH) Assumption[14]

Let α
R← Z∗p . Given input as a (t+1)−tuple (g, gα, · · · , gα

t

) ∈
Gt+1, where G is a multiplicative cyclic group of prime order
p and g is the generator of G. For any probabilistic polyno-
mial time adversary(PPTAdv), the probability Pr[PPTAdv

(g, gα, · · · , gα
t

) = (c, e(g, g)
1

α+c )] is negligible for any value
of c ∈ Z∗p/−α.

4. TECHNIQUE PRELIMINARIES

4.1 Bilinear Map
A bilinear map[7] is a map e : G×G→ G1, where G and

G1 are two multiplicative cyclic groups of the same prime
order p. A bilinear map has the following properties:

• Bilinear: For all g1, g2 ∈ G and a, b
R← Z∗p , e(ga1 , g

b
2) =

e(g1, g2)ab.

• Computable: There exists an computable algorithm
that can compute e efficiently.

• Non-degenerate: For g ∈ G, e(g, g) 6= 1

4.2 Constant Size Polynomial Commitment
A secure polynomial commitment scheme enables a com-

mitter to commit to a polynomial with a short string, which
can be used by a verifier to confirm claimed evaluations of
the committed polynomial. By utilizing an algebraic prop-
erty of polynomials f(x) ∈ Z[x]: (x−r) perfectly divides the

polynomial f(x) − f(r), r
R← Z∗p , Kate et.al.[18] proposed a

polynomial commitment scheme with constant communica-
tion size. In their scheme, a committer of polynomial f(x)
can generate a proof with constant size to verify the correct-
ness of the polynomial evaluation f(r), where x = r is an
index on the polynomial. Specifically, we summarize Kate
et.al.’s scheme[18] as below.

• Setup(1λ, t): Given a security parameter λ and a fixed
number t, a trust authority generates a public-private
key pair (PK,SK):

PK = (G,G1, g, g
α, · · · , gα

t

) SK = α
R← Z∗p

where G and G1 are two multiplicative cyclic groups
with prime order p(λ bits security), g is the generator
of G and e : G×G→ G1.

• Commit(PK, f~m(x)): For polynomial f~m(x) ∈ Zp[x]

with coefficient vector ~m = (m0,m1, · · · ,ms−1)
R← Z∗p ,

a committer computes the commitment C = gf~m(x) ∈
G and publishes C.

• CreateWitness(PK, f~m(x), r): For any index r
R←

Z∗p , the committer divides polynomial f~m(x) − f~m(r)
with (x − r) and outputs ~w as result, where ~w =

(w0, w1, · · · , ws−1) and f~w(x) ≡ f~m(x)−f~m(r)
(x−r) . Then,

the witness ψ is computed as ψ = gf~w(x) based on
PK.

• V erifyEval(PK,C, r, f~m(r), ψ): A verifier verifies that
f~m(r) is the evaluation at the index r of the polynomial
committed to by C as:

e(C, g)
?
= e(ψ, gα/gr) · e(g, g)f~m(r)

Due to the space limitation, please refer to Ref.[18] for the
detail correctness and security proofs of this scheme.

5. CONSTRUCTION OF PCPOR

5.1 Scheme Description
Let e : G × G → G1 and H be the one-way hash func-

tion[15], where G is a multiplicative cyclic group of prime
order p and g be a generator of G. We define f~c(x) as a
polynomial with coefficient vector ~c = (c0, c1, · · · , cs−1) and
describe our PCPOR scheme as follows.

• KeyGen(1λ)→ (PK,SK):

Choose a random (λ+1) bits safe prime p and generate

a random signing keypair ((spk, ssk)
R← SKg) using

BLS signature[6]. Choose two random numbers α, ε
R←

Z∗p , compute v ← gε,κ← gαε and {gα
j

}s−1
j=0. Then, the

public and private keys are

PK = {p, v, κ, spk, {gα
j

}s−1
j=0}, SK = {ε, ssk, α}

• Setup(PK,SK,M)→ (M∗, σ, τ):

Given a data file M , obtain M ′ by applying ensure
code(e.g.Reed-Solomon code[22]). SplitM ′ into n blocks,
each of which is s elements long: {mij}1≤i≤n,0≤j≤s−1.
Choose a random file name name from some suffi-
ciently large domain(e.g.Z∗p ) and s random number

u0 · · ·us−1
R← Z∗p . Let τ0 be “name||n||u0|| · · · ||us−1”;

the file tag τ is τ0 together with a signature on τ0 under
ssk: τ ← τ0||SSigssk(τ0). For each data blocki, 1 ≤
i ≤ n, an authentication tag is computed as:

σi = (gH(name||i) ·
s−1∏
j=0

gujmijα
j

)ε (1)

= (gH(name||i) · gf ~βi (α))ε

where βi,j = mi,juj and ~βi = {βi,0, βi,1, · · · , βi,s−1}.
The processed file M∗ together with the authentica-
tion tags σi are outsourced for storage, where M∗ is
{mi,j}, 1 ≤ i ≤ n, 0 ≤ j ≤ s− 1.

• V erify(PK, τ)→ Chall:

Stage 1: Verify the signature on τ : if the signature is
not valid, reject and halt; otherwise, parse τ to recover
name, n, u0, u1, · · · , us−1. Now, choose a random ele-

ment ρ
R← Z∗p and a random l−elements subset I of the



set [1, n] using Goldreich[13]’s (γ, δ)−hitter. Produce
the challenge message as

Chall = {r, ρ, I}

where, r
R← Z∗p . Challenge the data storage server with

Chall.

• Prove(PK,M∗, Chall, τ, r)→ (ψ, y, σ):

Parse the challenge message Chall as {r, ρ, I} and gen-
erate a l-element set Q as (i, vi), with the i ∈ [1, n],

where vi = ρi mod p and ρ
R← Z∗p . Parse the processed

file M∗ as mi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ s together with σi
and compute

σ =
∏

(i,vi)∈Q

σvii (2)

We denote vector

~A = (u0 ∗
∑

(i,vi)∈Q

vimi,0, · · · , us−1 ∗
∑

(i,vi)∈Q

vimi,s−1)

Compute

y = f ~A(r) (3)

As we mentioned before, polynomials f(x) ∈ Z[x] have
the algebraic property that (x−r) perfectly divides the

polynomial f(x)−f(r), r
R← Z∗p . Now, divide the poly-

nomial f ~A(x)−f ~A(r) with (x−r) using polynomial long
division, and denote the coefficients vector of the re-
sulting quotient polynomial as ~w = (w0, w1, · · · , ws−2),

that is, f~w(x) ≡ f ~A(x)−f ~A(r)

x−r . Produce

ψ =

s−2∏
j=0

(gα
j

)wj = gf~w(α) (4)

Response Prf = {ψ, y, σ}.

• V erify(PK,Prf)→ Rst:

Stage 2: After receiving the proof response Prf, com-
pute

ηi = v−H(name||i)vi , (i, vi) ∈ Q (5)

η =
∏

(i,vi)∈Q

ηi (6)

where v = gε in PK, i ∈ [1, n], vi = ρi mod p. Parse
Prf as {ψ, y, σ} and check

e(ψ, κ · v−r) ?
= e(σ · η, g) · e(g−y, v) (7)

where κ = gεα in PK. If Eq.7 holds, then output Rst
as accept; otherwise, output Rst as reject.

• Correctness For a storage server who honestly re-
sponses the challenge with a Prf = {ψ, y, σ}, we can
analyze the correctness of Eq.7 from the left part and
right part as:
Left Part:

e(ψ, κ · v−r) (8)

= e(gf~w(α), gε(α−r))

= e(g, g)
f ~A

(α)−f ~A(r)

α−r ·ε(α−r)

= e(g, g)ε(f ~A(α)−f ~A(r))

Right Part:

e(σ · η, g) · e(g−y, v) (9)

= e(g
ε(

∑
(i,vi)∈Q

H(name||i)vi+f ~A(α))+ε
∑

(i,vi)∈Q
−H(name||i)vi

, g) · e(g−f ~A(r), gε)

= e(g, g)εf ~A(α) · e(g, g)−εf ~A(r)

= e(g, g)ε(f ~A(α)−f ~A(r))

where v = gε and κ = gεα. From the above Eq.8 and
Eq.9, it is easy to see that the scheme is correct if the
the storage sever generate the Prf honestly.

5.2 Security Proof

5.2.1 The underlying authenticator is unforgeable

Theorem 5.1. If t-Strong Diffie-Hellman(t-SDH) Assump-

tion holds and gf~c(x) can be forged by an existed probabilistic
polynomial time adversary A, we can construct an algorithm
B that uses A to efficiently compute the solution to t-SDH
problem.

Proof. Suppose there exists a probabilistic polynomial

time adversity A can forge f1
~c (α) such that gf

1
~c (α) = gf~c(α),

where ~c is the coefficient vector, he/she obtains gf
2
~c (α) =

gf~c(α)/gf
1
~c (α) = gf~c(α)−f

1
~c (α) ∈ Zp[x]. Since f1

~c (α) = f~c(α)
and f2

~c (α) = 0, i.e., α is a root of polynomial f2
~c (x) and by

factoring f2
~c (x)[24], B can easily find SK = α and solve the

instance of the t-SDH problem given by the system param-
eters.

Theorem 5.2. If the signature scheme used for file tags is
existentially unforgeable, Computational Diffie-Hellman(CDH)
problem is hard, t-Strong Diffie-Hellman(t-SDH) Assump-
tion and t-Bilinear Strong Diffie-Hellman(t-BSDH) Assump-
tion hold. In our proposed scheme, the prover’s response
(y, ψ, σ) is unforgeable.

Proof. Suppose a probabilistic polynomial time adver-
sity can generate a response (y′, ψ′, σ′) to forge (y, ψ, σ) after
receiving a challenge message from the verifier, (y′, ψ′, σ′) 6=
(y, ψ, σ). Since both the forged and the true responses can
be accepted by the verification algorithm, we can get the
following two equations:

e(ψ, κ · v−r) = e(σ · η, g) · e(g−y, v) (10)

e(ψ′, κ · v−r) = e(σ′ · η, g) · e(g−y
′
, v) (11)

Dividing Eq.10 with Eq.11, we obtain:

e(ψ, g)ε(α−r)

e(ψ′, g)ε(α−r)
=

e(g, g)
εE−

∑
(i,vi)∈Q

H(name||i)vi−y

e(g, g)
εE′−

∑
(i,vi)∈Q

H(name||i)vi−y′

(
e(ψ, g)

e(ψ′, g)

)ε(α−r)
= e(g, g)ε(E−E

′)+y′−y (12)

where we denote σ as gEε and σ′ as gE
′ε for simplicity.

Now we do a case analysis on whether σ = σ′.

Case 1: σ 6= σ′. Since gEε = σ and gE
′ε = σ′, we get E 6=

E′. As
(
e(ψ,g)
e(ψ′,g)

)ε(α−r)
, e(g, g)y

′−y and e(g, g)Eε = e(g, σ)

are known to the adversary, we rewrite Eq.12 as

Υ = e(g, g)εE
′

(13)



where we denote Υ = e(g, g)Eε+y
′−y/

(
e(ψ,g)
e(ψ′,g)

)ε(α−r)
as a

known value to the adversary.
Recall that in this proof, the Computational Diffie-Hellman

(CDH) problem is hard. If the any probabilistic polynomial
time adversity A can find E′ with non-negligible probabil-
ity and make the Eq.13 hold, we can construct an algo-
rithm B that uses A to solve the instance of CDH prob-
lem. Specifically, given E′ 6= E found by A, which makes

Eq.13 hold, B can get Υ = e(g, g)εE
′

as solution for CDH

problem of e(g, g)ε and e(g, g)E
′
. Therefore, no probabilistic

polynomial time adversity can find a valid forged response
(y, ψ, σ) 6= (y′, ψ′, σ′) and σ 6= σ′ with non-negligible prob-
ability.
Case 2: σ = σ′. In this case, we can rewrite Eq.12 as:

(
e(ψ, g)

e(ψ′, g)

)ε(α−r)
= e(g, g)y

′−y (14)

We further do a case analysis on whether y = y′.

Case 2.1: y = y′. As (y, ψ, σ) 6= (y′, ψ′, σ′), σ = σ′ and
y = y′, we can obtain that ψ 6= ψ′. In this case, since y = y′,
we further rewrite the Eq.14 as:

(
e(ψ, g)

e(ψ′, g)

)ε(α−r)
= 1 (15)

We know that ψ 6= ψ′, i.e., e(ψ,g)
e(ψ′,g) 6= 1, and ε 6= 0, we can

infer α = r from Eq.15. In our scheme, r is known to the
adversary(i.e., the adversary can find SK = α). As we men-
tioned in Theorem 5.1, by finding SK = α, we can solve
the instance of the t-SDH problem by given the system pa-
rameters. Therefore, no valid forged response (y, ψ, σ) 6=
(y′, ψ′, σ′) and y = y′ can be found by probabilistic polyno-
mial time adversity A with non-negligible probability.

Case 2.2: y 6= y′. From Eq.14 and y 6= y′, we can imply
that α 6= r. In this case, we show how to construct an
algorithm B, using the existed adversary, that can break
the t-Bilinear Strong Diffie-Hellman(t-BSDH) Assumption

with a valid solution (−r,
(
e(ψ,g)
e(ψ′,g)

) 1
y′−y

).

We denote ψ as gθ and ψ′ as gθ
′
, and then we can rewrite

Eq.14 as :

(
e(ψ, g)

e(ψ′, g)

)ε(α−r)
=

e(g, g)−y

e(g, g)−y′

θε(α− r) + y = θ′ε(α− r) + y′

ε(θ − θ′)
y′ − y =

1

α− r (16)

Therefore, algorithm B can compute

(
e(ψ, v)

e(ψ′, v)

) 1
y′−y

= e(g, g)
ε(θ−θ′)
y′−y = e(g, g)

1
α−r (17)

and returns (−r, e(g, g)
1

α−r ) as a solution for t-BSDH in-
stance. It is easy to see that the success probability of solv-
ing the instance is the same as the success probability of the

adversity, and the time required is a small constant larger
than the time required by the adversary.

Therefore, Theorem 5.2 is proved.

6. PERFORMANCE EVALUATION
To measure the impact of our improvements from the ex-

isting schemes and evaluate the practicality of our proposed
PCPOR scheme, we numerically analyze it and implement
it using Amazon EC2 and S3 cloud platform.

6.1 Numerical Analysis
In this section, we numerically evaluate the performance

our proposed PCPOR scheme in terms of communication
cost, computation cost and storage cost. We compare our
PCPOR scheme with the existing POR techniques[23, 10,
16] and summarize the result in Table 2. For simplicity, in
the following part of this paper, we denote the complexity of
one multiplication operation on Group G as MUL and that
of one exponentiation operation on Group G as EXP1. Fur-
thermore, we use ZADD and ZMUL to represent the addi-
tion and multiplication operations on Z∗p respectively. PRF
is used to denote pseudorandom function and ||G|| denotes
the size(in number of bits) of a group element on G.

6.1.1 Communication
In our proposed PCPOR scheme, the communication cost

comes from the challenge message Chall and the proof re-
sponse Prf in each verification request. For the challenge
message, it consists of a l−elements subset I and two ran-

dom elements ρ, r
R← Z∗p . By utilizing Goldreich[13]’s (γ, δ)−

hitter2, we can represent the subset I with log|F |+3log(1/δ)

bits, where |F | is the size of the encoded data file, and δ
is the error probability. In particular, given a data file less
than 1024 TB(i.e. |F | = 243 bits, which is enough for most
practical scenarios) and set δ = 2−80, the subset I can be
represented with 283 bits. As a result, the total cost of
Chall in our PCPOR scheme is 2λ+ 283 bits when the data
file size is smaller than 1024 TB. For the proof response, by
aggregating proof information into 3 tags ψ, σ and y, the
total size of the proof response is 2||G|| + λ bits, where ψ
and σ are two group elements and y the result of a poly-
nomial. Therefore, the total complexity of communication
cost in our PCPOR scheme is O(||G||). When setting rea-
sonable parameters for our PCPOR scheme(e.g. λ = 160,
||G|| = 1024 bits and the data file is less than 1024 TB), the
total communication cost becomes constant size.

Now, we compare the existing POR schemes[23, 10, 16]
with our PCPOR scheme and summarize the result in Ta-
ble 2. In Ref.[23], the complexity of challenge message and
proof response are O(λ2) and O(sλ) respectively, where s is
the number of elements in each encoded block. Compared
to our PCPOR scheme, which has constant communica-
tion cost in for both challenge and response processes, this
scheme have a communication size of proof response linear
to s and a challenge message cost λ times to ours. In the
POR scheme proposed by Dodis et al.[10], the size of chal-
lenge message is reduced to O(λ), which is the same as in

1
When the operation is on the elliptic curve, EXP means scalar mul-

tiplication operation and MUL means one point addition operation.
2
In Goldreich[13]’s (γ, δ) − hitter, it is guaranteed that any subset
Sub ⊂ [1, n] with size |Sub| ≥ |F |(1 − gamma), Pr[I ∩ Sub 6= ∅].
For more details, please refer to Ref.[13].



Scheme Public Comm. Comm. Comp. Comp. Storage Storage Data
verifiability complexity complexity Cost Cost Cost Cost Preparation

(Challenge) (Response) (Server) (Challenger) (Server) (Challenger)
(bits) (bits) (bits) (bits)

[23] Yes O(λ2) O(sλ) l(MUL+EXP)+ (s+ l)MUL+ (1 + 1
s )|F | λ+ ||G|| (s+ 1)MUL+

sl(ZADD+ZMUL) (s+ l)EXP+ (s+ 2)nEXP
2Pairing

[10] No O(λ) O(sλ) (sl + l)(ZMUL (s+ l)(ZMUL+ (1 + 1
s )|F | 2λ lPRF+

+ZADD) ZADD)+lPRF n(ZMUL+ZADD)

[16] No O(λ) O(λ) (s− 1)(EXP+MUL)+ 2EXP+lPRF (1 + 1
s )|F | 3λ+ 80 lPRF+

(s+ l + sl)(ZMUL l(ZMUL+ZADD) n(ZMUL+ZADD)
+ZADD)

PCPOR Yes O(λ) O(||G||) (l + s− 1)MUL+ lMUL+ (1 + 1
s )|F | λ+ 4||G|| (s+ 1)MUL+

(2l + s− 1)EXP+ (2l + 2)EXP+ (2s+ 2)nEXP
slZADD+s(l + 2)ZMUL 3Pairing

Table 2: Complexity Summary: in this table, MUL is one multiplication operation on Group G, EXP is
one exponentiations operation on Group G, PRF denotes the pseudorandom function, ZADD and ZMUL
represent the addition and multiplication operations on Z∗p respectively; λ is the security parameter chosen
for the system, ||G|| is the size(in number of bits) of a group element on G, |F | is size of data file, n is number
of encoded blocks for the data file, s is the number of elements in each block and l is number of blocks
selected for verification. Note: if we fix the security parameter λ, the communication complexity in our
PCPOR scheme becomes constant.
.

our PCPOR scheme. However, the cost of proof response
in their scheme is still O(sλ). Considering only private veri-
fication, Xu et al.[16]’s POR scheme reduces communication
cost to constant size in each single verification. Nevertheless,
it is worthy of notice that their scheme only supports private
verification, which centralizes all the verification tasks to the
data owner and thus introduces onerous burden in commu-
nication to it. Specifically, if the data owner wants to share
his outsourced data with other individuals/organizations, it
has to stay online and processes all verifications by him-
self. As a result, the communication cost for the owner in-
creases linearly to the number of verification requests at the
same time. Differently, with the public verifiability of our
PCPOR scheme, each challenger is able to conduct the ver-
ification independently with constant communication cost
and the data owner can go off-line after outsourcing his data.

6.1.2 Computation
As mentioned in Section 5.1, our PCPOR scheme is com-

posed of 4 algorithms: KeyGen, Setup Prove and Verify.
Among these algorithms, KeyGen and Setup are performed
by the data owner as data preparation process. To generate
the public key PK as well as the private key SK for the sys-
tem, the data owner performs (s+ 3)EXP operations using
the KeyGen algorithm. In the Setup procedure, to process
an encoded data file with n blocks, each of which has s ele-
ments, (2s+2)nEXP and (s+1)MUL operations are needed
to generate the authentication tags. Note that the data
preparation process in our PCPOR scheme is one-time cost
for the data owner, it can go off-line after finishing this pro-
cess. For the computation cost in each verification request,
the server needs to perform (l+s−1)MUL, (2l+s−1)EXP,
slZADD and s(l+2)ZMUL operations to generate the proof
response, where l is number of blocks chosen in each verifi-
cation. After receiving the proof information, the challenger
first conducts lMUL and 2lEXP operations to generate η.
Then, 2 more EXP and 3 Pairing operations are needed for
the final verification. Therefore, as shown in Table 2, the
total computation cost for the challenger in one verification
is lMUL+(2l + 2)EXP+3Pairing.

We now compare our PCPOR scheme with the existing
POR schemes[23, 10, 16] and show the result in Table 2.
Beginning with the public POR scheme in Ref.[23], although
our PCPOR will introduce s− 1 more MUL, l+ s− 1 more
EXP and 2s more ZMUL operations to the server side, it
achieves the same computation cost level for the challenger
side(client). As the cloud sever side is always much pow-
erful than the challenger side(e.g. Amazon EC2 vs Mobile
devices), the additional computations brought to server side
in our PCPOR can be easily handled in practical scenarios
and will have little influence on the scheme’s performance.
When considering the two private POR schemes[10, 16] as
shown in Table 2, which have almost the same computation
cost for challenger side except for 2 more EXP operations
in Ref.[16], our PCPOR scheme will cause relative higher
computation cost by replacing the operations on Z∗p to op-
erations on G in each verification. However, it is notable
that these private POR schemes[10, 16] have to centralize
all the verification tasks to the data owner(i.e., the com-
putation cost on the data owner is linear to the number of
simultaneous verification requests), which requires the data
owner to keep online and causes heavy computation burden
on it. On the contrary, in our PCPOR, the computation
tasks for each verification is distributed to the challengers
without contacting the data owner. This public verifiability
makes our scheme easy to scale and have practical compu-
tation cost on each challenger. For the computation cost
for data preparation, our PCPOR scheme introduces sn
more EXP operations compared to the public POR scheme
in Ref.[23]. Since the data preparation process is one-time
cost in our scheme and will not influence the realtime ver-
ification process, the additional operations in this process
can be accepted in practical scenarios. Compared to the
private POR schemes in Ref.[10, 16], as shown in Table 2,
our PCPOR scheme and scheme in Ref.[23] need relative
higher computation cost for the preparation due to the re-
quirement of group operations for the public verifiability.
Nevertheless, as we mentioned above in this section, these
additional one-time computation cost in data preparation
process is reasonable and acceptable.



6.1.3 Storage
In this section, we first analyze the storage cost of our

PCPOR scheme on both challenger side and server side, and
then compare it with the existing POR schemes[23, 10, 16].
The results of our analysis are summarized in Table 2. For
the challenger side, our PCPOR scheme only requires the
challenger to store partial public key PK : {p, v, k, spk, g}
to generate the challenge message Chall and perform verifi-
cation algorithm V erify. Thus, the size of storage cost for
each challenger is 4||G|| + λ bits. Compared to the exist-
ing POR schemes[23, 10, 16], which require ||G||+λ bits, 2λ
bits and 3λ+80 bits respectively for the challenger side stor-
age cost, our PCPOR scheme achieves the same storage cost
level as demonstrated in Table 2. For storage overhead on
the server side, it mainly comes from the authentication tags
for the encoded data blocks. In our PCPOR scheme, each
authentication tag is a group element with λ bits, thus the
total size for tags is nλ bits. As the total encoded data file
size |F | = nsλ bits, we represent the total storage overhead
on server side as (1 + 1

s
)|F | bits, which equals to existing

schemes’[23, 10, 16] storage cost on server sides when the
values of s and λ are same.

Note that the communication cost in our PCPOR scheme
is independent to s as we mentioned in Section 6.1.1, which
enables our scheme to reduce the storage cost on server side
by adjusting the value of s. However, in Ref.[23, 10], as the
communication cost for proof response is linear to the value
of s, reducing the storage cost will lead to the sacrifice of
communication performance.

6.2 Experimental Evaluation

6.2.1 Experiment Setup
We implemented our proposed PCPOR scheme on Ama-

zon S3 Cloud Platform using C++ with GNU MP library[12]
and the Pairing-Based Cryptography library[20]. To en-
hance the efficiency for data preparation process in our scheme,
we utilize the Phoenix++ library[21]. The test machine for
data owner and challenger are laptops running Mint Linux
13 with 2.50GHz Intel i5-2520M CPU and 8GB memory. For
the cloud server, we utilize node on Amazon EC2 running
Red Hat Enterprise Linux 6.3 with 8 Cores CPU and 30GB
memory. The size of test data files(after error erasure encod-
ing) in our experiments varies from 128MB to 2048MB. We
do not conduct experiments on more large dataset because
our experiment results show that the increase of encoded
data file size has little influence on our scheme’s communi-
cation cost and computation cost. We set the security pa-
rameter λ = 160, which achieves 1024bit security on Group.
By following the previous work[16], we change the number
of elements in each block s from 40 to 1280. The number of
data blocks to access in each verification l from 100 to 1000
based on our error detection probability analysis in Section
7. Each single experiment case is repeated for 10 times and
we use the average values as the final results.

6.2.2 Experimental Results
In this section, we provide the experimental results for

our PCPOR scheme and summarize them in Figure 1 and
Figure 2.

KenGen: Since the public key PK and private key SK in
our scheme need (s + 3) EXP operations, the time needed
for generating the system PK and SK become linear to s,

where s is the number of group elements in one data block.
As we show in Figure 1(a), the key generation time varies
from 0.24s to 7.79s when we change the value of s from
40 to 1280. However, in our PCPOR scheme, as the key
generation is one-time cost and do not to be repeated in the
following verification processes, the cost for this process can
be easily handled in practical scenarios.

Setup: To measure the computation cost for the data
preparation, we use encoded data files with different size(128MB
to 2048MB) and vary the number of group elements in one
data block(40 to 1280). As demonstrated in Figure 1(b), the
preparation time is mainly determined by the encoded data
file size and slightly influenced by the value of s, which is
consistent with our analysis in Section 6.1.2. Since the com-
putation cost in this process is mainly from the (2sn + 2n)
EXP operations and the value of 2ns is determined by size
of data file when λ is fixed(i.e. |F | = nsλ), the increase of
the encoded data file size greatly influences the total compu-
tation cost. At the same time, the increase of s will lead to
the decrease of n, thus the cost is slightly reduced when we
increase the value of s in our experiments(e.g. for 1024MB
data file, the cost is reduced from 356.16s to 347.74s when
we vary s from 40 to 1280). Considering 2048MB encoded
data file in our experiments, we spend about 700s to process
the file when s is from 40 to 1280 on single machine. As
it is easy for cloud server to process such proof generation
in parallel, this cost is acceptable in practical scenarios. For
larger data file, our setup process is easy to be parallelized to
enhance efficiency. It is notable that this setup procedure in
one-time cost in our PCPOR scheme and will not influence
the following verification performance.

Prove: For the measurement of proof generation efficiency
in our PCPOR scheme, Figure 2(a) and Figure 2(b) show
that the computation cost is mainly affected by the values
of l and s, where l the number of blocks accessed in a ver-
ification. At the same time, by comparing the results in
Figure 2(a) and Figure 2(b), it is easy to see that the proof
generation performance has few relationship with the size of
encoded data file3. Specifically, as demonstrated in Figure
2(a) and Figure 2(b), the computation cost for generating
proof on server side increases linearly to l or s when one of
them is fixed, which is consistent with the previous analysis
in Section 6.1.2. This is because the server needs to compute
proof information for all the selected blocks in a verification
and the value of s determines the number of terms in the
polynomial for proof. By changing s from 40 to 1280 and l
from 100 and 1000, the server spends 0.48s to 7.23s to gen-
erate the proof response with single node. As we mentioned
above, since the size of encoded data file has few influence
on the proof generation in our PCPOR scheme, the compu-
tation cost for this process is reasonable in practical usages
for different size of data files.

Verify: In our experiment for the verification process, we
find that the factor mainly affect the computation cost is
the value of l, which supports our previous analysis in Sec-
tion 6.1.2. As shown in Figure 2(c) and Figure 2(d), the
computation cost for each verification on the challenger side
is linear to the value of l and has few relationship with the
value of s as well as the size of encoded data file. By varying

3
From our experiments, we find the size of encoded data file has few

influence on proof generation, we only put the results of 128MB and
1024MB data file here due to the space limitation. The full experi-
ment results for this part can be found in Appendix10.1.
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Figure 1: (a) Time Cost for Key Generation (b)Time Cost for Setup (c) Communication Cost for a verifica-
tion(encoded data file is 128MB) (d) Communication Cost for a verification(encoded data file is 1024MB)
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Figure 2: (a) Time cost for proof generation on server side(encoded data file is 128MB) (b)Time cost for
proof generation on server side(encoded data file is 1024MB) (c) Client verification time(encoded data file is
128MB) (d)Client verification time(encoded data file is 1024MB)

l from 100 to 1000, the verification costs up to 4.13s for a
challenger under different value of s(i.e. from 40 to 1280)
and encoded data file size(from 128MB to 2048MB)4, which
is acceptable for practical scenarios.

Communication: To verify the constant communication
cost in our PCPOR scheme, we vary all the factors(i.e.,
values of s, l and size of encoded data file) that may in-
fluence the communication size in POR schemes, which do
limit the previous POR schemes[23, 10] as shown in Sec-
tion 6.1.2. As demonstrated in Figure 1(c) and Figure 1(d),
the communication cost in our PCPOR scheme keeps as a

4
We only put the results of 128MB and 1024MB data file here due to

the space limitation. The full experiment results for this part can be
found in Appendix10.2.

constant value when we change l from 100 to 1000 and s
from 40 to 1280. By varying the size of encoded data file
from 128MB to 2048MB5, it increases less than 1byte for
communication cost, and thus can still be treated as con-
stant value compared to total cost(i.e. around 429bytes) in
PCPOR scheme. Note that, although we do not perform
experiment on more large data files, from our analysis in
Section 6.1.1, it is easy to obtain that a 1024TB data file
will only introduce 20bits additional communication cost,
which is negligible compared to 1024MB data file under the
same λ. Therefore, we can consider communication cost in

5
We only put the results of 128MB and 1024MB data file here due to

the space limitation. The full experiment results for this part can be
found in Appendix10.3.



our PCPOR scheme as constant.
From the above experiment results, it shows that the size

of encoded data file only influence our PCPOR scheme in
data setup process, which is one-time cost and does not have
any effect on the following verification procedures. There-
fore, with the efficient computation performance and con-
stant communication cost, our PCPOR scheme has high
scalability for different size of data file and bandwidth con-
ditions.

7. DISCUSSION
In this section, we discuss about the error detection proba-

bility of our PCPOR scheme. As we mentioned in the Setup
algorithm of PCPOR scheme, Reed-Solomon code with rate
` is adopted for the data file encoding. For a ` Reed-Solomon
encoded data file, any ` fraction of encoded data blocks
can recover the original file. If a data file encoded with `
Reed-Solomon code cannot be recovered from the erasure de-
coding, the probability of accessing a uncorrupted encoded
data block will be less then `. In this case, when we ran-
domly choose l independent encoded data blocks and all
these blocks are uncorrupted, the probability should be less
then `l.

In our PCPOR scheme, we can set ` = 0.98 as previous
previous POR scheme[16] does. In this case, by checking
200 encoded data blocks, the challenger can have at least
98.24% confidence that the stored data on the server is not
corrupted if the V erify algorithm outputs result as accpet.
99.99% confidence can be guaranteed if 1000 encoded data
blocks are checked by the challenger.

8. CONCLUSIONS
Proofs of Retrievability(POR) technique enables individu-

als/organizations to ensure the integrity of their outsourced
data on a untruest server(e.g.public cloud storage platform).
Nevertheless, the existing POR schemes either have limita-
tion on communication cost, which is linear to the number
of elements in a data block, or only consider private verifica-
tion, These limitations cause a severe scalability issue in data
file size or user number for practical use. In this work, we
proposed the first public POR scheme with constant commu-
nication cost: PCPOR. By uniquely incorporating the poly-
nomial commitment technique[18] and other cryptograhphic
techniques, our PCPOR scheme achieves constant commu-
nication size, efficient computation performance as well as
low storage overhead, which omit the limitations in previ-
ous public POR schemes and make it become practical in
bandwidth constraint scenarios. What is more, based on
the simultaneous realized public verifiability in our PCPOR
scheme, we release the data owner from onerous verification
tasks and make each client check integrity independently,
which need to be centralized to the data owner in previous
private POR scheme with constant communication size. Our
security proof based on Computational Diffie-Hellman As-
sumption, Strong Diffie-Hellman Assumption and Bilinear
Strong Diffie-Hellman Assumption shows that our PCPOR
scheme is secure. We conduct experiments on cloud plat-
forms and demonstrate our PCPOR scheme is practical and
scalable.
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10. APPENDIX
10.1 Full Experiment Results For Proof Gen-

eration
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10.2 Full Experiment Results For Verification
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10.3 Full Experiment Results For Communi-
cation Cost
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