
Fingerprint Tables: A Generalization of Rainbow Tables

Abstract. Cryptanalytic time-memory trade-offs were introduced by Martin Hellman in 1980 to
perform key-recovery attacks on cryptosystems. Rainbow tables are a variant and a major advance
presented by Philippe Oechslin at Crypto 2003.

This paper introduces the fingerprint tables, an innovative way to deal with time-memory trade-
offs, which generalizes the rainbow tables. Fingerprint tables contain the fingerprints of the chains
instead of their endpoints, which reduces drastically the number of false alarms.

The fingerprint tables provide a time-memory trade-off that is about two times faster than the
rainbow tables on usual problem sizes, without overloading the precalculations. We analyze theo-
retically their efficiency and propose a way to determine optimal configurations. We experimentally
illustrate the performance of our technique, and demonstrate that it is faster than Ophcrack, a
Windows LM Hash password cracker that is a well known implementation of rainbow tables.
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1 Introduction

1.1 Motivations

The cryptanalyic time-memory trade-off (TMTO) is a technique introduced by Hellman in 1980 [14]
that allows an adversary to carry-out brute-force attacks in practice. A TMTO particularly makes sense
when a known plaintext attack is performed more than once, with a key-space that does not allow the
adversary to store all the pairs (key, ciphertext). A TMTO is also quite relevant when the attack is
time-constrained once the adversary receives the ciphertext.

Cryptanalytic time-memory trade-offs are thus the keystone of many practical attacks, for example
against A5/1 (GSM) in 2000 [6], LILI-128 in 2002 [25], Windows LM Hash in 2003 [22], Unix passwords in
2005 [20], and Texas Instruments DST in 2005 [8]. In 2010, the attack against A5/1 was resurrected and
a world-wide distributed TMTO-based attack was launched during Black Hat 2010 [21]. The weakness
exploited in all these cases is twofold: the key entropy is not high enough, and a known (constant)
plaintext attack is feasible.

In spite of the wide use of cryptanalytic time-memory trade-offs, few significant advances have been
done since Oechslin introduced the rainbow tables at Crypto 2003 [22], illustrated with the instant
cracking of alphanumerical Windows LM Hash passwords. However, any improvement of their efficiency
may render attacks more practical, especially when they are time-constrained.

1.2 Background

A Hellman-type cryptanalytic time-memory trade-off consists of a precomputation phase that is done
once, and an online phase that is expected to be much faster than a brute-force attack.

Precomputation Phase. To invert a function h : A → B, a set of m chains of t elements in A is
precomputed. A chain starts with an arbitrary value Sj belonging to A, known as its starting point. Each
subsequent element is computed by iterating a function f : A → A, x 7→ r(h(x)), where r : B → A is a
reduction function, which aim is to assign an arbitrary value in A to any value of B. The i-th (1 ≤ i ≤ t)
element of the j-th (1 ≤ j ≤ m) chain is denoted Xj,i, where Xj,i+1 = f(Xj,i) and Xj,1 = Sj . The values
Xj,t are denoted Ej and called the endpoints. The trick of the TMTO technique consists in only storing
the m pairs (Sj , Ej) in a so-called table. As highlighted by Theorem 2, a single table cannot fully cover
the set A, and several tables are consequently required to reach a success rate close to 1.



Online Phase. Given a value y in B, the goal of the online phase is to retrieve x in A such that h(x) = y
(provided such a point exists)1. As the table does not contain the intermediate points, the adversary
computes instead a chain from y and searches for a match with an endpoint. More precisely, she starts
by reducing y and searching through the m endpoints. If there exists j such that r(y) = Ej , then she
re-computes Xj,t−1 from Sj and verifies whether h(Xj,t−1) = y. If this holds, the attack succeeds and
x = Xj,t−1. Otherwise, the match is called a false alarm. When a false alarm occurs, or when no matching
endpoint is found, the attack proceeds on the next column: the attacker computes y ← f(y) and repeats
the operations. The attack goes on until a correct value is found, or until the end of the table is reached,
in which case the attack fails for this table.

1.3 State of the art

A major drawback of Hellman’s method is that two colliding chains in a given table lead to a fusion.
Such artifacts substantially decrease the trade-off performance. Two significative improvements have
been introduced to mitigate this problem: the distinguished points in 1982 by Rivest [11] and the rainbow
tables in 2003 by Oechslin [22].

Distinguished points. In this variant due to Rivest [11], the precomputation of a chain stops once a point
matches a certain criterion – for instance its last ten bits are zeroes – instead of computing chains of
fixed length. Such a point that matches a certain criterion is called a distinguished point. This technique
offers two advantages. First of all, it allows to build tables where fusions can be easily discarded, called
perfect tables. Moreover, the number of lookups in the table during the online phase is divided by t
in comparison with Hellman’s tables, because a lookup is performed only when a distinguished point
is reached. However, the chain length is no longer constant, which increases the cost to rule out the
false alarms2. Several papers analyze the distinguished points method [9, 18, 26] or present FPGA
implementations [26]. It was noted in [22] and [18] that the distinguished points technique is significantly
slower than rainbow tables in practice.

Rainbow tables. Oechslin introduced in 2003 [22] an improvement that outperforms the distinguished
points. In this variant, a different reduction function is used per column, which leads to the so-called
rainbow tables. This new organization of the tables eases the detection of fusions, while keeping constant
the chain length, and also divides the number of lookups by a factor t in comparison with Hellman’s
tables. The online phase is similar to the one of Hellman’s method, but the difference is that it is necessary
to start the online chains iteratively from the last column at the right of the table to the first column at
the left of the table. Indeed, as the column that contains the expected key is unknown, the first reduction
function that must be applied is unknown as well, and each possibility must be tested. This means that
in the worst case, t2/2 operations are necessary to browse all the table, without taking false alarms into
account. A thorough analysis of the rainbow tables has been done by Avoine, Junod, and Oechslin [2].
The rainbow tables are currently used by most of the password crackers, and have been implemented by
Mentens, Batina, Preneel, and Verbauwhede [20] using FPGAs to retrieve UNIX passwords.

In 2005, Avoine, Junod, and Oechslin [1] introduced a new feature to the rainbow tables, known as the
checkpoints. The authors observed that more than 50% of the cryptanalysis time is devoted to rule out
the false alarms. Their technique consists in storing information (e.g., a parity bit) on some intermediate
points of the chains alongside the endpoints. During the online phase, when a match with an endpoint
occurs, its checkpoints must be compared with the checkpoints of the chain whose construction is ongoing.
When there is a match of the points, but no match of the checkpoints, the adversary can conclude that
a false alarm occurred without re-computing the colliding chain. Although the checkpoints increase the
performance of the trade-off, their impact is limited given that their storage consumes additional memory.

Other works. Hellman’s method has been the subject of several minor improvements. Kusuda and Mat-
sumoto explain in [17] a method to optimize the parameters of the original time-memory trade-off
introduced by Hellman [14], and present a lower bound for computing its probability of success. This

1 In the following, we assume that x is chosen uniformly at random in A.
2 Given that the length of the chains is not known, a matching endpoint requires to recompute the chain until

the expected value x is reached or up to a given upper bound.
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bound was later refined by Ma and Hong in [19]. Kim and Matsumoto propose in [16] an improvement
that increases the success probability of Hellman’s trade-off without increasing the online search time
nor the size of the tables.

A variant of distinguished points, variable distinguished points, was presented in [15] by Hong, Jeong,
Kwon, Lee and Ma. The performance of this variant is said to be “on par” with other existing solutions,
but no average-case analysis has ever been performed.

Hellman’s technique is designed to invert random functions. Fiat and Naor provide in [12] a construc-
tion for inverting any function, at the price of a less efficient trade-off. De, Trevisan and Tulsiani propose
in [10] a similar construction for inverting any function on a fraction of their input. They also suggest
using time-memory trade-offs for distinguishing the output of pseudorandom generators from random.

Time-memory trade-offs have also been applied to stream cipher independently by Babbage in [3] and
Golić in [13]. These trade-offs typically require more data than attacks on block ciphers. Biryukov and
Shamir improve in [5] the efficiency of this attack on stream ciphers by combining the Babbage/Golić
and the Hellman techniques. Finally, Biryukov, Mukhopadhyay and Sarkar generalize these different
approaches in [7], and propose a way to use Hellman’s technique with multiple data.

In [4], Barkan, Biham, and Shamir showed that the performance of existing time-memory trade-offs
can not be improved by more than a logarithmic factor.

1.4 Contributions

In this paper, we revisit the rainbow tables and introduce the fingerprint tables. They form a generaliza-
tion of rainbow tables and bring a new vision of time-memory trade-offs.

The keystone of the fingerprint tables is that the endpoints are no longer stored in the table. Instead,
a fingerprint of each chain is stored along with the starting point. We show that the fingerprint is an
alternative characterization of a chain that behaves better in the online phase than the endpoint. The
fingerprints may be thought of as the concatenation of a truncated endpoint (as described for instance
in [18]), and a series of checkpoints (see [1]). However, we develop a framework in which the checkpoints
and the (truncated or not) endpoint have the same nature, and analyze them together. We show that
this approach makes sense and that it is more general. This sheds new light on the problem, and we trust
this might lead to further improvements.

We present a theoretical analysis of the average performance of fingerprint tables, and propose a way
to efficiently compute optimal configurations.

Finally, we note that in typical configurations, about two thirds of the cost due to false alarms can
be saved thanks to the fingerprints. This is particularly interesting because false alarms are responsible
for more than the half of the online computation time. Also, optimal fingerprints are typically shorter
than the endpoints found in rainbow tables, which saves additional memory. These two characteristics
make the fingerprint tables approximately twice as fast as the rainbow tables.

The fingerprint tables are described in Sect. 2 and their analysis is provided in Sect. 3. The theoretical
evaluation is then applied to several configurations in Sect. 4 in order to illustrate the practical impact
of the fingerprint tables. Finally, Sect. 5 presents a comparison between our theoretical evaluations and
practical measures, and compares them.

2 Fingerprint Tables

2.1 Chain Characterization

In rainbow tables, chains are composed of the starting points, which allows one to rebuild that chain
without ambiguity, and the endpoints, which are used to select the chain to rebuild in each step of the
online phase. Although it is necessary for the starting points to be points in A for the chain reconstruction
to be meaningful, note that it is not necessary for endpoints to have that property. Indeed, their purpose
is solely to compare the online chain with each chain of the table, in order to determine which should be
rebuilt (if there is one).

What we suggest is to look at endpoints not as regular points in A, but rather as a characterization
of the chain. In our case, we call this characterization the fingerprint of the chain. An issue with using
the endpoint as characterization is that when the online chain merges with a precomputed chain, they
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cannot be distinguished. This leads to the false alarms, which are the pet hate of the time-memory trade-
offs. The fingerprint tables drastically reduce this problem by providing a better way to characterize the
chains.

The two things that are important for the characterization of a chain is that it should be compact,
and that it should be efficient to compare with the online chain. For instance, using all the points in
the chain is a very good characterization at first sight, but it would take too much space. Note that the
online chain is generally smaller than the precomputed chains. A simple hash of the points of the chain
is, although possibly very compact and unique, therefore not a good characterization either because it
would not be possible to compare meaningfully the online chain with the other chains.

What we propose is the following. We define a fingerprint Fj as the concatenation of the outputs of
the functions Φi applied to each element Xj,i of the chain:

Fj = Φ1(Xj,1) || Φ2(Xj,2) || . . . || Φt(Xj,t)

where j ∈ [1,m], “||” denotes the concatenation, and Φi (1 ≤ i ≤ t) is what we call a ridge function,
used in column i. A ridge function is such that:

Φi : A→

{
{0, 1}σi if σi > 0

ε otherwise

with 0 ≤ σi ≤ dlog2Ne where N is the size of the problem. The output of the ridge function is called a
ridge. A fingerprint is therefore the concatenation of the ridges of the points in the chain. Note that a
ridge function is expected to have a uniform distribution of its output, as it is the case with reduction
functions. A typical ridge function Φi(x) returns the σi least significant bits of x for instance.

Note that, depending on the configuration (i.e. the value of σi in all columns), a fingerprint Fj is
not necessarily dlog2Ne bits long. In fact, fingerprints are typically smaller than endpoints, as we show
in Sect. 4, which allows the fingerprint table to contain more chains than what a regular rainbow table
would, for the same memory.

2.2 Precomputation and Search

Precomputation Phase. In rainbow tables, chains are generated using arbitrary starting points (typ-
ically, starting points are values of an increasing counter). Each chain is generated independently, and
a pair (starting points, endpoint) is temporarily stored. The chains are then sorted according to their
endpoints, and chains with duplicate endpoints are removed in order to make the table perfect3. Several
tables (typically 4) are generated in this way, in order to improve the probability of success.

Precomputation of fingerprint tables is very similar to that of rainbow tables. The difference is that
during the computation of a chain, the ridges functions are applied on each point, such that a fingerprint
is computed for that chain. Once a chain is complete, the starting point, the fingerprint, as well as
the endpoint are temporarily stored. Similarly to rainbow tables, chains are then sorted according to
their endpoints in order to remove the merging chains. The table thus becomes “perfect” with the same
meaning as rainbow tables. Endpoints are then discarded, as they are no longer required. A final step
consists in sorting the chains according to their fingerprints, in order to make the search more efficient4.
Note that at this point, there might be several points sharing the same fingerprint even though they
had different endpoints. However, this is relatively marginal for reasonable configurations. This final
step (sorting fingerprints) requires negligible time with respect to the earlier work, much like sorting
the endpoints requires negligible time over the computation of the chains. Fingerprint tables therefore
require the same amount of precomputation as rainbow tables.

3 A table is perfect when it does not contain any merging chains. As a side effect, an endpoint cannot appear
twice in a perfect table.

4 The sort is performed in reverse order, that is the fingerprints are considered flipped, because partial finger-
prints Φc(Xj,c)|| . . . ||Φt(Xj,t) are searched in the online phase. This ensures that multiple candidate matching
fingerprints are contiguous in the list, making the search more efficient.
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Online Phase. Each step of the online phase in rainbow tables consists in: first, computing the online
chain, which gives an endpoint; then check whether this endpoint appears in the list of stored endpoints;
if so, finally recompute the corresponding chain up to where the online point started in order to verify
the match (ruling out false alarms). This goes on until the answer is found, or the whole table is searched
through.

The same overall algorithm is applied in fingerprint tables. However, the ridges functions are applied
to the online chain, which gives a partial fingerprint (rather than an endpoint). The fingerprint is partial
because the online chain is shorter than chains of the table, and therefore it might be that not all ridges
are part of it. The partial fingerprint is then compared to stored fingerprints (the comparison is done for
the available bits only). A second particularity is that there might be several fingerprints matching the
partial fingerprint of the online chain, leading to possibly several false alarms per step (there can only
be one in regular rainbow tables).

The fact that endpoints are possibly not completely part of the fingerprint means that it is possible
that two non-merging chains share the same fingerprint. This leads to false alarms, although they are not
really of the same type as false alarms caused by merges. We therefore designate by Type-I false alarms
those that are merge-induced, and by Type-II false alarms those that are caused by partial fingerprint
matching of non-merging chains. Although Type-II false alarms do not appear in rainbow tables, the
additional cost they incur in fingerprint tables is more than made up for by the other benefits.

3 Analysis

This section provides a thorough analysis of the fingerprint tables, and demonstrates that rainbow tables
are a special case of fingerprint tables that is not optimal.

3.1 Notation

For the sake of clarity, the notations provided in [2] and [22] for rainbow tables are also used below, and
summarized in Tab. 1.

Table 1: Notations used in this paper.

Symbol Meaning

h : A→ B The function to invert

N |A|
m Number of chains in one table

t Number of columns per table

` Number of tables

The notation mi is also used, to denote the number of possible points in a column for an offline chain,
computed from column 1 (starting point). We cite a relevant result from [2].

Theorem 1. The number of possible points in a column for a chain generated from the starting points
is

mi+1 = N

(
1−

(
1− 1

N

)mi
)
.

When using tables of maximum size, this can be approximated by mi = 2N
i+1 .

Proof. See Theorem 1 in [2].

3.2 Success Rate

Since the fingerprint tables are perfect, most of the results from [2] still hold. This is why the value mi

holds for fingerprint tables. Also, in particular, the success probability of both fingerprint tables and
rainbow tables only depends on m, N , `, and t. Theorem 2 is thus directly obtained from the results
(Theorem 2) available in [2].
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Theorem 2. The success probability of a set of ` fingerprint tables is

P ∗ = 1−
(

1− m

N

)`t
.

When using tables of maximum size, this can be approximated by P ∗ ≈ 1− e−2`.

Proof. See Theorem 2 in [2].

3.3 Complexity

A major advantage of the fingerprint tables is the significant reduction of the number of false alarms.
In order to precisely analyze the average performance of the fingerprint tables, we first introduce the
probability φc that two different points have the same ridge in a given column c.

φc := Pr
[
Φc(x) = Φc(y)|x 6= y

]
.

This probability is useful to describe the event of two non-merging chains having the same partial
fingerprint.

Theorem 3. If N ≡ 0 (mod 2σc), the probability that two different values have the same ridge in a
given column c is:

φc =
N/2σc − 1

N − 1
. (1)

Proof. Given a value x and its corresponding ridge Φc(x), there are N−1 different possible values y 6= x.
Among those, there are on average N/2σc − 1 values y such that Φc(x) = Φc(y). ut

This theorem assumes that both the points in a column and the ridges are uniformly distributed. This
is for instance ensured if the reduction and ridge functions are modulos, and if the h function has a
uniformly distributed output, which is the case in virtually all practical cases. Note that this assumption
is already made in previous analyses, such as [2] and [22].

Theorem 4. The average amount of evaluations of h during the online phase using the fingerprint tables
is:

T =

`t∑
k=1

m

N

(
1− m

N

)k−1

(Wk +Qk) +
(

1− m

N

)`t
(W`t +Q`t) , (2)

with

ci = t−
⌊
i− 1

`

⌋
, qc = 1−

t∏
i=c

(
1− mi

N

)
,

Wk =

k∑
i=1

(t− ci), Pc =
m

N
+
mc −m
N

φcP̃c+1 +
N −mc

N
φcPc+1,

Qk =

k∑
i=1

(ci − 1)(Pci + Eci), P̃c =
m

mc
+
mc −m
mc

φc P̃c+1,

Ec = (m− qc)
t∏
i=c

φi, Pt =
m

N
, P̃t = 1.

Proof. Given the online phase described in Sect. 2, we have:

T =

`t∑
k=1

pkTk + pfailT`t, (3)

with pfail and pk the probabilities that the attack fails, and that it succeeds after k steps respectively.
Here, Tk denotes the average amount of evaluations of h when the attack stops after k steps.
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Determination of pk and pfail:
The probability that the current point is found in a column is m/N , and pk is the probability that the
current point is found in a column, but is not found in the preceding k − 1 searches:

pk =
m

N

(
1− m

N

)k−1

. (4)

The probability of failure pfail is simply the probability that the current point is not found in any of the
`t previous searches, that is: (

1− m

N

)`t
. (5)

Determination of Tk:
At each step, h is computed for the following reasons: when building the online chain (we denote this
work by W ), and when filtering false alarms (noted Q), hence Tk = Wk +Qk.

Determination of Wk:
At step k, we begin the fingerprint comparison at column

ck = t−
⌊
k − 1

`

⌋
.

The number of h computations needed for the online chain is the number of columns separating ck from
t, that is t− ck. Consequently,

Wk =

k∑
i=1

(t− ci). (6)

Determination of Qk:
Similarly, for each false alarm, a chain from column 1 to column ck has to be computed, needing ck − 1
computations. Hence, we have:

Qk =

k∑
i=1

(ci − 1)Fci , (7)

with Fc the average number of false alarms at column c. False alarms in fingerprint tables are of two
types. Type-I false alarms are the same as the ones in rainbow tables and occur because of merges in-
duced by reduction functions. Type-II false alarms occur because two chains may have the same partial
fingerprint. We will respectively denote by Pc and Ec the average number of Type-I and Type-II false
alarms at column c.

Determination of Pc:
Because the tables are perfect, there can be at most one Type-I false alarm per step. This false alarm,
if it exists, is due to a chain merging with the online chain, somewhere between c and t. Moreover, for
this chain to cause a false alarm, the partial fingerprint must match before the merge as well. The online
chain is started by computing rc(y). There can only be three separate outcomes:

(1) there exists a chain j in the table such that Xj,c = rc(y) (“concrete” merge),
(2) rc(y) belongs to the mc −m other points that could also be in the table (“abstract” merge),
(3) rc(y) is one of the N −mc remaining points (“free” chain).

Although this might not seem intuitive, the cases (2) and (3) are different. This is because when a point
is one of the mc points that could appear in this column, it results in a merge in all cases, while it might
not be the case in (3). We have:

Pc = Pr(Type-I false alarm from column c)

= Pr(Type-I FA from column c | concrete merge in c)× Pr(concrete merge in c)

+ Pr(Type-I FA from column c | abstract merge in c)× Pr(abstract merge in c)

+ Pr(Type-I FA from column c | free in c)× Pr(free in c).
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The following details this part by part.
The first factor of the first term is simply equal to one. Indeed, in case (1) the online chain merges

entirely with chain j, inevitably leading to a partial fingerprint match. The second factor is equal to m
N

because there are N possibilities, and m of them lead to a point in one of the chains.
For the second term, the second factor is equal to mc−m

N , for similar reasons. For the first factor, we
have:

Pr(Type-I FA from column c | abstract merge in c)

= Pr(Same ridge in c ∧ Type-I FA from column c+ 1 | abstract merge in c)

= Pr(Same ridge in c | abstract merge in c)

× Pr(Type-I FA from column c+ 1 | abstract merge in c)

= φc P̃c+1.

The computation of P̃c is addressed below. The second equality is valid because the two event in the
joint probability are independent. Indeed, given that we have an abstract merge in c, the two chains have
not merged yet in c and thus the ridge in c does not give any information on a possible future Type-I
false alarm. Conversely, the behavior after c does not change the situation in c.

Finally, for the last term, the second factor is equal to N−mc

N , again for the same reasons. For the
first factor, we have:

Pr(Type-I FA from column c | free in c)

= Pr(Same ridge in c ∧ Type-I FA from column c+ 1 | free in c)

= Pr(Same ridge in c | free in c) Pr(Type-I FA from column c+ 1 | free in c)

= φc Pc+1.

We have that Pr(Type-I FA from column c+ 1 | free in c) = Pc+1 because the fact that having a free
chain in c means we can have any of the N points in c + 1, so it does not restrict the situation for the
next column. The validity of the second equality can be argued as above.

We therefore finally have:

Pc =
m

N
+
mc −m
N

φcP̃c+1 +
N −mc

N
φcPc+1. (8)

For the initial case, when c = t, the only solution is that a concrete merges occurs right away, that is:

Pt =
m

N
. (9)

Determination of P̃c:

The probability P̃c is calculated in a very similar way to Pc. The difference is that we are in a situation
of abstract merge before column c. It will therefore result in a merge in all cases, but not necessarily to
a false alarm since for that, all the intermediary ridges must match. When computing rc(y), there are
only two possible outcomes (the chain cannot be free again since it has merged):

(1) there exists a chain j in the table such that Xj,c = rc(y) (a concrete merge),
(2) rc(y) belongs to the mc − m other points that could also be in the table (a continuation of the

abstract merge),

This gives:

P̃c = Pr(Type-I FA from column c | abstract merge in c− 1)

= Pr(Type-I FA from column c | abstract merge in c− 1 ∧ concrete merge in c)

Pr(concrete merge in c | abstract merge in c− 1)

+ Pr(Type-I FA from column c | abstract merge in c− 1 ∧ abstract merge in c)

Pr(abstract merge in c | abstract merge in c− 1).
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This is analyzed part by part below.
In the first term, the first factor is equal to one. Indeed, the fact that there is a concrete merge in

c cancels the fact that there was an abstract merge in c − 1, which leads to the same expression as the
corresponding probability in Pc. The second term is equal to m

mc
, since among the mc possible points, m

are favorable to a concrete merge.
In the second term, the second factor is equal to mc−m

mc
, because there are mc −m points over the

mc possible that are favorable to the continuation of the abstract merge. For the first factor, again the
fact that there is an abstract merge in c− 1 is canceled by the fact that there is an abstract merge in c.
This leads to the same expression as the corresponding probability in Pc, that is φc P̃c+1.

To summarize, we have:

P̃c =
m

mc
+
mc −m
mc

φc P̃c+1. (10)

For the initial case, when c = t, we have that a merge may only be concrete, and therefore:

P̃t = 1. (11)

Determination of Ec:
The probability of having a merge between columns c and t, already identified in [2], is qc = 1 −∏t
i=c

(
1− mi

N

)
. Considering that the probability that the online chain merges with a chain of the table

is qc, there are, on average, m − qc non-merging chains. Among those, each creates a Type-II FA with
probability

∏t
i=c φi, which gives:

Ec = (m− qc)
t∏
i=c

φi. (12)

Using equations (4), (5), (6), (7), (8), (10), and (12) into (3) gives (2), allowing us to conclude. ut

3.4 Fingerprint Tables: a Generalization of Rainbow Tables

The differences between the rainbow tables and the fingerprint tables can be summarized as follows: (i)
the size of the fingerprints is not entirely determined by the size of the problem, they can be thus smaller
or greater than dlog2Ne, (ii) the information contained in the fingerprints can be related to any point
of the chain. A rainbow table is actually equivalent to a fingerprint table where Φt(X) = X and σi = 0
(1 ≤ i < t). Consequently Equation (2) also generalizes the average case performance for rainbow tables.
The special case of rainbow tables gives: {

φi = 1 ∀i < t

φt = 0,

which leads to Ec = 0, P̃c = 1 and Pc = qc. This is indeed the formula established by Avoine, Junod, and
Oechslin in [2]. Sect. 4 shows that this configuration is not the optimal one, which justifies that rainbow
tables are less efficient than fingerprint tables when the latter are used in their optimal configuration.

We also add that the analysis of checkpoints done in [1] is not exactly correct. This is mainly due to
the computation of probability of false alarms. Since fingerprint tables are a generalization of rainbow
tables, including the checkpoints, Theorem 4 corrects these errors.

4 Analytical Performance

4.1 Theoretical Results

This section addresses the expected number of evaluations of the function h using the fingerprint tables
and the rainbow tables for different problem parameters. Table 2 presents the gain 1−Tfingerprint/Trainbow

for different sizes of key space and memory dedicated to the trade-off. The value ` = 4 is considered in
both cases5, and m and t are set for rainbow tables to the optimal values as presented in [2]. For the
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Table 2: Gain of fingerprint tables over rainbow tables for various N and M .

238 240 242 244 246 248

2GB 32.48% 35.94% 39.01% 41.73% 44.16% 46.35%

4GB 30.76% 34.36% 37.54% 40.36% 42.88% 45.14%

8GB 29.04% 32.76% 36.05% 38.97% 41.58% 43.93%

fingerprint tables, a Hill Climbing local search technique is used to find the optimal configurations of the
ridge functions, as detailed in Sect. 4.2.

Table 2 is filled with memory sizes that belong to a reasonable range for an average personal computer.
Note that M denotes the memory dedicated for endpoints/fingerprints only (adding the starting points
about doubles the memory required). The problem sizes are also driven by practical considerations,
to avoid a prohibitive online search time. Analyzing the results leads to two trends. First of all, the
advantage of the fingerprint tables over the rainbow tables tends to increase as the memory decreases.
This can be mainly explained by the fact that Ec increases linearly with M . Secondly, the gain increases
with the problem size. This behavior can be explained by the fact that when N is large, there is more
freedom in the configuration of the ridge functions.

4.2 Finding the Optimal Configurations

As we have seen in Sect. 3, the performance of the fingerprint tables strongly depends on the nature of
the fingerprint.

One way to find the best configuration for the fingerprints is to apply a brute-force technique to
compute T for the (1 + dlog2Ne)t possibilities (from 0 to dlog2Ne bits included for each column), and
keep the one that minimizes T . Since the parameter space is quite large, this is not feasible for any
practical instance.

Instead, we used a local search technique called Hill climbing [24] to compute these configurations
efficiently. Hill climbing is an optimization technique used to compute a local minimum of a discrete func-
tion. After observing experimental evidence, we conjecture that the local minimum is a global minimum
(that is, T is unimodal).

Note that the technique used to find the optimal configuration is conservative in the sense that if
the unimodality assumption is not verified, then the real optimal configuration can only lead to better
performance. This may lead to suboptimal solutions, but results in good results (i.e. drastic decrease of
the false alarms) nonetheless. In the following, the “optimal configurations” refer to the best solutions
found using this approach. The determination of the configuration is of course only done once in the
precomputation phase, and adds a marginal overhead to its cost.

4.3 Optimal Configurations

Tab. 3 lists differences in the parameters and results between fingerprint tables in optimal configuration
and rainbow tables in several settings. Again, the memory M is the one dedicated to endpoint/fingerprint
storage (identical in both cases). The row “Positions” corresponds to the set of columns associated with
a one-bit ridge. In the optimal configurations found, all ridges but the one in the last column consist of
at most one bit. We assumed the use of the following ridge functions:

Φi : A→ {0, 1}σi

x 7→

{
lsbσi

(x) if σi > 0

ε otherwise,

5 This value for ` represents an overwhelming success probability, and is the default in Ophcrack. Other values
of ` lead to very similar results.
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where lsbn(x) is a function that outputs the n least significant bits of x.

One can observe that when additional memory is available, the optimal solutions tend to use some
extra memory per chain, and vice versa. Additionally, we can note that the cost of a false alarm for
fingerprint tables is around one third of the one for rainbow tables.

Table 3: Analytical performance for the best configurations of fingerprint tables.
(a) N = 248, M = 2GB

rainbow tables fingerprint tables

m 4.47× 107 4.88× 107

|Ej |, |Fj | 48 40

t 1.26× 107 1.15× 107

T 2.32× 1013 1.24× 1013 (−46.35%)

Average FA cost 1.33× 1013 0.41× 1013 (−68.88%)

Positions 8476358, 9172110, 9663530, 10050060, 10371170, 10647046,
10889558, 11106326, 11302572, 11482032

(b) N = 248, M = 4GB

rainbow tables fingerprint tables

m 8.95× 107 9.65× 107

|Ej |, |Fj | 48 41

t 6.29× 106 5.83× 106

T 5.79× 1012 3.18× 1012 (−45.14%)

Average FA cost 3.33× 1012, 1.06× 1012 (−68.20%)

Positions 4285001, 4636802, 4885286, 5080733, 5243100, 5382597,
5505222, 5614831, 5714062, 5804807

(c) N = 248, M = 8GB

rainbow tables fingerprint tables

m 1.79× 108 1.89× 108

|Ej |, |Fj | 48 43

t 3.15× 106 2.98× 106

T 1.45× 1012 0.81× 1012 (−43.93%)

Average FA cost 8.31× 1011 2.58× 1011 (−68.99%)

Positions 2155147, 2334199, 2460731, 2560281, 2642997, 2714070,
2776554, 2832410, 2882981, 2929230, 2971872

5 Experimental Results and Comparison

A time-memory trade-off with fingerprint tables has been implemented in order to illustrate the theory
with experimental results6. Our implementation has been used to crack Windows LM Hash passwords
and Windows NTLM Hash passwords. We also practically compared the performance of the fingerprint
tables with the rainbow tables. Note that, since rainbow tables are a special case of fingerprint tables,
our software may also be used to build them.

6 Experimental results presented in this section are averaged over 10000 experiments.
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5.1 Windows LM Hash Passwords

The LM Hash authentication is limited by nature to passwords (uppercase only) of length 1 to 7 char-
acters7. In order to compare the performance of the fingerprint tables with Ophcrack8, we considered
alphanumeric passwords only, which amounts to N =

∑7
i=1 36i ≈ 236.23 passwords.

Also, Ophcrack uses an ad-hoc compression technique which consists in a decomposition of the end-
points in prefix and suffix tables (see [1] for more details). The size of the chains when using prefix-suffix
decomposition depends on the parameters of the problem and is implementation-dependent; its deter-
mination is out of the scope of this article. Therefore, we chose the size of the fingerprints to be 37
bits, in order to match the size of the endpoints in the Ophcrack tables. In this way the prefix-suffix
compression has exactly the same impact on the size of the tables and produces tables of 379MB in both
cases, allowing for a fair comparison. The parameters of the tables are m = 1.54× 107, t = 10000, ` = 4
and the optimal ridge functions9 for these parameters are defined by:

Φi(x) =


lsb1(x) if i ∈ {7540, 8168, 8612, 8961, 9251, 9501, 9720, 9917}
lsb29(x) if i = 10000

ε otherwise.

Tab. 4 shows that the results achieved by our implementation of fingerprint tables are in accordance
with the theoretical expectations calculated from Theorem 4.

Tab. 4 also shows that fingerprint tables behave much better than the rainbow tables: their time-gain
over the rainbow tables is about 30% in spite of a suboptimal configuration for the fingerprint tables.
We can emphasize that the time saved by fingerprint tables compared to rainbow tables is due to the
reduced cost due to false alarms. Indeed, as m and t stay the same, the average number of operations
for building the online chains stays the same too.

Table 4: Theoretical and experimental results for LM Hash passwords.

Fingerprint Tables Rainbow Tables

Theoretical Experimental Experimental

# operations total (×106) 10.75 10.73 15.25

# operations for false alarms (×106) 3.995 4.09 8.62

# false alarms 508.3 533.7 1120

5.2 Windows NTLM Hash Passwords

We considered in this second experiment NTLM Hash alphanumeric (both lowercase and uppercase)

passwords of length 1 to 7, which represents a search space of N =
∑7
i=1 62i ≈ 241.70. Considering

longer passwords would better emphasize the performance of the fingerprint tables, but we were time-
constrained for the precomputation of the tables.

The parameters we used are m = 5.03× 108, t = 13554, ` = 4. We also used prefix/suffix decompo-
sition [1] in order to save some extra memory, but this has no influence on the online performance. The
four tables take up about 14.8GB in total. Again, using the methodology described in section 4.2, we
found the following optimal configuration:

Φi(x) =


lsb1(x) if i ∈ {10077, 10928, 11530, 12004, 12398, 12736, 13034, 13301}
lsb34(x) if i = 13554

ε otherwise.

The results of our experiment are presented in Table 5. Again, we observe that the practice matches
with the theoretical estimations.
7 LM Hash passwords longer than 7 characters are automatically split by the operating system into two passwords

of at most 7 characters.
8 Ophcrack [23] is a Windows LM Hash password cracker that is a well-known implementation of rainbow tables.
9 This configuration was found using the approach described in section 4.2.
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Table 5: Theoretical and experimental results for the fingerprint tables (NTLM Hash).

Theoretical Experimental

# operations total (×106) 19.44 19.29

# operations for false alarms (×106) 6.79 7.15

# false alarms 655.58 697.15

The precomputing phase for these tables took roughly a month on about a hundred machines. The
online phase takes place on a machine with a i7-3770 CPU and 16GB of RAM. Recovering any alphanu-
meric NTLM Hash password (whose length is 1 to 7 characters) in this setting takes 3.5 seconds on
average.

6 Conclusion

Cryptanalytic time-memory trade-offs constitute the keystone of many practical cryptanalyses, for exam-
ple against A5/1 (GSM) in 2000, LILI-128 in 2002, Windows LM Hash in 2003, Unix passwords in 2005,
and Texas Instruments DST in 2005. In spite of the wide use of time-memory trade-offs, few advances
have been done since Oechslin introduced the rainbow tables.

The method we introduce in this article brings a major breakthrough in TMTO, replacing the end-
points from the tables. Instead, we propose a new time-memory trade-off construction that we call
fingerprint tables, which provides a significant decrease in the time required for the search, compared to
the rainbow tables. Specifically, the cost of false alarms is cut down to one third with respect to rainbow
tables, which makes the search process up to twice as fast. We think that this new technique to construct
tables should lead to further progress in the TMTO research field.

After introducing the fingerprint tables, we provided an analysis of the average search time of finger-
print tables and proposed a method to search for optimal parameters. We highlighted that the rainbow
tables are a special case of fingerprint tables with non optimal parameters.

We also implemented our method and corroborated our theoretical analysis. We investigated the
particular case of the Windows LM Hash password cracking, and compared our results with Ophcrack,
a well-known implementation of rainbow tables for this problem. We finally implemented a Windows
NTLM Hash password cracker based on fingerprint tables and made it freely available online.
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