
Generic Related-key Attacks for HMAC

Thomas Peyrin1,?, Yu Sasaki2, and Lei Wang1,3

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

thomas.peyrin@gmail.com wang.lei@ntu.edu.sg
2 NTT Secure Platform Laboratories, NTT Corporation

sasaki.yu@lab.ntt.co.jp
3 The University of Electro-Communications

Abstract. In this article we describe new generic distinguishing and forgery attacks in the
related-key scenario (using only a single related-key) for the HMAC construction. When HMAC

uses a k-bit key, outputs an n-bit MAC, and is instantiated with an l-bit inner iterative hash
function processing m-bit message blocks where m = k, our distinguishing-R attack requires
about 2n/2 queries which improves over the currently best known generic attack complexity
2l/2 as soon as l > n. This means that contrary to the general belief, using wide-pipe hash
functions as internal primitive will not increase the overall security of HMAC in the related-key
model when the key size is equal to the message block size. We also present generic related-
key distinguishing-H, internal state recovery and forgery attacks. Our method is new and
elegant, and uses a simple cycle-size detection criterion. The issue in the HMAC construction
(not present in the NMAC construction) comes from the non-independence of the two inner
hash layers and we provide a simple patch in order to avoid this generic attack. Our work
finally shows that the choice of the opad and ipad constants value in HMAC is important.

Key words: HMAC, hash function, distinguisher, forgery, related-key.

1 Introduction

Hash functions are among the most important basic primitives in cryptography. Informally, a
hash function H is a function that takes an arbitrarily long message M as input and outputs a
fixed-length hash value of size n bits. Classical security requirements are collision resistance and
(second)-preimage resistance. Namely, it should be impossible for an adversary to find a collision
(two distinct messages that lead to the same hash value) in less than 2n/2 hash computations, or
a (second)-preimage (a message hashing to a given challenge) in less than 2n hash computations.

Hash functions are used in many applications such as digital signatures, message integrity check
and message authentication codes (MAC). A MAC is a function that takes a k-bit secret key K
and an arbitrarily long message M as inputs, and outputs a fixed-length tag of size n bits. A
MAC algorithm should also meet some security requirements. It should be impossible to recover
the secret key except by exhaustive search, and it should be computationally impossible to forge a
valid MAC without knowing the secret key, the message being chosen by the attacker (existential
forgery) or not (universal forgery).

MACs are crucial for many security systems and are often implemented with the HMAC [3]
algorithm, in particular for banking protocols or protocols securing Internet connections (TLS and
IPSEC). HMAC was designed by Bellare et al. in 1996 and is now widely standardized. It has the
property to use an iterative hash function as internal component (thus composed of an iterative
application of a compression function) and a proof of security is given in [2]: HMAC is a pseudo-
random function under the assumption that the compression function is itself a pseudo-random
function.

A trivial generic extension attack exists for HMAC: by asking for enough queries to obtain an
internal collision, the attacker can then add extra message blocks to generate other colliding HMAC

outputs, therefore breaking the existential forgery security criterion. In order to avoid this issue,
many other MACs constructions have been proposed and analyzed [28, 27, 14], reaching a security
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beyond the n/2 birthday bound by using bigger hash function internal state sizes. For example,
the extension attack applied to an n-bit hash function with a 2n-bit internal state requires 2n

compression function calls.

In parallel to the recent impressive advances on standardized hash function cryptanalysis, the
community studied the possible impact on the security of HMAC when instantiated with these
standards (such as MD5 [21] or SHA-1 [23]). There have been also some related-key analysis of HMAC
instantiated with real hash functions, but no generic attack is known in this model, i.e. without
using any weakness from the internal hash function used. Note that the HMAC proof [2] only holds
when considering a single-key scenario and says nothing in the related-key model.

The cryptanalysts also looked at other attacks such as distinguishing-R and distinguishing-
H [17]. The aim of the former is to distinguish between a random function and the HMAC con-
struction, while the latter aims at distinguishing if the compression function used inside a HMAC

construction is a random function or a specific compression function instance. It is widely be-
lieved that for the ideal narrow-pipe hash function, the distinguishing-R should require about 2n/2

computations, while distinguishing-H should require about 2n.

Our contributions. In this article we introduce a new type of related-key distinguisher and
forgery attacks for HMAC based on cycle length detection, requiring a birthday query complexity
and only a single related-key. 4 The attack complexities are summarized in Table 1 together with
previous work that analyzed the HMAC instantiating a dedicated hash algorithm.

Our attacks work when the inner hash function is iterative (which is the case for almost all
known hash functions, and is necessary for HMAC anyway) and when a special condition is met on
the key input. This condition depends on the value of the HMAC constants opad and ipad (which
shows for the first time the importance in the choice of their values) and it is always fulfilled when
the key length k is equal to the message input length m of the compression function. HMAC is defined
to even handle cases where k > m and k = m is likely to happen for example with lightweight
hash functions for which the total internal state size has to remain rather small. One can cite
DM-PRESENT or H-PRESENT [7] hash functions (PRESENT being already an ISO standard [6]), which
have respectively 80 bits and 64 bits of message input for their compression function. Also, a block
cipher-based hash function using a common mode such as Davies-Meyer or Matyas-Meyer-Oseas [1]
instantiated with the standardized AES [10] is also likely to meet the condition k = m.

We emphasize that this work is the first that exploits related-keys to attack HMAC when modeling
the compression function as an ideal primitive. They are also the first attacks applying on HMAC

and not on NMAC, which helps to understand the security loss when going from the latter to the
former. Finally, our attacks are still applicable even when the internal hash function has a big l-bit
internal state, unlike the known generic distinguishing or forgery attacks such as the extension
attack. Note that many SHA-3 candidates are wide-pipe (like the finalists [16, 5, 26]) and it is the
current trend in hash functions designs. Therefore, this work shows that a wide-pipe hash function
used in HMAC can be weaker than the one used in simple MAC constructions such as a secret-prefix
MAC and its strengthened version LPMAC [22]. In these schemes, the key (and the message length)
is simply prepended to the input message, and the hash value is the MAC value. Due to the double
size of the internal state, no attack is known with a smaller complexity than 2n computations,
while our attack on HMAC is more efficient, requiring only 2n/2+1 computations.

After a description of HMAC in Section 2, we introduce the generic distinguishing-R attack
(requiring about 2n/2+1 computations) in Section 3, basis for the the internal state recovery attack
in Section 4, the forgery attack in Section 5 and the distinguishing-H attack in Section 6. Finally,
we discuss our results and propose a simple method to patch HMAC in Section 7.

4 The weakness of such a key pair for HMAC was independently and at almost the same time pointed
out by Dodis et al. [13, 12] to break the indifferentiability of HMAC. Note that our attacks are under
the indistinguishability framework where the key value is secret to the adversary and has a uniform
distribution among the key space, while the attacks in [13, 12] are under the indifferentiability framework
where the key value is chosen and thus known by the adversary.
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Table 1. Summary of the attack complexities

Previous attacks on HMAC with dedicated hash algorithm

Attack Key Setting Target Size #Rounds Complexity Ref.

Dist.-H Single key MD4 128 Full 2121.5 [17]
Dist.-H Single key MD5 128 33/64 2126.1 [17]
Dist.-H Single Key MD5 128 Full 297 [25]
Dist.-H Single key 3-pass HAVAL 256 Full 2228.6 [17]
Dist.-H Single key 4-pass HAVAL 256 102/128 2253.9 [17]
Dist.-H Single key SHA0 160 Full 2109 [17]
Dist.-H Single key SHA1 160 43/80 2154.9 [17]
Dist.-H Single key SHA1 160 50/80 2153.5 [20]
Dist.-H Related Key SHA1 160 58/80 2158.74 [20]
Inner key rec. Single Key MD4 128 Full 263 [9]
Inner key rec. Single Key SHA0 160 Full 284 [9]
Inner key rec. Single Key SHA1 64 34/80 232 [20]
Inner key rec. Single Key 3-pass HAVAL 256 Full 2122 [18]
Full key rec. Single Key MD4 128 Full 295 [15]
Full key rec. Single Key MD4 128 Full 277 [24]

New generic attacks on HMAC

Attack Key Setting Target Old Generic New Generic Reference
Complexity Complexity

Dist.-R Related Key Wide-pipe 2l/2 2n/2+1 This paper

Dist.-H Related Key Narrow-pipe† 2n 2n/2+1 This paper

Dist.-H Related Key Narrow or Wide† 2n 2n/2+2 + 2l−n+1 This paper

Inner state rec. Related Key Narrow or Wide† 2n 2n/2+2 + 2l−n+1 This paper

Ex. forgery Related Key Wide-pipe† 2l/2 2n/2+2 + 2l−n+1 This paper

†: For a wide-pipe hash function with l-bit internal state, our attacks improve over the old generic com-
plexity as long as l < 2n− 1.

2 Description of HMAC

A hash function H is a function that takes an arbitrary length input message M and outputs
a fixed hash value of size n bits. When the hash function is iterative (for example see the classical
Merkle-Damg̊ard construction [19, 11]), the message M is first padded and then divided into blocks
mi of m bits each. Then, the message blocks are successively used to update an l-bit internal state
cvi (where l ≥ n) with a compression function h: cvi+1 = h(cvi,mi), and cv0 is initialized to a fixed
public value cv0 = IV . Once all the message blocks have been processed, an output function g is
applied to the last internal state value cvi so as to eventually obtain hash = g(cvi). The output
function therefore transforms an l-bit value into an n-bit one.

The MAC algorithm HMAC [3] is based on the NMAC construction that uses two k-bit keys Kout

and Kin. NMAC replaces the public IV of a hash function H(IV,M) by a secret key K to produce
a keyed hash function H(K,M). NMAC is defined by:

NMAC(Kout,Kin,M) = H(Kout, H(Kin,M)).

Since in practice a hash function is used as a black-box and has a fixed IV, HMAC simulates the
keyed hash function H(K,M) of NMAC by prepending a secret key block K to M , and computing
H(IV,K||M), where || denotes the concatenation. Also, HMAC uses a single k-bit key K which is
padded with zeros such that after padding the key length is equal to a multiple of m bits. For
simplicity of the description and without loss of generality concerning our attacks, in the rest of
this article we assume that the key can fit in one compression function message block k ≤ m,
and thus the length of the padded key is m bits (the notation of the keys therefore denotes
the padded keys). Kin and Kout are defined by: Kin = K ⊕ ipad = K ⊕ 0x3636 · · · 36 and
Kout = K ⊕ opad = K ⊕ 0x5C5C · · · 5C, where ipad and opad have the same length than a
padded key. HMAC is defined by:
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HMAC(K,M) = H(IV,K ⊕ opad||H(IV,K ⊕ ipad||M)).

Since the key padding in HMAC enforces that the first compression function call(s) handles all
and only the key material, we can rewrite

HMAC(K,M) = HK⊕opad(HK⊕ipad(M)) = HKout
(HKin

(M))

where HK(X) represents the iterative hash function H for which the initial value is changed to
h(IV,K).

3 Generic related-key distinguisher for HMAC

3.1 General description

Before describing our attacks, we first emphasize that for the rest of the section we will only use
small n-bit messages M , such that after padding any message fit into one compression function
message input. In other words, |M ||pad| = m and we will always compute a single compression
function call in order to handle the whole message M . This is represented in Figure 1 and we have

HMAC(K,M) = g(h(h(IV,K ⊕ opad), g(h(h(IV,K ⊕ ipad),M ||pad))||pad))

= fKout
(fKin

(M))

where fK(X) = g(h(h(IV,K), X||pad)).

Fig. 1. The computation of HMAC with an iterated hash function when the padded message is small
(|M ||pad| = m).

The general idea underlying our attacks came from the observation that, contrary to the case
of NMAC, in HMAC the inner and outer functions are not fully independent. Indeed, both inner and
outer hash functions are the same function H, and the inner and outer keys are related by the
relation Kin ⊕Kout = ipad⊕ opad.

This is not an issue in the single key model, since when assuming the internal inner and outer
compression functions as ideal, no information will leak on their output from this inner/outer
key relation. However, in the related-key model the situation is different. When assuming that
the key size k is equal to the padding size (thus one message block, i.e. k = m), then we can
analyze what is happening when we query HMAC(K,M) and HMAC(K ′,M) with the related key
K ′ = K ⊕ ipad⊕ opad. For the first query the oracle will reply

HMAC(K,M) = fK⊕opad(fK⊕ipad(M)) = fKout(fKin(M))
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and for the second query the oracle will reply

HMAC(K ′,M) = fK′⊕opad(fK′⊕ipad(M))

= fK⊕ipad(fK⊕opad(M))

= fKin(fKout(M))

One can easily see that the two oracles are doing the same computation, except that ipad and
opad (or Kin and Kout) are inverted. In other words, we have two oracles, one that applies fKin

and then fKout
(top figure below), and one that does the opposite fKout

and then fKin
(bottom

figure below).

This non-random property seems not easy to detect since the functions fKin and fKout are
parametrized with the secret key K, thus they are completely unknown to the attacker. However,
it is possible to detect it using a cycle detection algorithm: the functions fKin

◦fKout
and fKout

◦fKin

have the same cycle structure. Indeed, it is easy to see that there is a one-to-one correspondence
between each cycle from fKin

◦ fKout
and fKout

◦ fKin
.

The attacker will start from an n-bit random input message, query the first oracle (with key
K), and keep querying as new message the MAC he just received. He continues to do so for about
2n/2 queries until he gets a collision among the MACs received. This collision in fact represents a
cycle in the successive computations of fKin

◦fKout
and this first phase defined a first walk that we

denote walk A. In a second step the attacker finds also a cycle for the second oracle computations
(with key K ′ = K ⊕ ipad⊕ opad), i.e. for fKout

◦ fKin
and that defines walk B. Finally, since the

number of MACs obtained from the first and second oracle is big enough, there is a good chance
that there is a collision between a MAC from walk A and an internal value of a MAC from walk B
(the internal value is the output of the first hash in HMAC). If so, then the cycle length of the two
cycles are necessarily the same since they follow exactly the same computation path starting from
the collision. This is depicted in Figure 2. An attacker can use this criterion to distinguish between
HMAC computations and a randomly chosen function, since in the latter case there is only a very
low probability that the two cycles have the same length. We call the tail the part of the walk that
does not belong to the cycle and we denote ZA (resp. ZB) the point where the tail enters the cycle
for walk A (resp. walk B).

3.2 The distinguisher

Let Fn be the set of n-bit output functions. We denote FK and FK′ the two oracles on which
the adversary A can make queries. The oracles are instantiated either with FK = HMACK and
FK′ = HMACK′ (with K being a randomly chosen k-bit key and K ′ = K ⊕ ipad ⊕ opad) or with
two independent randomly chosen functions RK and RK′ from Fn. The goal of the adversary is to
distinguish between the two cases and its advantage is given by

Adv(A) = |Pr[A(HMACK , HMACK′) = 1]− Pr[A(RK , RK′) = 1]|

1st phase (walk A). The attacker first chooses a random small message MA of size n bits and
initializes qA0 = MA. Then, he will query FK(qA0 ) and store the value obtained in qA1 . He continues
by querying FK(qA1 ) and by storing the answer in qA2 , etc. for 2n/2+2n/2−1 iterations. If he observes
a collision among the queries during the process, the attacker stops. If no collision is found or if
the collision occurred in the 2n/2 first queries, the attacker outputs 0.
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Fig. 2. The cycle structure built with access to oracles fKout ◦ fKin and fKin ◦ fKout .

2nd phase (walk B). This phase is identical to the first phase, except that the attacker queries
the oracle FK′ instead of FK . We denote qBi the queries asked during this phase and MB the
starting message value.

3rd phase (cycle detection). Since each query is obtained by applying the function FK (or
FK′) on the previous query, a collision among the qAi (or among the qBi ) naturally defines a cycle.
If the cycle length of set A is equal to the cycle length of set B, the attacker outputs 1, otherwise
he outputs 0.

3.3 Complexity and success probability

1st and 2nd phases (walk A and B). We first compute the probability that no collision is
found when asking for the first 2n/2 queries in the first (or in the second) phase. In the case of
randomly chosen functions:

Pnc−rand =

2n/2∏
i=1

1− i

2n
'

2n/2∏
i=1

e−
i

2n = e−2
n/2·(2n/2+1)/2n+1

' e−1/2.

In the case of HMAC computations, a collision can occur either because of a collision on fKin
or

because of a collision on fKout
. Therefore, we have

Pnc−hmac =

2n/2∏
i=1

1− i

2n

2

'

2n/2∏
i=1

e−
i

2n

2

=
(
e−2

n/2·(2n/2+1)/2n+1
)2
' e−1.

Then, we compute the probability that when querying the 2n/2−1 remaining elements, a collision
will eventually be found in the first (or in the second) phase:

Pc−rand = 1−
2n/2−1∏
i=1

(
1− 2n/2 + i

2n

)
' 1−

2n/2−1∏
i=1

e−
2n/2+i

2n

= 1− e−2
n/2−1/2n/2−2n/2−1·(2n/2−1+1)/2n+1

' 1− e−5/8.

Again, in the case of HMAC computations, a collision can occur either because of a collision on fKin

or because of a collision on fKout . Therefore, we have

Pc−hmac = 1−

2n/2−1∏
i=1

(
1− 2n/2 + i

2n

)2

' 1−

2n/2−1∏
i=1

e−
2n/2+i

2n

2

= 1− (e−2
n/2−1/2n/2−2n/2−1·(2n/2−1+1)/2n+1

)2 ' 1− e−5/4.
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To summarize, the probability of the attacker to not output 0 during both the first and second
phases is equal to (Pnc−rand ·Pc−rand)2 ' 0.079 with randomly chosen functions and to (Pnc−hmac ·
Pc−hmac)

2 ' 0.069 with HMAC.

3rd phase (cycle detection). We need to compute the probability that the cycle found in walk
A and in walk B have the same length, for both the HMAC case and the randomly chosen functions
case. We denote Pcl−hmac the former and Pcl−rand the latter.

When the oracles are instantiated with HMAC, we already explained that HMACK and HMACK′

are related by their cycle structure. If there exists a collision between a member of walk A and
an internal value of a member of walk B, then we are ensured that they will enter a cycle of the
same length and the attacker will output 1. Thus Pcl−hmac is the probability that such a collision
occurs. Since the first phase (resp. second phase) ensured that a collision occurs after 2n/2 queries,
we are ensured that at least 2n/2 distinct elements exist in walk A (resp. walk B). Therefore, the
probability Pcl−hmac is lower bounded by

Pcl−hmac ≥ 1−
2n/2∏
i=1

(1− 2n/2

2n
) = 1−

2n/2∏
i=1

e
− 1

2n/2 = 1− e−1.

Now we need to evaluate the probability Pcl−rand that the cycles in walk A and walk B have
the same length for randomly chosen functions. Since we ensured that the collision happens in the
last 2n/2−1 elements instead of the first 2n/2 elements for walk A, there must exist some value zA,
1 ≤ zA ≤ 2n/2−1, such that qA

2n/2+zA
is the first query colliding with some previous query in walk

A. So the cycle length of walk A is uniformly distributed between 1 and 2n/2 + zA. Similarly for
walk B, there exists a value zB , 1 ≤ zB ≤ 2n/2−1, such that the cycle length of walk B is uniformly
distributed between 1 and 2n/2 + zB . Without loss of generality, let zA be smaller than or equal to
zB . Thus, the probability that the cycles in walk A and walk B have the same length is given by

Pcl−rand =

2n/2+zA∑
i=1

1

2n/2 + zA
× 1

2n/2 + zB
<

1

2n/2
×

2n/2+zA∑
i=1

1

2n/2 + zA
= 2−n/2

Overall the advantage of the adversary is

Adv(A) = |Pr[A(HMACK , HMACK′) = 1]− Pr[A(RK , RK′) = 1]|
≥ |(Pnc−hmac · Pc−hmac)

2 · Pcl−hmac − (Pnc−rand · Pc−rand)2 · Pcl−rand|
' (e−1 · (1− e−5/4))2 · (1− e−1) = 0.044

and it can be increased towards (1 − e−1) = 0.63 by allowing the attacker to spend a bit more
computations in the first and second phases (instead of outputting 0, he just starts the phase over
until he succeeds).

The complexity of the distinguisher is about 2n/2 + 2n/2−1 computations for each of the first
and second phase, thus about 2n/2+1 computations in total.

Note that one could argue that it is possible to find a distinguisher for HMAC in the single-key
model using 2n/2 queries, just by observing that HMAC will produce twice more collisions than a
random function, since HMAC is composed of the iteration of two functions (this is reflected in the
gap we have between Pnc−rand and Pnc−hmac, or between Pc−rand and Pc−hmac). However, this
distinguisher will be invalid because it hides the fact that one call to HMAC requires two random
function calls, and then for the same cost the attacker could have called twice more the random
functions RK or RK′ , thus the advantage between Pnc−rand and Pnc−hmac, or between Pc−rand and
Pc−hmac vanishes. Alternatively, we could define a slightly different distinguishing-R game in which
the attacker has to distinguish between (HMACK , HMACK′) and (RK , RK′), and where RK = R1

K ◦R0
K

and RK′ = R1
K′ ◦R0

K′ with R0
K , R1

K , R0
K′ , R

1
K′ being four independently chosen random functions.

Of independent interest, we found this new game is quite natural and fills a notion gap between
the distinguishing-R game and the distinguishing-H game. Recall that a distinguishing-R game is
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to distinguish HMAC from a random oracle, and a distinguishing-H game is to distinguish a known
compression function from a fixed input length random function under the constraint that they
are used in HMAC based on a known domain extension hash algorithm. Surprisingly, there is no
notion of distinguishing a known domain extension hash algorithm from a random oracle under
the constraint that they are both used in HMAC, which we propose to name distinguishing-D. Our
new game exactly covers this notion in a related-key setting.

3.4 Implementation

We implemented this distinguisher on HMAC instantiated with SHA-2 truncated to 32 bits. In this
scenario, we have n = 32, l = 256, m = k = 512 and the best distinguishing-R attack previously
known (the extension attack) requires 2128. Our method requires only 217 computations and takes
less than a second to perform on a modern PC. We verified experimentally the validity of the
probabilities computed theoretically.

As a proof of concept, we provide an example of two walks A and B that have the same cycle
length. The key K was chosen randomly and K ′ = K ⊕ ipad ⊕ opad. The message M was also
chosen randomly and is the starting query for both walk A and walk B. Finally, both walk have
the same cycle length of 79146 elements.

K = 67ae0a7c e69eda19 35d12aa1 7eab84ed 4b161697 0cfc317d 95d0cc42 9d06fecd

419788c8 7e7e4922 ba3dc78d 3c59ad01 afd94837 a3cb082f 0cbf05ab c14b78b2

K ′ = 0dc46016 8cf4b073 5fbb40cb 14c1ee87 217c7cfd 66965b17 ffbaa628 f76c94a7

2bfde2a2 14142348 d057ade7 5633c76b c5b3225d c9a16245 66d56fc1 ab2112d8

M = 56753af1

4 Internal state recovery attack

In this section we extend the distinguisher from Section 3 and we present an internal-state-recovery
attack that will be useful for the latter sections showing forgery and distinguishing-H attacks. These
attacks are applicable to both narrow-pipe and wide-pipe hash functions under some conditions. As
an example for a narrow-pipe hash function without finalization g(·), i.e. SHA-256 and SHA-512 [23],
these attacks achieve a birthday-bound complexity 2n/2, thus significantly reducing the expected
complexity of 2n.

4.1 General idea

We observe that if walk A and walk B follow the structure in Figure 2, then for any query in the
cycle of walk A, denoted as qA, the inner hash value HKin

(qA) is necessarily equal to some query
in the cycle of walk B, denoted as qB . The goal is therefore to find this query among all #qB

candidate values (all the members of walk B that belong to the cycle). In other words, we would
like to synchronize the two cycles from walk A and walk B, which we already know have the same
length.

In general, even if we know that walk A and walk B have the same length and are actually
doing the same computations, it seems hard to synchronize the two cycles because we do not know
where the tail in walk A and in walk B is entering the cycle. However, in the special case where
the collision between walk A and walk B happens in the tail (and not in the cycle), then we know
that the tails are entering the cycle at the same position (see Figure 3). In that case, the cycles
are directly synchronized and the attacker knows all the successive hash output values for every
computation in the cycle (he knows the output values of all the HKin

and HKout
computed inside

the cycle).
The first and second phases of the attack will be devoted to building a walk A and walk B

with a rather long tail, such that during the third phase there is a good chance to get a collision
between an element of the tail of walk A and an element of the tail of walk B. In order to recover
an internal state, he will focus on one randomly chosen value belonging to the cycle, denoted qA,
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Fig. 3. Two walks A and B colliding and sharing a cycle. The left example shows unsynchronized cycles
(the collision happens in the cycle, thus ZA 6= ZB), the right shows synchronized cycles (the collision
happens before the cycle, in the tails, thus ZA = ZB).

and its next hash output qB , with qB = H(Kin, q
A). Then he will try to guess the internal hash

value X = h(h(IV,Kin), qA||pad1) that led to qB , i.e. g(X) = qB .
We assume that g(·) is easy to invert (given an output u, it is easy to find all preimages

leading to u) and that it is balanced (given an output value, there exists 2l−n corresponding input
values through g). Inverting g provides 2l−n candidates Xi such that g(Xi) = qB . For each of
these candidates, we will apply a filter to remove the bad guesses. The filter is based on an offline
extension of the computation of HKin

4.2 Detailed procedure

1st phase (walk A). The attacker chooses a random small message MA of size n bits and
initializes qA0 = MA. Then he will query HMACK(qA0 ) and store the value obtained in qA1 . He
continues by querying HMACK(qAi ), and by storing the answer in qAi+1 for i = 0, 1, . . . , 2n/2. If no
cycle is generated (no collision among the queries qAi ) or if the walk A generated has a tail smaller
than 2n/2−2, then the attacker chooses another random n-bit message as starting query qA0 and
repeats the search procedure until a walk A with a cycle and a tail of at least 2n/2−2 elements are
found.

We evaluate the success probability of finding a proper walk A by trying one set of 2n/2 iterative
queries. First we would like the first 2n/2−1 elements be distinct and the probability of this event
is approximately e−1/8 (the evaluation is similar to the one from Section 3, thus we omitted it
here). Then the probability that the last 2n/2−1 queries produce a cycle is approximately e−3/8.
We evaluate the probability that the tail of walk A has at least 2n/2 − 2 elements. Note that we
have guaranteed that the query qAi causing the first collision happens during the i-th iteration, with
i > 2n/2 − 1. Therefore, the probability that qAi does not collide with the first 2n/2 − 2 elements
is 1 − (2n/2−2/i) ≥ 1/2. Finally, we conclude that by trying one set of 2n/2 iterative queries, the
success probability of generating a proper walk A is at least e−1/8 × e−3/8 × 1/2 ' 0.303.

2nd phase (walk B.) The procedure is identical to the first phase except that the attacker is
querying HMACK′ with K ′ = K ⊕ ipad ⊕ opad instead of HMACK . He obtains a walk B that has a
cycle and whose tail contains at least 2n/2−2 elements with probability of about 0.303 (identical
to 1st phase).

3rd phase (collision). The attacker checks that there is a collision between an element from walk
A and one from walk B, which can be done by verifying that walk A and walk B have the same
cycle length. He also wants this collision to happen more exactly between a member of the tail of
walk A and a member of the tail of walk B. This event happens with probability 1 − e−1 ' 0.63
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and if such a collision occurs, then the cycles from walk A and walk B are synchronized. In other
words, the attacker knows that the tail in walk A entered the cycle at the same position that the
tail in walk B entered its own cycle and as a consequence he knows all the succesive internal values
for the HMACK and HMACK′ computations belonging to the cycle. We denote qA, qB and qC three
consecutive internal states, that is qB = H(Kin, q

A), qC = H(Kout, q
B) and qC = HMACK(qA).

4th phase (recovery by filtering.) Given qA, qB and qC , known by the attacker, the goal is
now to recover the inner hash function internal state just before applying the output function g.
In other words, the attacker is trying to recover X = h(h(IV,Kin), qA||pad1), with g(X) = qB . He
first inverts the output function g from qB and gets 2l−n candidate values Xj .

The attacker chooses 2n/2 random distinct messages Mi, 0 ≤ i < 2n/2, such that we have that
each qA||pad1||Mi||pad2 fits into exactly two message blocks. He queries the messages qA||pad1||Mi

to HMACK and look for collisions among the outputs. A collision happens in inner hash with a
probability 1− e−1/2. At the same time, we want to avoid faulty collision, i.e. collision in the outer
hash instead of the inner hash, and this happens with probability e−1/2. We denote (M,M ′) the
pair of colliding message found and the success probability is (1− e−1/2)× e−1/2 ' 0.23.

For each of the 2l−n candidate valuesXj , the attacker computes the two values g(h(Xj ,M ||pad2))
and g(h(Xj ,M

′||pad2)), and checks whether they are equal. If it is the case, the attacker stores Xj

as a very likely candidate for the yet unknown value of X. Since there are in total 2l−n candidate
values, and the filter is of n-bit, 2l−2n candidates will be stored. The attacker repeats the colliding
messages (M,M ′) search and the filtering process until only one candidate, namely the real value
of X, is left.

Overall, the complexity of the attack is less than 2n/2+2 queries, and 2l−n+1 offline compu-
tations. The success probability is around 0.303 × 0.303 × 0.63 × 0.23 = 0.013. By repeating the
phases from 2 and 4 several times, the success probability will be increased.

5 Forgery attacks

This section describes the related-key forgery attacks on HMAC. The adversary is given access to two
oracles HMACK and HMACK′=(K⊕ipad⊕opad). After interacting with HMACK and HMACK′ , he outputs a
message and MAC value (M,σ), such that the message has not be queried for HMACK . If σ is a
valid MAC value for M through HMAC with key K, the adversary is said to have successfully forged
M for HMACK . More precisely, when the attacker is free to choose M it is an existential forgery,
while if the message is fixed by the challenger beforehand it is a universal forgery.

A commonly known generic existential forgery attack on HMAC (even in the single-key setting) is
the so-called extension attack. The attacker first searches for a pair of messages (M,M ′) colliding
on the last l-bit internal state of the inner hash (just before the application of the output function
g in the inner hash function call), then appends each of them with the same additional message
block X. Since the last internal state is the same for both messages (M,M ′), the two computations
of this extra message block X will also behave identically. Finally, by querying the HMAC value for
one of the two message M ||X, the attacker directly forge the other one M ′||X by outputting the
same MAC value. The complexity of this existential forgery attack is around 2l/2 queries.

We extend the internal-state-recovery attack from Section 4 to an existential forgery attack. The
method is simple. Following the procedure in Section 4, the attacker first recovers the internal state
X during the HMACK computation of one of the n-bit messages queried and we denote this message
by M . Then, using about 2n/2 computations, he generates offline a pair of distinct messages M ′

and M ′′ of the same length satisfying g(h(X,M ′||pad2)) = g(h(X,M ′′||pad2)), where pad2 stands
for the padding appended to the message M ||M ′ (or M ||M ′′) when applying the hash function
H. Finally, the attacker queries M ||pad1||M ′ to the oracle HMACK and receives a value T ′, where
pad1 stands for the padding added to the message M when applying the hash function H. He
can forge the MAC value T ′′ for the message M ||pad1||M ′′ through HMACK since T ′′ = T ′. The
overall complexity of this attack is 2n/2+2 queries and 2l−n + 2n/2 computations. Note that in
particular for the case l < 2n, our attack is faster than the commonly known existential forgery
attack requiring 2l/2 computations.
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One can trivially extend this existential forgery attack to an ”almost-universal” forgery attack,
where the attacker can only choose the first block and the l/2 first bits of the second block of the
message to be forged. In practice, this would be very close to a universal forgery if one assumes
that a few bytes of data in the header of the messages to be MACed can be controlled by the
attacker.

6 Distinguishing-H attacks

This section proposes two distinguishing-H attacks in the related-key setting. The attacker is given
access to two oracles HMACK and HMACK′ with K ′ = K ⊕ ipad ⊕ opad. The compression function
of the HMAC oracles is instantiated either with a known dedicated compression function h or with
a random chosen function r from Fm+l

l (the set of (m+ l)-bit to l-bit functions), which we denote
(HMAChK , HMAC

h
K′) and (HMACrK , HMAC

r
K′) respectively. The goal of the adversary is to distinguish

between the two cases and its advantage is given by

Adv(A) =
∣∣Pr[A(HMAChK , HMAC

h
K′) = 1]− Pr[A(HMACrK , HMAC

r
K′) = 1]

∣∣ .
6.1 Distinguishing-H attack I: comparing cycles lengths

The distinguisher in Section 3 can be extended to a distinguishing-H attack, as long as the final-
ization g(·) is bijective and invertible, for example the identity function. Without loss of generality,
we omit the output function g. The only difference from the distinguisher in Section 3 will be that
in order to produce walk A and walk B we will make full-block long iterative queries, namely m-bit
queries, instead of n-bit queries. A graphical view of one iteration in a walk is given in Figure 4. Let
pad1 be the padding to an n-bit message and pad2 the padding to an m-bit message. The attacker
first chooses a small random n-bit value qA0 . He then queries qA0 ||pad1 to HMACK and receives X0. He
computes h(X0, pad2) offline and stores the output as qA1 . He continues to query qAi ||pad1, receive
Xi and apply h(Xi, pad2) offline to produce qAi+1. With the same process, the attacker produces
walk B, except that he queries HMACK′ instead of HMACK .

If HMAC oracles are instantiated with h, then h(HMACK(·), pad2) is fKin
◦fKout

and h(HMAC′K(·), pad2)
is fKout

◦ fKin
, where fKin

and fKout
are defined in Figure 4. So walk A and walk B have a good

chance to have the structure explained in Section 3 and depicted in Figure 2, leading to cycles of
equal length. On the other hand, if HMAC oracles are instantiated with r, walk A and walk B are
independent. Thus by detecting the cycles lengths, the adversary can distinguish (HMAChK , HMAC

h
K′)

from (HMACrK , HMAC
r
K′). The complexity and the success probability are similar to the ones for the

distinguisher in Section 3.

Fig. 4. Distinguisher-H attack I.
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6.2 Distinguishing-H attack II: recovering internal state

The internal state recovery attack in Section 4 can be extended to a distinguishing-H attack as
well. The adversary first regards the HMAC oracles as (HMAChK , HMAC

h
K′), and applies the internal

state recovery procedure from Section 4 to obtain an internal state value X of some n-bit query
qA in a walk. Then he searches offline a pair of distinct messages (M,M ′) satisfying g(h(X,M)) =
g(h(X,M ′)), which costs 2n/2 computations. Finally, he queries HMACK with qA||pad1||M and
qA||pad2||M ′ to check whether the two MAC values collide. If they do the attacker outputs 1,
otherwise he outputs 0.

If the compression function is h, the probability that HMACK(qA||pad1||M) collides with the value
HMACK(qA||pad1||M ′) is equal to the success probability of recovering X in the attack of Section 4.
If the hash function is r, the probability that HMACK(qA||pad1||M) = HMACK(qA||pad1||M ′) is
negligible.

Overall, the complexity is 2n/2+2 queries, 2l−n+1 + 2n/2 offline computations and the success
probability is 0.013.

7 Patching HMAC and discussions

We emphasize again that the related-key issue depicted in this article only exists when the attacker
can query fKout ◦ fKin and fKin ◦ fKout with related-key relations, and therefore keep the two
computation chains synchronized if a collision happens. In the case of HMAC this is possible only
when k = m or k = m− 1 since the last bit of ipad and opad are equal (otherwise, for a smaller
key the attacker can not build a proper related-key). This shows that the choice of ipad and
opad is not anecdotal. For example, if ipad and opad were very similar, then our attacks would
work for basically any key length. Also, we observe that our attacks are the first to apply to HMAC

and not to NMAC, thus helping the community to understand what security we loose when going
from NMAC to HMAC.

Even if our attack is only theoretical due to its high birthday complexity, it is interesting
to study how one can patch the scheme and avoid this related-key issue. Since one of the best
feature from HMAC is that it uses a hash function as a black box, without any need to change
the primitive implementation, our goal is to find a patch that does not affect the hash function
definition. Indeed, an easy and efficient tweak would be for example to force different IVs for the
inner and outer instances of H in HMAC, but that would require modifying H’s implementation. We
note that truncating the output of HMAC would also work (the attacker would have to successively
guess the truncated bits for each received query in order to continue the computation chain), but
we do not consider this solution as satisfactory because reducing the output length will directly
reduce the expected generic security of the MAC algorithm.

A first try could be to xor some distinct constants to the inner and/or outer hash message
input in an attempt to separate the fKout

and fKin
computations. However, with such a patch,

an attacker can adapt his query strategy and still perform a modified version of the attack from
Section 3 to maintain the computation chains synchronized.

Our proposed solution is instead to force an extra fixed bit (or byte) before the input message
M . This patch would not harm much the efficiency of the scheme since only one bit (or one byte)
would be added to the message to hash for the inner hash function call (actually the efficiency will
be the same if the message plus one bit still fit in the same number of message blocks). Also, this
patch can even be applied on top of HMAC, as a preprocessing phase before calling the primitive,
thus allowing to use existing HMAC libraries without having to modify them.

The related-key distinguishing-R attack from Section 3 is thwarted because now the inner and
outer function are made distinct, even when querying with keys K and K ′ = K ⊕ opad ⊕ ipad.
The attacker can no more adapt the queries to circumvent this countermeasure and keep the
computation chains synchronized. The security proofs of HMAC still hold with this patch since it is
trivial to see that any attack on this new proposal will also apply on HMAC.

Note that adding this extra bit (or byte) to the input of the outer hash function instead of the
inner one, in an attempt to not reduce the efficiency (in most cases the hash function output size
n is much smaller than its message input size m and fit in one block, thus the efficiency would
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actually be very likely to remain exactly the same), would not prevent the attack from Section 3 to
be applicable, since the attacker could simply adapt his query strategy: instead of getting a value
V from the HMAC oracle and then query this value V again etc., he could simply prepend a 0 to
the received query 0||V before querying it again and eventually get the K and K ′ computations
synchronized again.

We observed that appending or prepending the extra bit to the message have actually different
impact on the security. For the former, the distinguishing-H attack (approach I) from Section 6
can still apply in the case of a narrow pipe internal hash function, while for the latter the attacker
can no more play with pad2 to absorb the prepended bit. Thus, our final proposal is to simply
prepend a 0 bit (or byte) to the input message of HMAC . Namely, this new version HMAC’
would be defined as

HMAC′(K,M) = HK⊕opad(HK⊕ipad(0||M)) = HKout
(HKin

(0||M)) = HMAC(K, 0||M)

Taking in account the fact that the related-key attacks described in this article only work for
special key length, we propose to apply our patch to HMAC only when k = m or k = m− 1.

We leave as an open problem to find a patch that has no impact on the efficiency (not even
a single bit), without modifying the implementation of the hash function H (thus without using
distinct IVs for the outer and inner hash calls).

As a final remark, we observe that for HMAC one should only consider related-keys of the same
length than the original key. Indeed, for HMAC one can easily check that when the length of the key
K is not a multiple of m, then the key K ′ = K||0 is equivalent to K in the sense that HMACK(M) =
HMACK′(M) for any message M (this related-key relation is even valid in the formalization of
related-key attacks from Bellare and Kohno [4] since no two different keys have the same related-
key). This is due to the fact that the padding of the key (so that its length becomes a multiple
of m) is weak and do not distinguish between keys of different length. A possible patch in order
to avoid any equivalent key would to simply pad the key with a 1 and as many zeros as needed
(possibly none) such that K||10 . . . 0 is a multiple of m, instead of the original 0 . . . 0 padding.

Conclusion

In this article we introduced a new type of distinguishing-R, distinguishing-H, internal state recov-
ery and forgery attacks for HMAC in the related-key setting. While the applicability of this attack
is only theoretical, it uses a novel attack angle, the cycle length. It is the first attack that applies
on HMAC and not on NMAC and it provides a better understanding of the role of the constants ipad
and opad. We also showed that our attacks can be avoided with a simple patch that only prepends
1 bit or 1 byte to the head of a message.
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