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Abstract

This paper presents a comprehensive study of the computation of square roots over finite extension

fields. We propose two novel algorithms for computing square roots over even field extensions of the

form Fq2 , with q = pn, p an odd prime and n ≥ 1. Both algorithms have an associate computational

cost roughly equivalent to one exponentiation in Fq2 . The first algorithm is devoted to the case when

q ≡ 1 mod 4, whereas the second one handles the case when q ≡ 3 mod 4. Numerical comparisons

show that the two algorithms presented in this paper are competitive and in some cases more efficient

than the square root methods previously known.

keyword: Modular square root, finite field arithmetic.

I. INTRODUCTION

Taking square roots over finite fields is a classical number theoretical problem that has

been addressed by mathematicians across the centuries. In modern times, the computation of

modular square roots is especially relevant for elliptic curve cryptosystems, where hashing

an arbitrary message to a random point that belongs to a given elliptic curve [10], point

compression [24], [1], [6] and point counting over elliptic curves [26], [2], are some of its

most relevant cryptographic applications. Quite often, the above applications require computing

square roots in finite extension fields. In particular, a good number of pairing-based protocols

defined over popular choices of pairing-friendly elliptic curves such as the Barreto-Naehrig, the

Kachisa-Schaefer-Scott or the Barreto-Lynn-Scott elliptic curves, require computing square roots

over either quadratic or cubic extension fields [5], [18], [16].
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Let q be a positive power of a large odd prime p, i.e., q = pm, with m ≥ 1. It is known that

q uniquely defines a finite field denoted as Fq. The problem of computing a field square root

of any arbitrary element a ∈ Fq consists of finding a second element b ∈ Fq such that b2 = a.

According to the Euler criterion, also known as the quadratic residue test, the square root of an

element a ∈ F∗q exist iff a
q−1
2 = 1, we denote by χq(a) the value of a

q−1
2 . If χq(a) = 1, we say

that the element a is a quadratic residue (QR) in Fq. It is known that in F∗q there exist exactly

(q − 1)/2 quadratic residues.

Two classical, non-deterministic techniques for computing square roots in prime extension

fields are the Tonelli-Shanks [30] and the Cipolla-Lehmer [12] algorithms. However, it is nor-

mally the case that finding the square root of a field element a can be achieved more easily by

using specialized methods as it is briefly discussed next.

In the case that q ≡ 3 (mod 4), one can simply use a specialized version of the Tonelli-Shanks

procedure, the Shanks algorithm, where the square root of a quadratic residue a ∈ Fq, can be

computed via one single exponentiation as, b = a
q+1
4 . On the other hand, no simple and general

algorithm for the class q ≡ 1 (mod 4) is known. However, fast algorithms for computing a

square root in Fq when q ≡ 5 (mod 8) or q ≡ 9 (mod 16) have been reported.

For the case when q ≡ 5 (mod 8), Atkin developed in 1992 an efficient and deterministic

square root algorithm that is able to find the square root of a quadratic residue using only

one field exponentiation plus some few multiplications in Fq [2]. A modification of the Atkin’s

algorithm was presented by Müller in [25], that allows one to compute square roots in Fq when

q ≡ 9 (mod 16), at the price of two exponentiations. By exploiting a regular structure of the

exponent (q − 9)/16 when written in base p, authors in [22], were able to simplify the overall

cost of the Müller procedure to only one exponentiation for half of the quadratic residues in Fq,

and two exponentiations for the other half.

It is worth mentioning that in the case when q ≡ 1 (mod 16), no specialized algorithm is

known. Hence, for this class of extension fields one is forced to resort to the aforementioned

classical methods, namely, the Tonelli-Shanks algorithm or a modified version of the Cipolla-

Lehmer algorithm also presented by Müller in [25].

Square root computation of extension fields Fpm , with m odd. Several authors have analyzed

the square root problem in odd finite extension fields. In [4], Barreto et al. presented an efficient

algorithm that can compute square roots for fields of this form, whenever p ≡ 3 mod 4 or
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p ≡ 5 mod 8. The latter case can be seen as a variant of the Atkin method mentioned above.

The main idea of the Barreto et al. procedure is to rewrite the exponents required for computing

the square root in base p. Then, those exponentiation operations can be calculated efficiently by

exploiting a recursive procedure that is essentially the same as the one used in the Itoh-Tsujii

inversion method [29]. This recursive procedure takes advantage of the fact that the Frobenius

map in characteristic p, which consists of the exponentiation of a field element a to the p-th

power, i.e. ap ∈ Fq, is a simple operation that can be computed at an inexpensive cost or even

at no cost if the field elements are represented in normal basis [7].

The technique in [4] was systematically applied by Han-Choi-Kim in [17] for all the special-

ized methods when p ≡ 3 (mod 4), 5 (mod 8) or 9 (mod 16). Authors in [17] also improved the

general Tonelli-Shanks method that is normally one of the best choices for tackling the difficult

case when p ≡ 1 (mod 16). Let us write pm− 1 as, pm− 1 = 2s · t, where s is a positive integer

and t an odd number. Then, in order to compute the square root of an arbitrary quadratic residue

a ∈ Fq, the single most expensive operation that the Tonelli-Shanks procedure performs, is the

exponentiation a
t−1
2 . As it was shown in [17], this operation can be considerably sped up by

once again exploiting the idea of rewriting the exponent (t− 1)/2 in base p.

Square root computation of extension fields Fpm , with m even. Relatively less work has

been reported for even extension fields. Finding square roots for these fields can sometimes be

achieved by descending some of the required computations in Fpm to proper subfields of the

form Fpi , with i ≥ 1 and i|m. In this context, authors in [19], [20], [32] used a Tonelli-Shanks

based approach in order to have most of the computations reduced to proper subfields of Fpm .

More recently, authors in [14] presented an algorithm that takes roots over Fpm by descending the

computation until the base field Fp using the trace function. The complexity analysis presented

in [14] is asymptotic.

Scott adapted in [27] the complex square root formula presented in [15] to the computation

of square roots in quadratic extension fields of the form Fq2 , q = pn. The computational cost of

this algorithm is of just two square roots, one quadratic residue test and one field inversion over

Fq. As it will be discussed in the rest of this paper, the complex method formula ranks among

the most efficient methods for computing square roots over even extension fields.

Contributions of this paper. As a first contribution, we present a procedure that can compute

χq(a), with q = pm at the cost of several Frobenius exponentiations over Fq plus the computation
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of the Legendre symbol in the base field Fp, which is more efficient than the recursive algorithm

proposed by Bach and Huber in [3]. Furthermore, a general review of the classical square root

algorithms over finite extension fields Fq is provided.

In the case of field extensions Fpm with m odd, we revisit efficient formulations of several

square root algorithms where the quadratic residue test of the input operand is interleaved in such

a manner that only some constant number of multiplications are added to the overall algorithm

computational cost.1 A detailed complexity analysis of all the reviewed algorithms is also given.

In particular and to the best of our knowledge, the complexity analysis of Algorithm 7 that

corresponds to the Müller procedure for the subclass q ≡ 1 (mod 16), has not been reported

before in the open literature.

Furthermore, we propose two new algorithms that given a field element a ∈ Fq2 , with q = pn,

can compute a square root of a or show that it does not exist. These two algorithms are

complementary in the sense that they cover separately the two congruence classes that odd

primes define, namely, q ≡ 1 (mod 4) and q ≡ 3 (mod 4).

For the class q ≡ 3 (mod 4), we present a deterministic procedure that in some sense can be

seen as a generalized Shanks algorithm for finite fields with even extensions. In this case the

proposed algorithm computes a square root by performing two exponentiations, each of them

with associate exponents of bit-length N, with N = log2(q).

For the class q ≡ 1 (mod 4), one could compute the square root of a quadratic residue a ∈ Fq2

by directly working in that extension field. In contrast, our second proposed algorithm computes

the square root by performing first one exponentiation in Fq2 , with an exponent of length of

about N bits, followed by the computation of one square root in the subfield Fq.

Our experiments show that the two square roots algorithms proposed in this paper are com-

petitive when compared against the complex method of [27], and the Tonelli-Shanks and the

Müller’s procedures. Fig. 1 shows a taxonomy of efficient algorithms that compute the square

root over Fpm , with p an odd prime and m ≥ 1

The rest of this paper is organized as follows. In Section II we give the notation and ba-

sic definitions of the arithmetic operations that will be used for evaluating the computational

complexities of the square root algorithms studied in this paper. Then, in Section III an efficient

1With the only exception of Algorithm 7 that reproduces one of the procedures that Müller introduced in [25].
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√
· ∈ Fpm

p an odd prime

m even

p
m
2 ≡ 1 mod 4

New Alg. 10

p
m
2 ≡ 3 mod 4

New Alg. 9
Complex Alg. 8

m odd

p ≡ 1 mod 4

p ≡ 1 mod 8

p ≡ 1 mod 16

Müller’s Alg. 7 or

Tonelli-Shanks Alg. 5

p ≡ 9 mod 16

Kong et al. Alg. 4

p ≡ 5 mod 8

Atkin’s Alg. 3

p ≡ 3 mod 4

Shanks’ Alg. 2

Figure 1. A taxonomy of efficient algorithms that compute the square root over Fpm , p an odd prime and m ≥ 1

method for computing quadratic residue tests over field extensions is presented. Section IV gives

a comprehensive review of known algorithms over extension fields Fpm with m odd, whereas

Section V studies the computation of square roots over extension fields Fpm with m even. In

Section VI a comparison of our algorithms against previously known methods by choosing BN

curve primes [6] and NIST recommended primes for elliptic curve cryptography [1] is given.

Finally, some conclusion remarks are drawn in Section VII.
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II. PRELIMINARIES

Throughout this paper, most of the described algorithms have both precomputation and compu-

tation phases. However, as it is customary when evaluating the complexity of a given algorithm,

we will not consider the precomputation effort and will give only the costs associated to the

computation phase.

In a finite field Fq, the square-and-multiply exponentiation method (also known as the binary

exponentiation method) is a standard strategy for computing field exponentiations of the form

as, where the exponent s is a positive integer, smaller than the order of the multiplicative

group. In average, the binary strategy requires a total of blog2(s)c squarings and Hw(s) − 1

field multiplications, where Hw(s) is the Hamming weight of s. In the rest of this paper it

will be assumed that the average Hamming weight of a random odd integer s is given as [23],
1
2
blog2(s)c+ 3

2
.

For a quadratic non-residue (QNR) element β ∈ Fq, the binomial f(y) = y2−β is irreducible

over Fq[y], which means that the quadratic extension Fq2 of the base field is isomorphic to

Fq[y]/ (f(y)). A field element a ∈ Fq2 can be represented as a = a0 + a1y, with a0, a1 ∈ Fq. A

multiplication and a squaring in Fq2 can be computed at a cost of three and two multiplications in

Fq, and one and two multiplications by a constant in Fq, respectively.2 Likewise, a multiplication

between an element of Fq and an element of Fq2 amounts for two multiplications in Fq. Since

(a0 +a1y)−1 = (a0−a1y)/(a20 +β ·a21), computing the inverse of a ∈ Fq2 requires one inversion

and at most 5 multiplications in Fq (in fact, if β = ±1 only 4 multiplications in Fq are required).

Applying the Frobenius operator over an arbitrary field element a is essentially free of cost since

(a0 + a1y)q = (a0 − a1y), i.e., the result of raising an element to the power q is its conjugate.

Notice also that this implies that aq+1 = a · ā = a20 + a21 is in Fq. Moreover, if the element a is a

quadratic residue, then a
q+1
2 also lies in Fq. We will consider that the addition operations have

a negligible cost, and thus they will be ignored from our estimations.

The application of the Frobenius operator over a field element a ∈ Fqk , with k > 2,

can be computed efficiently for reasonable choices of irreducible polynomials involved in the

construction of the associated field towering [8], [21]. In this scenario the computation of aq can

2using a multiplication à la Karatsuba and the so-called complex method, respectively. [13], [11].
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be achieved at the price of at most k − 1 field multiplications over Fq [9].3

In the remainder part of this paper, Mq, Sq and Mcq will denote the cost of a multiplication,

a squaring and a multiplication by a constant in Fq, respectively. The cost of an inversion is

denoted by Iq in any given field Fq. Moreover, we state Fq as the cost of a Frobenius operation

ap
i
, with a ∈ Fq, q = pm and 1 ≤ i < m. Lucas(k) will denote the complexity of computing the

k-th element of a Lucas sequence, whereas Cq(k, c) will denote the complexity cost of computing

the Frobenius exponentiation, a1+pc+(pc)2+···+(pc)k−1 in Fq, with c, k ≥ 1. Finally, we denote by

SQRTq, the complexity of computing a square root in the field Fq by using the most efficient

method for that extension field.

III. A REMARK ON THE COMPUTATION OF QUADRATIC RESIDUE TEST OVER FIELD

EXTENSIONS

In [3], Bach showed that the Legendre symbol can be used for computing the quadratic

character of an extension field element a ∈ F∗q, with q = pm, p an odd prime and m > 1.

By recursively invoking the law of quadratic reciprocity, Bach proved that the asymptotic cost

of this method is of O(log q)2 bit operations. Here, we present an alternative formulation that

computes the quadratic residue test by descending its computation to the base field Fp plus the

evaluation of several Frobenius operations. This procedure is considerably more efficient than

the algorithm of [3], provided that the Frobenius operator can be computed inexpensively.

As it was mentioned in the Introduction section, the quadratic residue test on an element

a ∈ F∗q , with q = pm can be computed via the exponentiation, a
q−1
2 . For m ≥ 1, the following

factorization of the exponent,
q − 1

2
=
p− 1

2

m−1∑
i=0

pi, (1)

can be used to descend the exponentiation a
q−1
2 to one quadratic residue test in the base field Fp

after applying the addition chain exponentiation method that was first described in [7]. Indeed,

the value b = a
∑m−1
i=0 pi is nothing more than the norm of a in the sub-field Fp of Fq, which implies

that b ∈ Fp. For the sake of efficiency, notice that after computing b, instead of performing the

exponentiation, a
q−1
2 = b

p−1
2 , the customary Legendre symbol computation on b ∈ Fp can be

3We stress that if normal basis representation is used then the computation of the Frobenius operator is free of cost.
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carried out as described in Alg. 1. The cost of computing b in polynomial basis is estimated in

Appendix A as,

3

2
[blog2mc+ 1] (Mq + Fq),

whereas the computation of the Legendre symbol of a non-zero base field element b has a

complexity similar to that of computing the greatest common divisor of b and p [3].

Algorithm 1 Quadratic residue test of a ∈ Fq, q = pm,m > 1

Require: a ∈ Fq , q = pm, m > 1.

Ensure: χq(a)

1: b← Cm−1,1(a). {via Algorithm 11}

2: c← b
p−1
2 . {via a Legendre symbol computation

(
b
p

)
over Fp}

3: return c.

IV. SQUARE ROOTS IN ODD EXTENSION FIELDS

The algorithms that compute square roots over finite extension fields Fq where q = pm, p is

a large odd prime and m > 1, can be classified into two main cases. On the one hand, we have

the class where q is congruent to 1 (mod 4) and on the other hand the class when q is congruent

to 3 (mod 4).4 We first describe the easiest case q ≡ 3 (mod 4) before handling q ≡ 1 (mod 4)

which can be much more costly in some cases as it will be discussed later.

A. Square roots in Fq when q ≡ 3 (mod4)

Computing the square root of an arbitrary quadratic residue a ∈ Fq, where q ≡ 3 (mod 4),

can be done with only one exponentiation, via the computation of a
q+1
4 , that can be seen as the

simplest instance of the Shanks’s method [28]. The quadratic residue test of an arbitrary field

element a ∈ Fq has been integrated into Algorithm 2. If a is a quadratic residue it returns its

square root and false otherwise.

4In the case of odd extension fields, if p ≡ ±1 (mod 4) then also pm ≡ ±1 (mod 4).

DRAFT



9

Algorithm 2 Shanks’s algorithm when q ≡ 3 (mod 4)

Require: a ∈ F∗
q .

Ensure: If it exists, x satisfying x2 = a, false otherwise.

1: a1 ← a
q−3
4 .

2: a0 ← a1(a1a).

3: if a0 = −1 then

4: return false.

5: end if

6: x← a1a.

7: return x.

The computational cost of Algorithm 2 is one exponentiation and two multiplications. In 2007,

Scott in [27] showed that the complexity of the exponentiation in Step 1 could be further reduced

by rewriting the exponent in base p. This was rediscovered by Han et al. [17], who proposed

factorizing the exponent (q − 3)/4 as,

q − 3

4
= α + p [pα + (3α + 2)]

(m−3)/2∑
i=0

p2i, (2)

where α = p−3
4

.

Using the factorization of the exponent q−3
4

given in Eq. (2), it can be shown that the average

complexity of Algorithm 2 when a is a square, is given as (see Appendix B for details),[
1

2
blog2(p)c+

3

2
blog2(m)c+

5

2

]
Mq + [blog2(p)c − 2]Sq +

[
3

2
blog2(m)c+ 2

]
Fq. (3)

B. Square roots in Fq when q ≡ 1 (mod4)

For this class, it is customary to consider the sub-congruences modulo 8 or modulo 16. Indeed,

despite the fact that there is no simple and general algorithm for q ≡ 1 (mod 4), fast algorithms

for computing a square root in Fq when q ≡ 5 (mod 8) or q ≡ 9 (mod 16) are known.

1) Atkin’s algorithm: When q is congruent to 5 (mod 8), Atkin [2] developed an efficient

method to compute a square root of a QR in Fq by performing one exponentiation and a constant

number of multiplications.
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Algorithm 3 Atkin algorihtm when q ≡ 5 (mod 8)

Require: a ∈ F∗
q .

Ensure: If it exists, x satisfying x2 = a, false otherwise.

PRECOMPUTATION

1: t← 2
q−5
8 .

COMPUTATION

1: a1 ← a
q−5
8 .

2: a0 ← (a21a)
2.

3: if a0 = −1 then

4: return false.

5: end if

6: b← ta1.

7: i← 2(ab)b.

8: x← (ab)(i− 1).

9: return x.

The computational cost of Algorithm 3 is one exponentiation, four multiplications and two

squarings in Fq. Han et al. [17] show that the exponent q − 5/8 can be rewritten in base p as,

q − 5

8
= α + p [pα + (5α + 3)]

(m−3)/2∑
i=0

p2i, (4)

where α = p−5
8

.

Using the factorization of Eq. (4), it can be shown that the average complexity of Algorithm 3

when a is a square, is giving as (see Appendix B for details),[
1

2
blog2(p)c+

3

2
blog2(m)c+ 3

]
Mq + blog2(p)cSq +

[
3

2
blog2(m)c+ 2

]
Fq. (5)

2) Generalized Atkin’s algorithm: The Atkin’s method was generalized at first by Müller [25]

for the case q ≡ 9 (mod 16). Müller showed that for this case the square root computation for a

quadratic residue can be achieved at a cost of two exponentiations in Fq. Later, Kong et al. [22]

further improve that result by presenting a procedure that required only one exponentiation for

half of the squares in Fq, and two exponentiations for the remainder half. Nonetheless, by pre-

computing some values, one can take a square root at the cost of only one exponentiation as

shown in Algorithm 4.
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Algorithm 4 Kong et al. algorihtm when q ≡ 9 (mod 16)

Require: a ∈ F∗
q .

Ensure: If it exists, x satisfying x2 = a, false otherwise.

PRECOMPUTATION

1: c0 ← 1

2: while c0 = 1 do

3: Select randomly c ∈ F∗
q .

4: c0 ← χq(c).

5: end while

6: d← c
q−9
8 ,

7: e← c2, t← 2
q−9
16 .

COMPUTATION

1: a1 ← a
q−9
16 .

2: a0 ← (a21a)
4.

3: if a0 = −1 then

4: return false.

5: end if

6: b← ta1.

7: i← 2(ab)b.

8: r ← i2.

9: if r = −1 then

10: x← (ab)(i− 1).

11: else

12: u← bd.

13: i← 2u2ea.

14: x← uca(i− 1).

15: end if

16: return x.

The computational cost of Algorithm 4 is one exponentiation, six and a half multiplications,

and four and a half squarings in Fq. For this case, the exponent (q − 9)/16 can be rewritten in

base p as,
q − 9

16
= α + p [pα + (9α + 5)]

(m−3)/2∑
i=0

p2i, (6)

where α = p−9
16

.

Using the factorization of Eq. (6), it can be shown that the average complexity of Algorithm 4

when a is a square, is given as (see Appendix B for details),[
1

2
blog2(p)c+

3

2
blog2(m)c+ 10

]
Mq +

[
blog2(p)c+

5

2

]
Sq +

[
3

2
blog2(m)c+ 2

]
Fq. (7)

3) General square root algorithms in Fq for q ≡ 1 (mod 16): This sub-case is certainly the

most costly, since there is no specialized algorithm to tackle it. The Tonelli-Shanks’s [28], [30]

and the Cipolla-Lehmer’s [12] algorithms are the two general non-deterministic algorithms from

which most of the methods for square root extraction are derived. In this subsection the Tonelli-

Shank’s algorithm and an improved Cipolla-Lehmer algorithm by Müller [25] are described. For

the latter, we include a detailed analysis of its computational complexity that to the best of our

knowledge, has not been reported before in the open literature.
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Algorithm 5 Tonelli-Shanks Algorithm

Require: a ∈ F∗
q

Ensure: If it exists, x satisfying x2 = a, false otherwise.

PRECOMPUTATION

1: Write q − 1 = 2st, where t is odd.

2: c0 ← 1.

3: while c0 = 1 do

4: Select randomly c ∈ F∗
q .

5: z ← ct.

6: c0 ← c2
s−1

.

7: end while

COMPUTATION

1: ω ← a
t−1
2 .

2: a0 ← (ω2a)2
s−1

.

3: if a0 = −1 then

4: return false.

5: end if

6: v ← s, x← aω, b← xω.

7: while b 6= 1 do

8: Find least integer k ≥ 0 such that b2
k

= 1.

9: ω ← z2
v−k−1

, z ← ω2, b← bz, x← xω, v ← k.

10: end while

11: return x.

Algorithm 5 presents a variant of the Tonelli-Shanks procedure where the quadratic test of

an arbitrary field element a ∈ Fq has been incorporated to the algorithm. It is noticed that the

computational complexity of Algorithm 5 varies depending if the input is or not a quadratic

residue in Fq. By taking into account the average contribution of QR and QNR inputs, and using

the complexity analysis given in [23] for the classical Tonelli-Shanks algorithm, it is not difficult

to see that the average computational cost of Algorithm 5 is given as,

1

2

[
blog2(q)c+ 4

]
Mq +

[
blog2(q)c+

1

8

(
s2 + 3s− 16

)
+

1

2s

]
Sq. (8)

However, rewriting the exponent (t− 1)/2 in base p as,

t− 1

2
= α + p

[
α(p+ 1) + 1 + 2s−1t

] (m−3)/2∑
i=0

p2i,

where q − 1 = 2st, p− 1 = 2sx, and α = x−1
2

, it can be shown that the average complexity of

Algorithm 5 for any arbitrary field element a is given as (see Appendix B for details),

Tonelli-Shanks Alg. cost =

[
1

2
blog2(p)c+

3

2
blog2(m)c+ s

2
+ 5

]
Mq

+

[
blog2(p)c+

1

8
(s2 + 11s− 16) +

1

2s

]
Sq +

[
3

2
blog2(m)c+ 2

]
Fq.
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Algorithm 6 Lucas sequence evaluation

Require: α ∈ Fq and k ≥ 2.

Ensure: Vk(α, 1).

1: Write k =
∑l−1
j=0 bj2

j in binary form.

2: d0 ← α.

3: d1 ← α2 − 2.

4: for j from l − 2 down to 1 do

5: d1−bj ← d0d1 − α, dbj ← d21−bj − 2.

6: end for

7: if b0 = 1 then v ← d0d1 − α else v ← d20 − 2.

8: return v.

As a second option for this sub-case, the improved Cipolla-Lehmer algorithm introduced

in [25], uses the Lucas sequences to compute a square root over the field Fq. Thus, we first

briefly recall the definition of the Lucas sequences and subsequently give a fast algorithm that

evaluates the k-th element of some instances of these sequences. For (α, β) ∈ Fq, the Lucas

sequence
(
Vk(α, β)

)
k≥0

is defined as,

V0 = 2, V1 = α and Vk = αVk−1 − βVk−2, for k > 1.

Algorithm 6 computes Vk(α, 1), for a given α ∈ Fq and k > 1. It can be easily verified

that to compute Vk(α, 1), this procedure requires about (blog2(k)c+ 3
2
)Sq + (blog2(k)c+ 1

2
)Mq

multiplications in Fq.

Algorithm 7 Müller’s algorithm [25]

Require: a ∈ F∗
q .

Ensure: If it exists, x satisfying x2 = a, false otherwise.

1: if a = 4 then

2: return 2.

3: end if

4: t← 1.

5: a1 ← χq(at
2 − 4).

6: while a1 = 1 do

7: Select randomly u ∈ F∗
q\{1}.

8: t← u.

9: if at2 − 4 = 0 then

10: return 2t−1.

11: end if

12: a1 ← χq(at
2 − 4).

13: end while

14: α← at2 − 2.

15: x← V q−1
4

(α, 1)/t.

16: a0 ← x2 − a.

17: if a0 6= 0 then

18: return false.

19: end if

20: return x.

Algorithm 7 shows essentially the same square root algorithm as it was presented in [25].

In order to assess the computational complexity of this procedure, the following two auxiliary

lemmas are presented.
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Lemma 1: In the field Fq, the number of QR a ∈ F∗q such that a− 4 is a QNR is q−1
4

.

Proof:

To prove this one can at first compute the number of QR a ∈ F∗q such that a − 4 is a QR,

which is clearly half of the number of b ∈ F∗q such that b2 − 4 is a QR.

It was shown in [31, Lemma 3.1] that #{b ∈ Fq | b2 − 4 is a QR in Fq} = q+1
2

. Now, when

b = 0, −4 is a QR in Fq since q ≡ 1 (mod 4), thus we have #{b ∈ F∗q | b2−4 is a QR in Fq} =

q−1
2
, and then #{a ∈ F∗q | a and a−4 are QRs in Fq} = q−1

4
. Hence, the number of QR a ∈ F∗q

such that a− 4 is a QNR is q−1
2
− q−1

4
= q−1

4
.

Lemma 2: Let a ∈ F∗q be a QR, then the number of t ∈ F∗q such that at2− 4 is a QNR is q−1
2

.

Proof:

As in the proof of Lemma 1, let us start by computing the number of t ∈ F∗q such that at2−4

is a QR, i.e the number of t ∈ F∗q such that there exists s ∈ Fq and at2 − 4 = s2. For such a

t, at2 − 4 = s2 is equivalent to a − 4r2 = s2r2, where r = t−1, and then to a = (s2 + 4)r2.

Thus the number of these t is equal to the number of r ∈ Fq such that there exist s ∈ Fq and

a = (s2 + 4)r2.

Claim: The number of the above r’s is the double of the number of QRs c ∈ F∗q such that c− 4

is also a QR in Fq.

Indeed, suppose that we have such a c, let s = ±
√
c− 4, then s2 + 4 = c.

Hence, it can be seen that for each such c, one obtains two solutions for the equation a =

(s2 + 4)r2, namely, r1,2 = ±
√
a/(s2 + 4). Moreover, since for a different c′ with properties as

for c, this procedure gives two elements (r′1, r
′
2) with (r′1, r

′
2) 6= (r1, r2) and (r′1, r

′
2) 6= (r2, r1),

in addition to the fact that the above procedure is reversible, one can conclude that:

#{r ∈ Fq | ∃ s ∈ Fq and a = (s2 + 4)r2} = 2#{c ∈ F∗q | c and c− 4 are QRs in Fq}.

Recalling from the proof of Lemma 1, we have #{c ∈ F∗q | c − 4 is a QR in Fq} = q−1
4

, and

therefore #{t ∈ F∗q | at2 − 4 is a QR in Fq} = q−1
2
. Hence, the number of t ∈ F∗q such that

at2 − 4 is a QNR is q − 1− q−1
2

= q−1
2

.

Summarizing, Lemma 1 shows that for half of the QRs in F∗q, there is no need to search for

a t in the main loop of Algorithm 7, and Lemma 2 ensures that for the remainder case only

2 iterations in the while-loop suffice on average. Now, the expected number of multiplications

and squarings in the cases when (a− 4)
q−1
2 = −1 and (a− 4)

q−1
2 = 1, can be computed. Let Iq
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denote the complexity of computing an inverse in Fq. Then,

• If (a − 4)
q−1
2 = −1, on average, one has to compute one exponentiation and one Lucas

sequence evaluation.

• If (a−4)
q−1
2 = 1, on average, one has to compute three exponentiations, one Lucas sequence

evaluation, one inversion, two multiplications and two squarings.

Once again, notice that the exponentiation of step 5 can be optimized by rewriting the exponent

(q − 1)/2 as,
q − 1

2
=
p− 1

2

(m−1)∑
i=0

pi,

which gives an expected computational cost of Algorithm 7 over all QRs in Fq as (see appendix

B for details),

Müller Alg. cost =

[
blog2(q)c+

15

4
blog2(m)c+ 13

4

]
Mq +

[
blog2(q)c −

1

2

]
Sq (9)

+

[
15

4
blog2(m)c+ 17

4

]
Fq + [blog2(p)c − 3]Mp + [2blog2(p)c − 2]Sp +

1

2
Ip

V. SQUARE ROOTS IN EVEN EXTENSION FIELDS

Even extension fields Fq2 with q = pn and n ≥ 1, can be constructed as, Fq2 ∼= Fq[y]/ (y2 − β) ,

where β ∈ Fq, is not a square. Unfortunately, none of the methods studied in the previous section

lead to efficient computation of square roots for even extension fields as is briefly discussed next.

Notice that in this scenario, the identity q2 ≡ 1 (mod 4) always holds. Moreover, it is easy to

see that the case q2 ≡ 5 (mod 8), can never occur. This automatically implies that the Shanks

and the Atkin methods studied in the previous Section are both ruled out. In the case that

q2 ≡ 9 (mod 16), one can use the generalized Atkin’s algorithm by Kong et al. that was also

reviewed in the precedent Section. If however, q2 = 1 (mod 16), the only remaining option is

to select between either the Tonelli-Shanks’s or the Müller’s non-deterministic algorithms.

In the rest of this section, three efficient methods for computing square roots over even

extension fields will be discussed. First, a detailed analysis of the complex method described

in [27] will be given. Then, two novel algorithms for computing square roots in Fq2 will be

presented. These two algorithms are complementary in the sense that they cover separately the

two congruence classes that odd primes define, namely, q ≡ 1 (mod 4) and q ≡ 3 (mod 4). The
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easiest case q ≡ 3 (mod 4) is first presented followed by the slightly more involved case when

q ≡ 1 (mod 4).

Algorithm 8 Complex method for square root computation over Fq2

Require: Irreducible binomial f(y) = y2 − β such that

Fq2 ∼= Fq[y]/
(
y2 − β

)
, β ∈ Fq,

with q = pn, a = a0 + a1y ∈ F∗
q2 .

Ensure: If it exists, x = x0 + x1y ∈ Fq2 satisfying x2 = a,

false otherwise.

1: if a1 = 0 then

2: return SQRTq(a0).

3: end if

4: α← a20 − β · a21.

5: γ ← χq(α).

6: if γ = −1 then

7: return false.

8: end if

9: α← SQRTq(α).

10: δ ← a0+α
2

.

11: γ ← χq(δ).

12: if γ = −1 then

13: δ ← a0−α
2

.

14: end if

15: x0 ← SQRTq(δ).

16: x1 ← a1
2x0

.

17: x← x0 + x1y.

18: return x.

A. The complex method

Let the quadratic extension field be defined as, Fq2 ∼= Fq[y]/ (y2 − β) , where β ∈ Fq, is not

a square, with q = pn, n ≥ 1. Then, a square root x = x0 + x1y ∈ Fq2 of an arbitrary quadratic

residue a = a0 + a1y ∈ F∗q2 can be found by observing that since x2 = x0
2 + 2x0x1y + βx1

2,

then x0, x1, must satisfy the following two equationsx0
2 + βx1

2 = a0

2x0x1 = a1

Solving this system of equations for x0, and x1 yields,

x0 =

(
a0 ± (a0

2 − βa12)
1
2

2

) 1
2

(10)

x1 =
a1
2x0
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Observe that a = a0 + a1y, will be a quadratic residue in the quadratic extension, whenever

α = a0
2 − βa12 ∈ Fq is a quadratic residue over Fq, as can be easily checked by noticing that,

(a0 + a1y)
q2−1

2 =
(
(a0 + a1y)q+1

) q−1
2

= ((a0 − a1y) · (a0 + a1y))
q−1
2

=
(
a0

2 − βa12
) q−1

2

Alg 8 uses the complex method for computing a square root in the quadratic extension Fq2 by

computing x = x0+x1y according to Eq. (10). Notice that Alg 8 performs two quadratic residue

tests in steps 5 and 11, which can be computed efficiently by using the method described in

§III. Besides these two tests, the cost of Alg 8 includes the computation of two square roots

plus one field inversion over Fq.

B. A deterministic algorithm when q ≡ 3 (mod 4)

A technique to compute a square root of a quadratic residue a ∈ Fq2 is to find an element

b ∈ Fq2 for which there exists an odd integer s such that b2as = 1. In this case, a square root of

a is given by ba
s+1
2 . In order to find b and s with the above property, we proceed as follows.

Let b and s be defined as, b = (1 + a
q−1
2 )

q−1
2 and s = q−1

2
. Let us consider first the case when

b 6= 0. Then, it can be easily verified that the equality b2as = 1 holds since,

b2as = (1 + a
q−1
2 )(q−1)a

q−1
2

= (1 + a
q−1
2 )q(1 + a

q−1
2 )(−1)a

q−1
2

= (1 + a
q−1
2
q)(1 + a

q−1
2 )(−1)a

q−1
2

= (a
q−1
2 + a

q−1
2

(q+1))(1 + a
q−1
2 )(−1)

= (a
q−1
2 + 1)(1 + a

q−1
2 )(−1)

= 1

If on the contrary, b = 0, then by definition of b we have that 1+a
q−1
2 = 0 and hence a

q−1
2 = −1.

In this case x = ia
q+1
4 is a square root of a, where i =

√
−1, as it can be easily verified by

noticing that x2 = i2a
q+1
2 = i2a

q−1
2 a = (−1)(−1)a = a.
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In practice the value of i can be readily found, if the quadratic field extension Fq2 has been

constructed using the binomial f(y) = y2 − β, where β ∈ Fq is not a square. In this case,

i = β
q−3
4 y, yields i2 = β

q−3
2 y2 = β

q−3
2 β = β

q−1
2 = −1, as required. However, since

p ≡ 3 (mod 4), typically β = −1 and therefore i = y.

Summarizing, the square root x of a quadratic residue a ∈ Fq2 , with q ≡ 3 (mod 4) can be

found as,

x =


ia

q+1
4 if a

q−1
2 = −1,(

1 + a
q−1
2

) q−1
2
a
q+1
4 otherwise.

(11)

We remark the striking similarity that exists between the classic Shanks algorithm (see § IV) and

our method. This leads us to state that Eq. (11) can be seen as a generalization of the Shanks

algorithm for even extension fields.

Algorithm 9 Square root computation over Fq2 , with q ≡ 3 (mod 4)

Require: a ∈ F∗
q2 , i ∈ Fq2 , such that i =

√
−1, with q = pn.

Ensure: If it exists, x satisfying x2 = a, false otherwise.

1: a1 ← a
q−3
4 .

2: α← a1(a1a).

3: a0 ← αqα.

4: if a0 = −1 then

5: return false.

6: end if

7: x0 ← a1a.

8: if α = −1 then

9: x← ix0.

10: else

11: b← (1 + α)
q−1
2 .

12: x← bx0.

13: end if

14: return x.

Algorithm 9 shows an efficient procedure for computing square roots according to Eq.( 11).

After executing Steps 1-3 the variables α and a0 are assigned as, α = a(q−1)/2 and a0 = a(q
2−1)/2,

respectively. Therefore, in Steps 4-6 the quadratic residue test of a over Fq2 is performed. In the

case that a is not a square the algorithm returns ’false’. Otherwise, after executing Step 7, the

variable x0 is assigned as x0 = a(q+1)/4. Then, according to Eq.( 11), if in Step 8 it is determined

that α = −1, the square root of a is given as x = ix0. Otherwise in Step 11, b is computed as,

b =
(

1 + a
q−1
2

) q−1
2
, and the value of the square root of a is computed in Step 12 as, x = bx0.

Algorithm 9 performs at most two exponentiations in Fq2 ,in Steps 1 and 11. Additionally, in

Steps 2, 3, 7 and 12 a total of five multiplications in Fq2 are required. As we have seen in§ IV,
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the exponent (q − 3)/4 of Step 1 can be written in terms of p as,

q − 3

4
= α + p [pα + (3α + 2)]

(n−3)/2∑
i=0

p2i,

where α = p−3
4

. Similarly, the exponent of (q− 1)/2 of Step 11 can be written in terms of p as,
q−1
2

= p−1
2

+
n−1∑
i=0

pi.

Hence, the exponentiation a
q−3
4 can be computed by performing the exponentiation a

p−3
4 ,

plus 4 multiplications, one squaring and two Frobenius over Fq2 plus one evaluation of the

sequence Cq2(n−12 , 2) that can be recursively computed using Algorithm 11 of Appendix A. The

average cost of computing a
p−3
4 and Cq2(n−12 , 2) is (1

2
blog2(p)c− 3

2
)Mq2 +(blog2(p)c−2)Sq2 , and

3
2
blog2 nc(Mq2 +Fq2), respectively. Similarly, the exponentiation (1+α)(q−1)/2 of Step 11 can be

computed by performing the exponentiation a
p−3
4 , plus 1 multiplication plus one evaluation of the

sequence Cq2(n, 1). Therefore, the overall average computational cost associated to Algorithm 9

when a is a square is given as,

Alg. 9 cost = [blog2(p)c+ 3blog2 nc+ 7]Mq2 + [2blog2(p)c − 2]Sq2 + [3blog2 nc+ 4]Fq2

C. A descending algorithm when q ≡ 1 (mod 4)

The main idea of Algorithm 10 is to descend the square root problem from Fq2 to Fq with

one exponentiation of log2(q) bits plus some precomputations. Once again, let us consider the

problem of finding the square root of an arbitrary quadratic residue a ∈ Fq2 . The approach

of descending this problem from Fq2 to Fq can be achieved by the opportunistic usage of the

identity,

a = a
(
a
q−1
2

)q+1

= a
(
a
q−1
2

)q
a
q−1
2

=
(
a
q−1
2

)q
a
q+1
2 , (12)

where the equality in Eq. (12) holds because of a
q2−1

2 = 1, since a in a quadratic residue in Fq2 .

Then, by taking the square root in both sides of Eq. (12) we get,

√
a = ±

(
a
q−1
4

)q√
a
q+1
2 . (13)
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Now, since
(
a
q+1
2

)q−1
= a

q2−1
2 = 1, by the Fermat’s little theorem, the value a

q+1
2 lives in Fq.

Moreover, if a
q+1
2 is a quadratic residue in Fq, then it holds that

(
a
q+1
2

) q−1
2

= 1. This implies

that the problem of finding square roots in Fq2 has been reduced to the same problem but in the

sub-field Fq, after one exponentiation with an exponent of roughly the same size of q. In the event

that a
q+1
2 is not a quadratic residue, then finding a quadratic non-residue in Fq2 (independently

of the form of a) allows us to recover easily the previous case as given in Algorithm 10.

Algorithm 10 Square root computation over Fq2 , with q ≡ 1 (mod 4)

Require: a ∈ F∗
q2 , with q = pn, n ≥ 1.

Ensure: If it exists, x satisfying x2 = a, false otherwise.

PRECOMPUTATION

1: c0 ← 1.

2: while c0 = 1 do

3: Select randomly c ∈ F∗
q2 .

4: c0 ← χq2(c).

5: end while

6: d← c
q−1
2 .

7: e← (dc)−1.

8: f ← (dc)2.

COMPUTATION

1: b← a
q−1
4 .

2: a0 ← (b2)qb2.

3: if a0 = −1 then

4: return false.

5: end if

6: if bqb = 1 then

7: x0 ← SQRTq(b
2a).

8: x← x0b
q .

9: else

10: x0 ← SQRTq(b
2af).

11: x← x0b
qe.

12: end if

13: return x.

Theorem 1: Algorithm 10 computes a square root of a ∈ Fq2 with one exponentiation of

log2(q) bits in Fq2 and one square root computation in the field Fq.

Proof:

At Step 2 of the computation phase, the value of a0 is,

(b2)qb2 = (b2)q+1 =
[
(a

q−1
4 )2

]q+1

= (a
q−1
2 )q+1,

which corresponds to the quadratic residue test of a in the field Fq2 . Thus, if a0 = −1, a is a

non quadratic residue in Fq2 and then ’false’ is returned. In the discussion that follows, it will

be assumed that a is a a quadratic residue (a0 = 1).

At Step 6, it is tested whether bqb = bq+1 = (a
q+1
2 )

q−1
2 is or not one. If it is one, then it is

concluded that a
q+1
2 is a quadratic residue in Fq. For bqb = 1, at Step 7, a square root x0 of
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b2a = a
q+1
2 in Fq is computed. Then the square root of a is given by x = x0b

q, since,

x2 = x20b
2q = a

q+1
2 (a

q−1
4 )2q = aa

q−1
2 (a

q−1
2 )q = a(a

q−1
2 )q+1 = aa0 = a.

Now, let us assume that bqb = −1. Notice that since in the precomputation phase, c0 was selected

as a QNR, then dqd = dq+1 = c
q2−1

2 is also a QNR. At Step 10, it is easy to see that the value

b2af lies in Fq where it is also a square. To see this, notice that,

(b2af)
q−1
2 = bq−1a

q−1
2 (dc)q−1 = bq−1b2dq−1d2 = (bqb)(dqd) = (−1)(−1) = 1.

After computing a square root x0 of b2af in Fq, it can be proved that x = x0b
qe is a square

root of a since, x2 = (x0b
qe)2 = b2afb2qe2 = ab2q+2(dc)2 [(dc)−1]

2
= ab2q+2 = aa0 = a.

The cost of Algorithm 10 includes the computation of one field exponentiation over Fq2 , one

square root in Fq, 5 field multiplications, squarings and two Frobenius over Fq2 . The exponent

(q − 1)/4 of Step 1 can be written in terms of p as, q−1
4

= p−1
4

+
n−1∑
i=0

pi. Hence, a(q−1)/4 can be

computed by performing the exponentiation a
p−1
4 , plus 1 multiplication plus one evaluation of the

sequence Cq2(n, 1). Therefore, the overall average computational cost associated to Algorithm 10

when a is a square is given as,

Alg. 10 cost = (1
2
blog2(p)c+ 3

2
blog2mc+ 11

2
)Mq2 +(blog2(p)c−2)Sq2 +(3

2
blog2mc+3)Fq2 +

SQRTq

VI. COMPARISONS

In this section, we compare the algorithms described above for the cases when one wants to

compute square roots in Fp2 , Fp6 and Fp12 , where p is an odd prime. In the next experiments,

two group of primes have been considered. The first group is composed by primes congruent to

3 (mod 4) where algorithm 9 apply. The second one considers primes p ≡ 1 (mod 4), where one

can use algorithm 10. The extensions Fp6 and Fp12 are obtained by constructing the following

field towering,

Fp ⊂ Fp3 ⊂ Fp6 ⊂ Fp12 .

In our comparisons, BN curve primes [6] and NIST recommended primes for elliptic curve

cryptography [1] were selected. This choice was taken considering that one of the contexts
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where computing square root over prime extensions fields is required is in the computation

of bilinear pairings and elliptic curve cryptography. It is worth mentioning that BN curves is

a rich family of elliptic curves defined over a prime field Fp, where p is parametrized as,

p(u) = 36u4 + 36u3 + 24u2 + 6u, with u ∈ Z.

Table I

NUMBER OF OPERATIONS IN Fp FOR SQUARE ROOTS IN Fq2 , q = p, p ≡ 3 (mod 4)

Parameter u = −(262 + 255 + 1) p = 2256 − 2224 + 2192 + 296 − 1 u = 263 + 29 + 28 + 26 + 24 + 23 + 1

Bit length of p 254 256 258

Algo 8

Mp 1261 1785 1427

Mcp 1091 1271 1157

Ip 0 0 0

Complex Alg.

Mp 1176 1292 1528

Mcp 4 4 4

Ip 1 1 1

Tonelli-Shanks

Mp 1574 6292 1660

Mcp 1202 6999 1244

Ip 0 0 0

Müller’s Algo

Mp 3120 3387 3245

Mcp 1521 1537 1546

Ip 1 1 1
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Table II

NUMBER OF OPERATIONS IN Fp FOR SQUARE ROOTS IN Fq2 , q = p, p ≡ 1 (mod 4)

Parameter p = 2224 − 296 + 1 u = 262 − 254 + 244 u = 263 − 249

Bit length of p 224 254 256

Algo 9

Mp 1975 1625 1782

Mcp 577 591 603

Ip 1 0 0

Complex Alg.

Mp 2284 2425 2691

Mcp 5 5 5

Ip 3 1 1

Tonelli-Shanks

Mp 6705 2934 3199

Mcp 6065 2402 2669

Ip 0 0 0

Müller’s Algo

Mp 2743 3197 3254

Mcp 1342 1521 1545

Ip 1 1 1

For comparisons over Fp2 , the quadratic extension was constructed as Fp2 = Fp[u]/ (u2 − δ),

where δ is a quadratic non-residue over Fp. Hence, every element a in Fp2 is represented as

a = a0 + a1u with an arithmetic cost given as, Mp2 = 3Mp + 1Mcp, Sp2 = 2Sp + 2Mcp,

Ip2 = Ip + 4Mp + Mcp. Analogous costs also hold for the quadratic extensions Fp3 ⊂ Fp6 and

Fp6 ⊂ Fp12 .

The cubic extension Fp ⊂ Fp3 is obtaining by considering a cubic non-residue ξ ∈ Fp. We

chose p ≡ 1 (mod 3) in order to have a simple way for finding cubic non-residues, since in this

case an element ξ ∈ Fp is a cubic non-residue iff ξ
p−1
3 6= 1.

Let ξ ∈ Fp be a cubic non-residue, then the polynomial X3 − ξ is irreducible over Fp so that

the quotient Fp[u]/ (u3 − ξ) can be used to build the cubic field extension Fp3 . In that field, an

element α is represented as, α2u
2 + α1u+ α0u, α0, α1, α2 ∈ Fp. The above construction leads

to the following arithmetic costs over Fp3 , Mp3 = 8Mp + 2Mcp, Sp3 = 7Sp + 2Mcp, Ip3 =

Ip + 12Mp + 4Mcp.

Since the cubic non-residue ξ over Fp was also selected to be a quadratic non-residue over

Fp, then the quadratic extension Fp3 ⊂ Fp6 can be constructed as, Fp6 ∼= Fp3 [v]/ (v2 − u) , since

the element u is a quadratic non-residue in Fp3 .
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For further comparisons when p ≡ 1 (mod 4), we also consider the twelfth field extension

Fp12 . Notice that the element v is also a quadratic non-residue in Fp6 . Hence, Fp12 can be seen

as the quadratic extension Fq[v]/ (v2 − u).

Tables I-IV present our experimental results in terms of number of general field multiplications,

multiplications by a constant and inversions in Fp, for different choices of odd primes p.5 For

the case p ≡ 3 mod 4, it can be seen from Tables I and III that the complex method is the

most efficient procedure followed by Algorithm 9. In the case when p ≡ 3 mod 4, it can be seen

from Tables II and IV that the complex method and Algorithm 10 are the two most efficient

solutions. All these three algorithms are considerable more efficient than the classical Tonelli-

Shanks and Müller’s procedures. In a scenario where the multiplication by constants is negligible

(for example when the irreducible binomials that were used to build the extension field has a

constant of value ±1 and/or a small power of two), then Algorithm 10 outperforms the complex

method in most scenarios. This is the case for the three primes considered in Table-IV for square

root computation over the field extension Fp12 .

Table III

NUMBER OF OPERATIONS IN Fp FOR SQUARE ROOTS IN Fq2 , q = p3 , p ≡ 3 (mod 4)

Parameter u = −(262 + 255 + 1) p = 2256 − 2224 + 2192 + 296 − 1 u = 263 + 29 + 28 + 26 + 24 + 23 + 1

Bit length of p 254 256 258

Algo 8

Mp 6405 9025 7235

Mcp 3693 4921 4091

Ip 0 0 0

Complex Alg.

Mp 3603 2657 3951

Mcp 1235 1590 1351

Ip 1 1 1

Tonelli-Shanks

Mp 26670 52286 26972

Mcp 14474 29644 14649

Ip 0 0 0

Müller’s Algo

Mp 38681 39357 40538

Mcp 19837 20057 20162

Ip 1 1 1

5The corresponding Maple and magma scripts can be downloaded at: http://delta.cs.cinvestav.mx/∼francisco/codigo.html.
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Table IV

NUMBER OF OPERATIONS IN Fp FOR SQUARE ROOTS IN Fq2 , q = p6 , p ≡ 1 (mod 4)

Parameter p = 2224 − 296 + 1 u = 262 − 254 + 244 u = 263 − 249

Bit length of p 224 254 256

Algo 9

Mp 24293 19937 21044

Mcp 10630 10105 10605

Ip 1 0 0

Complex Alg.

Mp 31337 19932 22984

Mcp 10971 7603 8673

Ip 7 3 3

Tonelli-Shanks

Mp 223455 174555 191310

Mcp 116154 90018 98844

Ip 0 0 0

Müller’s Algo

Mp 202534 218683 232429

Mcp 102354 115591 117467

Ip 1 1 1

VII. CONCLUSION

In this paper the computation of square roots over extension fields of the form Fq2 , with

q = pn, p an odd prime and n ≥ 1, was studied, including two novel proposals for the cases

q ≡ 1 mod 4 (Algorithm 9) and q ≡ 3 mod 4 (Algorithm 10). From the complexity analysis of

these algorithms and corresponding experimental results, we conclude that the complex method

of [27] is the most efficient option in the case when q ≡ 3 mod 4. For the case when q ≡ 1 mod 4,

in many cases, Algorithm 10 is the most efficient approach closely followed by the complex

method.
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Algorithm 11 Computing the sequence Ck,c(a) = a1+s+s
2+···+sk−1 , with s = pc, 1 ≤ c < m

Require: a ∈ Fq , q = pm, s = pc, 1 ≤ c < m, k.

Ensure: Ck,s(a) = a1+s+s
2+···+sk

1: if k = 0 then

2: return a.

3: end if

4: if k ≡ 1 mod 2 then

5: n← (k − 1)/2.

6: C ← Cn,c(a)

7: C ← C · Csn+1

8: else

9: n← k/2.

10: C ← Cn−1,c(a)

11: C ←
(
C · Csn

)s
· a

12: end if

13: return C.

APPENDIX A: EVALUATION OF Cq(k, c)

Let a ∈ Fq and define Ck,c(a) = a1+s+s
2+···+sk−1 with s = pc. Then, we have [7]:

Ck,c(a) =

Cn,c(a)(Cn,c(a))s
n if k = 2n,(

Cn,c(a) (Cn,c(a))s
n
)s
a if k = 2n+ 1.

(14)
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Algorithm 11 computes Ck,c(a) by applying Eq. (14) recursively. It can be seen that the

computational cost of Algorithm 11 is either one multiplication and one Frobenius operator

over Fq, if k is even; or two multiplications and two Frobenius operators over Fq, if k is odd.

Furthermore, notice that Algorithm 11 invokes itself exactly blog2 kc times. Assuming that half

of these invocations correspond to n even and the other half to n odd, the overall average

complexity of Algorithm 11 for computing Ck,c(a) can be estimated as,

3

2
[blog2 kc+ 1] (Mq + Fq).

APPENDIX B: COMPLEXITY OF SQUARE ROOT ALGORITMS FOR ODD EXTENSIONS FIELDS

Algorithm 12 Computing the exponentiation a
q−3
4 ∈ F∗q, with q = pm

Require: a ∈ F∗
q , p.

Ensure: a
q−3
4 .

1: α← p−3
4

2: y1 ← aα.

3: y ← y1a. {aα+1}
4: y ← y2. {a2α+2}
5: y ← yy1. {a3α+2}

6: y2 ← yp1 . {apα}
7: y ← y2y. {apα+(3α+2)}
8: y ← yp. {ap(pα+(3α+2))}
9: y ← Cm−1

2
,2
(y). {via Algorithm 11}

10: y ← y1y. {aα+p(pα+(3α+2))
∑(m−3)/2

i=0 p2i}
11: return y.

SHANKS’ ALGORITHM

The computational cost of Algorithm 7 is one exponentiation, two multiplications and one

squaring. Han et al. [17] show how to rewrite the exponent (q − 3)/4 in terms of p as,

q − 3

4
= α + p [pα + (3α + 2)]

(m−3)/2∑
i=0

p2i,

where α = p−3
4

.

Algorithm 12 shows that the exponentiation a
q−3
4 can be computed by performing an ex-

ponentiation a
p−3
4 , plus 4 multiplications, one squaring and two Frobenius over Fq plus one

evaluation of the sequence Cq(m−12
, 2) that can be recursively computed using Algorithm 11. The

average cost of computing a
p−3
4 and Cq(m−12

, 2) is (1
2
blog2(p)c− 3

2
)Mq + (blog2(p)c− 2)Sq, and

3
2
blog2mc(Mq + Fq), respectively. Therefore, the overall average computational cost associated

to the Shanks Algorithm 2 when a is a square is given as,
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Shanks Alg. cost =
[
1

2
blog2(p)c+

3

2
blog2(m)c+ 5

2

]
Mq + [blog2(p)c − 1]Sq +

[
3

2
blog2(m)c+ 2

]
Fq.

Algorithm 13 Computing the exponentiation a
q−5
8 ∈ F∗q, with q = pm

Require: a ∈ F∗
q , p.

Ensure: a
q−5
8 .

1: α← p−5
8

2: y1 ← aα.

3: y2 ← y1a. {aα+1}
4: y ← y1y2. {a2α+1}
5: y ← y2. {a4α+2}

6: y ← yy2. {a5α+3}
7: y2 ← yp1 . {apα}
8: y ← y2y. {apα+(5α+3)}
9: y ← yp. {ap(pα+(5α+3))}

10: y ← Cm−1
2

,2
(y). {via Algorithm 11}

11: y ← y1y. {aα+p(pα+(5α+3))
∑(m−3)/2

i=0 p2i}
12: return y.

ATKIN’S ALGORITHM

The computational cost of Algorithm 3 is one exponentiation, four multiplications and two

squarings in Fq. Han et al. [17] show that the exponent (q− 5)/8 can be rewritten in base p as,

q − 5

8
= α + p [pα + (5α + 3)]

(m−3)/2∑
i=0

p2i,

where α = p−5
8

.

Algorithm 13 shows that the exponentiation a
q−5
8 can be computed by performing an ex-

ponentiation a
p−5
8 , plus 5 multiplications, one squaring and two Frobenius over Fq plus one

evaluation of the sequence Cq(
m−1
2
, 2) that can be recursively computed using Algorithm 11.

The average cost of computing a
p−5
8 and Cq(m−12

, 2) is (1
2
blog2(p)c− 3

2
)Mq + (blog2(p)c− 3)Sq,

and 3
2
blog2mc(Mq + Fq), respectively. Therefore, the average computational cost associated to

the Atkin Algorithm 2 when a is a square is given as,

Atkin Alg. cost =

[
1

2
blog2(p)c+

3

2
blog2(m)c+ 3

]
Mq + blog2(p)cSq +

[
3

2
blog2(m)c+ 2

]
Fq.
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Algorithm 14 Computing the exponentiation a
q−9
16 ∈ F∗q, with q = pm

Require: a ∈ F∗
q , p.

Ensure: a
q−9
16 .

1: α← p−9
16

2: y1 ← aα.

3: y2 ← y1a. {aα+1}
4: y ← (y1y2)4. {a8α+4}
5: y ← yy2. {a9α+5}

6: y2 ← yp1 . {apα}
7: y ← y2y. {apα+(9α+5)}
8: y ← yp. {ap(pα+(9α+5))}
9: y ← Cm−1

2
,2
(y). {via Algorithm 11}

10: y ← y1y. {aα+p(pα+(9α+5))
∑(m−3)/2

i=0 p2i}
11: return y.

KONG et al. ALGORITHM

The computational cost of Algorithm 4 is one exponentiation, six and a half multiplications

and four and a half squarings in Fq. For this case, the exponent (q − 9)/16 can be rewritten in

base p as,
q − 9

16
= α + p [pα + (9α + 5)]

(m−3)/2∑
i=0

p2i,

where α = p−9
16

.
Algorithm 14 shows that the exponentiation a

q−9
16 can be computed by performing an ex-

ponentiation a
p−9
16 , plus 5 multiplications, two squarings and two Frobenius over Fq plus one

evaluation of the sequence Cq(m−12
, 2) that can be recursively computed using Algorithm 11. The

average cost of computing a
p−9
16 and Cq(m−12

, 2) is (1
2
blog2(p)c− 3

2
)Mq + (blog2(p)c− 4)Sq, and

3
2
(blog2mc)(Mq+Fq), respectively. Therefore, the overall average computational cost associated

to the Kong et al. Algorithm 4 is given as,

Kong et al. Alg. cost =
[
1

2
blog2(p)c+

3

2
blog2(m)c+ 10

]
Mq +

[
blog2(p)c+

5

2

]
Sq +

[
3

2
blog2(m)c+ 2

]
Fq.

Algorithm 15 Computing the exponentiation a
t−1
2 ∈ F∗q, with q − 1 = pm − 1 = 2s ∗ t

Require: a ∈ F∗
q , p.

Ensure: a
t−1
2 .

1: α← x−1
2

2: y1 ← aα.

3: y ← y21 . {ax−1}
4: y ← ya. {ax}
5: y ← y2

s−1
. {ax2s−1}

6: y ← y1y. {aα+x2s−1}
7: y2 ← yp1 . {apα}
8: y ← y2y. {apα+α+x2s−1}
9: y ← yp. {ap(pα+α+x2

s−1)}
10: y ← Cm−1

2
,2
(y). {via Algorithm 11}

11: y ← y1y. {aα+p(pα+α+x2
s−1)

∑(m−3)/2
i=0 p2i}

12: return y.
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TONELLI-SHANKS ALGORITHM

The computational cost of Algorithm 5 varies depending if the input is or not a quadratic

residue in Fq. By taking into account the average contribution of QR and QNR inputs, and using

the complexity analysis given in [23] for the classical Tonelli-Shanks algorithm it can be found

that its average cost is

1

2

[
blog2(q)c+ 4

]
Mq +

[
blog2(q)c+

1

8

(
s2 + 3s− 16

)
+

1

2s

]
Sq. (15)

However, rewriting once again the exponent q − 9/16 in base p as,

t− 1

2
= α + p

[
pα + α + 2s−1x

] (m−3)/2∑
i=0

p2i,

where q − 1 = 2st, p− 1 = 2sx, with t and x odd integers, and α = x−1
2

.

Algorithm 15 shows that the exponentiation a
t−1
2 can be computed by performing an exponen-

tiation a
x−1
2 , plus 4 multiplications, s squarings and two Frobenius over Fq plus one evaluation

of the sequence Cq(m−12
, 2) that can be recursively computed using Algorithm 11. The average

cost of computing a
x−1
2 and Cq(

m−1
2
, 2) is (1

2
blog2(p)c − 3

2
)Mq + (blog2(p)c − s − 1)Sq, and

3
2
blog2mc(Mq + Fq), respectively. Therefore, the overall average computational cost associated

to The Tonelli-Shanks Algorithm 5 is given as,

Tonelli-Shanks Alg. cost =

[
1

2
blog2(p)c+

3

2
blog2(m)c+ s

2
+ 5

]
Mq

+

[
blog2(p)c+

1

8
(s2 + 11s− 16) +

1

2s

]
Sq +

[
3

2
blog2(m)c+ 2

]
Fq.

MÜLLER’S ALGORITHM

Algorithm 7 requires the computation of the exponentiation (at2 − 4)
q−1
2 in step 5, which

we can be done as shown in the preliminary part by the computation of Cq(m, 2) and an

exponentiation with exponent p−1
2

in Fp of costs 3
2
(blog2mc+ 1)(Mq + Fq), and (1

2
blog2(p)c −

3
2
)Mp+(blog2(p)c−1)Sp, respectively. Moreover, the q−1

4
−th element of a Lucas Sequence can

be found using Alg. 6 at a cost of (blog2(q)c− 5
2
)Mq + (blog2(q)c− 3

2
)Sq. Using the Itoh-Tsujii

method, an inversion a−1 in Fq can be performed by doing the following:

a−1 =
(
a
(
a1+p+p

2+···+pm−2
)p)−1 (

a1+p+p
2+···+pm−2

)p
,
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where the inversion
(
a
(
a1+p+p

2+···+pm−2
)p)−1

is computed in the base-field Fp. Hence the cost

of an inversion is 1Cq(m−1, 1)+2Mq+1Fq+1Ip. Therefore, the overall average computational

cost associated to the Müller’s Algorithm 7 is given as,

Müller Alg. cost =



[
blog2(q)c+ 3

2
blog2(m)c − 1

]
Mq +

[
blog2(q)c − 3

2

]
Sq

+
[
3
2
blog2(m)c+ 3

2

]
Fq +

[
1
2
blog2(p)c − 3

2

]
Mp + [blog2(p)c − 1]Sp if (a− 4)

q−1
2 = −1,[

blog2(q)c+ 6blog2(m)c+ 15
2

]
Mq +

[
blog2(q)c+ 1

2

]
Sq

+ [6blog2(m)c+ 7]Fq +
[
3
2
blog2(p)c − 9

2

]
Mp + [3blog2(p)c − 3]Sp + 1Ip if (a− 4)

q−1
2 = 1.

Which gives in average,

Müller Alg. cost =

[
blog2(q)c+

15

4
blog2(m)c+ 13

4

]
Mq +

[
blog2(q)c −

1

2

]
Sq

+

[
15

4
blog2(m)c+ 17

4

]
Fq + [blog2(p)c − 3]Mp + [2blog2(p)c − 2]Sp +

1

2
Ip.
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