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Abstract. We use a variant of learning with errors (LWE) problem, a simple and direct
extension of the original LWE problem to the case of a small secret, which we call a small
LWE problem (SLWE), to build a new simple and provably secure key exchange scheme.
The basic idea behind the construction can be viewed as certain type of bilinear pairing
with errors (PE). We build a more efficient implementation of our scheme using a similar
LWE problem but solely based on matrices, and we extend our construction further using
the ring LWE problem, where the provable security is based on the hardness of the ring LWE
problem.

1 Introduction

The learning with errors (LWE) problem, introduced by Regev in 2005 [18], and its extension,
the ring learning with errors (RLWE) problem [20] have attracted a lot of attentions in theory
and applications due to their usage in cryptographic constructions with some good provable secure
properties. The main claim is that they are as hard as certain worst-case lattice problems and hence
the related cryptographic constructions. Recently they have been used to construct homomorphic
encryption schemes [23].

A LWE problem can be described as follows.
First, we have a parameter n, a prime modulus q , and an ”error” probability distribution κ

on the finite field Fq with q elements.

Definition 1. Let ΠS,κ on Fq be the probability distribution obtained by selecting an element A
in Fn

q randomly and uniformly, choosing e ∈ Fq according to κ, and outputting (A,< A, S > +e),
where + is the addition that is performed in Fq.

An algorithm that solves the LWE problem with modulus q and error distribution κ, if, for any
S in Fn

q , with an arbitrary number of independent samples from ΠS,κ, it outputs S (with high
probability).

To achieve the provable security of the related cryptographic constructions based on the LWE
problem, one chooses q to be specific polynomial functions of n, that is q is replaced by a polynomial
functions of n, which we will denote as q(n), κ to be certain discrete version of normal distribution
centered around 0 with the standard deviation σ = αq ≥

√
n, and elements of Fq are represented

by integers in the range [−(q − 1)/2, (q − 1)/2)].
In the original encryption scheme based on the LWE problem, one can only encrypt one bit a

time and therefore the system is rather inefficient and it has a large key size. To further improve
the efficiency of the cryptosystems based on the LWE problem, a new problem, which is a LWE
problem based on a quotient ring of the polynomial ring Fq[x] [20], was proposed. This is called
the ring LWE (RLWE) problem. The RLWE problem is further used in homomorphic encryption
schemes. In the cryptosystems based on the RLWE problem, their security is reduced to hard
problems on a subclass of lattices, the class of ideal lattices, instead of general lattices.

What motivates the work in this paper is to try to build a simple key exchange protocol using
the basic idea of from the LWE problem. There are already related works in [8, 11, 14, 15], but



there is not yet any provably secure key exchange protocols based on the LWE problem as a
direct generalization of the Diffie-Hellman key exchange protocol, which is elegant in terms of its
simplicity. To achieve this goal, we use a new variant of the LWE problem suggested in [3] and
proposal a new provably secure key exchange protocol.

The key idea behind our new construction can be viewed as a way to share a secret given by
the value of pairing of two vectors X and Y in Fn

q via the bilinear form:

Q(X, Y ) = XtAY,

where A is a n × n square matrix. Surely in order to make the system provably secure, we need
to introduce the small errors to achieve our goal. The main contribution of this paper is to use
this simple idea to build a simple and provably secure key exchange scheme. Furthermore, we
build a more efficient implementation of our scheme using a similar LWE problem but solely based
on matrices, and we extend our construction further based on the ring LWE problem, where the
provable security is based on hardness of the Ring LWE problem.

The paper is organized as follows. In Section 2, we will present the basic construction and the
security proofs. In Section 3, we will present some more efficient implementations and a construction
based on the Ring-LWE problem. In the last section, we will present the conclusion and the
discussion.

2 An variant of the LWE problem and new key exchange protocol

We will first present a variant of the LWE problem, which was first presented in [3].

2.1 A variant of the LWE problem

Again, we assume that Fq is represented by integers in the range [−(q − 1)/2, (q − 1)/2].
This variant of the LWE problem is based on the LWE problem.
We will replace a vector A with a matrix A of size m × n, and S also with a matrix of size

n × 1, such that they are compatible to perform matrix multiplication A × S. We also replace e
with a compatible matrix of size m× 1. We will work on the same finite field with q elements.

To simplify the exposition, we will only present, in detail, for the case where A is a square
matrices of the size n× n and, S and e of the size n× 1.

Definition 2. Let ΠS,κ over Fq be the probability distribution obtained by selecting an n×n matrix
A, whose each entry are chosen in Fq uniformly and independently, choosing e as a n × 1 vector
over Fq with each entry chosen according to an error distribution κ independently, and outputting
(A,A× S + e), where + is the addition that is performed in Fn

q .
An algorithm that solves a LWE with modulus q and error distribution κ, if, for any vector S

in Fn
q , with any number of independent sample(s) from ΠS,κ, it outputs S (with high probability).

For the case that we choose a small S, namely each entry of S is chosen independently according
to the error distribution κ, we call this problem a small LWE problem (SLWE). If we further impose
the condition A to be symmetric, we call it a small symmetric LWE problem (SSLWE). If we choose
the secret S randomly and independently from the set −z, .., 0, 1.., z with z a fixed small positive
integer, we call such a problem uniformly small LWE problem (USLWE).

Here we would like to point out, for this problem, we can also modify the SLWE problem to
allow only one sample.
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where Ai is the i-th row of the matrix A. Let S = (s1, ...., sn)t, where sj is the j-th element of S.
Then we have that
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If we look at each entry of (A,A×S +e), say the j-th entry, then each entry at the j-th position
actually is an output in the form

(Ai, < Ai, S
t > +ei).

Therefore it is nothing but n independent outputs of a LWE problem. A SLWE problem above is
nothing by putting n different independent samples of a LWE problem together but with further
restrictions on S (small). Therefore, if we can solve any LWE problem efficiently, we should be able
to solve the corresponding SLWE problem efficiently.

However, a SLWE has its advantages due to the following observation.

Proposition 3. Assume that we have a LWE problem with n independent samples, then we can
find many ”fake” solutions efficiently. Here by a ”fake” solution, we mean that we find a vector S′

such that (< Ai, S > +ei)− < Ai, S
′ > follows the error distribution.

The algorithm is rather simple. For the samples (Ai, < Ai, S
t > +ei), we choose randomly n

error samples e′i following the designated error distribution. Let bi =< Ai, S
t > +ei. We will then

try to solve the set of n linear equation

< Ai, X >= bi − e′i,

for i = 1, ..., n. Due to the random property of A, ei, e′i etc, we can assume that this is a set of
random linear equations with n equations and n variables, we know that we have a high probability
to find a solution. Therefore, we can find a solution with a few tries, where we select different e′i. We
call this solution S′. Clear we have that bi− < Ai, S

′ >= e′i, which follows the error distribution.
Therefore S′ is a ”fake” solution.

Surely we know that if the sample size is much large than n, like in the case of the encryption
scheme based on the LWE problem, where the sample size is 2nlog(q), the fake solutions disappear.
However if the sample size is slightly bigger, we can still find ”fake” solutions easily following the
same argument, but the probability to find a fake solution drops by a factor of q, when we add an
additional sample.

However, for the SLWE problem, it is not at all easy to find ”fake” solutions due to the
restriction of small solutions, since the above algorithm should find solutions which should follow
closely an uniform random distribution.

Due to the results in [3], we know

Theorem 4. If the secret S’s coordinates are sampled independently from the LWE error distri-
bution, the corresponding LWE problem is as hard as LWE with a uniformly random secret S.



This shows that the SLWE problem is as hard as the corresponding LWE problem.
The same is true for the case of the RLWE problem that if one can solve the Ring LWE

problem with a small secret namely the element S being small, then one can solve it with an
uniform secret [21]. We will then use the SLWE with a small secret to build our key exchange
protocol.

As for the USLWE problem, the situation is slightly different, in this case, by [13], it is proven
that if the secret has enough entropy, then the USLWE form of LWE problem is as hard as a LWE
but with a (much) smaller dimension and (much) smaller error.

Remark 5. For our construction, we will use a version of LWE problem slightly different from
the original LWE problem, namely the output will be in the form: (A,A × S + te), where t is a
fixed small positive integer like 2, or 3. From the previous works, we know this is just as hard a
problem as the original LWE problem, since the hardness reduction works here as well. The idea
of introducing t appeared first in the RLWE constructions. [20]

2.2 A simple and provably secure key exchange protocol

Key exchange protocols are very important cryptographic protocols. The original Diffien-Hellman
key exchange protocol [10] is built on the fact that the exponential maps are commutative, namely

(xa)b = (xb)a,

over Fq for a large q.
If we look carefully why the key exchange above works, one realize we may do the same thing

using the associativity and commutativity of computing the value of bilinear form, namely,

Xt ×A× Y = (Xt ×A)× Y = Xt × (A× Y ),

where A is a n× n matrix and X, Y are vectors of size n. Here this computation can be viewed a
pairing of the two vector X and Y via the corresponding bilinear form.

Surely we need to introduce small errors, namely, the idea of LWE problem, to make the scheme
secure. Our basic idea is that we can use the SLWE problem to build a key exchange protocol like
the Diffie-Hellmann key exchange protocol.

The protocol can be set up as follows.

Two parties Alice and Bob decide to do a key exchange over an open channel.

1. Alice and Bob will first publicly select Fq, n, a small prime integer t(<< n), and a n × n

matrix M randomly and uniformly over Fn2

q , where q ≈ n3, and the error distribution over Fn
q

to be a distribution such that each component are independent, and each component follow
the same discrete distribution κ as in the case of LWE, namely a discrete normal distribution
over Fq center around 0 with standard deviation approximately

√
n. All the information above

is public.
2. Then each party chooses its own secret Si a n × 1 vector for i = A,B according to the

error distribution, namely entries are chosen independently according to the discrete normal
distribution κ over Fq center around 0 with standard deviation approximately

√
n, and ei an

error vector chosen according to the same error distribution.
For Alice, she computes

MA = MSA + teA,

where t is the chosen small integer (t << n).
For Bob, he computes

MB = M tSB + teb.



3. Both parties exchange Mi. This means both Mi are public, but certainly keep Si and ei secret.
4. Alice computes:

KA = St
A ×MB = St

AM tSB + t < eB , SA > .

Bob computes:
KB = M t

A × SB = St
AM tSB + t < eA, SB > .

5. Then Bob and Alice will derive a shared secret in the following way:
(a) if KB is out of the range [−(q − 1)/4, (q − 1)/4], Bob will send a message of ”No” to

Alice. Then Alice will compute KA + (q − 1)/2 modular q (very likely into the range of
[−(q−1)/4, (q−1)/4]) and then modular t and; Bob will compute KB +(q−1)/2 modular
q (into the range of [−(q − 1)/4, (q − 1)/4]) and then modular t, and they derive a shared
secret;

(b) if KB is in the range of [−(q − 1)/4, (q − 1)/4], Bob will send a message of ”Yes” to Alice.
Then Alice will compute KA modular t and Bob will compute KB modular t, and they
derive a shared secret.

Then we can repeat the process selecting independently different A, Si, ei or different A, ei

but the same Si each time to derive as large a size of share secret as they wish.

The last step of the computation can be viewed as certain rounding technique, namely how to
derive a shared information using numbers that are close to each other.

The reason that Alice and Bob can derive from KA and KB a shared secret to be the exchanged
key using such a rounding technique is exactly due to the fact ei and Si are small, therefore we
expect that t < eB , SA > and t < eA, SB > to be small.

Theorem 6. Asymptotically, the probability that, for a single exchange round, Bob and Alice will
derive different results is less than e−n.

The proof of the theorem follows from the following simple lemma in statistics [24].

Lemma 7. Let xi, yi, i = 1, ...n, be 2n independent randomly variables over real numbers following
the Normal distribution N (0, 1), then, for ε > 1,

P (|
n∑
1

xiyi| ≥ nε) ≤ exp
(
−n

2

(√
1 + 4ε2 − 1 + log(

√
1 + 4ε2 − 1)− log(2ε2)

))
This implies with large n, we have

Proposition 8.

P (| < 1√
n

eB ,
1√
n

SA > | ≥ 2n) ≤ e−n;

P (| < 1√
n

eA,
1√
n

SB > | ≥ 2n) ≤ e−n.

This means that
P (t| < eB , SA > | ≥ 2n2t) ≤ e−n;

P (t| < eA, SB > | ≥ 2n2t) ≤ e−n.

Therefore, we can easily see that t < eB , SA > and t < eA, SB > are small with very high
probability. The reason we chosen only KB (or KB +(q − 1)/2) in the range [−(q−1)/4, (q−1)/4]
is that we do not want any modular q operation to occur when we add t < eB , SA > to St

AMSB (or
St

AMSB + (q− 1)/2) together, or when we add t < eA, SB > to St
AMSB ( or St

AMSB + (q− 1)/2)



together, and since q ≈ n3, we therefore have very high probability that we derive a shared secret.
Therefore, Theorem 5 is correct.

Theorem 5 also promises that if we repeat any poly(n) times the key exchange protocol to get
a shared secret of size poly(n), we have an very high probability that all the secrets will match,
and if we repeat the process en times, the probability that we have mismatched secret to be 1/e.

It is straightforward to show that the secret Bob and Alice share follows a uniform and random
distribution over Z/t.

2.3 Security analysis

Now let us take a careful look at the security of such a scheme. Here, as usual, we will consider
only the security against passive adversaries.

An attacker can monitor the whole communication process. Therefore to break the system, the
attacker needs to solve the following mathematical problem.

Definition 9. Assume that we are given

– a matrix M and prime integers t, q and the error distribution κ as above;
– MA = MSA + teA and MB = M tSB + teB, where ei follows the error distribution described

above and the entries of Si also follows the same error distribution;
– and the fact that KB = M t

A×SB = St
AM tSB +t < eA, SB > is in the range of [−(q−1)/4, (q−

1)/4] or not;

the problem is to find an algorithm to derive KA modular t if KB is in the range of [−(q−1)/4, (q−
1)/4], and KA + (q − 1)/2 first modular q then modular t with high probability.

We call such a problem a pairing with error problem (PE).
To simplify the matter, we would like to look at the case, where t is set to be 2. In this case,

it is clear that we would like to find an algorithm that can find KB modular 2 if it is in the range
of [−(q − 1)/4, (q − 1)/4] , otherwise KB + (q − 1)/2 modular q then modular 2, with a success
probability to be at least 1/2 + ε, where ε is a fix nonzero positive number.

To solve such a problem, we need a oracle as follows.

Definition 10. Assume that we are given

– a n× nmatrix M and prime integers 2 << n, q > n3,
– two vectors MA and MB,
– a one bit information of ”yes” and ”no”.

The oracle would return a number modular t.
If MA = MSA + teA and MB = M tSB + teB, where ei follows the error distribution described

above and Si also follows the same error distribution; the signal ”yes” is given if KB = M t
A×SB =

St
AM tSB+t < eA, SB > is in the range of [−(q−1)/4, (q−1)/4] or otherwise a signal ”no” is given,

then the oracle would return St
AM tSB modular 2 if KB is in the range of [−(q − 1)/4, (q − 1)/4],

and St
AM tSB + (q − 1)/2 first modular q then modular 2 with high probability.

We will show that the PE problem is as strong as a decision SLWE problem.

Definition 11. Let ΠS,κ be the probability distribution obtained by selecting an n × n matrix A,
whose each entry are chosen in Fq uniformly and independently, choosing e as a n×1 vector over Fq

with each entry selected independently according to the distribution κ, and outputting (A,A×S+te),
where + is the addition that is performed in Fn

q , and S a small n × 1 vector over Fq with each
entry selected independently according to the distribution κ.

An decision SLWE problem is to find an algorithm that, given two series of pairs of arrays
(Ai, Ai × S + te), and (Ai, Ri),, where the (Ai, Ai × S + te) comes from ΠS,κ, and Ri is a vector
whose each entry are chosen in Fq uniformly and independently, it can distinguish which one comes
from ΠS,κ, which one is not, with high probability.



Theorem 12. A PE problem is at least as hard as the corresponding decision SLWE problem.

Proof
Given any pair of arrays from the two series we have which we call (A,R′).
We randomly select a small vector SB . Then we assume that (A,R′) is from the ΠS,κ, namely

in the form of R′ = A× S + te′, where S and e follows the distribution κ.
Then we use them to perform the part of key exchange protocol but only on the Bob side using

(A,R′), where we will treat R′ as MA.
Namely we will compute

MB = ASB + teB ,

where t = 2, surely a small integer (2 << n).
Then we compute:

KB = R′t × SB

and this should be
StASB + t < e′, SB >,

for some e′, if the (A,R′) is indeed from ΠS,κ

If KB is in the range of [−(q − 1)/4, (q − 1)/4], we will compute compute KB modular t = 2;
or if KB is in not the range of [−(q − 1)/4, (q − 1)/4], we will compute compute KB + (q − 1)/2
modular q ( into the range of [−(q − 1)/4, (q − 1)/4]) and then modular t = 2.

Then we will call the oracle that can solve the PE problem, where the input will be A as M,
R′ as MA, MB . If indeed (A,R′) is from ΠS,κ, we expect the two results to have a probability of
1/2 + ε to match.

Now let us look very carefully at what the oracle does. The oracle is promised to do the
following: if given a triple M , MA, MB , and an additional bit signal of ”yes” or ”no” for the
range of KB , the oracle returns a number modular 2, and if MA and MB are derived following the
distribution described above, we have a 1/2+ ε success rate. This means that what the oracle does
for inputs of MA derived from (SA, eA) in the range ‖SA‖∞ < 1

2n
√

n and ‖eA‖∞ < 1
2n
√

n, which
has the probability large than (1− en2/2)2n according to the error distribution, really matters, and
otherwise outside this range whatever the oracle does does not really matter. In addition, the oracle
tells us that if we have two different S1, e1 and S2, e2, as long as MS1 + te1 = MS2 + te2 = MA,
we would derive the same answer from the oracle, since the input of the oracle will be the same.
But St

1M
tSB and St

2M
tSB have only 1/2 probability to be the same, since we can assume the

matrix M involved is invertible ( otherwise we can simply remove the pairs where the matrix is
not invertible), and for a given M and MA, MB with its SB , and the pair M and MA can be
derived from all the elements in the set of all pairs in the form of (SA, eA) = (M−1(MA− te), e) for
any e in Fn

q . This implies that the oracle to give the answer essentially randomly once outside the
range above. But according to the uniform distribution, the probability to be in that range for an
randomly uniformly chosen element occurs with less than ( 1

n
√

n)
)2n probability. This implies that

if MA is uniformly chosen (not given by the (SA, eA) following the error distribution), the oracle
should give independent random answers, therefore we expect that the probability that the result
the oracle will produce should match what Bob derives at the probability 1/2.

This gives us a way to distinguish which series is which after only n/ε tries with very high
probability.

This finishes the proof.
Following the same argument in [18,19], we also know that

Theorem 13. The decision SLWE problem is as hard as the corresponding search SLWE problem.

Here we would like to point out that when we use a decision LWE protocol to solve the SLWE
problem, we should test according to the probability distribution since the secret S follows the
error distribution.



This implies that

Theorem 14. The PE problem is as hard as the corresponding SLWE problem.

Following Theorem 4 in Section 1, we therefore conclude that our key exchange protocol is
provably secure, since to break it is as hard as the corresponding LWE problem.

We call our new scheme a SLWE key exchange protocol.
We can also build a provably secure key exchange scheme based on the USLWE problem in

a similar way and its provable security relies on the related security assumption of the USLWE
problem.

Remark 15. One may ask why we still try to build a key exchange protocol, since there are several
public key encryption schemes that can already be used to perform the same task. There are several
aspects from which we would like to point out the contributions of our work. First, from theoretical
point of view, it is an interesting question to find out if we can do a nice key exchange without
using the same mechanism as that of the encryption schemes, as in the case of the original Diffie-
Hellmann key exchange Scheme. This is in general a nontrivial question. For example, in the case of
multivariate public key cryptography, we still can not build a good key exchange scheme. Here our
construction’s key point is that it uses the structure of bilinear forms and it is a nice and elegant
construction mathematically. Since our construction relies on different mathematical structures
from the previous LWE constructions, it could provide new tools for constructing protocols for
other applications. In the original LWE encryption scheme, the public key includes a matrix of size
(2n log q)× n, while we use only a matrix of size n× n. This means our scheme can be much more
efficient in terms of both communication and computation cost. In some way, our construction is
a significant additional step in showing how versatile the LWE assumption can be. The basic idea
of our construction also motivated a more general matrix construction below, which is much more
efficient than the original LWE construction.

3 More efficient implementations

We can also see that the scheme above is not very efficient in the sense that we can only derive one
bit a time like the original LWE encryption scheme, and surely we would like to build something
much more efficient for practical applications. If we follow the usual path, we should go directly
to a construction of using the Ring-LWE problem, which indeed works. But here we would like to
look something slightly different first, namely a construction using solely matrices.

3.1 A matrix implementation

As we discussed earlier that the original Diffien-Hellman key exchange protocol [10] is built on the
fact that the exponential maps are commutative, namely (xa)b = (xb)a. We use certain type of
paring with error to build a key exchange protocol in the section above. If we look carefully, we
realize that we can use further the fact of associativity of matrices multiplications of three matrices
A, B and C:

A×B × C = (A×B)× C = A× (B × C).

In this case, we will just use all matrices for our construction and not vectors anymore.
From this point of view, it is evident that we can use the matrix version of the SLWE problem

to build a key exchange protocol.

Definition 16. Let ΠS,κ over Fq be the probability distribution obtained by selecting an n × n
matrix A, whose each entry are chosen in Fq uniformly and independently, choosing e as a n× n



matrix over Fq with each entry chosen according to an error distribution κ independently, and
outputting (A,A× S + e), where + is the addition that is performed in Fn2

q .
An algorithm that solves a LWE with modulus q and error distribution κ, if, for any n × n

matrix S in Fn
q , with any number of independent sample(s) from ΠS,κ, it outputs S (with high

probability).

We call this problem matrix LWE problem(MLWE). For the case where we choose a small S,
namely each entry of S is chosen independently according to the error distribution κ, we call this
problem a small MLWE problem (SMLWE). If we further impose the condition A to be symmetric,
we call it a small symmetric MLWE problem (SSMLWE). If we choose the secret S randomly and
independently from the set −z, .., 0, 1.., z with z a fixed small positive integer, we call such a
problem uniformly small MLWE problem (USMLWE).

It is clear the MLWE problem is nothing but put n LWE problem together but sharing the
same matrices. Therefore it is as hard as the corresponding LWE problem.

Theorem 17. An MLWE problem is as hard as the corresponding LWE problem with the same
parameters.

Proof. It is clear that if we can solve a LWE problem, we can solve the corresponding MLWE
problem by breaking the MLWE problem into n separate LWE problems. Therefore we only need
to show the other way is also true.

Assume that we have a series of output of a LWE problem, (Ai, Ai × S + ei), for i=1,...,l
where Ai is a n × n matrix, the secret S is a n × 1 matrix vector, and ei is a n × 1 error vector.
Since Ai are known, for j = 1, ..., n − 1, we can independently and randomly select a n × 1
vector Sj , and independently and randomly error vectors ej

i , for i = 1, ..., l, and output the series
(Ai, Ai×Sj + ej

i ). Then we can put them together to build a new MLWE problem with the output
series (Ai, Ai × S̄ + Ei) where the matrix S̄ and Ei is defined as:

S̄ = (S, S1, S2, ..., Sm−1),

Ei = (ei, e
1
i , e

2
i , ..., e

m−1
i ).

This gives us a WLWE problem. Then we can use a MLWE solver to solve this problem. The first
column of the solution S̄ also gives use the solution for the LWE problem: S. This finishes the
proof.

The same is true with the SMLWE problem, which is just as hard as a LWE problem.
The protocol can be set up as follows.

Two parties Alice and Bob decide to do a key exchange over an open channel.

– Alice and Bob will first publicly select Fq, n and a n × n matrix M over Fq uniformly and
randomly, where q ≈ n3 and the error distribution κ̄ to be a distribution over n× n matrices
such that each component are independent, and each component follow the same discrete
error distribution κ as in the case of LWE, namely a discrete normal distribution over Fq

center around 0 with standard deviation approximately
√

n. This setting is just like the key
distribution case above. All the information above is public.

– Then each party chooses its own secret Si as a n × n matrix chosen according to the error
distribution κ̄ , ei also as a n× n matrix following the error distribution κ̄, but jointly choose
a small prime integer t (t << n)
For Alice, she computes

MA = MSA + teA,

where t is a small integer (t << n).
For Bob, he computes

MB = M tSb + teB .



– Both parties exchange Mi. This means both Mi are public, but certainly keep Si and ei secret.
– Alice computes:

KA = St
A ×MB = St

AM tSB + tSaeB .

Bob computes:
KB = M t

A × SB = St
AM tSB + teASB .

– Both of them will perform a rounding technique to derive the shared key as follows:
1. Bob will make a list T1 of all positions of the entries of KB such that these entries are in

the range of [−(q− 1)/4, (q− 1)/4] and a list T2 of all positions which are not in the range
of [−(q − 1)/4, (q − 1)/4]. Then Bob will send to Alice the list T1.

2. Then each party will compute the residues of these entries modular t in T1, and for the
entries not in T1, which is in T2, they will add (q − 1)/2 to each entry and compute the
residue modular q first (into the range of [−(q− 1)/4, (q− 1)/4]) then the residue modular
t. That will give a shared key between these two users.

Again the reason that Alice and Bob can derive from KA and KB a shared secret to be the
exchanged key via certain rounding techniques as in the case above is exactly that ei and Si are
small, therefore KA and KB are close.

We call this scheme a SMLWE key exchange protocol. We can again define a similar matrix
version of pairing with error problem (MPE), and this will allow us to derive the provable security
of this more efficient scheme.

In term of both communication and computation efficiency, the new system is much better.
Since this time they need to exchange n2 entries in Fq, and each perform 2n2.8 computations (with
Strassen fast matrix multiplication) to derive n2 bits if t = 2, while, for the original one above,
they exchange 2n entries with 2n computations each in Fq and derive 1 bit.

Theorem 18. If we choose the same system parameters, namely n and q, the matrix SLWE key
exchange protocol is as secure as the SLWE key exchange protocol.

The proof follows from the fact that the SMLWE problem is as hard as the SLWE problem,
since the matrix version can be viewed as just assembling multiple SLWE samples into one matrix
SLWE sample.

Again, security analysis of this key exchange protocol will be essentially the same as in the case
of situation above.

We note here that we can choose also rectangular matrix for the construction as long as we
make sure the sizes are matching in terms of matrix multiplications, but parameters need to large
enough.

3.2 Constructions based on the Ring LWE problem

Similarly we can build a key exchange scheme based on the ring learning with errors problem
(RLWE) of [20]. However, in this paper, we will use a variant of the RLWE problem described
in [21].

For the RLWE problem, we consider the rings R = Z[x]/f(x), and Rq = R/qR, where f(x) is
a degree n polynomial in Z[x], Z is the ring of integers, and q is a prime number. Here q is an odd
prime and elements in Zq = Fq = Z/q are represented by elements: −(q − 1)/2, ...,−1, 0, 1, .., (q −
1)/2, which can be viewed as elements in Z when we talk about norm of an element. Any element
in Rq is represented by a degree n − 1 polynomial, which can also be viewed as a vector with its
corresponding coefficients as its entries. For an element

a(x) = a0 + a1x + ... + an−1x
n−1,



we define
‖a‖ = max|ai|,

the l∞ norm of the vector (a0, a1, ..., an−1) and we treat this vector as an element in Zn and ai an
element in Z.

The RLWEf,q,χ problem is parameterized by an polynomial f(x) of degree n, a prime number
q and an error distribution χ over Rq. It is defined as follows.

Definition 19. Let the secret s be an element in Rq, a uniformly chosen random ring element.
The problem is to find s, given any polynomial number of samples of the pair

(ai, bi = ai × s + ei),

where ai is uniformly random in Rq and ei is selected following the error distribution χ.

The hardness of such a problem is based on the fact that the bis are computationally indistinguish-
able from uniform in Rq. One can show [20] that solving the RLWEf,q,χ problem above is known
to give us a quantum algorithm that solves short vector problems on ideal lattices with related
parameters. We believe (or assume) that the latter problem is exponentially hard.

We will here again use the fact [3, 20] that the RLWEf,q,χ problem is equivalent to a variant
where the secret s is sampled from the error distribution χ rather than being uniform in Rq and
the error element ei are multiples of some small integer t that is relatively prime to q.

Here we will consider the RLWE problem with specific choices of the parameters.

– We choose f(x) to be the cyclotomic polynomial xn + 1 for n = 2u, a power of two;
– The error distribution χ is the discrete Gaussian distribution DZn,σ for some n >> σ >

ω(
√

log n) > 1;
– q = 1 (mod 2n) and q a polynomial of n and q ≈ n3;
– t a small prime and t << n << q.

Next we will present two key facts in the RLWEf,q,χ setting defined above, which are needed
for our key exchange scheme [12,16,17,21].

Lemma 20. The length of a vector drawn from a discrete Gaussian of with standard deviation σ
is bounded by σn, namely,

Pr(‖X‖ > σn) ≤ 2−n+1,

for X chosen according to χ.

Lemma 21. The multiplication in the ring Rq increases from the norms of the constituent ele-
ments in a reasonable scale, that is,

‖X × Y (mod f(x))‖ ≤ n‖X‖‖Y ‖,

for X, Y ∈ Rq and the norm is the l∞ norm defined above.

Note again, these lemmas are valid with conditions defined by the RLWEf,q,χ setting.
With the RLWEf,q,χ setting above, we are now ready to have two parties Alice and Bob to do

a key exchange over an open channel. It goes as follows.

1. Alice and Bob will first publicly select all the parameters for the RLWEf,q,χ including q(≈ n3),
n, f(x) and χ. In addition, they will select a random element M over Rq uniformly. All the
information above is public.



2. Then each party chooses its own secret si as an element in Rq according to to the error
distribution χ , and ei independently also as an element following the error distribution χ, but
jointly choose a small prime integer t (t << n)
For Alice, she computes

MA = MsA + teA,

where t is a small integer (t << n).
For Bob, he computes

MB = Msb + teb.

3. Both parties exchange Mi. This means both Mi are public, but certainly keep si and ei secret.
4. Alice computes:

KA = sA ×MB = sAMsB + teBsA.

Bob computes:
KB = MA × sB = sAMsB + teAsB .

5. Both of them will perform a rounding technique to derive the shared key as follows:
(a) Bob will then make a list of size n, and this list consists of pairs in the form of (i, j), where

i = 0, ..., n−1, and j = 1 if the xi coefficient of KB is in the range of [−(q−1)/4, (q−1)/4],
otherwise j = 0.

(b) Then Bob will send this list to Alice. Then each will compute the residue of the corre-
sponding entries modular t in the following way:
for an element of the list (i, j),
1) if j = 1, each will compute the i-th entry of KA and KB modular t respectively,
2) if j = 0, each will add (q − 1)/2 to the i-th entry of KA and KB modular q back to
range of [−(q − 1)/4, (q − 1)/4], then compute the residues modular t.

That will give a shared key between these two users. We call this scheme a RLWE key exchange
protocol.

From Lemma 14 and Lemma 15, we can deduce that there is a very low probability of failure
of this key exchange protocol.

We note here that the commutativity and the associativity of the ring Rq play a key role in
this construction.

In terms of security analysis, we can show the provable security of the scheme following the
hardness of the RLWEf,q,χ problem by using a similar PE problem over the ring Rq.

Definition 22. Assume that we are given

– a random element M in Rq, prime integers t, q and the error distribution χ with parameters
selected as in the RLWEf,q,χ above;

– MA = MsA + teA and MB = MsB + teB, where ei follows the error distribution χ and si also
follows the error distribution χ;

– and the fact that (KB)i, the coefficients xi of KB = MA × sB = sAMsB + teAsB is in the
range of [−(q − 1)/4, (q − 1)/4] or not;

the problem is to find an algorithm to derive KB (or KA) modular t or KB + (q − 1)/2 (or
KA + (q − 1)/2) modular q (into the range of [-(q-1)/4, (q-1)/4]) and then modular t with high
probability.

We call such a problem a pairing with error problem over a ring(RPE).
Since, it is nearly a parallel extension of the proof of the provable security of the case of SLWE

key exchange protocol to the RLWE key exchange protocol, we will leave out the details. We
conclude that the RLWE key exchange protocol is provable secure based on the hardness of the
RLWEf,q,χ problem.

With the same parameters q and n, this scheme is even more efficient due to the possibility
doing fast multiplication over the ring Rq using FFT type of algorithms.



4 Conclusion and Discussion

In this paper, we use a variant of LWE problem with matrices, a simple and direct extension of
the original LWE to the case of matrices, to build a new, simple and provably secure key exchange
protocol. We also extend the construction to the RLWE case. A key ingredient of the construction
relies on the definition of a so-called pairing with error problem, which provide the bridge to
establish the provable security of our key exchange protocol.

The work in this paper can be attributed to the understanding that the basic idea behind the
LWE problem itself can be viewed as certain form of inner product with small errors that somehow
can be eliminated for certain applications. Our construction can be viewed as an extension of this
idea to the case of a bilinear pairing, namely a pairing of bilinear forms with errors. In addition, the
reason why the scheme works well actually depends on the associativity and the commutativity of
the multiplications in both the commutative rings (the RLWE problem) and the non-commutative
rings (the SMLWE problem and the RLWE). We believe that exploring further algebraic properties
of the rings could yield even more interesting cryptographic protocols, such as certain homomorphic
properties over non-commutative operations over matrices.

Using the same idea, we are now in the process finishing works in building simple and provable
secure identity-based encryption systems and scalable key distribution systems for large networks.

The basic design of the work was first finished in Aug. 2011 at Cincinnati and was submitted
to University of Cincinnati IP Office. A provisional patent application was filed in April 2012.
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