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Abstract. We use the learning with errors (LWE) problem to build a new simple and provably secure
key exchange scheme. The basic idea of the construction can be viewed as certain extension of Diffie-
Hellman problem with errors. The mathematical structure behind comes from the commutativity of
computing a bilinear form in two different ways due to the associativity of the matrix multiplications:

(Xt ×A) × Y = Xt × (A× Y ),

where X,Y are column vectors and A is a square matrix. We show that our new schemes are more effi-
cient in terms of communication complexity and computation complexity compared with key exchange
schemes or key transport schemes via encryption schemes based on the LWE problem. Furthermore,
we extend our scheme to the ring learning with errors (RLWE) problem, resulting in small key size and
better efficiency.

1 Introduction

Lattice-based public key cryptography has become a promising potential alternative to public
key cryptography based on traditional number theory assumptions. One building block of lattice-
based cryptography, especially in encryption, is the learning with errors (LWE) problem. After
the introduction of LWE problem by Regev [21], it has attracted a lot of attentions in theory and
applications due to its usage in cryptographic constructions with good provable secure properties. In
a nutshell, the (decisional) LWE problem is to distinguish polynomially many noisy inner-product
samples (a, b ≈ 〈a, s〉) from uniformly random samples.1 An attractive property of the LWE problem
is that Regev [21] shows that to solve the average-case LWE problem is at least as hard as to
(quantumly) solve some worst-case hard lattice problems. Many lattice-based primitives based on
LWE have been discovered, such as public-key encryption [21,14,18], (hierarchical) identity-based
encryption [14,1,11], functional encryption [3,2,5,15] and fully homomorphic encryption [9,7,6].

In the constructions mentioned above, a matrix form of the LWE problem is always used (i.e.,
need sufficient many samples). The drawback of that is it results in large (say quadratic) key size. To
further improve the efficiency, Lyubashevsky, Peikert and Regev [19] introduced the ring learning
with errors (RLWE) problem, which is to distinguish polynomially many noisy ring multiplication
(a, b ≈ a · s) from uniform, where “ ·” is the multiplicative operation over some ring. It’s shown in
[19] that to solve RLWE problem is at least as hard as to solve some worst-case problems in ideal
lattices, instead of general lattices.

The Diffie-Hellman key exchange protocol is a fundamental construction in public key cryp-
tography. It is simple and elegant, and it relies on a different mathematical structure from that of

1 s is secret and remains the same in all the samples.
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encryption scheme constructions, such as the RSA construction, since it does not require a trapdoor
function. Actually, DH-like key exchange protocol guarantees forward security better than classical
RSA-like one. What motivates the work in this paper is to try to build a simple key exchange
protocol using the basic idea but based on the LWE problem. There are already related works in
[16,17,10,13], but as far as we know there is not yet any provably secure key exchange protocols
based on the LWE problem as a direct generalization of the Diffie-Hellman key exchange protocol,
which is elegant in terms of its simplicity. To achieve this goal, we use the normal form of LWE
problem suggested in [4] and propose a new provably secure key exchange protocol.

The key idea behind our new construction can be viewed as a way to share a secret given by
the value of the bilinear function of two vectors x and y in Znq , where q, n are some integers, via
the bilinear form:

Q(x,y) = xTAy,

where A is an n× n matrix in Zq. Surely in order to make the system provably secure, we need to
introduce the small errors to achieve our goal. The main contribution of this paper is to use this
simple idea to build a simple and provably secure key exchange scheme. Furthermore, we extend
our construction further based on the RLWE problem. Our construction is a significant additional
step in showing how versatile the LWE assumption can be.

Besides, we also give an interactive multiparty key exchange protocol. This protocol can be
viewed as a generalization of our two party protocol. Although the provable security of the protocol
seems plausible but we do not know how to do it, and we leave it as an open problem.

1.1 Main Contributions

The DH key exchange protocol was constructed ahead of the RSA encryption scheme, and these
two system are based on two very different mathematical principles, while the DH key exchange
protocol is based on the commutativity of the power maps and the hardness of the discrete logarithm
problem and the RSA cryptosystems is based on special group automorphism and the hardness of
prime factorization of integers. Due to versatile applications of LWE in cryptography including
a very elegant encryption scheme, it is a natural question to ask if we can construct a simple
and elegant key exchange just like the DH scheme which, however, is not based on the same
mathematical principles as that of the LWE encryption scheme. Our paper gives a positive answer.
The fundamental difference is that we use the quantities of the usual LWE constructions, which
serves the purpose of hiding the plaintext, and, is, therefore, later canceled out, to serve the purpose
as the exchanged key, and we rely also on the commutativity of matrix multiplication to compute
bilinear maps, which was not used in the LWE constructions. Thus, from the point view of structural
constructions of cryptosystems, we further demonstrate the versatility of the LWE problem, but in
a way different from any previous construction before. The simplicity of the construction is very
striking, though the elegance is slightly affected due to extra bits needed. This method should open
possible doors to other applications, in particular, key distribution systems and new identity-based
encryption systems.

More precisely, let’s first recall the standard way to encrypt a message using LWE. Taking
Regev’s encryption for example, the public key consists of a uniformly random matrix A ∈ Zn×mq

and a vector u ∈ Zmq , where u is a LWE sample, i.e. u = AT s + e. To encrypt, the user chooses
uniformly random vectors x ∈ {0, 1}m and error e, and computes c1 = Ax, c2 = 〈u,x〉+e+m·bq/2c.
When decrypting, the user computes c2 − sT c1 to remove the common part sTAx and recover the
message from the “error”. Instead, our construction retrieve a shared secret from the common part
for each party. More specifically, suppose Alice and Bob have secret keys sA ∈ Znq and sB ∈ Znq . In



3

the key exchange stage with public parameters M ∈ Zn×nq , Alice and Bob send pA = MsA+eA and

pB = MT sB + eB to each other, respectively. When receiving pB, Alice computes sTApB. Similarly,
Bob computes sTBpA. Note that sTApB and sTBpA are very close to sTAMT sB. Finally, we construct
a way to derive a shared secret from the two values close to sTAMT sB.

To illustrate the security of the above scheme, we need to show that the transcriptions and the
extracted key are pseudorandom. First, due to the squared form of the matrix M, the transcripts pA
and pB are just LWE samples with independent secrets. This implies that they can be replaced by
uniformly random vectors in Znq by the LWE assumption. In order to make the extracted key look

random, we additionally add noises to sTApB and sTBpA, respectively. Notice that if pA and pB are
uniformly random, the “noisy” form of sTApB and sTBpA are LWE samples, which is pseudorandom
under LWE assumption. In the security proof, we use standard hybrid games and deal exclusively
with the squared matrix M.

Key exchange is widely used in secure Internet communications, which is, therefore, very im-
portant in practical applications. In term of practical applications, one may argue that we can
always construct easily a key exchange scheme using a public key encryption scheme, and why do
we need a new key exchange scheme? Surely, we can compare our scheme with a key exchange
and a key transport scheme on LWE type of encryption, but this comparison surely depends on
the assumption what is overhead cost and what is the real key exchange cost. We can show that
there could be indeed substantial advantage in our scheme in terms of communication cost and (or)
computation cost, we will illustrate the point by using our LWE based one and our RLWE based
one respectively.

1.2 Organization

In Section 2, we give some basic notions and facts. The protocol based on LWE problem is given
in Section 3, and the more efficient protocol based on RLWE problem is given in Section 4. In
Section 5, we describe our interactive key exchange scheme. In the last section, we will present the
conclusion and the discussion.

2 Preliminaries

Notations. We use bold capital letters to denote matrices, and bold lowercase letters to denote
vectors. The notation AT denotes the transpose of the matrix A. A function negl(λ) is negligible,
if it vanishes faster than the inverse of any polynomial in λ. The statistical distance between two
distributions X,Y over some finite or countable set S is defined as ∆(X,Y ) = 1

2

∑
s∈S

∣∣Pr[X =
s]− Pr[Y = s]

∣∣. X and Y are statistically indistinguishable if ∆(X,Y ) is negligible.

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm and any positive parameter σ ∈ R>0,
let ρσ,c(x) = exp(−π‖x− c‖2/σ2) be the Gaussian function on Rm with center c and parameter σ.
Denote ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,c over Λ, and DΛ,σ,c be the discrete

Gaussian distribution over Λ with center c and parameter σ. Specifically, for all y ∈ Λ, we have

DΛ,σ,c(y) =
ρσ,c(y)
ρσ,c(Λ)

. For notional convenience, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ,

respectively.

The Learning with Errors Problem We recall the learning with errors (LWE) problem, a
classic hard problem on lattices defined by Regev [21].
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Definition 1. Let n ≥ 1 and q ≥ 2 be integers, let α ∈ (0, 1). For s ∈ Znq , let As,α be the
distribution on Znq ×Zq obtained by choosing a vector a ∈ Znq uniformly at random, e← DZ,αq, and
output (a, 〈a, s〉+ e).

The LWE problem is : for uniformly random s ← Znq , given a poly(n) number of samples that
are either from As,α or uniformly random in Znq × Zq, output 0 if the former holds and 1 if the
latter holds.

It is known that when αq ≥ 2
√
n and q = poly(n), this decision problem is at least as hard

as approximating several problems on n-dimensional lattices in the worst-case to within Õ(n/α)
factors with a quantum computer [21] or on a classical computer for a subset of these problems [20].
Very recent work by Brakerski et al. [8] shows the classical hardness for LWE. A simple analysis
shows that for any t ∈ Z+ and gcd(t, q) = 1, then the LWE assumption still holds if we choose
b = 〈a, s〉 + te. The HNF-LWE assumption [4] says that the hardness preserves even if we choose
the secret from the error distribution, i.e. s← DZn,αq. We will exclusively use this assumption.

We give a bound of the norm of the Gaussian distribution.

Lemma 1. For any s ≥ ω(
√

log n), then we have

Pr
x←DZn,s

[‖x‖ > s
√
n] ≤ 2−n.

3 Key Exchange Protocol from LWE

Key exchange protocols are very important cryptographic protocols. The original Diffien-Hellman
key exchange protocol [12] is built on the fact that the exponential maps are commutative, namely

gab = (ga)b = (gb)a,

over some multiplicative group G with large order p. This construction does not need trapdoor
function. If we look carefully why the key exchange above works, one realize we may do the same
thing using the associativity and commutativity of computing the value of bilinear form, namely,

xTAy = (xTA)y = xT (Ay),

where A is a n× n matrix in Zq and x,y are vectors in Znq . Here this computation can be viewed
a pairing of the two vector x,y via the corresponding bilinear form.

Surely we need to introduce small errors, namely, the idea of LWE problem, to make the scheme
secure. Our basic idea is that we can use the Hermit normal form of LWE (HNF-LWE) problem to
build a key exchange protocol like the Diffie-Hellman key exchange protocol. The protocol can be
set up as follows.

3.1 Construction

Two parties Alice and Bob decide to do a key exchange over an open channel.

– The system first generates the public parameters q, n, α, t, which we will specify later. Samples
a uniformly random matrix M← Zn×nq .

– Alice and Bob choose vectors sA, sB ← DZn,αq independently. Then, Alice computes pA =
MsA + teA mod q, where eA ← DZn,αq. Sends pA to Bob.
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– Receiving pA, Bob first chooses error vector e′B ← DZ,αq. Computes KB = pTA · sB + te′B
mod q. Sets Signal = 0 if KB ∈ [− q−1

4 , q−14 ] ∩ Z; Signal = 1 otherwise. Bob obtains the shared

key SKB = (KB + Signal · q−12 mod q) mod t. Finally Bob samples eB ← DZn,αq, computes
pB = MT · sB + teB mod q. Sends (pB,Signal) to Alice.

– Once get (pB,Signal), Alice samples e′A ← DZ,αq and computes KA = sTApB + te′A mod q, and
obtains SKA = (KA + Signal · q−12 mod q) mod t.

Correctness We now show that if Alice and Bob run the protocol honestly, they will share an
identical key.

Lemma 2. If 4(αq)2 · n · t ≤ q−1
4 , then SKA = SKB with overwhelming probability.

Proof. The form of KA,KB are as follows. KA = sTA(MT ·sB+teB)+te′A = sTAMT sB+t(sTAeB+e′A).
KB = (sTAMT + teTA)sB + te′B = sTAMT sB + t(eTAsB +e′B). We first consider Signal = 0, which means
that KB ∈ [− q−1

4 , q−14 ] ∩ Z. Now we can rewrite KA = KB + t(sTAeB + e′A − eTAsB − e′B) mod q.
From Lemma 1, we have that

|t(sTAeB + e′A − eTAsB − e′B)| ≤ 4t · (αq
√
n) · (αq

√
n) = 4t(αq)2 · n,

with overwhelming probability. By the hypothesis and KB mod q ∈ [− q−1
4 , q−14 ]∩Z, we know that

KB mod q + t(sTAeB + e′A − eTAsB − e′B) ∈ [− q−1
2 , q−12 ]. Therefore, KA mod q = KB mod q +

t(sTAeB + e′A − eTAsB − e′B), and SKB = (KB mod q) mod t = (KA mod q) mod t = SKA.

Moreover, we show that SKA = SKB = (sTAMT sB mod q) mod t when Signal = 0. Since
sTAMT sB = KB − t(eTAsB + e′B) mod q, KB mod q ∈ [− q−1

4 , q−14 ] ∩ Z and |t(eTAsB + e′B)| ≤ q−1
4 .

Hence sTAMT sB mod q = KB mod q − t(eTAsB + e′B).

The case of Signal = 1 is analogous. Since KB + q−1
2 ∈ [− q−1

4 , q−14 ] ∩ Z, then the analysis is

exactly as above. In this case, the shared key SKA = SKB = (sTAMT sB + q−1
2 mod q) mod t. ut

Remark. We note that for the correctness of our protocol, Bob has to send a signal to Alice to
tell her that the resulting KB is in the range [− q−1

4 , q−14 ] ∩ Z or not. The reason is to make sure
that the error terms in KB and KA do not result different modulo q operations. The drawback
of signal is that the adversary will also know the “main” part, say sTAMT sB or sTAMT sB + q−1

2

mod q, lies in [− q−1
4 , q−14 ] ∩ Z. This does not harm the security, since if we can show the “main”

part is (pseudo)random in [− q−1
4 , q−14 ]∩Z, the additional modulo t operation makes the shared key

uniform in Zt.

Parameter Selection. A reasonable way to select the parameters is n = λ, q = λ4,t = 2,
α = 1/λ3. It’s easy to verify that αq ≥

√
n and the correctness holds.

3.2 Security

We now define the passive security of a key exchange protocol. Intuitively, any PPT adversary
should not distinguish a real shared key to a random one even if he gets the transcripts of the
protocol. More specifically, we define the advantage of an adversary A:

AdvA = Pr[b′ ← A(transcripts,Kb), b← {0, 1},K0 is real,K1 is random : b = b′]− 1/2.
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Definition 2. We say a key exchange protocol is secure under passive adversary, if for any PPT
adversary the advantage is negligible.

We now slightly change the definition according to our construction, we do not need the ad-
versary to distinguish the shared key, instead we want it to distinguish KA or KB from uniformly
random in Zq. I.e. we prove that

Pr[b′ ← A(M,pA,pB,Kb), b← {0, 1},K0 = KB,K1 ←R Zq : b = b′]− 1/2

is negligible (we can also replace K0 = KA).

Theorem 1. The construction above is secure against passive PPT adversaries, if the HNF-LWE
assumption holds.

Proof. We prove the security by a series of games. The first game Game0 is the real game which
the adversary gets the real shared key KB, while the last game Game4 the adversary gets a random
key. We show that the views of Game0 and Game4 are computational indistinguishable for any
PPT adversaries, under the HNF-LWE assumption.

Game0. This is the real game between the protocol challenger and the passive adversary A. That
is the adversary obtains M,pA,pB,Signal,KB, where pA = MsA + teA, pB = MT sB + teB and
KB = pTAsB + te′B. Then A outputs a guess b′.

Game1. This game is identical to Game0 except that instead of setting pA = MsA + teA and
KB = pTAsB + te′B. The challenger sets pA = bA and KB = bTA · sB + te′B, where b←R Znq .

In Lemma 3, we show that under the HNF-LWE assumption, the views in Game0 and Game1
are computationally indistinguishable for any PPT passive adversaries.

Game2. This game is identical to Game1 except that instead of setting pB = MT sB + teB and
KB = bTA · sB + te′B. The challenger sets pB = bB and KB = u, where bB ←R Znq and u←R Zq.

We show the views for any PPT passive adversaries in Game1 and Game2 are computationally
indistinguishable, if the HNF-LWE assumption holds. The proof is given in Lemma 4.

Game3. This game is identical to Game2 except that instead of setting pA = bA. The challenger
sets pA = MsA + teA.

In Lemma 5, we prove the views in Game2 and Game3 are computationally indistinguishable,
if the HNF-LWE assumption holds.

Game4. This game is identical to Game3 except that instead of setting pB = bB. The challenger
sets pB = MT sB + teB.

In Lemma 6, we prove that the views in Game3 and Game4 are indistinguishable, if the HNF-
LWE assumption holds. The conclusion follows from Lemma 3,4,5,6 directly. ut

Lemma 3. Any PPT passive adversary can not distinguish Game0 and Game1, if the HNF-LWE
assumption holds.
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Proof. We prove the lemma by showing that if there exists an adversary A who can distinguish
Game0 and Game1, then we can construct another adversary B to distinguish the HNF-LWE
samples from uniform. B works as follows. Once obtaining challenges (A,u) ∈ Zn×nq × Znq from
the HNF-LWE oracle, where u is either As + e or uniformly random in Znq , B sets M = A,

KB = uT sB + te′B and computes pB = MT sB + teB. Finally B sends (M,pA,pB,Signal,KB) to A.
B outputs whatever A outputs. We note that B can sample sB and the errors and computes Signal
by himself, since s is independent of sB.

If u is an LWE sample, then what A obtains are exactly the same as in Game0, if u is uniformly
random in Znq , then what A obtains are exactly the same as in Game1. This implies that if A can
distinguish Game0 and Game1 with noticeable advantage, then B can distinguish HNF-LWE
samples from uniformly random with the same advantage. This finishes the proof. ut

Lemma 4. Any PPT passive adversary can not distinguish Game1 and Game2, if the HNF-LWE
assumption holds.

Proof. We prove this lemma by showing that if there exists an adversary A distinguishes Game1
and Game2, then we can construct a PPT adversary B to distinguish the HNF-LWE samples from
uniform. B works as follows. Once obtaining challenges (A,u) ∈ Zn×nq × Znq and (b, u) ∈ Znq × Zq,
where u and u are either AT s + e,bT s + e or uniformly random in Znq and Zq respectively, B
sets M = A and pA = b, let pB = u and KB = u, and compute Signal from KB. B sends
(M,pA,pB,Signal,KB) to A, and outputs whatever A outputs. It’s easy to see that if u, u are
LWE samples, then what A gets are exactly the same as in Game1; if u, u are uniformly random,
then what A gets are exactly the same as in Game2. Therefore, if A can distinguish the two games
with noticeable advantage, then B can break the HNF-LWE problem with noticeable advantage.
This complete the proof. ut

Lemma 5. Any PPT passive adversary can not distinguish Game2 and Game3, if the HNF-LWE
assumption holds.

Proof. The proof is similar to Lemma 3, except we still choose KB uniformly from Zq. ut

Lemma 6. Any PPT passive adversary can not distinguish Game3 and Game4, if the HNF-LWE
assumption holds.

Proof. The proof is similar to Lemma 4, except we still choose KB uniformly from Zq. ut

Key Exchange Protocol with Multiple Bits. In order to get multiple shared secret bits in the
protocol, one can use the matrix secret form of LWE assumption. More specifically, Alice and Bob
choose secret matrix SA,SB ∈ Zn×nq instead of sA, sB (still from the error distribution). It’s easy
to extend the other part to get multiple shared secret bits. The security straightforwardly from the
underlying HNF-LWE assumption by standard hybrid argument.

Comparisons . We now give some comparisons by directly using public key encryption scheme to
do key exchange. The main idea of using PKE is as follows: for two parties A and B with key pair
(pkA, skA) and (pkB, skB), respectively. A chooses a bit a uniformly at random, and encryption it
by using B’s public key cB = Enc(pkB, a) and sends cB to B. Similarly B choose a uniform bit
b and sends cA = Enc(pkA, b) to A. A and B decrypt the ciphertext by using their own secret
key and compute a ⊕ b. We note that, by using the PKE based key exchange, the users need to
first download the public key of the party he/she wants to communicate. Therefore, it incurs more
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communication complexity. While in our scheme, the public parameter M is generated once for all,
namely a public authority like NIST can generate one matrix M that any two parties can use the
same M , while the security is not affected. We focus on LWE-based encryptions and estimate the
complexity for 1 bit secret key. The comparisons are given in Table 1:

Table 1. Comparisons between LWE-based ones for 1-bit secret key

Pub. Param. Commun. Comp. Comput. Comp. Assumption

Reg’05 [21] 4(n + 1)n log2 q (4n2 + 6n) log2 q + 2 log q 4n2 log q SIVPÕ(n3)

LP’12 [18] 4n2 log q 4(n2 + n) log q 6n2 SIVPÕ(n3)

Ours n2 log q 2n log q + 1 2n2 SIVPÕ(n4)

Pub. Param. means the size of public parameter; Commun. Comp. means the communication complexity; Comput.
Comp. means the computation complexity and is estimated by the number of multiplications in Zq.

We compare the efficiency of our scheme with key transport schemes based on PKE from LWE.
Intuitively, in a key transport scheme, party A chooses a uniformly random bit s and encrypts it
by using B’s public key to encrypt it c = Enc(pkB, s) and then sends c to B. B uses its secret key
to decrypt c and recover s. The session key between A and B is s. Therefore, the communication
complexity and computation complexity will be half as the key exchange schemes based on PKE.
From the results in Table 1, even in such a scenario, the efficiency of our scheme is still substantially
better in terms of communication complexity and computation complexity.

4 Key Exchange Protocol from Ring-LWE

In this section, we show how to get a more efficient key exchange protocol from the Ring-LWE
problem [19]. Consider the ring R = Z[x]/f(x), where f(x) = xn + 1 and n is a power of 2. For an
integer q, let Rq = R/qR. Any element in Rq is represented by a degree n − 1 polynomial, which
can also be viewed as a vector with its corresponding coefficients as its entries. For an element

a(x) = a0 + a1x+ ...+ an−1x
n−1,

we define ‖a‖ = max|ai|, the `∞ norm of the vector (a0, a1, ..., an−1). Furthermore, it’s easy to get
that ‖x · y‖ ≤ n‖x‖ · ‖y‖ for any x, y ∈ R. For convenience, we do not give the specific description
of the error distribution, since we only care the norm of the element from the distribution. Denote
χ (whose support is R) to be β-bounded, if Pr[‖x‖ > β : x← χ] ≤ negl(n). We recall the definition
of Ring-LWE proposed by Lyubashevsky, Peikert and Regev [19].

Definition 3. Let n ≥ 1 be a power of 2 and q ≥ 2 be an integer, let R = Z[x]/f(x), where
f(x) = xn + 1, and R = R/qR. Let χ be β-bounded. For s ∈ Rq, let As,χ be the distribution on
Rq×Rq obtained by choosing a← Rq uniformly at random, e← χ, and output (a, a ·s+ e mod q).

The RLWE problem is : for uniformly random s← Rq, given a poly(n) number of samples that
are either from As,χ or uniformly random in Rq × Rq, output 0 if the former holds and 1 if the
latter holds.

The RLWEn,q,χ assumption is that the RLWEn,q,χ problem is infeasible. Denote the assumption

by RLWE
(m)
n,q,χ when we require the indistinguishability to hold given only m samples. We state the

hardness of the special case of RLWE
(m)
n,q,χ described in [19] as follows.
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Theorem 2 ([19]). For the ring R = Z[X]/f(x), f(x) = xn + 1, where n is a power of 2, and
a prime integer q = q(n) = 1 mod 2n, and β = ω(

√
n log n), there is an efficiently samplable

distribution χ that outputs elements of R with norm at most β with overwhelming probability, such

that if there exists an efficient algorithm that solves RLWE
(m)
n,q,χ, then there is an efficient quantum

algorithm for solving n2.5 · (q/β) · (nm/ log(nm))1/4-approximate worst-case SVP for ideal lattices
over R.

The HNF-RLWE assumption [4] says that the hardness preserves even if we choose the secret
from the error distribution, i.e. s← χ.

4.1 Construction

We now describe the key exchange protocol based on RLWE assumption.

– The system first generates the public parameters q, n, χ, β, t, R = Z[x]/f(x), where f(x) = xn+1
and n is a power of 2. Samples a uniformly random element m← Rq.

– Alice and Bob choose elements sA, sB ← χ independently. Then, Alice computes pA = msA+teA
mod q, where eA ← χ. Sends pA to Bob.

– Receiving pA, Bob first chooses error vector e′B ← χ. Computes KB = pA · sB + te′B mod q.
For i = 0, .., n − 1, sets Signali = 0 if (KB)i ∈ [− q−1

4 , q−14 ] ∩ Z; Signali = 1 otherwise. Denote

Signal = (Signal0, ...,Signaln−1). Bob obtains the shared key SKB = (KB + q−1
2 · Signal mod q)

mod t. Finally Bob samples eB ← χ, computes pB = m · sB + teB mod q. Sends (pB,Signal) to
Alice.

– Once getting (pB, Signal), Alice samples e′A ← χ and computes KA = sApB + te′A mod q, and
obtains SKA = (KA + q−1

2 · Signal mod q) mod t.

Correctness We now show that if Alice and Bob run the protocol honestly, they will share an
identical key.

Lemma 7. If 4tnβ2 ≤ q−1
4 , then SKA = SKB with overwhelming probability.

Proof. The form of KA,KB are as follows. KA = msAsB + t(sAeB + e′A) mod q. KB = msAsB +
t(eAsB + e′B) mod q. We first consider Signali = 0, which means that (KB)i ∈ [− q−1

4 , q−14 ] ∩ Z.

Now we can rewrite (KA)i = (KB)i +
(
t(sAeB + e′A − eAsB − e′B)

)
i

mod q. We have that

|
(
t(sAeB + e′A − eAsB − e′B)

)
i
| ≤ ‖t(sAeB + e′A − eAsB − e′B)‖ ≤ 4tnβ2,

with overwhelming probability. By the hypothesis and (KB)i mod q ∈ [− q−1
4 , q−14 ] ∩ Z, we know

that (KB)i mod q+ (t(sAeB + e′A− eAsB − e′B))i ∈ [− q−1
2 , q−12 ]. Therefore, (KA)i mod q = (KB)i

mod q + (t(sAeB + e′A − eAsB − e′B))i, and (SKB)i = ((KB)i mod q) mod t = ((KA)i mod q)
mod t = (SKA)i.

Moreover, we show that (SKA)i = (SKB)i = ((msAsB)i mod q) mod t when Signali = 0. Since
(msAsB)i = (KB)i−(t(eAsB+e′B))i mod q, (KB)i mod q ∈ [− q−1

4 , q−14 ]∩Z and |(t(eAsB+e′B))i| ≤
q−1
4 . Hence (msAsB)i mod q = (KB)i mod q + (t(eAsB + e′B))i.

The case of Signali = 1 is analogous. Since (KB)i + q−1
2 ∈ [− q−1

4 , q−14 ] ∩ Z, then the analysis

is exactly as above. In this case, the shared key (SKA)i = (SKB)i = ((msAsB)i + q−1
2 mod q)

mod t. ut
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Parameter Selection. A reasonable way to select the parameters is n = λ, q = λ4,t = 2, β = λ.

Theorem 3. The construction above is secure against passive PPT adversaries, if the HNF-RLWE
assumption holds.

Proof. The proof is almost the same as in 1, we omit it here. ut

Comparisons Here, we give comparisons between our scheme and other key exchange schme based
on public key encryption from RLWE. We use two examples, one is the RLWE-based scheme from
Lyubashevsky et al. [19], and the other one is the NTRU variant from Stehlé and Steinfeld [22]. Due
to the property of RLWE, our scheme can agree on n bit secret key once. We note that the public
parameter m can be produced once for all, therefore, it significantly reduce the communication
cost. The comparisons are given in Table 2. When comparing to the key transport schemes based
on PKE, where the communication and computation cost will be cut to half for encryption based
schemes, the efficiency of our scheme is still better than the LPR’10 [19] scheme in communication
cost (1/2) but worse in computation cost (4/3); and our scheme is slightly worse than the SS’11
[22] scheme. But we note that the assumption of the SS’11 [22] is much stronger. Therefore, to
obtain same security, one needs to increase the security parameter in SS’11 [22], which results
much worse efficiency. This means our scheme could still have substantial advantage in terms of
practical applications.

Table 2. Comparisons between RLWE-based ones for n bit secret key

Pub. Param. Commun. Comp. Comput. Comp. Assumption

LPR’10 [19] 4n log q 8n log q 6 Ideal-SIVPÕ(n3)

SS’11 [22] 2n log q 4n log q 4 Ideal-SIVPÕ(n8)

Ours n log q 2n log q + n 4 Ideal-SIVPÕ(n4.5)

Pub. Param. means the size of public parameter; Commun. Comp. means the communication complexity; Comput.
Comp. means the computation complexity and is estimated by the number of multiplications in the ring Rq.

5 Interactive Multiparty Key Exchange Protocol

In this section, we describe an interactive multiparty key exchange protocol based on RLWE prob-
lem. Although the provable security of the protocol seems plausible, we still can not do it, and we
leave it as an open problem.

We now describe the interactive multiparty key exchange protocol.

– For a set of k users, the system first generates the public parameters q, n, χ, β, t, R = Z[x]/f(x),
where f(x) = xn + 1 and n is a power of 2. Samples a uniformly random element m← Rq.

– For i ∈ {0, ..., k−1}, the user i chooses random si ← χ and e0i ← χ. Computes p0i = msi+ te0i ∈
Rq, and sends p0i to the user i + 1. Then for 1 ≤ j ≤ k − 2, user i + j mod k computes

pji = si+j mod k · pj−1i + teji , where eji ∈ χ, and sends pji to the user i+ j + 1 mod k.

– For the user 0, he or she first chooses ê0 ← χ and computes K0 = pk−21 · s0 + tê0. For
τ = 0, .., n − 1, sets Signalτ = 0 if (K0)τ ∈ [− q−1

4 , q−14 ] ∩ Z; Signalτ = 1 otherwise. Denote
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Signal = (Signal0, ...,Signaln−1). The user 0 obtains the shared key SK0 = (K0 + q−1
2 · Signal

mod q) mod t. Finally, the user 0 broadcasts Signal.

– For users 1 ≤ i ≤ k − 1. they first choose êi ← χ and compute Ki = pk−2i+1 mod k · si + têi and

each obtains the shared secret key SKi = (Ki + q−1
2 · Signal mod q) mod t.

Correctness We now show that if Alice and Bob run the protocol honestly, they will share an
identical key.

Lemma 8. If 2k · t · nkβk+1 ≤ q−1
4 , then all the k parties share the same secret key with over-

whelming probability.

Proof. The correctness is very similar to the RLWE base two party key exchange protocol. Let’s
first look at K0, we can rewrite it in the form: K0 = m

∏k−1
i=0 si +∆0, where:

∆0 = s0

k−1∏
i=2

si · t · e01 + s0

k−1∏
i=3

si · t · e11 + · · ·+ s0 · sk−1 · t · ek−31 + s0 · t · ek−21 + tê0.

Note that ‖∆0‖ ≤ k · t · nkβk+1. Similarly, we can compute Kj = m
∏k−1
i=0 si + ∆j where

‖∆j‖ ≤ k · t · nkβk+1 and 1 ≤ j ≤ k − 1. Notice that since ‖∆0 −∆j‖ ≤ 2k · t · nkβk+1 ≤ q−1
2 for

1 ≤ j ≤ k − 1, we can apply the same analysis on Lemma 7 to finish the remaining part of this
lemma. ut

6 Conclusion

In this paper, we use the LWE problem to build a new, simple and provably secure key exchange
protocol. We show that our scheme have substantial advantages in practical applications when
compared with similar scheme derived from the encryption schemes based on the LWE problem.
We also extend the construction to the RLWE case. Our construction is a significant additional
step in showing how versatile the LWE assumption can be.

The work in this paper can be attributed to the understanding that the basic idea behind
the LWE problem itself can be viewed as certain form of inner product with small errors that
somehow can be eliminated for certain applications. Our construction can be viewed as an extension
of this idea to the case of a bilinear pairing, namely a pairing of bilinear forms with errors. In
addition, the reason why the scheme works well actually depends on the associativity and the
commutativity of the multiplications in both the non-commutative rings (the LWE problem ) and
the commutative rings (the RLWE problem). We believe that exploring further algebraic properties
of the non-commutative rings could yield even more interesting cryptographic protocols, such as
certain homomorphic properties over non-commutative operations over matrices.

Using the same idea, we are now in the process finishing works in building simple and provable
secure identity-based encryption systems and scalable key distribution systems for large networks.
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