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Abstract

Randomized encodings of functions can be used to replace a “complex” function f(x) by

a “simpler” randomized mapping f̂(x; r) whose output distribution on an input x encodes the
value of f(x) and hides any other information about x. One desirable feature of randomized

encodings is low online complexity. That is, the goal is to obtain a randomized encoding f̂
of f in which most of the output can be precomputed and published before seeing the input
x. When the input x is available, it remains to publish only a short string x̂, where the online
complexity of computing x̂ is independent of (and is typically much smaller than) the complexity
of computing f . Yao’s garbled circuit construction gives rise to such randomized encodings in
which the online part x̂ consists of n encryption keys of length κ each, where n = |x| and κ is a
security parameter. Thus, the online rate |x̂|/|x| of this encoding is proportional to the security
parameter κ.

In this paper, we show that the online rate can be dramatically improved. Specifically, we
show how to encode any polynomial-time computable function f : {0, 1}n → {0, 1}m(n) with
online rate of 1+o(1) and with nearly linear online computation. More concretely, the online part
x̂ consists of an n-bit string and a single encryption key. These constructions can be based on
the decisional Diffie-Hellman assumption (DDH), the Learning with Errors assumption (LWE),
or the RSA assumption. We also present a variant of this result which applies to arithmetic
formulas, where the encoding only makes use of arithmetic operations, as well as several negative
results which complement our positive results.

Our positive results can lead to efficiency improvements in most contexts where randomized
encodings of functions are used. We demonstrate this by presenting several concrete appli-
cations. These include protocols for secure multiparty computation and for non-interactive
verifiable computation in the preprocessing model which achieve, for the first time, an opti-
mal online communication complexity, as well as non-interactive zero-knowledge proofs which
simultaneously minimize the online communication and the prover’s online computation.
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1 Introduction

Suppose that we want to perform some cryptographic task which involves computation and com-
munication on n-bit data. In many scenarios, it is beneficial to minimize the online complexity
(i.e., the resources spent after seeing the data) and shift the expensive computation and com-
munication to an offline phase. This setting has been extensively studied in many contexts in-
cluding signatures [19, 50], verifiable computation (delegation) [21, 6, 15], and secure computa-
tion [9, 38, 12, 17, 36]. The goal of the present paper is to further explore the question of minimizing
the online complexity of cryptography.

Let us first consider the following concrete example from [7]. Imagine a scenario of sending a
weak device U to the field in order to perform some expensive computation f on sensitive data x.
The computation is too complex for U to quickly perform it on its own and, since the input x is
sensitive, U cannot just send the entire input out. Ideally, we would like to have a non-interactive
solution of the following form: In an offline phase, before sent to the field, U picks a short random
secret key sk and publishes a (potentially long) related public key pk. Once it observes the input
x, the device U applies some cheap computation to sk and x and sends out the result x̂, a short
“encrypted” version of x. The rest of the world should be able, at this point, to recover f(x) and
nothing else.

Abstracting the above, the computation of U can be described as a randomized function f̂ :
(x; sk) 7→ (pk, x̂) that encodes the value f(x) in the sense that (pk, x̂) reveals f(x) but nothing else.
Using the terminology of [5], the function f̂ is referred to as a randomized encoding (RE) of f . The
general motivation for using REs is the hope to make f̂ in some sense “simpler” than f , where
different applications dictate different notions of simplicity. The earliest uses of REs in cryptography
were in the area of secure computation [52, 40, 20, 34]. Along the years, REs have found a diverse
range of other applications to problems such as computing on encrypted data [48, 14], parallel
cryptography [5, 4], verifiable computation [21, 6], software protection [28, 30, 10], functional
encryption [47, 29], key-dependent message security [8, 1, 11], and others. We refer the reader
to [11] for a finer-grained treatment of REs under the term “garbling schemes”.

In the online/offline setting considered here, we would like to minimize the online computation
and communication resources required for computing and distributing x̂. That is, we would like the
online time complexity of computing x̂ to be much smaller than the time required for computing
f , and the length of x̂ to be not much bigger than that of x.

The best known general constructions of online-efficient REs are based on Yao’s garbled circuit
technique [52]. In this case, the output of f(x) is encoded by an offline part pk which consists of
a big “garbled circuit” and an online part x̂ which consists of n keys K1, . . . ,Kn of size κ each,
where n is the bit-length of x and κ is a security parameter. (Under a standard asymptotic security
convention in which n serves both as an input length parameter and a security parameter, κ can
be thought of as nε, for some small constant ε > 0.) Each key Ki is selected from a pair of keys
(Ki,0,Ki,1) according to the i-th input bit xi. Hence, the online computation and communication
complexity are both O(nκ). An appealing feature is that the online computation complexity is
nearly linear in the input length, independently of the complexity of f . However, an undesirable
feature is that the online rate of the construction — i.e., the ratio between the bit-length of x̂ and
the bit length of x — grows linearly with the security parameter κ. Hence, we ask:

Is it possible to obtain a constant online rate or even rate of 1 + o(1) (e.g., |x̂| =
n+ poly(κ)) while keeping the online computation independent of the complexity of f?
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1.1 Our Contribution

We answer the above question in the affirmative by constructing, under a variety of standard
intractability assumptions, an online-efficient RE with rate 1 + o(1) for every polynomial-time
computable function.

Theorem 1.1. (Informal) Under the Decisional Diffie-Hellman Assumption (DDH), the RSA
Assumption, or the Learning-with-Errors Assumption (LWE), every polynomial-time computable
function f : {0, 1}n → {0, 1}m(n) admits an RE with online rate 1 + o(1) and with O(n1+ε) online
computation, for any ε > 0.

In more concrete terms, our constructions efficiently compile any boolean circuit C into a
corresponding RE with succinct and efficiently computable online part. These constructions can
be viewed as analogues of the garbled circuit construction in which the n keys determined by x are
compressed into a shorter string x̂ whose length is very close to that of x. This comes at the cost
of a slight increase in the online computation complexity, which still remains nearly linear in n.
An additional (related) difference is that in contrast to the standard garbled circuit construction,
where each bit of x̂ depends only on a single bit of x, in our constructions there are bits of x̂
which depend on many bits of x. We prove that this is inherent for REs with constant or even
logarithmic online rate. In particular, it is impossible to obtain a direct generalization of the garbled
circuit construction in which each input bit xi selects between a pair of keys (Ki,0,Ki,1) which have
constant size.

The DDH and LWE based constructions are affine in the sense that after the private randomness
is fixed in the offline phase, the remaining computation can be described as an affine function of
the inputs x (over some ring R, e.g., R = Zp where p is the size of a DDH group). This captures
a strong form of algebraic simplicity which is useful for some of the motivating applications (e.g.,
secure computation).

Motivated by the concrete efficiency of encoding arithmetic computations, we also present an
LWE-based arithmetic variant of the above result that applies to arithmetic formulas (i.e., circuits of
fan-out 1) over large finite fields, where the encoding is restricted to applying arithmetic operations
to the inputs. Specifically, we obtain an affine randomized encoding (ARE, for short) with optimal
online rate (i.e., 1 + o(1)) for arithmetic mod-p formulas, assuming that elements of Zp can be
viewed as elements of Zq for some q � p. If we insist on working in the more restricted model
of [7], where the encoding should be affine over the integers, then we get a constant-rate encoding.

It should be mentioned that the online computational overhead of our constructions is still poly-
nomial in the security parameter. Whether this overhead can be improved remains an interesting
open question.

Lower bounds. We further explore the complexity of REs in the online/offline setting by proving
several lower bounds on the online and offline rate of REs which complement our positive results.
Among other results, we study the minimal achievable online rate. The online rate is clearly lower-
bounded by 1 for some functions with long outputs (this is the case, for instance, for the identity
function). This leaves open the possibility of achieving a strictly better rate for boolean functions.
We show that even in the case of boolean functions, the online rate of affine REs (satisfying the
algebraic simplicity condition discussed above) cannot generally be smaller than 1. Thus, achieving
rate 1 + o(1) is essentially optimal for affine REs. While we cannot unconditionally prove a similar
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result for non-affine REs with, say, quadratic online computation, such a negative result follows
from the conjecture that for any c > c′, an input for a time-(nc) computation cannot generally be
“compressed” by a time-(nc

′
) algorithm into a shorter string which contains sufficient information

to recover the output. See [32, 18] for related conjectures.

Adaptive security. Informally, an offline/online RE is adaptively secure if f̂(x; r) = (pk, x̂)
remains private even if the online input x is adaptively chosen based on the offline part of the
encoding, pk. Similarly to all other known implementations of garbled circuits with short keys,
our constructions cannot be proved to satisfy this stronger notion of security unless analyzed in
the (programmable) random oracle model. We prove that this is inherent to some extent: in any
RE whose adaptive security holds in the plain model, the length of the online part x̂ should grow
with the output length of f . (This negative result is similar in spirit to negative results for non-
committing encryption [43] or functional encryption [13].) In contrast, our constructions in the
non-adaptive setting (or the adaptive setting with random oracles) have online rate of 1 + o(1),
independently of the output length of f . Adaptive security of garbled circuits has recently been
considered in the work of Bellare et al. [10]. The above negative result partially settles a question
left open by [10].

On concrete efficiency. In concrete terms, our offline/online REs reduce the online communi-
cation of Yao’s garbled circuit construction by a factor of κ ≈ 100 at the expense of introducing
“public-key” computations. This is not always a good tradeoff in practice. For instance, communi-
cating 100 bits is typically less expensive than a single modular exponentiation. Luckily, our REs
are also very cheap in online computation. For instance, the online encoding in the DDH-based
construction involves at most one mod-p addition per input bit, where p is the order of the DDH
group. Since a mod-p addition is typically much cheaper than the amortized cost of communicating
a bit (let alone 100 bits), we improve the overall concrete online complexity by roughly a factor
of 100. This is contrasted with most applications of public-key cryptography towards improving
communication complexity, where the additional computational cost outweighs the savings in com-
munication (cf. [51]). While our REs do increase the complexity of the offline encoding and online
decoding, the additional overhead is insignificant when the circuit complexity of f is much bigger
than its input size. Thus, our offline/online REs seem to have a true practical potential in secure
computation or delegation scenarios in which a weak client (who performs the offline and online
encoding) interacts with a powerful server (who performs the online decoding).

1.2 Applications

Our positive results can lead to efficiency improvements in most contexts in which randomized
encodings of functions are used. We focus on three representative applications.

Secure Multiparty Computation (MPC). In the online/offline model (or preprocessing model)
for MPC, there are t players who wish to securely compute some fixed public function f . In the
offline phase, before the inputs “arrive”, the parties are allowed to invoke some (relatively expen-
sive) protocol; later, in the online phase, the parties get their inputs and apply an online (hopefully
cheap) protocol. The close connection of REs to MPC [34] allows to translate our results into
highly efficient MPC protocols in the offline/online setting. In Section 7.1, we further extend and
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optimize these reductions (exploiting the affinity property and the information-theoretic techniques
from [12]). This leads to general MPC protocols in which the online phase only requires each party
to broadcast a message of the same length as its input along with a message of size poly(κ), where
κ is a security parameter. Again, this is information-theoretic optimal, and it beats, in terms of
online communication complexity, all previously known results even in the simplest case of two
semi-honest parties. We note, however, that our protocols do not offer provable security against
malicious parties which adaptively choose their inputs based on the information they receive in the
offline phase, except in the random oracle model or under nonstandard assumptions. See Section 7.1
for further discussion.

It is instructive to compare the efficiency of our RE-based protocols to protocols which are based
on fully homomorphic encryption (FHE). The following discussion is restricted to the preprocessing
model, which does not seem to significantly improve the complexity of FHE-based protocols. In
FHE based protocols (as well as all other general MPC protocols from the literature) the communi-
cation complexity grows at least linearly with the total input and output length n+m. In contrast,
the online communication complexity of our protocol does not depend on the output length. This
is particularly useful when securely computing functionalities that have a short online secret in-
put (say, shares of a signature key) and a long output (say, signatures on many predetermined
messages using the shared signature key). Furthermore, our protocols can be made completely
non-interactive in certain scenarios, e.g., when part of the secret input is known offline and the
online part is known in its entirety to one of the parties. This is impossible to get using FHE.1 On
the other hand, our protocols are incomparable to FHE-based protocols in terms of their online
computational complexity. In the case of computing a complex function f which takes inputs from
Alice and Bob and delivers an output to Alice, our approach yields two-message protocols in which
Bob’s online computation is very efficient (nearly linear in its input), whereas FHE provides similar
protocols in which Alice’s computation is very efficient (quasilinear in the input and output). From
a concrete efficiency point of view, the online phase of our protocols is much “lighter” (e.g., Bob
only needs to add a subset of Zp elements corresponding to its input) and they can also be based
on a wider variety of assumptions.

Verifiable Computation. In an online/offline protocol for verifiable computation (VC), a com-
putationally weak client with an input x delegates a complex computation f to an untrusted server
in a two phase manner. In the offline phase the client sends to the server a possibly long and compu-
tationally expensive message pk, and at the online phase (when the input x arrives) the client sends
a message x̂ to the server, and receives back the result of the computation y together with a cer-
tificate for correctness. This setting was studied in several works (e.g., [42, 28, 39, 21, 15, 6, 10]).
Specifically, in [21] Yao’s garbled circuit technique was used to achieve efficient VC in the on-
line/offline model. (The security of the construction follows from standard assumptions only when
the input x is picked by the client independently of pk [10].) This connection was generalized and
optimized in [6]. By plugging our encodings in these protocols, we get communication optimal VC
protocols, where the bit-length of the up-stream (online) message from the client to the server is
n + κ and the bit-length of the down-stream message (from server to client) is m + κ, where n is
the input length, m is the output length and κ is the security parameter. Information-theoretically,
n+m bits are necessary even if the server is fully trusted. To the best of our knowledge, all previous

1Similarly, FHE does not yield a non-interactive solution to the motivating problem described in the beginning of
the introduction.
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protocols, including ones which are based on fully homomorphic encryption, have a multiplicative
overhead of κ, either with respect to n or to m. (See Section 7.3 for details.)

Non-Interactive Zero-Knowledge (NIZK). The complexity of NIZK has received much at-
tention. The length of traditional NIZK proofs for NP grows linearly with the size of a circuit
R(x,w) which verifies that w is a legal witness for the statement x ∈ L. Using FHE, these tradi-
tional NIZKs can be converted into ones whose length is only |w|+ poly(κ) bits [22, 31]. The proof
consists of an FHE encryption c of w, along with a traditional NIZK proving that the ciphertext
resulting from evaluating the verification algorithm on c encrypts the result of a correct verification.
Thus, the prover’s computation grows linearly with the time required for verifying R(x,w), which
can be an arbitrary polynomial in |w|. Moreover, there seems to be no obvious way to reduce
this computational cost using offline preprocessing. Our results yield offline/online NIZK proofs
with online proof length of |w|+ poly(κ) bits as before, but where the prover’s online computation
is nearly linear in |w| + |x|. This is done as follows. The common reference string of the NIZK
defines a function f which maps w (along with a short seed which generates the prover’s secret
randomness) into a NIZK proof π. Applying our offline/online REs to this f yields the desired
result. (See Section 7.2.) We note that while the length of NIZK arguments can be made sublinear
in |w| (under nonstandard but plausible assumptions), breaking this barrier in the case of proofs
seems highly unlikely [25].

1.3 Techniques

We briefly sketch some of the ideas used to prove Theorem 1.1. Our starting point is a standard
garbled-circuit based encoding, such as the one from [4]. In the offline phase of this encoding, we
garble the circuit f and prepare, for each input i, a pair of random secret keys (K0

i ,K
1
i ). In the

online phase, for each i, we use the i-th bit of x to select a key Kxi
i and output the selected keys.

In order to reduce the online complexity of the encoding, we would like to have a compact way to
reveal the selected keys. Let us consider the following “riddle” which is a slightly simpler version of
this problem. In the offline phase, Alice has n vectors M1, . . . ,Mn ∈ {0, 1}k. She is allowed to send
Bob a long encrypted version of these vectors. Later, in the online phase, she receives a bit vector
x ∈ {0, 1}n. Her goal is to let Bob learn only the vectors which are indexed by x, i.e., {Mi}i:xi=1

while sending only a single message of length O(n) bits (or even n+ κ bits).2

Before solving the riddle, let us further reduce it to an algebraic version in which Alice wants
to reveal a 0-1 linear combination of the vectors which are indexed by x. Observe that if we can
solve the new riddle with respect to nk-bit vectors T = (T1, . . . , Tn), then we can solve the original
riddle with k-bit vectors (M1, . . . ,Mn). This is done by placing the Mi’s in the diagonal of T , i.e.,
Ti is partitioned to k-size blocks with Mi in the i-th block and zero elsewhere. In this case, Tx
simply “packs” the vectors {Mi}i:xi=1.

It turns out that the linear version of the riddle can be efficiently solved via the use of a
symmetric-key encryption scheme with some (additive) homomorphic properties. Specifically, let
(E,D) be a symmetric encryption scheme with both key homomorphism and message homomor-
phism as follows: A pair of ciphertexts Ek(x) and Ek′(x

′) can be mapped (without any knowledge
of the secret keys) to a new cipheretxt of the form Ek+k′(x+x′). Given such a primitive the answer

2The main difference between the riddle and the garbled-circuit problem is that in the latter case, the vector x
itself should remain hidden; this gap is bridged by permuting the pairs and randomizing the vector x; see Section 4.
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to the riddle is easy: Alice encrypts each vector under a fresh key Ki and publishes the ciphertexts
Ci. At the online phase Alice sends the sum of keys Kx =

∑
Kixi together with the indicator

vector x. Now Bob can easily construct C = EKx(Mx) by combining the ciphertexts indexed by
x and, since Kx is known, Bob can decrypt the result. Intuitively, Bob learns nothing about a
column Mj which is not indexed by x as the online key Kx is independent of the j-th key. Our
DDH and LWE based solutions are based on (approximate) implementations of this primitive. (A
somewhat different approach is used in the RSA-based construction.)

The arithmetic setting is more challenging. Here, instead of computing the selection function,
we should compute an affine function Mx + v over the integers or over Zp, for some large integer
p (not necessarily a prime). While it is possible to solve this via a similar encryption scheme with
(stronger) additive homomorphism, there are several technical problems. Typically, all (or most)
of the coordinates of x are non-zero and so we should argue that given Kx the secrecy of the key
Ki was not compromised, despite the fact that Ki may participate in the linear combination Kx.
This translates to some form of security under Related-Key attacks. In addition, it is harder to
achieve homomorphism for integers or over Zp directly, and so one should somehow embed this
domain in a larger, less “friendly”, message space. Still, it turns out that a variant of this gadget
can be implemented based on the LWE assumption. Specifically, we use the following variant of
the key-shrinking gadget of [7] (which was originally introduced as a tool for garbling arithmetic
circuits). Intuitively, we create a noisy version M̂ and v̂ of the matrix M and the vector v, and then
plant them in a random linear space W of a low dimension κ over Zq (where q � p). The space W
is made public. Now every linear combination of M̂ and v̂ lies in W , and so it can be succinctly
described by its coefficients with respect to W . In particular, to reveal the output Mx + v, it
suffices for the encoding to reveal the coefficients of its representation M̂x+ v̂. The security of the
construction follows from the LWE assumption. See Section 5 for details.

Concurrent and subsequent works. The recent works [27, 26] gives the first reusable con-
struction of garbled circuits. This implies REs in which a single offline computation can support
an arbitrary polynomial number of efficient online computations. The question of optimizing the
online rate of reusable garbled circuits remains open. On a different front, improvements in the
size of garbled circuits for uniform Turing Machine or RAM computations were recently given
in [41, 26]. These lead to REs with succinct offline outputs. Our construction can be applied on
top of these constructions, yielding REs with an online output of size n+ o(n), nearly linear online
computation, and offline outputs that are only longer by an additive term of O(nε · T ) than those
in [41, 26], where T is the online computational complexity of the original constructions.

Organization. Section 2 gives the necessary background on randomized encodings (with some
additional material in Appendix A). In Section 3, we present several constructions of succinct
randomized encodings for a concrete boolean function called the subset function (SF). Later, in
Section 4, we use these encodings as a building block and obtain succinct encodings for general
boolean functions. The arithmetic case appears in Section 5. In Section 6, we deal with some
lower bounds (Section 6.1) and the issue of adaptivity (Section 6.2). In Section 7, we sketch
the application of succinct randomized encodings to secure multiparty computation (MPC), non-
interactive zero-knowledge proofs (NIZK), and verifiable computation (VC) in the preprocessing
model.
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2 Randomized Encoding of Functions

Intuitively, a randomized encoding of a function f(x) is a randomized mapping f̂(x; r) whose
output distribution depends only on the output of f . We formalize this intuition via the notion
of computationally-private perfectly-correct randomized encoding (in short RE) from [4]. In the
following, we assume that f is defined over Znp for some integer p (by default p = 2), and allow the

encoding f̂ be defined over a possibly larger alphabet Znq for p ≤ q under the convention that a
vector x ∈ Znp can be naturally identified with a vector x ∈ Znq .

Definition 2.1 (Randomized Encoding (RE)). Let p = p(n), q = q(n) where p(n) ≤ q(n) ≤ 2poly(n)

and ` = `(n),m = m(n), s = s(n) = poly(n) be integer valued functions. We naturally view Zp as
a subset of Zq. Let f : Znp → Z`p be an efficiently computable function. We say that an efficiently

computable randomized function f̂ : Znq × {0, 1}m → Zsq is a perfectly-correct computationally-
private randomized encoding of f (in short, RE), if there exist an efficient decoder algorithm Dec
and an efficient simulator Sim that satisfy the following conditions:

• Perfect correctness. For every x ∈ Znp , Prr[Dec(1
n, f̂(x; r)) 6= f(x)] = 0.

• (t, ε) privacy. For every sequence {xn}n, where xn ∈ Znp , and every t(n)-size circuit A∣∣∣Pr[A(f̂(xn; r)) = 1]− Pr[A(Sim(1n, f(xn))) = 1]
∣∣∣ ≤ ε(n).

By default, t = nω(1) and ε = n−ω(1), i.e., the distributions are computationally indistinguishable
(denoted by

c≡). The encoding is statistically secure if t is unbounded and perfectly secure if, in
addition, ε = 0.

Remarks.

• (Security parameter.) The above definition uses n both as an input length parameter and as
a cryptographic “security parameter” quantifying computational privacy. When describing
our constructions, it will be convenient to use a separate parameter κ for the latter, where
computational privacy will be guaranteed as long as κ ≥ nε for some constant ε > 0.

• (Collections) Let F be a collection of functions with an associated representation (by default,
a boolean or arithmetic circuit). We say that a class of randomized functions F̂ is an RE of F
if there exists an efficient algorithm (compiler) which gets as an input a function f ∈ F and
outputs (in time polynomial in the representation length |f |) three circuits (f̂ ∈ F̂ ,Dec,Sim)
which form a (t = nω(1), ε = n−ω(1))-RE of f .

2.1 Efficiency Measures

So far the notion of RE can be trivially satisfied by taking f̂ = f and letting the simulator and
decoder be the identity functions. To make the definition non-trivial, we should impose some
efficiency constraint. In this work, our main measure of efficiency is online complexity.
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Online/Offline Complexity. We would like to measure separately the complexity of the outputs
of f̂ which depend solely on r (offline part) from the ones which depend both on x and r (online
part). Without loss of generality, we assume that f̂ can be written as f̂(x; r) = (f̂off(r), f̂on(x; r)),
where f̂off(r) does not depend on x at all. The online communication complexity (resp., online
computational complexity) of f̂ is the bit-length (resp., the time complexity) of f̂on(x; r). Similarly,
the offline communication complexity (resp., offline computational complexity) of f̂ is the bit-length
(resp., the time complexity) of f̂off(r). The rate of f̂ is ρ if the online communication complexity
is at most ρ-times larger than the bit-length n log p of the input of the encoded function f .

Efficient online encodings. Let F̂ be an encoding of the collection F . We say that F̂ is online-
efficient if for every function f ∈ F , the online computational complexity of the encoding f̂ is
independent of the computational complexity (i.e., circuit size) of the encoded function f (but
grows with the bit-length of the input of f). The encoding is online-succinct (or simply succinct)
if, in addition to being online efficient, every f ∈ F is encoded by a 1 + o(1)-rate encoding.

Remark 2.2 (Online inputs). In some applications, it is natural to think of the encoded function
f as having online inputs xon and offline inputs xoff . In this case, we measure the online commuin-
cation/computational complexity of the encoding f̂ with respect to the outputs that depend on xon.
By default, we simply assume that all the input x is an online input and there is no offline part.

Some of the applications of REs further require some form of algebraic simplicity; this is captured
by the notion of affinity.

Affine RE. We say that an encoding f̂ : Znq × {0, 1}m → Zsq is an affine randomized encoding

(ARE) if, for every fixing of the randomness r, the online part of the encoding f̂on(x; r) becomes an
affine function over the ring Zq, i.e., f̂on(x; r) = Mr ·x+ vr, where Mr (resp., vr) is a matrix (resp.,
vector) that depends on the randomness r.3 It will sometimes be the case that certain outputs of
f̂ are restricted to an interval [0, q′] in Zq. Each such entry will only contribute dlog2 q

′e towards
computing the rate.

Remark 2.3 (ARE vs. DARE). Previous works considered a stronger form of affinity called
decomposable affine randomized encoding (DARE).4 Decomposability requires that each output of
f̂ depends on a single deterministic input xi. Hence, a decomposable affine randomized encoding
can be written as f̂(x; r) = (f̂off(r), f̂1(x1; r), . . . , f̂n(xn; r)) where each function f̂i is affine with
respect to xi. It is known how to convert an ARE to DARE, however, the known transformation
introduces a non-constant (O(n)) multiplicative blow-up in the online communication complexity.
In Section 6.1, we show that this is inherent and decomposability cannot be achieved with constant
rate.

Remark 2.4 (On Adaptive Security). In the online/offline model, it is natural to ask if the
encoding can be adaptively secure, namely, if security holds when the online input x is chosen
based on the offline part of the encoding (See Definition 6.5). We will show (Lemma 6.4) that, in
the standard model, adaptively secure REs cannot be online-efficient, let alone have constant rate

3We may assume WLOG that the “affine” representation of the encoding is given explicitly, as one can always
“learn”, for every fixed r, the matrix/vector Mr, vr by solving a system of linear equations over Zq.

4In fact, in the conference version of [7] the term ARE was used to denote DARE.
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(assuming the existence of one-way functions). On the other hand, it turns out that this barrier
can be bypassed via the use of a (programmable) random oracle (Lemma 6.7).

It is well known that REs can be manipulated via composition and concatenation [5]. These
standard properties (and others) are deferred to Section A.

3 Succinct AREs for the Subset Function

In order to succinctly encode boolean circuits, we will need a succinct encoding for the following
concrete function g, called the Subset Function. It has length parameter n and message size κ and
is defined by

g(M,x) = ((Mi)i∈x, x),

where M = (M1, . . . ,Mn) ∈ ({0, 1}κ)n is a vector of n “messages”, and x ∈ {0, 1}n is a selection
vector which is viewed as the set {i : xi = 1}. (The latter convention will be implicit through the
whole section.) Our goal is to encode g by an RE of the form ĝ(M,x; r) = (ĝoff(M ; r), x,K(x; r))
where K(x; r) is of bit-length κc for some universal constant c. Security will hold as long as n
is bounded by some arbitrary polynomial in κ whose degree may be independent of the constant
c. We will construct such an encoding based on several assumptions. Specifically, we will show
(Section 3.1) that such an encoding can be based on a special form of symmetric-key encryption
with additive homomorphism which, in turn, can be constructed under the DDH assumption (Sec-
tion 3.2) or the LWE assumption (Section 3.3). We also present a direct encoding (which does not
go through the additive homomorphism) under the RSA assumption (Section 3.4).

3.1 ARE for the Subset Function via Additive Homomorphic Encryption

Definition 3.1 (Additive Homomorphic Encryption (AHE)). An additive homomorphic Encryp-
tion is a triple of efficient algorithms (Setup,E,D) for which the following hold:

• Syntax: The randomized algorithm Setup takes a length parameter 1κ and outputs a string
param which specifies four (additive) groups: key-space K, message-spaceM, ciphertext-space
C and public randomness spaceW. We assume that κ-bit strings can be efficiently embedded in
M and denote the identity element of M by 0. The input to the encryption and decryption
algorithms consist of a message/ciphertext, a key K, some private randomness, and some

public randomness W
R← W which is selected during the encryption. Both algorithms also

depend on the string param. (We make this dependency implicit to simplify notation.)

• Semantic security: Let param = (K,M, C,W)
R← Setup(1κ). For every n = poly(κ) and

every n-tuple of messages M1, . . . ,Mn ∈M, we have that(
param, (Wi,EK(Mi;Wi))i∈[n]

) c≡
(
param, (Wi,EK(0;Wi))i∈[n]

)
,

where Wi
R←W, K

R← K, and indistinguishability is parameterized by κ.

• Additive Homomorphism: For every n = poly(κ) and every n-tuple of keys K1, . . . ,Kn ∈
K, n-tuple of messages M1, . . . ,Mn ∈M, and public randomness W ∈ W, we have that

D∑
iKi

(∑
i

EKi(Mi;W );W

)
=
∑
i

Mi,
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where sums are computed over the corresponding groups. In fact, it suffices to have a relaxed
form of additive homomorphism which holds in the special case where all messages, except for
one, equal to 0 ∈M.

The definition implies that the key size is independent of the homomorphism parameter n. This
will be crucial for our applications. We show how to encode the subset function g(M,x) with length
n and message size κ based on AHE.

Lemma 3.2. Assume that AHE exists. Then the Subset Function g(M,x), where M ∈ ({0, 1}κ)n, x ∈
{0, 1}n, has an encoding

ĝ(M,x; r) = (ĝoff(M ; r), x,
∑
i∈x

Ki(r)),

where ĝoff outputs O(n2) ciphertexts in C, the functions Ki output an element in K, and the sum
is computed over the key-space K.

Proof. At the offline phase, we invoke Setup(1κ) and obtain a specification param of K, M, C
and W. We encode each entry of the offline input M = (M1, . . . ,Mn) by an element of M, and
from now on identify Mi with its encoding. We define a diagonal n × n matrix {Mi,j} whose
diagonal equals to the message vector M , i.e., Mi,i = Mi, ∀i ∈ [n] and Mi,j = 0, ∀i 6= j. Next,

we select a tuple of public random elements W = (W1, . . . ,Wn)
R← Wn, a tuple of random keys

K = (K1, . . . ,Kn)
R← Kn and compute a matrix of “ciphertexts” C = (Ci,j) ∈ Cn×n, where

Ci,j = EKi(Mi,j ;Wj). The output of ĝoff consists of the tuple (param,W,C) and the online part ĝon

consists of the pair (x,Kx =
∑

i∈xKi).
Decoding. Given (param,W,C, x,Kx), we decode (Mi)i∈x by exploiting the homomorphism

property of the above encryption. Namely, for each j ∈ x we compute

Yj =
∑
i∈x

Ci,j =
∑
i∈x

EKi(Mi,j ;Wj),

and output the value DKx(Yj ;Wj).
Simulation. For ` = 0, . . . , n define the hybrid H`(M,x) exactly as in ĝ except that

Mi,i =

{
Mi if i < ` or i ∈ x,

0 otherwise

The first hybrid H0 can be sampled based on ((Mi)i∈x, x), and so it is being used as the simulator.
The last hybrid Hn corresponds to the distribution of the encoding ĝ. Hence, by a standard argu-
ment, it suffices to show that each pair of neighboring hybrids is computationally indistinguishable.
Assume, towards a contradiction, that A distinguishes the hybrid H`−1 from H` with non-negligible
advantage δ. Observe that in this case x` = 0, as otherwise the two hybrids are identically dis-
tributed. We construct a new adversary B that breaks the semantic security of the scheme. Given

a challenge (param, ~w,~c) where param
R← Setup(1κ) and ~w = (w1, . . . , wn)

R← Wn, the adversary B
distinguishes between

~c
R← (EK(0;w1), . . . ,EK(0;wn)) and ~c

R← (EK(0;w1), . . . ,EK(M`;w`), . . . ,EK(0;wn)))
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as follows. Use param to compute the hybrid H`−1 where the public randomness W1, . . . ,Wn is
set to ~w, and the `-th row of the ciphertext matrix C takes the value ~c. It is not hard to verify

that the resulting distribution is identical to H`−1 if ~c
R← (EK(0;w1), . . . ,EK(0;wn)), and to H` if

~c
R← (EK(0;w1), . . . ,EK(M`;w`), . . . ,EK(0;wn))), and the claim follows.

Complexity. To encode the online part, one has to compute n additions (over the key space) and
send x together with a single key element. The cost of the offline part is n2 encryptions/ciphertexts.
One can obtain a smooth tradeoff between the offline part and the online part by partitioning the
inputs to blocks (see Section 3.5). Also note that decoding costs n2 additions over the key space
(which can be reduced via the previous optimization) and n decryption operations. Finally, we
mention that in our RSA-based solution (Section 3.4) the offline complexity is only linear in n but
quadratic in κ. (The latter can be improved assuming sub-exponential hardness of RSA.)

3.2 AHE based on DDH

A DDH problem generator is a randomized algorithm which given a security parameter 1κ outputs
a specification param of a cyclic (multiplicative) group G = 〈α〉 of order p where p is κ-bit long
prime and α is a group generator. We say that the DDH assumption holds (with respect to DDH)
if a random DDH tuple (param, α, αa, αb, αab) is computationally indistinguishable from a random

tuple (param, α, αa, αb, αc) where a, b, c
R← Zp. A DDH-based AHE can be constructed via the

following symmetric-key version of ElGamal encryption. The algorithms (Setup,E,D) are defined
via

Setup(1κ) = (K = Zp,M = C =W = G) where (G,Zp)← DDH(1κ),

and
EK(M ;W ) = WK ·M, DK(C;W ) = C/WK .

(Note that for G we use multiplicative notation as opposed to the additive notation used in Def-
inition 3.1.) The security of the scheme easily follows from the security of ElGamal public-key
encryption.

Claim 3.3. Under the DDH assumption, for any any polynomial n(κ), and any pair of n-tuple
messages (Mi)i∈[n] and (M ′i)i∈[n](

param, (Wi,W
K
i ·Mi)i∈[n]

) c≡
(
param,Wi,W

K
i ·M ′i)i∈[n]

)
, where K

R← Zp,Wi
R← G. (1)

Proof. By the semantic security of ElGamal, Eq. 1 holds even when αK is added to both ensembles.
Since public-key ElGamal is secure under the DDH assumption, the claim follows.

It is not hard to see that the scheme satisfies relaxed homomorphism. Indeed, for a vector
of n messages (M1, . . . ,Mn) where all but a single message Mj are equal to the identity element
Mi = 1,∀i 6= j we have

D∑
iKi

(∏
i

EKi(Mi;W );W )

)
=

(
W

∑
iKi ·

∏
i

Mi

)
/W

∑
iKi = Mj ,

as needed.
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Complexity. The key and the ciphertext have both bit-length of κ. Hence, the encoding of
Lemma 3.2 has online complexity of n + κ and offline complexity of O(n2κ) based on DDH. (See
Section 3.5 for a generic optimization.)

3.3 AHE based on LWE

LWE. The Learning With Errors (LWE) assumption of [45] generalizes the Learning Parity with
noise problem (LPN) and asserts that it is hard to solve a random system of noisy linear equations.
Formally, let LWE be a problem generator which given a security parameter 1κ outputs a modulus
q, an integer µ and a noise-sampling circuit χµ which samples integers of absolute value bounded
by µ. We say that the (decisional) LWE problem is hard if for every polynomial t = t(κ), it holds
that

(param,W,Wk + e)
c≡ (param,W, z),

where
param = (q, µ, χµ)

R← LWE(1κ),W
R← Zt×κq , k

R← Zκq , e
R← χtµ, z

R← Ztq.

We will assume that the problem is hard for q which is super-polynomial in κ, e.g., O(κlog κ) and for
some noise distribution χqα where α ∈ (0, 1) is a constant. One can define such a problem generator
(e.g., by letting χµ be “truncated” discrete gaussian) for which the hardness of LWE follows from
the worst-case hardness of approximating shortest-vector problems in a lattice of dimension κ to
within a quasi-polynomial ratio 2polylog(κ) [45, 44]. (See also discussion in [7].)

An LWE-based AHE can be constructed via the following LWE-based symmetric-key encryption
which generalizes the LPN-based construction of [23]. (See also [3].) The algorithms (Setup,E,D)
are defined via

Setup(1κ) = (K = Zκq ,M = Zκ2 , C = Zκq ,W = Zκ×κq ) where (q, µ, χµ)
R← LWE(1κ),

and
EK(M ;W,E) = WK + e+ ∆M, DK(C;W ) = b(C −WK)/∆e,

where e
R← χκµ, ∆ = bq/2e and the operator b·e denotes rounding to the closest integer. The semantic

security of the scheme follows immediately from the LWE assumption (cf. [23]). Furthermore, it is
not hard to see that the scheme satisfies homomorphism. For n = poly(κ) messages, the “merged”
ciphertext

n∑
i=1

EKi(Mi;W ) = W
n∑
i=1

Ki + ∆
n∑
i=1

Mi +
n∑
i=1

ei

contains noise whose magnitude is bounded by n · qα < ∆/2 and therefore decryption succeeds.

Complexity. The bit-length of the key is Õ(κ) and the bit length of the ciphertext is Õ(κ2).
Hence, the encoding of Lemma 3.2 has online complexity of n + Õ(κ) and offline complexity of
n2Õ(κ2) based on LWE. (See Section 3.5 for a generic optimization.)
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3.4 Encoding SF based on RSA

The RSA assumption [46] asserts that for every efficient adversary A of complexity poly(κ)

Pr[A(N, e, αe) = α] ≤ neg(κ),

where N is a random κ-bit RSA modulus (i.e., product of a pair of random primes p, q) e is a

randomly chosen prime of length κ which is co-prime to ϕ(N), and α
R← ZN . (More generally, p, q, e

can be chosen according to some other distribution specified by some efficient problem generator
Gen(1κ).) We present an RSA based encoding for the subset function. We begin with an encoding
for the subset function with length n and block size of 1. In this simple case, the input consists n
single bit messages m = (m1, . . . ,mn) and a selection vector x ∈ {0, 1}n and it outputs the messages
(mi)i∈x chosen by x ,together with the selection vector x. We will later show (Lemma 3.5) that
such an encoding can be upgraded to encode the SF with κ-bit messages via simple concatenation.

Lemma 3.4. Under the RSA assumption, the simplified SF h(m,x) where x ∈ {0, 1}n and m ∈
({0, 1})n, has an encoding of the form ĥ(x,m; r) = (ĥoff(m; r), x,K(x; r)) where ĥoff is of bit-length
nκ and K(x; r) is of length κ.

Proof. The encoding ĥ relies on a symmetric variant of RSA encryption. At the offline phase,
generate a random RSA modulus N together with its factorization p and q, choose a random

u
R← ZN and n random primes e1, . . . , en of length κ which are all co-prime to ϕ(N), and a string

r
R← Zκ2 . For every i ∈ [n] compute

yi = u1/ei , Ci = mi ⊕ hc(r, yi),

where hc is the Goldreich-Levin hardcore predicate (i.e., inner-product over Z2). The offline part of
the encoding is (N, u, (e1, . . . , en), r, (C1, . . . , Cn)), and the online part is the pair (x, v = u

∏
i∈x 1/ei).

Decoding. For i ∈ x, recover yi by computing v
∏
j:∈(x\i) ej = uei and let mi be Ci ⊕ hc(r, yi).

Simulation. Fix some x ∈ {0, 1}n and m = (m1, . . . ,mn) ∈ {0, 1}n. Given (x, (mi)i∈x)
we simulate the distribution ĥ(m,x; r) by sampling ĥ(m′, x; r) where m′i equals to mi if i ∈ x,

and m′i
R← {0, 1} otherwise. We prove that ĥ(m,x; r) is computationally indistinguishable from

ĥ(m′, x; r) via a hybrid argument as follows.

Security. For i ∈ [n] define the hybrid distribution Hi by ĥ((m1:i|m′i+1:n), x; r). Clearly, H0

corresponds to the simulated distribution while Hn corresponds to the distribution of the real
encoding. Suppose there exists a distinguisher A that distinguishes H`−1 from H` with non-
negligible advantage ε. Observe that it must be the case that ` /∈ x; otherwise the distributions
H`−1 and H` are the identical. We use A to solve an RSA challenge (N, e, z = αe) as follows. First,
for every i 6= ` we choose a random κ-bit prime ei and let

u = z
∏
i6=` ei , v = z

∏
i 6=`,i/∈x ei , yi = z

∏
j 6=`,i ej .

Letting e` = e we can write

u = α
∏
i ei , v = α

∏
i/∈x ei , yi = α

∏
j 6=i ej .
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Let us condition on the event that all the ei’s are co-primes to ϕ(N) (which happens with all but
negligible probability). In this case, the ei’s are distributed exactly as in the real encoding, and u

is uniformly and independently distributed in ZN (since α
R← ZN and exponentiation to the power

of
∏
i ei induces a permutation over ZN ). Furthermore, v equals to u

∏
i∈x and yi equals to u1/ei for

i 6= `. Hence, the joint distribution of N, u, the ei’s, and the yi’s is exactly as in the real encoding.
The only missing information is y` which should take the value u1/e` = α

∏
i6=` ei . We will use A to

recover u1/e` and then use it to find α.
By the Goldreich-Levin theorem, in order to recover u1/e` it suffices to construct an algorithm

B that distinguishes the pair (r
R← Zκ2 , σ = hc(u1/e` , r)) from the pair (r

R← Zκ2 , σ
R← {0, 1}) with no-

ticeable advantage. To achieve this we let B(r, σ) be the outcome ofA(N, u, (ei)i∈[n], r, (Ci)i∈[n], x, v)
where

Ci =


mi ⊕ hc(yi, r) if i < ` or i ∈ x,

mi ⊕ σ if i = `,

Ri
R← {0, 1} if i > ` and i /∈ x

.

It is not hard to verify that, when (N, z, e1, . . . , en, r) are uniformly chosen, the resulting distribution

corresponds to H` if σ = hc(u1/e` , r), and to H`−1 if σ
R← {0, 1}. Hence, by Markov’s inequality, with

probability at least ε/2 the tuple (N, z, e1, . . . , en) is good in the sense that B has distinguishing
advantage of ε/2. Therefore, we recover u1/e` with noticeable probability. Finally, we employ
Shamir’s algorithm [49] which, given X,Y ∈ ZN and relatively prime integers a, b for which Xa =
Y b, efficiently computes Y 1/a. Letting X = u1/e` , Y = z and a = e`, b =

∏
j 6=` ej , we recover the

RSA solution z1/e` .

The above encoding can be easily used to encode the subset function with κ-bit messages.

Lemma 3.5. Under the RSA assumption, the SF g(M,x) where x ∈ {0, 1}n and M ∈ ({0, 1}κ)n,
has an encoding of the form ĝ(x,M ; r) = (ĝoff(M ; r), x,K(x; r)) where ĝoff is of bit-length nκ2 and
K(x; r) is of length κ2.

Proof. Observe that g(M,x) is (deterministically) encoded by (h(x,mi))κi=1 wheremi = (M1,i, . . . ,Mn,i).
By the concatenation lemma, the latter function can be encoded by concatenating the encodings
ĥ(x,mi; ri) for i ∈ [κ] from Lemma 3.4. By the composition lemma, the resulting function also
encodes g. This encoding almost satisfies the lemma except that there are κ copies of x. These
multiple copies can be replaced by a single copy (formally, think of x as a deterministic encoding of
its copies and invoke the composition lemma) leading to an encoding that satisfies the lemma.

Remark 3.6 (Optimization). Suppose that RSA is secure against 2τ -time adversaries. In this
case, one can extract t = Θ(τ) independent pseudorandom bits by using t independent copies of
the Goldreich-Levin hardcore predicate. Applying this optimization to Lemma 3.4 (i.e., replacing
the single hardcore bit with t hardcore bits hc(r1, y), . . . ,hc(rt, y)) allows to encode the SF with
message length of t without increasing the overhead. Therefore, by using κ/t-time concatenation
(as in Lemma 3.5), the SF with message length κ can be encoded with offline complexity (bit-length
of ĝoff) of nκ2/t and online complexity (bit-length of K(x; r)) of κ2/t. Specifically, assuming that
RSA is subexponentially hard against 2κ

ε
-time adversaries, the offline complexity becomes Θ(nκ2−ε)

and the online complexity is Θ(κ2−ε).
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3.5 Reducing the Offline Complexity

Given a succinct encoding for SF, one can obtain a new encoding with a smooth tradeoff between
the online and the offline complexity as follows. Let h(M ′, x′) be the subset function with length
N and message size κ, i.e., M ′ ∈ ({0, 1}κ)N , x′ ∈ {0, 1}N , and assume that we have an encoding
ĥ(M ′, x′) = (ĥoff(M ′; r), x′,K ′(x′; r)) where ĥoff has of computational complexity of Naκa

′
and

K ′ is of length κb and computational complexity of Nκb for some constants a, a′, b.5 In order to
encode the SF g(M,x) with input length n, partition the input to n/N blocks of size N each, i.e., let
M i = (MiN+1 . . .M(i+1)N ) and xi = (xiN+1 . . . x(i+1)N ), and think of g(M,x) as the concatenation
of h(M i, xi) for i = 1, . . . , n/N . Now encode g by the encoding

ĝ(M,x; (r1, . . . , rn/N )) = (ĥ(M i, xi; ri))
n/N
i=1

reordering the outputs and letting r = (r1, . . . , rn/N ), we can write ĝ(M,x; r) as ĝoff(M ; r), x,K(x; r)).
Let Comp(f) denote the computational complexity (circuit size) of a function f , and Len(f) denotes
the output length of f (in bits). Then, the complexity of the new encoding satisfies

Comp(ĝoff) =
n

N
· Comp(ĥoff) = nNa−1κa

′

Len(K) =
n

N
· Len(K ′) =

n

N
κb

Comp(K) =
n

N
· Comp(K ′) = nκb

Hence, a larger value of N reduces the online complexity, while a smaller value reduces the offline
complexity. By letting N > ω(κb), the online communication remains n + o(n) (as κ is polyno-
mially related to n). Combining the above with Lemma 3.5 and Lemma 3.2 and the LWE/DDH
constructions from Sections 3.2 and 3.3, we derive the following lemma:

Lemma 3.7 (Encoding SF). Assume that the DDH assumption, or LWE assumption or the RSA
assumption holds. There exists a universal constant C such that for every n and κ for which
nΩ(1) < κ < o(n) the Subset Function g(M,x) with length n and message size κ has an RE of the
form ĝ(x,M ; r) = (ĝoff(M ; r), x,K(x; r)) where:

• K(x; r) is of bit-length at most o(n).

• The encoding ĝ (including both the online and offline parts) can be computed in time nκC .

• In the case of DDH and LWE K(x; r) is affine in x (for every fixed value of r).

4 Succinct AREs for Boolean Circuits

In this section, we will encode any efficiently computable function via a succinct encoding. We
begin by showing that if F : {0, 1}n → {0, 1}` has a decomposable affine randomized encoding
(DARE) then it also has a succinct encoding. In the following, let κ be a security parameter
which is polynomially related to n, i.e., κ = nδ for some fixed δ > 0. We will employ a succinct

5For example, for DDH a = 2, a′ = 1 and b = 1, for LWE a = 2, a′ = 2 and b = 1, and for RSA a = 1, a′ = 2 and
b = 2.

15



encoding for the subset function g(M, x̂) with length N = 2n and message size κ. We will also make
use of the following simple observation: if a κ × 2n matrix M is composed of n pairs of columns
(M2i−1|M2i) = (v0

i , v
1
i )i∈[n], then for any x ∈ {0, 1}n the sub-matrix (vxii )i∈[n] can be written as

(Mi)i∈pad(x), where pad(x) maps an n-bit vector x to the 2n-bit vector (1− x1, x1, . . . , 1− xn, xn),
and i ∈ pad(x) if pad(x)i = 1.

Lemma 4.1. Let F : {0, 1}n → {0, 1}` be an efficiently computable function having a decomposable
ARE f(x; ρ) = (foff(ρ), f1(x1; ρ), . . . , fn(xn; ρ)), where the output length of each fi is κ bits. Also,
assume that the subset function g(M, x̂) with length 2n and message size κ has an RE of the form
ĝ(M, x̂; r) = (ĝoff(M ; r), x̂,K(x̂; r)). Then, F is encoded by the randomized function

F̂ (x; ρ, s, r) = (foff(ρ), ĝoff(M ; r), x⊕ s,K(pad(x⊕ s); r)) ,

where
M = (f1(s1; ρ)|f1(s1 ⊕ 1; ρ)| · · · |fn(sn; ρ)|fn(sn ⊕ 1; ρ)) ∈ {0, 1}κ×2n.

Proof. It will be useful to start by encoding the n-wise one-out-of-two selection function H which
maps an online input x ∈ {0, 1}n and an offline matrix of pairs V = (v0

1|v1
1| . . . |v0

n|v1
n) ∈ {0, 1}κ×2n

to the tuple (vxii )i∈[n]. Observe that the output of H is essentially the value of the subset function g
applied to the matrix V and the vector pad(x) ∈ {0, 1}2n, except that H hides x whereas g reveals
it. Nevertheless one can easily randomize x and then employ the subset function. Specifically,

select a random mask s
R← {0, 1}n, let x̂ ∈ {0, 1}2n be the vector pad(x ⊕ s), and construct the

κ× 2n matrix M = (vs11 |v
s1⊕1
1 | . . . |vsnn |vsn⊕1

n ). It is not hard to show that the randomized mapping
h(V, x; s) 7→ g(M, x̂) is an encoding of H. Indeed, the output distribution of g(M, x̂) consists of
the matrix (Mi)i∈x̂ and the vector x̂ — the former simply equals to (vxii )i∈[n] and the latter is just
a sequence of n pairs of a random bit and its complement.

Next, let us view h as a deterministic function of V, x and s. Since h can be written as
g(MV,s, x̂x,s), we can apply the substitution lemma (Fact A.1) and encode h by the mapping
ĝ(MV,s, x̂x,s; r). By the composition lemma (Fact A.3), the latter encoding also encodes H. Overall,
our encoding for H(V, x) is defined as follows:

(V, x; s, r) 7→ (ĝoff(MV,s; r), pad(x⊕ s),K(pad(x⊕ s); r)).

To improve the online complexity, we replace the redundant value pad(x⊕ s), which is sent in the
clear, with x⊕ s. The encoding is still valid as x⊕ s is a (deterministic) encoding of x⊕ s.

We can now prove the lemma. Let us view ρ as a deterministic input and encode the determin-
istic function f(x, ρ). Since f is decomposable, we can write it as

(foff(ρ), H(Vρ, x)), where Vρ = (f1(0; ρ)| . . . |fn(0; ρ)|f1(1; ρ)| . . . |fn(1; ρ))

and H is the n-wise one-out-of-two selection function. Therefore, by the substitution and concate-
nation lemmas (Facts A.1 and A.2), f can be encoded by (foff(ρ), ĥ(V, x; s, r)), where ĥ encodes
H. Plugging in our (improved) encoding of H, we obtain an encoding of the form

f̂(x, ρ; s, r) = (foff(ρ), ĝoff(Ms,ρ; r), x⊕ s,K(pad(x⊕ s); r)).

By the composition lemma (Fact A.3), the function f̂(x; ρ, s, r) encodes F (x) and the lemma follows.
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It follows that F has an encoding with online complexity of n+ Len(K), online computational
complexity of O(n+ Comp(K)), and offline computational complexity of Comp(foff) + Comp(ĝoff),
where Comp(·) and Len(·) measure the computational complexity (circuit size), and the output
length (in bits) of a given function. Furthermore, observe that for every fixed randomness s each
bit of the term pad(x ⊕ s) can be written as xi or as 1 − xi and so if K(x̂; r) is affine (over some
ring) then so is F̂on.

In [4] it is shown that, assuming the existence of one-way functions, any efficiently computable
function F (x) can be encoded by a decomposable ARE f(x; ρ) = (foff(ρ), f1(x1; ρ), . . . , fn(xn; ρ)),
where the output length of the fi’s is κ bits, and the computational complexity of foff is κ·Comp(f).
Combining this with Lemma 4.1 and our encodings for the Subset Function, we derive succinct
encodings for general boolean functions. By using the optimized encoding of Lemma 3.7, we can
do this while keeping the online computational complexity asymptotically “almost linear”, as in
the following theorem.

Theorem 4.2 (Theorem 1.1 restated). Assume that the DDH assumption, or LWE assumption or
the RSA assumption holds. Let ε > 0 be an arbitrary constant. Then, every efficiently computable
function F : {0, 1}n → {0, 1}`(n) has an encoding F̂ with the following properties:

• The online communication is n+ o(n) and the online computational complexity is O(n1+ε).

• The offline computational/communication complexity is O(nεComp(F )).

• In the case of LWE and DDH the encoding is affine.

Proof. Let κ = nδ for sufficiently small constant δ whose value will be determined later. By
Lemma 3.7 we obtain an encoding for the ĝ that satisfies the properties of Lemma 4.1. Furthermore,
K(x; r) is of bit-length at most o(n) and the encoding is computable in time O(nκC) for some
universal constant C. By [4] F has a DARE f and so, by applying Lemma 4.1 we obtain an
encoding with online communication of n+o(n), online complexity of O(nκC) and offline complexity
of O(|F |κ) +O(nκC). The theorem now follows by letting δ = ε/(2C).

Remarks.

• (Reduction) The proof of Lemma 4.1 shows that the task of succinctly encoding a function
F that admits an online efficient DARE reduces (information-theoretically) to the task of
succinctly encoding the subset function g.

• (General compiler) Theorem 4.2 is constructive, i.e., it describes a compiler that given a
circuit for F outputs a description of the encoding F̂ , its decoder and its simulator.

• (Online inputs) The theorem generalizes to the case where the function f has some online
inputs xon and offline inputs xoff as in Remark 2.2. Namely, the part of the encoding f̂ which
depends on xon is of length |xon|+ o(|xon|).

5 Succinct ARE for Arithmetic Formulas

In this section we construct a succinct ARE for arithmetic formulas over subexponentially large
modulus p (i.e., p = 2o(n)) as follows.
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Theorem 5.1. Let F : Znp → Z`p be an efficiently-computable arithmetic formula where p = Θ(2n
δ
)

for some δ ∈ (0, 1). Then, assuming LWE, F has a succinct ARE F̂ over Zq where q = Θ(2n
δ′

) for
some δ′ ∈ (δ, 1) of the following form:

F̂ (x; r, s) = (F̂off(r), x̂ = x+ s (mod p),K(x̂, r)),

where K(x̂, r) is short (of length o(n log p)) and affine over Zq.

We note that by lifting mod-q computations to the integers, we can get an encoding over the
integers with constant rate. The theorem will be proven in two steps. In Section 5.1, we show
that it suffices to obtain a succinct encoding for the mod-q universal affine function (AF), and in
Section 5.2, we construct such an encoding under the LWE assumption.

5.1 Reduction to the Affine Function

Let F : Znp → Z`p be an efficiently-computable arithmetic formula where p = Θ(2n
δ
) for some

δ ∈ (0, 1). Let m = m(n) be some polynomial (whose value will be related to the size of F ). The
universal affine function (AF) g = gn,m,p over Zp is defined by

g(M, v, x̂) 7→ (Mx̂+ v, x̂), where M ∈ Zm×np , v ∈ Zmp , x̂ ∈ Znp .

Lemma 5.2 (Succinct ARE for mod-p formulas). The function F has a succinct ARE F̂ , assuming
that the function g has an ARE ĝ of the form

ĝ(M, v, x̂; r) = (ĝoff(M, v; r), x̂,K(x̂; r))

where K(x̂; r) ∈ Zκq is an affine function in x̂ and κ log q = o(n log p).

Proof. Let F : Znp → Z`p be a function computable by s = poly(n)-size arithmetic formula.
In [35, 5] (see also [16]) the function F is information-theoretically encoded via an ARE f(x; ρ) =
(foff(ρ), fon(x; ρ)) over Zp. Namely, fon(x; ρ) = Mρx + vρ where Mρ ∈ Zm×np and vρ ∈ Zmp are
computed based on the randomness ρ, and m = O(`s2).

By the composition and concatenation lemmas (Facts A.2 and A.3), it suffices to encode the
online-part fon(x; ρ) (viewed as a single argument function) by a succinct encoding f̂on(x, ρ;R).
Indeed, in this case F (x) can be encoded by F̂ (x; (ρ,R)) = (foff(ρ), f̂on(x; (ρ,R))). Furthermore, by
the substitution lemma (Fact A.1), we may simply encode the affine function L : (M,v, x)→Mx+v.
Observe that unlike g the function L does not reveal x. However, one can succinctly encode L by
g as follows.

Claim 5.3. The function L(M, v, x) is perfectly encoded via the encoding

h : (M,v, x; s) 7→ g(M,v′, x̂), where s
R← Znp , v′ = v −Ms, x̂ = x+ s.

Proof. Decoding is trivial as Mx̂ + v′ = Mx + v. Given an output y of L we perfectly simulate

h(M, v, x; s) via (y, z) where z
R← Znp .
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We can now complete the proof of the lemma. Consider the encoding

ĥ : ((M,v, x, s); r)) 7→ ĝ(M,v′ = v −Ms, x̂ = x+ s; r) = (ĝoff(M,v′; r), x̂,K(x̂; r)).

Then, by the substitution lemma (Fact A.1), ĥ encodes the function h, and so, by the composition
lemma (Fact A.3), it also encodes L. Combining everything together, we encode the function F
via an ARE

F̂ (x; (ρ, s, r)) = (foff(ρ), ĝoff(Mρ, vρ −Mρs; r), x+ s,K(x+ s; r))

with optimal online rate, as promised.

5.2 ARE for the Universal Affine Function

Our goal is to encode the universal affine function gn,m,p. We will make use of the following fact
which “lifts” g to the integers.

Fact 5.4. The function gn,m,p(M,v, x) can be encoded via the function

(M,v, x;R) 7→ (Mx+M0, x)

where R
R← [0, p2]m M0 = v + pR addition and multiplication are computed over the integers. The

encoding has statistical privacy error of O(mnp2/p3) which is negligible in n.

The fact follows from [7, Lemma 5.2]. Hence, it suffices to construct a succinct encoding for the
function g′(M,M0, x) = (Mx+M0, x) computed over the integers where M ∈ [0 : p− 1]m×n,M0 ∈
[0 : 2p3]m and x ∈ [0 : p]n. We will construct such an encoding based on the LWE problem with
the following parameters.

Parameters. Let α, ε1, ε2 ∈ (0, 1) be constants such that ε1ε2 > δ (recall that p = Θ(2n
δ
)).

We will base our encoding on the assumption that LWE is hard for dimension κ = nε1 , modulus
q = Θ(2κ

ε2 ), and noise distribution χqα which samples integers bounded by qα. In fact, we will
need a family of distributions χµ which are almost invariant under small shifts. Namely, for every
integer B the statistical distance between χµ and χµ+B is bounded by poly(|B| /µ). Standard noise
distributions (e.g., discrete gaussian, or uniform over µ-size interval) have this property (cf. [45, 7]).
Overall, for proper choice of parameters our assumption is implied by the worst-case hardness of
approximating the shortest vector in a κ-dimensional lattice to within a subexponential ratio.

The encoding. We will use a variant of the LWE-based gadget from [7]. Let β ∈ (α, 1) and

∆ = 3npqβ. At the offline phase, select a random public matrix W
R← Zm×κq , a random secret key

matrix K
R← Zκ×np and a noise matrix E

R← χm×nqα . Then compute an m × n “padding” matrix
Y = WK + E (mod q) and an m × (n + 1) “ciphertext” matrix C = Y + ∆ ·M (mod q). In

addition, let K0
R← Zκq and E0

R← χκ
qβ

and compute C0 = WK0 + E0 + ∆ ·M0. The output is

ĝoff(M,M0) = (W,C,C0), ĝon(x) = (x, K̂ = K · x+K0 (mod q))
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Decoding. Given (W,C,C0, x, K̂) we decode the integer vector Mx+M0 as follows: (1) compute
M ′ = Cx+C0−WK̂ over the integers; (2) To “clean” the noise divide each entry of M ′ by ∆ and
round to the closest integer. Output the resulting vector bM ′/∆e.

Claim 5.5. The outcome of the decoder equals to Mx+M0 over the integers.

Proof. First observe that over Zq

M ′ = Cx+C0−WK̂ = WKx+Ex+WK0 +E0 +∆(Mx+M0)−WKx = Ex+E0 +∆(Mx+M0).

Moreover, this equality also holds over the integers since q > Ω(2n
δ′

) where δ′ > δ, while the
absolute value of each entry in Ex + E0 + ∆(Mx + M0) (computed over the integers) is smaller
than O(npqα + qβ + ∆(np2 + p3)) = o(q). Hence, q is large enough to ensure that there is no
wraparound and the outcome of the first step is Ex + E0 + ∆(Mx + M0) over the integers. Now
observe that ∆ is large enough to ensure that there is no rounding error in the second step. To see
this, note that each entry of Ex+E0 is bounded by npqα + qβ < ∆/2. We conclude that decoding
succeeds with probability 1.

Simulation. Given (x, z = Mx+M0) we simulate ĝ as follows. Choose W
R← Zm×κq , C

R← Zm×nq

and K̂
R← Zκq and let

C0 = WK̂ + E0 + ∆z − Cx (mod q),

where E0
R← χκβ. Output (W,C,C0, x, K̂).

Claim 5.6. For every M,M0, x the simulated distribution Sim(x,Mx + M0) is computationally
indistinguishable from the encoding ĝ(M,M0, x).

Proof. It is not hard to show that, under the LWE assumption, the uniform distribution (W
R←

Zm×κq , Y
R← Zm×nq ) is computationally indistinguishable from the following “product”-LWE distri-

bution
(W

R← Zm×κq , Y = WK + E) where K
R← Zκ×nq , E

R← χm×nqα .

This can be proved via a standard hybrid argument, cf. [2]. We will show that if the claim does
not hold then the above distributions can be distinguished.

Fix some (M,M0, x) and assume, towards a contradiction, that there exists an adversary A that
distinguishes Sim(x,Mx + M0) from ĝ(M,M0, x) with advantage ε. We will use A to distinguish
between the product LWE distribution and the uniform distribution with advantage ε − neg(n).

Given a challenge (W,Y ) compute C = Y +Mx (mod q), K̂
R← Zκq and C0 = WK̂+E0 + ∆z−Cx

(mod q) and output A(W,C,C0, x, K̂).
It is not hard to verify that when the input (W,Y ) is uniform in Zm×κq × Zm×nq the tuple

(W,C,C0, x, K̂) is distributed identically to Sim(x,Mx + M0). Now assume the input is sampled

according to the LWE distribution, i.e., W
R← Zm×κq and Y = WK + E where K

R← Zκ×nq and

E
R← χm×nqα . We claim that the tuple (W,C,C0, x, K̂) is statistically close to ĝ(M,M0, x).
First observe that the joint distribution of (W,K,E,C) is statistically close in both experiments.

(The two are not identical due to the fact that the encoding samples the error matrix E conditioned
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on being small – however, this increases the statistical distance by a negligible quantity.) Fix
(W,K,E,C) and observe that in both experiments, K̂ is uniformly distributed since in the encoding

K̂ = Kx + K0 where K0
R← Zκq ). Fix K0 as well. Finally, since K0 = K̂ −Kx the value of C0 in

the encoding can be written as

C0 = WK0+E0+∆·M0 = W (K̂−Kx)+E0+∆(M0+Mx)−(WK+E+M)x+WKx+Ex, (mod q)

rearranging and substituting z = Mx+M0 we get

C0 = WK̂ + E0 + Ex+ ∆z − Cx (mod q).

Since each entry of Ex is bounded by B = npqα and since E0
R← χqβ , the statistical distance

between E0 + Ex and E0 is at most mpoly(B/qβ) = neg(n). Hence, C0 as computed by the
algorithm is statistically-close to the distribution of C0 in the encoding and the claim follows.

6 More on Online/Offline Encodings

6.1 Some Lower Bounds

Lemma 6.1 (DARE have super-constant online-rate). There exists a function f such that
any (t, 1

2) decomposable encoding f̂ of f has online rate larger than k = log(t− s)/2 where s is the
complexity of the decoder.

Specifically, super-polynomial security implies lower-bound of ω(log n), and sub-exponential
security 2n

ε
implies polynomial rate of nε which matches the construction of [4]. We also mention

that the proof actually holds for a stronger statement as it rules out even an extremely poor
distinguishing advantage ε which approaches to 1 exponentially fast (e.g., 1 − 2n/2 as long as
k = min(log(t− s)/2, n/4)).

Proof. Let f(x, y) = (x1 + x2 + · · · + xn) · y where x, y ∈ Fn2 and multiplication is understood as
a multiplication of a vector y by the scalar

∑
xi over F2. It suffices to show that every input xi

affects at least k output bits of f̂(x, y; r), as the decomposablity of f̂ implies that in this case the
online communication complexity is at least nk. Say that xi affects a set S of at most k outputs.
Consider a uniformly chosen y and x = 0n, we show how to distinguish in this case the distributions
f̂((x, y); r) from Sim(f(x, y)). Given z (sampled from one of the above distributions), enumerate
all 2k strings z′ which differ from z only with respect to the indices which are influenced by xi,
and apply the decoder Dec to each of the modified strings. If the outcome corresponds to y the
distinguisher outputs “pass” and otherwise it outputs “fail”. (Recall that distinguishing should be
hard even if the inputs x, y are known.)

We claim that when z is the outcome of the simulator the test passes with negligible probability.
Indeed, the input to the simulator is independent of y (the simulator gets f(x, y) = 0), and therefore
for every fixed outcome of the simulator z the probability that the modified string z′ passes the
test is at most 2k/2n.

On the other hand, if z is the outcome of f̂((x, y); r) then: (1) the string z′ = f̂((ei, y); r), where
ei is the i-th unit vector, differs from z only on (subset of) the coordinates which are influenced by
xi; and (2) Dec(z′) = f(x′) = y and so the test passes with probability 1. Since the complexity of
the test is 2k+s < t and since it has a distinguishing advantage of 1−2k/2n the lemma follows.
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We now prove a lower bound on the online rate of AREs. It is clear that the online rate needs
to be at least 1 for functions with a long output (such as the identity function). We show that this
is also the case for some boolean functions.

Lemma 6.2 (ARE have online rate of at least 1). There exists a boolean function f : {0, 1}n →
{0, 1} such that the online rate of any ARE of f (over an arbitrary ring) is at least 1− o(1).

Proof. Let n = k + log k. We will show that the “universal” function f(x, i) = xi, where x is in
{0, 1}k and i is in {0, 1}log k, cannot be encoded by an ARE f̂(x, i; r) with online communication
complexity smaller than k. Indeed, fix some randomness r and let f̂(x, i; r) = (F,Ar ·x+A′r · i+ b)
be a perfectly correct ARE of f over Zq where F is the offline part. Then it is possible to fully
recover x from Arx (by computing A′ri+b for i = 1, . . . , n), from which it follows that the bit-length
of Arx is at least k.

While we cannot unconditionally prove a similar result for non-affine REs with, say, quadratic
online computation, such a negative result follows from the (conjectured) impossibility of compres-
sion. Formally, we say that a function f is compressed by a function g if: (1) (lossless recovery)
there exists a recovery function h such that for every input x, h(g(x)) = f(x); and (2) (g is shrink-
ing) for every x the length of g(x) is shorter than the length of x. We conjecture that for every
positive constants c > c′, there exists a function computable in time nc that cannot be compressed
by a time-(nc

′
) function g. (See [32, 18] for related conjectures.)

Lemma 6.3 (Incompressibility⇒ RE have online rate of at least 1). Suppose that the above
incompressibility conjecture holds. The class of efficiently computable functions does not have an
online efficient encoding with online rate smaller than 1.

Proof. Assume, towards a contradiction, that there exists a compiler C that for every polynomial-
time computable function f outputs an encoding f̂ whose online communication is smaller than n
and its online computational complexity is nc

′
for some universal constant c′. Then, any efficiently

computable function f can be compressed by the nc
′
-time computable function f̂on(x; r) where r

is some fixed string, e.g., the all-zero string. Indeed, it is possible to (efficiently) recover the value
of f(x) by computing z = f̂off(r) and applying the decoder to (z, f̂on(x; r)). This contradicts the
incompressibility assumption.

In the case of functions with many outputs (and assuming the existence of one-way functions)
we can lower-bound the offline complexity by the output length ` where ` can be polynomially
larger than n. To this end, we will prove that the output length of the simulator (or even the
online-complexity of the simulator) is lower-bounded by `.

Lemma 6.4 (Communication complexity of RE is larger than the output length). As-
suming one-way function, for every constant c there exists a function f : {0, 1}n → {0, 1}nc such
that every (nω(1), 1/3)-private RE of f has communication complexity of at least nc bits. Further-
more, there are at least nc bits in the output of the simulator Sim(y) that depend on the input y (as
opposed to the randomness).

Note that the existence of one-way functions is necessary, as otherwise one can obtain an
encoding with total complexity n, by letting f̂(x; r) = x′ where x′ is random sibling of x under f ,
and take the decoder to be Dec(x′) = f(x′), and the simulator Sim(y) = x′ where x′ is a random
preimage of y. If one-way functions do not exist then this encoding can be implemented efficiently.
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Proof. Fix some constant c, and let f : {0, 1}n → {0, 1}` be a pseudorandom generator with output
length ` = nc. (The existence of such a pseudorandom generator follows from the existence of
one-way functions [33].) It suffices to prove the “furthermore” part as the online-complexity of the
simulator lower-bounds the communication complexity of the encoding. Let f̂(x; r) be an RE of f
with decoder Dec and simulator Sim such that the number of bits of Sim(y) that depend on y is
smaller than `. Then, we distinguish the output of f from a truly random string via the following
test: Given a string y ∈ {0, 1}`, we accept if and only if the outcome of Dec(Sim(y)) is equal to y.

First we claim that when y is random the test accepts with probability at most 1
2 . Indeed,

fix some value r for the randomness of the simulator and some value d for the randomness of the
decoder. Then the image of Sim(y; r) = (zr,Simon(y; r)) can take at most 2`−1 values, and therefore
the decoder Dec(·; s) recovers y successfully for at most half of all y’s in {0, 1}`.

On the other hand, if y is in the image of f , the test accepts with probability at least 2/3−neg(n).
Indeed, let x be a preimage of y, then by definition Dec(f̂(x; r)) outputs y = f(x) with probability
1. Since f̂(x; r) is (t, 1/3) indistinguishable from Sim(f(x)), it follows that Dec(Sim(y)) = y with
probability at least 2/3− neg(n).

6.2 On Adaptive Security

The standard security definition of REs can be captured by the following game: (1) The challenger

secretly tosses a random coin b
R← {0, 1}; (2) the adversary chooses an input x submits it to the

challenger and gets as a result the string ŷ which, based on the secret bit b, is either sampled from
the encoding f̂(x; r) or from the simulator Sim(f(x)). At the end, the adversary outputs his guess b′

for the bit b. The security of REs says that the t-bounded adversaries cannot win the game (guess b)
with probability better than 1

2 + ε. In the online/offline setting it is natural to consider an adaptive
version of this game in which the adversary chooses its input x based on the offline part of the
encoding. Syntactically, this requires an online/offline simulator Sim(y; r) = (Simoff(r);Simon(x; r))
whose offline part does not depend on its input f(x), and has the same length as the offline part
of the encoding. Formally,

Definition 6.5 (Adaptively-secure RE). Let f be a function and f̂(x; r) = (f̂off(r), f̂on(x; r)) be
a perfectly-correct RE with decoder Dec and online/offline simulator Sim(y; r) = (Simoff(r),Simon(y; r)).
We say that f̂ is (t, ε) adaptively private if every t-bounded adversary A wins the following game

with probability at most 1
2 +ε: (1) The challenger secretly tosses a random coin b

R← {0, 1}, chooses
randomness r and outputs

ŷoff =

{
f̂off(r) if b = 1,

Simoff(r) if b = 0.

(2) Based on ŷoff the adversary A chooses an input x, submits it to the challenger and gets as a
result the string

ŷon =

{
f̂on(x; r) if b = 1,

Simon(f(x); r) if b = 0.

At the end, the adversary outputs his guess b′ and wins if b′ = b.

As follows from Lemma 6.4, in the standard model adaptively secure REs cannot be online-
efficient let alone have constant rate (assuming the existence of one-way functions).
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Corollary 6.6 (Adaptive security requires long online-communication). Assuming one-
way function, for every constant c there exists a function f : {0, 1}n → {0, 1}nc such that every RE
of f has online communication complexity of at least nc bits.

Proof. By Lemma 6.4, there exists a function f for which the online part of the simulator must
longer than nc. Privacy ensures that the online communication complexity of f̂ satisfies the same
bound.

On the other hand, it turns out that this barrier can be bypassed via the use of a (programmable)
random oracle as shown in the following lemma.

Lemma 6.7. Suppose that f : {0, 1}n → {0, 1}` has a (t, ε)-private RE f̂ with online communica-
tion αn. Then, for every β > 0, f has a (t′ = Ω(t), ε′ = ε + t/2βn) adaptively-private RE g with
online communication of (α+ β)n in the random oracle model. Furthermore, if f̂ is affine then so
is g.

Proof. Let f̂(x; r) = (f̂on(x; r), f̂off(r)) be a (t, ε) (affine) RE of f(x) over Zq with decoder Dec, and

simulator Sim = (Sim1,Sim2), where Sim1 denotes the first αn bits of Sim and Sim2, f̂off(r) output
s-long vectors in Zq. Let H : {0, 1}βn → Zsq be a random oracle. Consider the encoding

goff(r, k) := f̂off(r) +H(k) (mod q) gon(x; r, k) := (f̂on(x; r), k)

where k
R← {0, 1}βn. Given g(x; (r, k)) = (f̂off(r) + H(k), f̂on(x; r), k), the decoder Dec′ decodes

f̂off(r) (by subtracting H(k) from the first entry) and then applies the original decoder Dec to

f̂(x; r). The simulator Sim′ works as follows: at the offline phase it outputs ρ
R← Zsq, then at

the online phase given y it outputs the pair (Sim1(y; r), k), where k
R← {0, 1}βn and programs the

random oracle so that H(k) = ρ− Sim2(y; r) (mod q).
We claim that the resulting encoding is (t′, ε′) adaptively private. Assume, towards a contra-

diction, that we have a t′-bounded adversary B that wins the adaptive-RE game with probability
1
2 + ε′. Then, we can construct a t-bounded adversary that distinguishes f̂(x; r) from Sim(f(x))

with advantage ε as follows: Choose a random string z1
R← Zsq for the offline phase and send it to

B, let x be its response. If B makes a query to the random oracle, we record the query and answer
it with a random string. (Without loss of generality, B never asks the same query twice.) Now, we
try to break the encoding f̂ with respect to the input x. As a result, we get ŷ = (ŷon, ŷoff) which is

either sampled from f̂(x) or from Sim(f(x)). Send B the string z2 = (ŷon, k) where k
R← {0, 1}βn,

and set H(k) = ρ− ŷoff . If k happens to be a query that B already asked, we terminate with failure.
Otherwise, we continue the emulation while answering queries k′ to the random oracle randomly
(if k′ 6= k) or by H(k) if k′ = k.

To analyze the success probability of A first observe that the emulation fails with probability
at most t/2βn. Furthermore, assuming non-failure, the emulation is perfect in the sense that if ŷ
is sampled from the encoding f̂(x; r) (resp., from the simulator Sim(f(x))) then the view of B is
distributed identically to its view in the adaptive RE game when the challenge bit b = 1 (resp.
b = 0). Hence, the lemma follows.
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7 Applications

7.1 MPC with Optimal Online Communication

In this section, we sketch the application of succinct randomized encodings to secure multiparty
computation (MPC) in the preprocessing model. We start with the two-party case, and later gen-
eralize to the multiparty case. For concreteness, we focus on distributing the DDH-based encoding
obtained by combining Lemmas 3.2 and 4.1 with the DDH-based AHE. Similar protocols can be
obtained based on any succinct Affine RE. We do not know how to get similar results from general
(non-affine) succinct REs.

Let F be a deterministic two-party functionality which takes an input a ∈ {0, 1}na from Alice
and an input b ∈ {0, 1}nb from Bob, and delivers an output c to Alice.6 The DDH-based encoding
of F can be written as

F̂ (a, b;R) = (F̂off(R), a⊕ ra, b⊕ rb,
na∑
i=1

KA
i,ai⊕rai +

nb∑
i=1

KB
i,bi⊕rbi

mod p),

where the “masks” ra ∈ {0, 1}na , rb ∈ {0, 1}nb , and the “keys” KA
i,σ,K

B
i,σ ∈ Zp are random and

independent of a, b (these values are given as part of R).
In the semi-honest model, the protocol is straightforward. In the offline phase, a trusted party

samples R and sends the value F̂off(R) together with the mask ra to Alice, and the mask rb along
with the 2na + 2nb keys KA

i,σ,K
B
i,σ to Bob. (Of course, in the real world, this step is implemented

via the use of any off-the-shelf secure two-party protocol.) In the online phase, Alice sends to Bob
a⊕ ra and Bob replies with b⊕ rb and

∑na
i=1K

A
i,ai⊕rai

+
∑nb

i=1K
B
i,bi⊕rbi

mod p. Alice computes the

output using the decoder of F̂ . Note that the view of Bob is completely random, whereas the view
of Alice contains the output of F̂ which can be simulated given F (a, b). This proves the following:

Theorem 7.1. Suppose that the DDH assumption holds in a prime order group of size p = p(κ).
Let F (a, b) be a polynomial-time computable functionality which delivers its output to Alice. Assume
trusted preprocessing which does not depend on the inputs. Then, F can be securely realized in the
semi-honest model by a protocol in which Alice sends a message of length |a| and Bob sends a
message of length |b|+ dlog pe, independently of the length of the output or the complexity of F .

The malicious model. Security in the malicious model is handled via a “homomorphic MAC”
over Zp which allows Alice to verify that Bob sent her the correct linear combination of his keys,
namely the one defined by a ⊕ ra and b ⊕ rb. This approach has been used by Bendlin et al. for
securely computing arithmetic circuits in the preprocessing model [12].7 Note that there is no room
for cheating in sending a⊕ra, b⊕rb: Any choice of these messages uniquely defines the input, which
can be easily extracted by the simulator.

The homomorphic MAC construction proceeds as follows. Suppose for simplicity that in the
offline phase Bob is given n secret keys K1, . . . ,Kn ∈ Zp and in the online phase he is expected to
reveal some publicly known linear combination

∑n
i=1 µiKi of these keys. The goal is to provide Alice

with a mechanism for checking the correctness of Bob’s online message without revealing additional

6The case of general two-party functionalities reduces to this case via a standard reduction, cf. [24].
7In contrast to our protocols, the online communication complexity of the protocol from [12] depends on the circuit

size.
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information about the keys. This is done by giving to Bob, in the offline phase, independent
random field elements r1, . . . , rn ∈ Zp, and giving to Alice a random α ∈ Zp along with the n values
βi = αKi + ri. Note that Alice’s offline information gives her no information about Bob’s keys.
In the online phase, when the coefficients µi are revealed (in our case µi ∈ {0, 1}), Bob sends the
values (M =

∑n
i=1 µiKi, T =

∑n
i=1 µiri). Alice accepts M only if αM + T =

∑n
i=1 µiβi. Since

Alice can compute T from M and α, she does not learn anything except the output. On the other
hand, a forging attack by a malicious Bob can be used to guess α. See [12] for more details.

The multiparty case. In the case of a general number of parties we can proceed similarly, except
that in this case the offline phase additively secret-shares each key between the parties over Zp.
(This is needed in order to prevent the adversary from learning both the output of the encoding
and the keys.) As before, assume without loss of generality that only one party Alice gets the
output. The protocol proceeds in two rounds: in the first round each party broadcasts its masked
input, and in the second round each party sums up and sends to Alice his shares of the keys defined
by the public messages of the first round. Each of these messages is verified by Alice using the
homomorphic MAC, as before.

On adaptive choice of inputs. In the presence of malicious parties, the protocol described
above realizes the randomized encoding functionality f̂ with statistical security in the preprocessing
model. However, this functionality should be viewed as a reactive functionality which first delivers
an offline part, then receives an online input from each party, and finally delivers the online output
to Alice. In order for the final protocol to be secure, the encoding should be simulatable with
such an adaptive choice of inputs. While we do not have a proof for the adaptive security of
our constructions under standard assumptions, it may still hold heuristically when the output for
f is shorter than the input, and can be made provably adaptive in the random oracle model (see
Section 6.2 and [10]). As in the case of standard garbled circuits with short keys, obtaining adaptive
security in the plain model under standard assumptions remains an interesting open problem. We
note that this issue is not relevant in the semi-honest model, or when the online inputs are public
and are generated independently of the offline phase (this is meaningful when there are secret offline
inputs).

7.2 Non-Interactive Zero-Knowledge Proofs

We move on to the case of non-interactive zero-knowledge proofs (NIZK). Such proof systems are
similar to standard zero-knowledge protocols except that interaction is traded for the use of a public
random string σ to which both the prover and the verifier have a read-only access. Formally,

Definition 7.2. A NIZK for an NP relation R(x,w) is a pair of probabilistic polynomial-time
algorithms (P, V ) that satisfies the following properties:

• (Completeness) for every (x,w) ∈ R, it holds that Pr[V (x, σ, P (x,w, σ; ρP ); ρV ) = 1] > 1 −
neg(|x|), where ρP is the private randomness of the prover and ρV is the private randomness
of the verifier.

• (Statistical Soundness) for every x /∈ LR (i.e., x such that ∀w, (x,w) /∈ R) and every computa-
tionally unbounded prover algorithm P ∗ we have that Pr[V (x, σ, P ∗(x, σ); ρV ) = 1] < neg(|x|);
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• (Zero-knowledge) there exists a probabilistic polynomial-time simulator M such that for every
string sequence {(xn, wn)} where (xn, wn) ∈ R it holds that

{(xn, σ, P (xn, wn, σ; ρP ))} c≡ {M(xn)},

where in all the above σ is uniformly distributed over {0, 1}poly(|x|).

In the online/offline setting we assume that the prover’s message is partitioned into two parts:
(1) An offline message that depends solely on the language L and the public reference string σ;
and (2) An online message that depends on the public input x and the private witness w. (We
also assume that the verifier gets x in the online phase.) Accordingly, for a prover P (x,w, σ; ρP ) =
(Poff(σ, ρP ), Pon(x,w, ρP )) we define the online communication (resp. computational) complexity
of P to be the output length (resp., the circuit size) of Pon(x,w, ρP ).

Theorem 7.3. Assume that the language L has a NIZK and assume that RSA, LWE, or DDH
holds. Then, L has a NIZK (P̂ , V̂ ) with online communication of |w| + o(|x| + |w|) and online
computation of (|x|+ |w|)1+ε where ε is an arbitrary small constant.

Proof. Let (P, V ) be a NIZK for L. In [5, 4] it is shown that if P (x,w, σ, ρP ) is encoded by
P̂ (x,w, σ, ρP ; r) then (P̂ , V̂ ) is a NIZK for L where the new verifier V̂ = V (x, σ,Dec(ŷ); ρV ) uses
the decoder Dec to translate the prover’s encoded message ŷ to the corresponding message of the
original prover, and then invokes the original verifier.

To prove the theorem we compile the prover P (x,w, σ, ρP ) into its succinct randomized encoding
P̂ (x,w, σ, ρP ; rx, rw) constructed in Section 4 while treating (σ, ρP ) as offline inputs and (x,w) as
online inputs. As a result the online computation is (|x|+ |w|)1+ε and the online communication is
|x|+ |w|+o(|x|+ |w|). To further reduce the online communication observe that the online part has
the form (x⊕ rx, w⊕ rw,K(x,w; r)), since x is public this is information theoretically equivalent to
sending the message (rx, w⊕ rw,K(x,w; r)), however, the randomness rx can be sent at the offline
phase and so the total online communication is |w|+ o(|x|+ |w|) as needed.

Remark 7.4 (Adaptivity). The zero-knowledge property is proven under the assumption that the
online input x is chosen independently of the offline part. When x is chosen based on the offline
part, we do not know how to efficiently simulate the view of the verifier under standard assumptions.
Still, security in this case may hold heuristically, and can be provably achieved in the random oracle
model (see Section 6.2). It is important to note that this issue is not relevant to the soundness of
the protocol (which holds statistically). Furthermore, the problem is completely avoided when the
online input is generated independently of the offline phase (e.g., by the prover).

7.3 Verifiable Computation

In the problem of Verifiable Computation (VC) a computationally weak client C wishes to delegate
the computation of a function f on an input x to a computationally strong but untrusted server P .
We consider two-message protocols in the offline/online setting. Namely, the client sends an offline
message α = Coff(ρC) before seeing the input x, then at the online phase the client sends a single
message β = Con(x, ρC) to the server (which potentially reveals x). The server responds with an
answer γ = P (α, β, ρP ). Based on this answer, the client applies some cheap verification process
V (x, γ, ρV ) and either recovers the result f(x) or announces an error in the case of a cheating
server. Formally,
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Definition 7.5. (Verifiable Computation) A VC protocol for an efficiently computable func-
tion f : {0, 1}n → {0, 1}m is a pair of probabilistic polynomial-time algorithms, a client C =
(Con, Coff , V ) and a server P , that satisfies the following properties:

• (Completeness) for every x ∈ {0, 1}n, it holds with probability 1 that

V (x, P (Coff(ρC), Con(x, ρC); ρP ); ρC) = f(x),

where ρP is the private randomness of the server and ρC is the private randomness of the
client.

• (Soundness) for every x and every efficiently computable server P ∗ we have that

Pr[V (x, P ∗(Coff(ρC), Con(x, ρC); ρP ); ρC) /∈ {f(x),⊥}] < neg(|x|).

We will be interested in useful protocols in which it is more efficient to run the client’s algorithm
than to compute the function itself.

Theorem 7.6. Assume that RSA, LWE, or DDH holds and let ε > 0 be an arbitrary small constant.
For every efficiently computable function f : {0, 1}n → {0, 1}m there exists an online/offline VC
C = (Con, Coff , V ) with the following complexity:

• Offline communication/computational complexity of the client is |f | ·κ, where |f | denotes the
circuit size of f and κ is a security parameter.

• Online communication complexity of the client is n+ o(n) and its online computational com-
plexity is n1+ε.

• The communication complexity of the server is m + nε and its computational complexity is
|f | · nε.

• The verification step V has computational complexity of O(m+ nε).

Observe that the online communication of the protocol is essentially optimal (up to additive
loss) as even if the server is fully trusted the client has to send at least n-bits to describe x and the
server has to send at least m bits to describe f(x).

Proof. Let κ = nε. In [6] it is shown that the following protocol is VC. Let g(x, k) = MACk(f(x)
where MACk : {0, 1}m → {0, 1}κ is a one-time (information-theoretic) MAC with an error of 2−κ.
Let ĝ(x, k; r) be the computationally-private perfectly-correct RE for g where k is treated as an
offline input. Let ĝoff(k; r) be the offline message of the client, and let (x, ĝon(x; r)) be the online
message of the client. The server P sends the pair γ1 = f(x) and γ2 = Dec((ĝoff(k; r), ĝon(x; r)))
where Dec is the decoder of the encoding. Finally, the client accepts γ1 if γ2 = MACk(γ1).

To prove the theorem we employ the encoding constructed in Section 4 and instantiate the MAC
with the pair-wise independent hash function from [37] whose circuit complexity is O(m+ κ).

We remark that one can add input privacy (i.e., hide x from the server) without increasing
the complexity (see [6]). Also, as in [21], the offline phase can be re-used (and therefore amortize)
without increasing the (asymptotic) complexity by encrypting ĝoff(k; r) and ĝon(x; r) under fully-
homomorphic encryption and letting the server return an encryption of γ2. Re-using the offline
phase remain secure as long as the server does not learn whether the client accepted or rejected
the interaction.
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Remark 7.7 (Adaptivity). We do not prove that the soundness property holds when the input
x is chosen adaptively based on the offline part. As usual, this can be solved with the aid of a
random oracle (see Section 6.2). It is important to note that in this context non-adaptive solution
is still meaningful as in the typical scenario, where the client is the one who selects which input x
to delegate, the problem is completely avoided.
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A Useful properties of REs

Fact A.1 (Substitution). Suppose that the function f̂(x; r) is a (t, ε)-encoding of f(x) with the
simulator and decoder (Sim,Dec). Let h(z) be a function of the form f(g(z)) where z ∈ {0, 1}k and
g : {0, 1}k → {0, 1}n. Then, the function ĥ(z; r) = f̂(g(z); r) is a (t, ε)-encoding of h with the same
simulator and the same decoder.

Proof. Follows immediately from the definition. For correctness we have:

Pr
r

[Dec(ĥ(z; r)) 6= h(z)] = Pr
r

[Dec(f̂(g(z); r)) 6= f(g(z))] = 0,

and for privacy we have

Sim(h(z)) ≡ Sim(f(g(z))) ≡t,ε f̂(g(z); r) ≡ ĥ(z; r),

as required.

Fact A.2 (Concatenation). Suppose that f̂i(x; ri) is a (t, ε)-encoding of the function fi : {0, 1}n →
{0, 1}`i with simulator Simi, decoder Deci and complexity at most s, for every i ∈ [c]. Then the
function f̂(x; (r1, . . . , rc)) = (f̂i(x; ri))

c
i=1 is a (t− cs, cε)-encoding of f(x) = (f1(x), . . . , fc(x)) with

simulator Sim(y) = (Simi(yi))
c
i=1 and decoder Dec(ŷ) = (Deci(ŷi))

c
i=1.

Proof. Perfect correctness follows from Prr[Dec(f̂(x; r)) 6= f(x)] ≤
∑

Prr[Dec(f̂i(x; ri)) 6= fi(x)] =
0. Privacy is proved via a standard hybrid argument. Specifically, suppose, towards a contradiction,
that A is a (t − cs) size adversary that distinguishes f̂(x; r) from Sim(f(x); ρ) with advantage cε.
Then, by an averaging argument, for some j ∈ {1, . . . , c} the adversary A distinguishes with
advantage at least ε between the tuple

(f̂1(x; r1), . . . , f̂j−1(x; rj−1),Simj(fj(x)), . . . ,Simc(fc(x)))
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and the tuple
(f̂1(x; r1), . . . , f̂j(x; rj),Simj+1(fj(x)), . . . ,Simc(fc(x))).

Now, we can define an adversary B that ε-distinguishes f̂j(x; rj) from Simj(fj(x)). Given a challenge

ŷj , the adversary B samples (f̂i(x; ri))i<j and (Simi(fi(x)))i>j with complexity c · s, and invokes
A on the resulting vector with the challenge planted in the j-th position. This gives rise to a
(t, ε)-adversary, contradicting our hypothesis.

Fact A.3 (Composition). Suppose that:

• g(x; rg) is a (t1, ε1)-encoding of f(x) with decoder Decg and simulator Simg, and

• h((x, rg); rh) is a (t2, ε2)-encoding of the function g(x, rg), viewed as a single-argument func-
tion, with decoder Dech, simulator Simh and complexity s.

Then the function f̂(x; (rg, rh)) = h((x, rg); rh) is a (min(t1− s, t2), ε1 + ε2)-encoding of f(x) where
(rg, rh) are its random inputs and the simulator and decoder are Sim(y) = Simh(Simg(y)) and
Dec(ŷ) = Decg(Dech(ŷ)).

Proof. To prove perfect correctness note that Prrg ,rh [Dec(f̂(x; rg, rh)) 6= f(x)] is upper-bounded by

Pr
rg ,rh

[Dec(h(x, rg; rh)) 6= g(x, rg)] + Pr
rg

[Dec(ĝ(x; rg)) 6= f(x)] = 0.

We prove privacy by noting that Simg(f(x)) is (t1, ε1)-indistinguishable from g(x; rg). Hence,
Simh(Simg(f(x))) is (t1− s, ε1) indistinguishable from Simh(g(x; rg)). However, the latter distribu-
tion is (t2, ε2)-indistinguishable from h((x, rg); rh), and so h(x; (rg, rh)) is (min(t1 − s, t2), ε1 + ε2)-
indistinguishable from Simg(f(x)).
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