
Fully Automated Analysis of Padding-Based Encryption

in the Computational Model

June 2013

Abstract

Computer-aided verification provides effective means of analyzing the security of cryptographic prim-
itives. However, it has remained a challenge to achieve fully automated analyses yielding guarantees
that hold against computational (rather than symbolic) attacks. This paper meets this challenge for
public-key encryption schemes built from trapdoor permutations and hash functions. Using a novel
combination of techniques from computational and symbolic cryptography, we present proof systems
for analyzing the chosen-plaintext and chosen-ciphertext security of such schemes in the random oracle
model. Building on these proof systems, we develop a toolset that bundles together fully automated
proof and attack finding algorithms. We use this toolset to build a comprehensive database of encryption
schemes that records attacks against insecure schemes, and proofs with concrete bounds for secure ones.

Keywords: Attack finding, automated proofs, provable security, public-key encryption, static equiva-
lence.

1

Contents

1 Introduction 3

2 Cryptographic Background 4
2.1 Padding-Based Public-Key Encryption . 4
2.2 Security of Padding-Based Encryption Schemes . 5

3 Symbolic Tools 7
3.1 Syntax and Semantics of Expressions . 7
3.2 Equality and Deducibility . 7
3.3 Inequality and Static Distinguishability . 8

4 Proof Systems 9
4.1 Chosen-Plaintext Security . 9
4.2 Chosen-Ciphertext Security . 11
4.3 Concrete Bounds . 13
4.4 Soundness . 14
4.5 Examples . 14

4.5.1 OAEP . 15
4.5.2 PSS-E . 16

5 Attacks 19
5.1 Universal Attacks . 20
5.2 Existential Attacks . 20

6 Experimental Validation 21
6.1 Security Analysis . 21
6.2 Practical Interpretation for RSA . 22
6.3 Generation of Encryption Schemes . 23
6.4 Experiments . 23

7 Related Work 25

8 Conclusion 25

A Definitions and Proofs 29
A.1 Algebraic Expressions as Programs . 29
A.2 Soundness of Deducibility and Apartness . 32
A.3 Soundness of CPA logic . 33
A.4 Soundness of CCA logic . 40

B Proof Generation 50

2

1 Introduction

Two different models for analyzing the security of cryptographic constructions have developed over the
years and coexist until today, each with its own advantages and disadvantages: the computational model
and the symbolic model.

The computational model has its roots in the work of Goldwasser and Micali [22] and views cryp-
tographic primitives as functions on bitstrings. Adversaries are modeled as probabilistic algorithms and
security is defined in terms of their success probability and computational resources. Security proofs are
reductions, showing how a successful attack can be converted into an efficient algorithm that breaks the
security of primitives. Often, computational proofs quantify the efficiency of reductions, giving concrete
security bounds.

The symbolic model, which originates from the seminal work of Dolev and Yao [20], views cryptographic
primitives as function symbols in a term algebra of expressions. The properties of primitives and the
capabilities of adversaries are modeled using equational theories. This model enables automated analysis,
but can miss attacks that are possible in the computational model.

A celebrated article by Abadi and Rogaway [2] bridges the gap between the two models: it gives sufficient
conditions under which symbolic security implies computational security; symbolic methods that exhibit
this property are called cryptographically sound. This result, originally proved for symmetric encryption,
has since been extended to richer theories [18]. Cryptographic soundness opens the perspective of combining
the best of both worlds: fully automated proofs of computational security. However, its applications have
remained confined to protocols. Developing cryptographically sound symbolic methods for primitives
remains a challenge.

A recent alternative to cryptographically sound symbolic methods uses programming language tech-
niques for reasoning about the security of cryptographic constructions directly in the computational model.
This alternative is embodied in tools like CryptoVerif [13] and EasyCrypt [5], which have been used to ver-
ify emblematic cryptographic constructions. Proofs built using these tools yield reductions with concrete
security bounds. However, these tools are primarily interactive and their use requires expert knowledge.
Combining them with fully automated methods that apply to large classes of cryptographic primitives has
remained an open problem.

A converse goal to proving security is finding attacks. Recent work [3] explores the use of symbolic
methods to find attacks and estimate their success probability. Automating attack finding can provide
valuable feedback during cryptographic design and be used to evaluate empirically the completeness of
automated security analyses by answering questions such as how many constructions that may be secure
cannot be proven so.

Contributions We present new methods for automatically analyzing the security of padding-based en-
cryption schemes, i.e. public-key encryption schemes built from hash functions and trapdoor permutations,
such as OAEP [12], OAEP+ [30], SAEP [15], or PSS-E [17]. These methods rest on two main technical con-
tributions.

First, we introduce specialized logics for proving chosen-plaintext and chosen-ciphertext security. Proof
rules have a symbolic flavor and proof search can be automated, yet one can extract concrete security
bounds from valid derivations. This is achieved through a novel combination of symbolic and computational
methods; for instance, the logics use symbolic deducibility relations for computing bounds of the probability
of events, and for checking the existence of reductions to computational assumptions.

Second, we propose fully automated methods for finding attacks against chosen-plaintext and chosen-

3

ciphertext security. Our methods are inspired by static equivalence [1], and exploit algebraic properties of
trapdoor permutations to find attacks against realizations of schemes that are consistent with computa-
tional assumptions.

We demonstrate the strengths of our methods by implementing a toolset, called ZooCrypt, and by
evaluating it extensively. The toolset can be used either in batch mode or in interactive mode:

• The batch mode allows to take a census of padding-based encryption schemes. We used it to build
a database of more than one million entries. The database records for each scheme and set of
assumptions, either an adversary that breaks the security of the scheme or a formal derivation that
proves its security.

• The interactive mode allows to build proofs or attacks for a selected scheme, and forms the backbone
of a cryptographic tutor. The tutor guides users in building security proofs or exhibiting attacks for
a scheme chosen by the user or selected from the database. In proof mode, the tutor provides the
user with the set of applicable rules at each step of the derivation; upon completion of the derivation,
the tutor outputs alternative derivations that deliver better bounds.

We stress that we focus on padding-based encryption primarily for illustrative purposes. Padding-based
schemes include many practically relevant constructions, and provide an excellent testbed to evaluate the
effectiveness of our methods and illustrate their working. However, our methods are applicable to other
settings; see § 8 for a discussion.

Contents § 2 provides background on public-key encryption schemes and their security; § 3 introduces
symbolic tools that are the base of our analyses; § 4 describes logics for chosen-plaintext and chosen-
ciphertext security, while § 5 covers attack finding techniques; § 6 reports on the implementation of ZooCrypt
and on its evaluation. We conclude with a survey of related work and directions for future work.

Supplemental material, including the source code of the toolset, a web interface for browsing results,
and a preliminary version of a proof tutor, is available at

http://zoocrypt.no-ip.org/

2 Cryptographic Background

This section provides some background on padding-based public-key encryption schemes and their security.

2.1 Padding-Based Public-Key Encryption

A public-key encryption scheme is a triple of probabilistic algorithms (KG, E ,D):

Key Generation The key generation algorithm KG outputs a pair of keys (pk, sk); pk is a public-key
used for encryption, sk is a secret-key used for decryption;

Encryption Given a public-key pk and a message m, Epk(m) outputs a ciphertext c;

Decryption Given a secret-key sk and a ciphertext c, Dsk(c) outputs either message m or a distinguished
value ⊥ denoting failure.

4

http://zoocrypt.no-ip.org/

We require that for pairs of keys (pk, sk) generated by KG, Dsk(Epk(m)) = m holds for any message m.
We study public-key encryption schemes built from trapdoor permutations, hash functions and basic

bitstring operations, such as bitwise exclusive-or (⊕), concatenation (‖) and projection. We let {0, 1}n

denote the set of bitstrings of length n and [x]!n the bitstring obtained from x by dropping its n most
significant bits and taking the ! most significant bits of the result.

Trapdoor permutations are functions that are easy to evaluate, but hard to invert without knowing a
secret trapdoor. Formally, a family of trapdoor permutations on {0, 1}n is a triple of algorithms (KG, f, f−1)
such that for any pair of keys (pk, sk) output by KG, fpk and f−1

sk are permutations on {0, 1}n and inverse
of each other. The security of a family of trapdoor permutations is measured by the probability that an
adversary (partially) inverts f on a random input.

Definition 1 (One-Way Trapdoor Permutation). Let Θ = (KG, f, f−1) be a family of trapdoor permuta-
tions on {0, 1}n and let k, ! be such that k + ! ≤ n. The probability of an algorithm I in q-inverting Θ on
bits [k + 1 . . . k + !] is

Succs-pd-OW
Θ (k, !, q, I) def

= Pr
[

OW!
k : [s]!k ∈ S ∧ |S| ≤ q

]

where OW!
k is the experiment:

(pk, sk)← KG; s $← {0, 1}n; S ← I(fpk(s), pk)

This definition generalizes the set partial-domain one-wayness problem of Fujisaki et al. [21], which

corresponds to the case k = 0. We define Succs-pd-OW
Θ (k, !, q, t) as the maximal success probability over all

inverters executing in time t, and omit the first parameter when it is 0. When k = 0, ! = n, and q = 1,
the experiment corresponds to the standard one-wayness problem, and we note this quantity SuccOW

Θ (t).

2.2 Security of Padding-Based Encryption Schemes

We consider two security notions for public-key encryption: chosen-plaintext security, or IND-CPA, and
adaptive chosen-ciphertext security, or IND-CCA. Both can be described succinctly using the following
experiment, or game, in which an adversary A represented as a pair of procedures (A1,A2) interacts with
a challenger:

(pk, sk)← KG;

(m0,m1,σ)← A
"H
1 (pk);

b $← {0, 1};
c# ← Epk(mb);

b̄← A
"H
2 (c#,σ)

The challenger first generates a fresh pair of keys (pk, sk) and gives the public key pk to the adversary,
which returns a pair of messages (m0,m1) of its choice. The challenger then samples uniformly a bit b,
encrypts the message mb and gives the resulting ciphertext c# (the challenge) to the adversary. Finally, the
adversary outputs a guess b̄ for b. Note that A1 and A2 can communicate with each other through σ and
have oracle access to all hash functions #H used in the scheme. We call this basic experiment CPA; we define
the experiment CCA similarly, except that the adversary A is given access to a decryption oracle Dsk(·),
with the proviso that A2 cannot ask for the decryption of the challenge ciphertext c#. In the remainder,
we note LH the list of queries that the adversary makes to a hash oracle H in either experiment, and LD

the list of decryption queries that A2 makes during the second phase of the CCA experiment.
Security is measured by the advantage of an adversary playing against a CPA or CCA challenger.

5

Definition 2 (Adversary Advantage). The advantage of A against the CPA and CCA security of an
encryption scheme Π = (KG, E ,D) is defined respectively as:

AdvCPA
Π (A) def

= 2Pr
[

CPA : b̄ = b
]

− 1

AdvCCA
Π (A) def

= 2Pr
[

CCA : b̄ = b
]

− 1

We define AdvCPA
Π (t, #q) (resp. AdvCCA

Π (t, #q)) as the maximal advantage over all adversaries A that
execute within time t and make at most qO queries to oracle O.

To define asymptotic security, we consider instead of a single scheme, a family of schemes Πη indexed
by a security parameter η ∈ N. The above probability quantities thus become functions of η. We say
that a scheme is secure if the advantage of any adversary executing in time polynomial in η is a negligible
function ν of η, i.e. ∀c. ∃nc. ∀n > nc. ν(n) < n−c.

A security proof for a padding-based encryption scheme is a reduction showing that any efficient
adversary against the security of the scheme can be turned into an efficient inverter for the underlying
trapdoor permutation. Security proofs are typically in the random oracle model, where hash functions
are modeled as truly random functions. One seemingly artificial property of the random oracle model is
that reductions to computational assumptions are allowed to adaptively choose the responses of oracles
modeling hash functions; this property is called programmability. In contrast, we only consider proofs in
the non-programmable random oracle model, where reductions are only allowed to observe oracle queries
and responses.

For illustrative purposes, we use OAEP [12] as a running example. RSA-OAEP, which instantiates OAEP
with RSA as trapdoor permutation is recommended by several international standards.

Definition 3 (OAEP). Let (KGf , f, f−1) be a family of trapdoor permutations on {0, 1}n, ρ ∈ N, and let

G : {0, 1}k → {0, 1}! H : {0, 1}! → {0, 1}k

be two hash functions such that n = k+! and ρ < !. OAEP is composed of the following triple of algorithms:

KG def
= (pk, sk)← KGf ; return (pk, sk)

Epk(m) def
= r $← {0, 1}k; s← G(r)⊕ (m‖0ρ); t← H(s)⊕ r; return fpk(s‖ t)

Dsk(c)
def
= s‖ t← f−1

sk (c); r ← t⊕H(s); m← s⊕G(r); if [m]ρ!−ρ= 0ρ then return [m]!−ρ
0 else return⊥

Additionaly, we use PSS-E, a variant of OAEP introduced by Coron et al. [17], as a running example
throughout the paper.

Definition 4 (PSS-E). Let (KGf , f, f−1) be a family of trapdoor permutations on {0, 1}k, k0 ∈ N, and let

G : {0, 1}k1 → {0, 1}k−k1 H : {0, 1}k−k1 → {0, 1}k1

be two hash functions such that k1 < k. PSS-E is composed of the following triple of algorithms:

KG def
= (pk, sk)← KGf ; return (pk, sk)

Epk(m) def
= r $← {0, 1}k0 ; s← H(m‖r); t← G(s)⊕ (m‖r); return fpk(s‖ t)

Dsk(c)
def
= s‖ t← f−1

sk (c); x← t⊕G(s); if s = H(x) then return [x]k−k1−k0
0 else return⊥

6

3 Symbolic Tools

We introduce algebraic expressions to model padding-based encryption schemes, and symbolic notions to
model the knowledge that either an adversary or an honest user can derive from an expression.

3.1 Syntax and Semantics of Expressions

Expressions are built from a set R of random bitstrings and a set X of variables, using bitstring operations,
hash functions drawn from a set H, and trapdoor permutations drawn from a set F . The grammar of
expressions is

e ::= x variable
| r uniformly random bitstring
| 0n all-zero bitstring of length n
| f(e) permutation
| f−1(e) inverse permutation
| H(e) hash function
| e⊕ e exclusive-or
| e‖e concatenation
| [e]!n drop n bits then take ! bits

where x ∈ X , r ∈ R, n, ! ∈ S, f ∈ F , and H ∈ H. To avoid unnecessary parentheses, we let ⊕ take
precedence over concatenation. For instance, the encryption algorithm of OAEP may be represented as the
expression:

f(G(r)⊕ (m‖0)‖H(G(r)⊕ (m‖0))⊕ r).

Expressions are typed using a size-based type system. A type ! ∈ S is either a size variable or the sum
k + n of two types. We note |e| the type of an expression e, which intuitively represents the length of the
bitstring it denotes. For instance, the type of e1 ‖ e2 is |e1| + |e2| and e1 ⊕ e2 is well-typed iff |e1| = |e2|.
In an asymptotic setting, we interpret size variables as functions that grow polynomially with the security
parameter.

We letR(e), X (e), F(e) andH(e) denote, respectively, the sets of random bitstrings, variables, trapdoor
permutation, and hash function symbols occurring in an expression e. We note e {#e1/#e0} the simultaneous
substitution of #e0 by #e1 in e and STH(e) the set of sub-expressions of e that are of the form H(e′). Abusing
notation, we write e.g. R(e1, e2) instead of R(e1) ∪R(e2).

Given values for size variables in |e| and trapdoor permutations with adequate domains, we interpret a
well-typed expression e as a probabilistic algorithm !e" that calls oracles in H(e) and takes as parameters
values for variables in X (e). The algorithm is implicitly parametrized by public and secret keys (if required)
of the trapdoor permutations that occur in e. See Appendix A.1 for a formal definition.

3.2 Equality and Deducibility

We model algebraic properties of bitstrings using the equational theory =E , defined as the smallest con-
gruence relation on well-typed expressions that contains all instances of the axioms of Figure 1. The
relation =E is sound [10] for all trapdoor permutations and valid key pairs. This means that for all closed
expressions s and t, s =E t implies that !s" and !t" return the same value when shared random bitstrings
are jointly sampled; formally,

Pr
[

y ← !s‖ t" : [y]|s|0 = [y]|t||s|

]

= 1.

7

(e1 ⊕ e2)⊕ e3 = e1 ⊕ (e2 ⊕ e3) e1 ⊕ e2 = e2 ⊕ e1 e⊕ 0|e| = e e⊕ e = 0|e|

[0n]k! = 0k (e1 ‖e2)‖e3 = e1 ‖(e2 ‖e3) [e1 ‖e2]
|e1|
0 = e1 [e1 ‖e2]!|e1| = [e2]!0

[e1 ⊕ e2]!n = [e1]!n ⊕ [e2]!n [e]|e|0 = e [[e]!n]
!′
n′ = [e]!

′

n+n′ [e]!n ‖ [e]
!′
n+! = [e]!+!′

n

f(f−1(e)) = e f−1(f(e)) = e

Figure 1: Equational theory for algebraic expressions

We use the standard notion of deducibility from symbolic cryptography to reason about adversarial
knowledge. Informally, an expression e′ is deducible from e if there exists an efficient algorithm that
computes e′ from e. We use contexts to describe such algorithms symbolically. A context is an expression
with a distinguished variable ∗. The application C[e] of a context C to an expression e is defined by
substitution.

Definition 5 (Deducibility). An expression e′ is deducible from another expression e, written e . e′, if
there is a context C such that

1. R(C) = ∅, X (C) ⊆ {∗};

2. f−1 does not occur in C, and

3. C[e] =E e′.

We define .# analogously, but dropping restriction 2.

In Appendix A.1 we prove that . is sound in the following sense: e . e′ implies that there is an efficient
algorithm that computes e′ from e and the public keys of the trapdoor permutations in e and e′. For .#

we obtain an identical result, except that the corresponding algorithm can also use the secret keys of the
trapdoor permutations. Note that we do not require .-completeness, also known as 1.-soundness [10], since
we never use the deducibility relation to conclude that an expression is not computable from another.

3.3 Inequality and Static Distinguishability

Static equivalence [1] models symbolic indistinguishability of expressions. Informally, two expressions e0
and e1 are statically equivalent if all tests of the form C[·] =E C ′[·] succeed for e0 if and only if they succeed
for e1. Since the completeness of =E with respect to the computational interpretation of expressions is an
open question, we use a relation inspired by static equivalence to model distinguishability of expressions.
We call this relation static distinguishability, and define it in terms of an apartness relation ' in place of
1=E . The soundness of this relation implies that if s ' t holds, then the probability that the results of !s"
and !t" coincide when shared random bitstrings are jointly sampled is negligible. For a given set of axioms
Γ, the relation ' is inductively defined by the rules given in Figure 2.

We use axioms of the form
Γ ⊆ {s ' t | s, t ∈ {0} ∪ X}

to model assumptions about inequalities of variables. For example, Γ can formalize that all considered
variables are pairwise distinct and distinct from 0.

8

s ' t ∈ Γ

s ' t
[Ax]

C[s] ' C[t]

s ' t
[Ctx]

r /∈ R(s)

r ' s
[Rnd]

s ' u t =E u

s ' t
[EqE]

e ' e1 · · · e ' ek H /∈ H(s)

H(e) ' (⊕k
i=1H(ei))⊕ s

[Hash]

Figure 2: Proof rules for apartness '

Definition 6 (Static Distinguishability). The relation 1≈ is the smallest symmetric relation on well-typed
expressions such that e0 1≈ e1 iff there are contexts C and C ′ such that

1. R(C,C ′) = ∅, X (C) ⊆ {∗};

2. f−1 does not occur in C,C ′, and

3. C[e0] =E C ′[e0] and C[e1] ' C ′[e1].

We use static distinguishability to find attacks on encryption schemes. For the attacks to be meaningful,
we rely on the soundness of 1≈, which follows from the soundness of =E and '. Informally, if e0 1≈ e1
holds, then there is an efficient algorithm distinguish that when given as input the public keys of trapdoor
permutations and a value computed using !e0" returns 0, but when given instead a value computed using
!e1" returns 1, except with negligible probability.

As an example, the expressions e0 = f(r)‖(r⊕0) and e1 = f(r)‖(r1⊕ r2) are statically distinguishable,
because for the contexts

C = [∗]|f(r)|0 and C ′ = f
(

[∗]|r||f(r)|

)

it holds that C[e0] =E C ′[e0] and C[e1] ' C ′[e1]. A simple distinguisher algorithm applies the algorithms
corresponding to C and C ′ to its input and returns 0 if this yields equal bitstrings and 1 otherwise.

4 Proof Systems

This section introduces logics for proving chosen-plaintext and chosen-ciphertext security of padding-based
encryption schemes by reduction to computational assumptions on the underlying trapdoor permutations.
For the sake of readability, our presentation separates the derivation of valid judgments (§ 4.1 and § 4.2)
from the computation of concrete security bounds from valid derivations (§ 4.3). The soundness of the
logics is stated in § 4.4 and proven in the Appendix.

4.1 Chosen-Plaintext Security

Judgments predicate over the probability of an event φ in the CPA experiment where the challenge cipher-
text is computed using !c#", which we denote CPA(c#). Events are drawn from the grammar

φ ::= Guess | Ask(H, e) | φ ∧ φ

where Guess corresponds to the adversary correctly guessing the hidden bit b, and Ask(H, e) corresponds
to the adversary asking the query H(e).

9

!p̂ c! : φ r /∈ R(e)

!p̂ c! {e⊕ r/r} : φ {e⊕ r/r}
[Opt]

!p̂ c! : φ

!p̂ c! {f(r)/r} : φ {f(r)/r}
[Perm]

!p̂ c!2 : φ2 c!1 =E c!2 φ1 =⇒E φ2

!p̂ c!1 : φ1
[Sub]

!p̂ c! {r1 ‖r2/r} : φ {r1 ‖r2/r} r1, r2 /∈ R(c!,φ) r1 1= r2

!p̂ c! : φ
[Split]

!p̂ c! : φ r1, r2 /∈ R(c!,φ) r1 1= r2

!p̂ c! {r1 ‖r2/r} : φ {r1 ‖r2/r}
[Merge]

!p̂ c! : φ !0 c! : Ask(H, e) r /∈ R(e) H /∈ H(c!,φ, e)

!p̂ c! {H(e)/r} : φ {H(e)/r}
[Fail1]

!p̂ c! : φ !0 c! {H(e)/r} : φ {H(e)/r} ∧ Ask(H, e) r /∈ R(e) H /∈ H(c!,φ, e)

!p̂ c! {H(e)/r} : φ {H(e)/r}
[Fail2]

X (c!) = ∅

!1/2 c
! : Guess

[Ind]
#e ‖R(c!)‖m .! r r /∈ R(c!)

!0 c! : Ask(H1, e1) ∧ · · · ∧ Ask(Hn, en)
[Rnd(|r|, #H)]

#e ‖r2 ‖m . [r1]"k f(r1)‖r2 ‖m . c! r1 1= r2 (f, k, !) ∈ Γ

!0 c! : Ask(H1, e1) ∧ · · · ∧ Ask(Hn, en)
[OW"

k(f, #H)]

Figure 3: Proof rules of the CPA logic (=⇒E denotes implication in first-order logic with respect to =E)

Judgments are of the form !p̂ c# : φ, where c# is a well-typed expression with X (c#) ⊆ {m}, φ is an
event, and p̂ ∈ {0, 1/2} is a probability tag1. The CPA logic is designed to ensure that if !p̂ c# : φ is
derivable, then the probability of φ in the experiment CPA(c#) is upper bounded by p̂ plus a negligible
term. In particular, if !1/2 c# : Guess is derivable, then any scheme Π with encryption algorithm !c#" is
asymptotically secure against chosen-plaintext attacks.

Derivability in the logic is parametrized by a set Γ of computational assumptions of the form (f, k, !),
where f ∈ F and k, ! ∈ S. Such assumptions state that it is hard to compute [r]!k from f(r). There is no
restriction on Γ: it may contain assumptions for several permutations, and multiple assumptions for any
given permutation.

Figure 3 presents the rules of the proof system. Note that the terminal rules [Rnd] and [OW] are
decorated with information that is needed to compute concrete bounds (§ 4.3). We only allow to apply a
rule if all instances of expressions are well-typed; this implies that for any valid derivation ∇ there exists
a common typing environment for all rule applications.

The rules [Opt], [Perm], [Merge], and [Split] correspond to bridging steps in proofs and allow reformu-
lating judgments into equivalent forms. The rule [Opt] corresponds to optimistic sampling, which allows
substituting e ⊕ r by r provided that r /∈ R(e). The rule [Perm] replaces all occurrences of f(r) by r.
The rule [Merge] replaces the concatenation of two random bitstrings r1 and r2 with a fresh random bit-
string r. The rule [Split] performs the opposite transformation; it replaces a random bitstring r with the
concatenation of two fresh random bitstrings r1 and r2.

Rule [Sub] can be used to weaken the event and replace expressions in judgments with equivalent
expressions. This rule is often needed to prepare the ground for the application of another rule: e.g. rule

1Probability tags increase the readability of rules and support a more uniform interpretation of judgments. However, they
are superfluous and can be deduced from the shape of the event: for every valid judgment !p̂ c! : φ, the probability tag p̂ is
1/2 iff φ = Guess.

10

[Opt] can be applied to a judgment that contains H(r) to obtain H(e ⊕ r) by first using [Sub] to replace
H(r) by H(e⊕ (e⊕ r)).

The rules [Fail1] and [Fail2], for equivalence up to failure, correspond to specialized forms of Shoup’s
Fundamental Lemma [31] and create two branches in a derivation. These rules can be used to substitute
an expression H(e) by a random bitstring r, incurring a probability loss in the reduction corresponding to
the probability of the CPA adversary asking the query H(e). One can choose to analyze this probability
either after (as in rule [Fail1]) or before applying the substitution (as in rule [Fail2]).

Finally, the rules [Ind], [Rnd], and [OW] are terminal and provide a means of directly bounding the
probability of an event. The first two rules are information-theoretic, whereas the third formalizes a
reduction to a computational assumption. The rule [Ind] closes a branch when the challenge ciphertext no
longer depends on a plaintext variable; in terms of the CPA experiment, this means that the challenge is
independent from the hidden bit b, and hence the probability that an adversary guesses it is exactly 1/2.
The rule [Rnd] closes a branch in the case when the adversary must make a number of oracle queries that
would require guessing random values that are independent from its view. The rule [OW] closes a branch
when it is possible to find a reduction to the problem of partially inverting a trapdoor permutation: this
is the case when the image of a random element (the challenge of an inverter) can be embedded in the
challenge ciphertext of the CPA experiment in such a way that its (partial) pre-image can be computed
from the oracle queries made by the CPA adversary. To apply this rule, r1 is usually obtained by searching
for applications of f in c# and r2 is set to the concatenation of all random bitstrings in R(c#) \ {r1}.
Additionally, one must check that the assumption (f, k, !) is an assumption in Γ.

4.2 Chosen-Ciphertext Security

Judgments are of the form !p̂ (c#, D) : φ, where p̂ is a probability tag, c# is an expression, D is a decryption
oracle, and φ is an event. The challenge ciphertext c# and the tag p̂ can take the same values as in the
CPA logic, whereas the decryption oracle is drawn from the following grammar

F ::= find x in LH , F | 5
T ::= e = e′ | Ask(H, e) | T ∧ T
D ::= F : T " e

We assume that D does not contain random bitstrings and that all variables in expressions in D are bound
by find, except for a distinguished parameter c denoting the ciphertext queried to the oracle. The above
grammar is sufficiently expressive to encode decryption algorithms of padding-based schemes, as well as
plaintext-simulators used in reductions.2

Informally, given as input a ciphertext c, an algorithm find #x in L "H : T " e searches among the queries

made by an adversary to oracles #H for values #v satisfying T . If such values are found, it returns the value
of e {#v/#x}; otherwise, it returns ⊥. Conditions in T are interpreted as equality checks on bitstrings and
membership tests in the lists of oracle queries made by the adversary. We write T " e instead of 5 : T " e
and note !D" the interpretation of D as an algorithm.

Events of the logic are as in the CPA logic or of the form ∃x ∈ LD. T . Events Guess and Ask(H, e) are
defined as in the CPA logic but for the CCA experiment. For ∃x ∈ LD. T , the quantified variable ranges

2A plaintext-simulator is an algorithm that extracts the plaintext from a ciphertext by reconstructing it from oracle queries
made by an adversary, without using the trapdoor to the underlying permutation; a plaintext-simulator that does not query
any hash oracle is called a plaintext-extractor.

11

!p̂ c! : φ ST f−1(T, t) = ∅

!p̂ (c!, F : T " t) : φ
[Pub(F, T, t)]

!p̂ (c!, find x in LH , F : T ∧ x = e" t) : φ

!p̂ (c!, F : T {e/x} ∧ Ask(H, e)" t {e/x}) : φ
[Find]

!p̂ (c!2, F : T2 " t2) : φ2 c!1 =E c!2 φ1 =⇒E φ2 T1 ⇐⇒E T2 t1 =E t2

!p̂ (c!1, F : T1 " t1) : φ1
[Conv]

!0 (c!, D) : ∃c ∈ LD. c = c!
[False]

STH(c!) = {H(e!)} STH(T, t) = {H(e)}
!p̂ (c!, T ∧ Ask(H, e)" t) : φ !0 (c!, T ∧ Ask(H, e)" t) : ∃c ∈ LD. T ∧ e! = e ! neglr(T {r/H(e)})

!p̂ (c!, T " t) : φ
[Bad]

! neglr(Ti)

! neglr(T1 ∧ T2)
[PAndi]

c‖e .! [r]"k r 1∈ R(e′)

! neglr(e = e′)
[PEqs(!)]

c‖e .! [r]"k
! neglr(Ask(H, e))

[PRnd(!, H)]

r /∈ R(c!, e)

!0 c! : e = r
[Eqs(|r|)]

#e ‖R(c!)‖m .! r r /∈ R(c!)

!0 c! : ∃c ∈ LD. Ask(H1, e1) ∧ · · · ∧ Ask(Hn, en)
[Rnd(|r|, #H)]

#e ‖r2 ‖m . [r1]"k f(r1)‖r2 ‖m . c! r1 1= r2 (f, k, !) ∈ Γ

!0 c! : ∃c ∈ LD. Ask(H1, e1) ∧ · · · ∧ Ask(Hn, en)
[OW"

k(f, #H)]

Figure 4: Proof rules for CCA judgments, proof rules for tests, and extended rules for the CPA logic

over the ciphertexts queried to the decryption oracle during the second phase of the CCA experiment; tests
are interpreted as described above.

A judgment !p̂ (c#, D) : φ predicates over the probability of φ in the CCA experiment where the
challenge ciphertext is computed using !c#", and decryption queries are answered by !D"; we note this
experiment CCA(c#, D). The judgment states that the probability of φ in this experiment is upper bounded
by p̂ plus a negligible term.

Figure 4 presents the rules of the logic. The rule [Bad] allows to transform the decryption oracle so that
it rejects ciphertexts whose decryption requires to make oracle queries that have not yet been made by the
adversary. The resulting decryption oracle no longer makes new queries to the given oracle H. It suffices
to consider two events that can lead the adversary to distinguish between the original and transformed
oracles: 1. when the adversary makes a decryption query c such that T succeeds after making a query
H(e) that is also needed to compute the challenge ciphertext; 2. when the test T succeeds, even though it
gets a random answer from H. The probability of this last event can be proven negligible using the rules
[PAnd], [PEqs], and [PRnd] in Figure 4.

The rule [False] captures the fact that the adversary cannot ask for the decryption of c# during the
second phase of the CCA experiment; the probability of this happening is 0. Rule [Conv] allows switching
between observationally equivalent decryption oracles and weakening the event considered. This rule is
usually used to transform a test that requires f−1 into an equivalent test that only requires f, so that [Pub]
becomes applicable.

The rule [Find] allows replacing an oracle that computes a value explicitly by one that searches for it
among oracle queries made by the adversary.

12

Santiago

B(tA,"q)(∇) =

B(∇1) + B(∇2) if L∇ = [Fail1,2]
B(∇1) + B(∇2) + qD B(∇3) if L∇ = [Bad]
B(tS ,"q S)(∇1) if L∇ = [Pub(F, T, u)]
1/2 if L∇ = [Ind]
0 if L∇ = [False]

q "H × 2−! if L∇ = [Rnd(!, #H)]
qH × 2−! if L∇ = [PRnd(!, H)]
2−! if L∇ = [Eqs(!)]
2−! if L∇ = [PEqs(!)]

Succs-pd-OW
Θf

(k, !, q "H , tI) if L∇ = [OW!
k(f, #H)]

B(∇1) otherwise

where tI = tA + T (C2) + q "H × T (C1), where C1, C2 are the contexts witnessing the first and second

deducibility conditions in the premise of [OW!
k(f, #H)], q "H =

∏

Hi∈ "H qHi , and

tS = tA + qD × (T(u) + T(T)×
∏

Hj inF

qHj) qSHi
= qHi + qD × (Qi(u) + Qi(T)×

∏

Hj inF

qHj)

Figure 5: Computation of concrete security bounds from logical derivations

The rule [Pub] links the CCA logic with the CPA logic, and captures the intuition that an adversary
does not gain any advantage from getting access to a publicly simulatable decryption oracle. Note that
the judgment in the premise may be of the form !p̂ c# : φ, where φ is an event of the CCA logic. This kind
of judgment is handled by the rule [Eqs] and the generalized rules [Rnd] and [OW] given in Figure 4.

4.3 Concrete Bounds

In this section we show how to extract concrete security bounds from derivations in our logics. Security
bounds p are drawn from the grammar

p ::= ε | 1/2 + ε q ::= 1 | q × q | qH | qD t ::= tA | q | q × tf | t+ t

ε ::= 0 | 2−k | Succs-pd-OW
Θf

(k, !, q, t) | q × ε | ε+ ε

where k, ! ∈ S, H ∈ H, f ∈ F , tf is a worst-case bound for the time required to evaluate f, and tA is the
execution time of A.

Security bounds are computed from a derivation ∇ in the CPA or CCA logic using a function B
parametrized by the computational resources of an adversary, namely, its execution time tA and the
number of oracle queries it can make, #q. The definition of function B is given in Figure 5. In this figure,
we omit resource parameters when they remain unchanged. Moreover, for a derivation ∇ with rule R at
its root, we use L∇ to refer to R’s label and ∇i to refer to the derivation of the i-th premise of R (premises
are enumerated from left to right).

For all bridging rules, the bound is inherited from their single premise. For rules [Fail1] and [Fail2],
the bound is computed as p1 + p2 where p1 is the probability of the original event in the transformed

13

experiment and p2 bounds the probability of failure. Rule [Bad] is similar except that bounds come from
the probability of two different failure events, and one can be triggered in any decryption query.

The case of rule [Pub] represents a reduction from CCA to CPA, where a simulator S uses a CCA

adversary A to win in the CPA experiment. We therefore have to compute bounds for the computational
resources (tS , #q S) used by S in terms of the resources of A and the plaintext-simulator F : T " u. We
first define a function T that computes a bound for the time required to evaluate a test T or an expression
u. Then, tS can be defined as tA + qD × tD where tD is the the time required to evaluate the test T on
each combination of queries traversed by F , plus the time required to evaluate the answer u. Similarly, we
define a function Qi that bounds the number of queries made to Hi during the simulation of the decryption
oracle, and use it to compute qSHi

.
The rules [Ind] and [False], yield exact bounds that can be readily used. The cases of rules [Rnd], and

[PRnd], [Eqs], [PEqs], correspond to the probability of guessing a random bitstring of length ! in q "H , qH ,
or just 1 tries. In the case of rule [OW], the bound is the maximal success probability against set partial-
domain one-wayness over all inverters using the same resources as the reduction we construct. When k = 0
and ! = |f|, we can alternatively use the standard reduction from set one-wayness to one-wayness to obtain
the bound SuccOW

Θf
(tA + q "H + q "H × tf). Here, the adjusted time bound accounts for the fact that the

inverter inspects every combination of queries made to #H, computes a value, applies f to that value and
compares the result to its challenge to find the right pre-image.

4.4 Soundness

Let Π be an encryption scheme with encryption algorithm !c#" and decryption algorithm !D". Assume
that the interpretations of trapdoor permutations satisfy all the assumptions in Γ.

Theorem 7. If ∇ is a derivation of !1/2 c
: Guess under Γ, then

AdvCPA
Π (tA, #q) ≤ 2B(tA,"q)(∇)− 1

Moreover, this bound is negligible if tA and all qH in #q are polynomial in the security parameter, and all
assumptions in Γ hold.

Theorem 8. If ∇ is a derivation of !1/2 (c
#, D) : Guess under Γ, then

AdvCCA
Π (tA, #q) ≤ 2 B(tA,"q)(∇)− 1

Moreover, this bound is negligible if tA, all qH in #q, and qD are polynomial in the security parameter, and
all assumptions in Γ hold.

The proofs of these theorems rest on showing the soundness of each individual rule using game-based
techniques. The proofs appear in the Appendix.

4.5 Examples

In this section we give detailed proofs of security for OAEP and PSS-E in the form of derivations in the
logics presented in the previous section.

14

∇OW :
[Rnd(k,G)]

!0 f(r′ ‖r) : Ask(G, r′′)
[Opt]

!0 f(r′ ‖r) : Ask(G, r′′ ⊕ r)

[OWn
0 (f, (H,G))]

!0 f(r′′) : Ask(H, [r′′]"0) ∧ Ask(G,H([r′′]"0)⊕ [r′′]k") [Merge]
!0 f(r′ ‖r) : Ask(H, r′) ∧ Ask(G,H(r′)⊕ r)

[Fail2]
!0 f(r′ ‖r) : Ask(G,H(r′)⊕ r)

[Opt]
!0 f(r′ ‖H(r′)⊕ r) : Ask(G, r)

∇PDOW :

[Rnd(k,G)]
!0 f(r′ ‖r′′) : Ask(G, r)

[Opt]
!0 f(r′ ‖r′′ ⊕ r) : Ask(G, r)

[OW"
0(f, H)]

!0 f(r) : Ask(H, [r]"0) [Merge]
!0 f(r′ ‖r) : Ask(H, r′)

[Opt]
!0 f(r′ ‖r′′ ⊕ r) : Ask(H, r′)

[Fail1]
!0 f(r′ ‖H(r′)⊕ r) : Ask(G, r)

∇OAEP :
[Ind]

!1/2 f(r
′ ‖H(r′)⊕ r) : Guess

[Opt]
!1/2 f(r

′ ⊕ (m‖0)‖H(r′ ⊕ (m‖0))⊕ r) : Guess

∇
!0 f(r′ ‖H(r′)⊕ r) : Ask(G, r)

[Opt]
!0 f(r′ ⊕ (m‖0)‖H(r′ ⊕ (m‖0))⊕ r) : Ask(G, r)

[Fail1]
!1/2 f((G(r)⊕ (m‖0))‖H(G(r)⊕ (m‖0))⊕ r) : Guess

Figure 6: Derivations for CPA security of OAEP under one-wayness and partial-domain one-wayness

4.5.1 OAEP

We illustrate the use of the CPA logic to prove the chosen-plaintext security of OAEP under one-wayness
(OW) and partial-domain one-wayness (PDOW) assumptions on the underlying trapdoor permutation.
Additionally, we give the concrete security bounds extracted from the corresponding derivations.

The proofs under one-wayness and partial-domain one-wayness share a common part, depicted at the
bottom of Figure 6. This first part proceeds by applying [Fail1] to replace the expression G(r) with a fresh
random bitstring r′. To close the branch corresponding to the Guess event, we apply optimistic sampling,
replacing r′ ⊕ (m ‖ 0) by r′. In the judgment thus obtained, the challenge ciphertext does not depend on
the plaintext, so we conclude by applying [Ind]. We continue with the branch corresponding to the failure
event Ask(G, r) applying optimistic sampling. At this point there are two different ways to proceed, that
yield proofs w.r.t. different hypotheses.

The derivation for PDOW is depicted in the middle of Figure 6. The proof proceeds by applying rule
[Fail1] to replace H(r′) by a fresh random bitstring r′′. The rule [Opt] is then applied in both premises to
replace r′′ ⊕ r by just r. The branch corresponding to the event Ask(G, r) can be closed by applying rule
[Rnd] because the challenge ciphertext does not depend on r anymore. The branch corresponding to the
event Ask(H, r′) is closed by merging the random bitstrings r′ and r as r and then reformulating the event
as Ask(H, [r]!0). At this point, it is clear that querying H on the ! most significant bits of r amounts to
inverting f in its ! most significant bits, so we conclude applying [OW!

0(f, H)].
The derivation for OW is depicted at the top of Figure 6. It proceeds by applying rule [Opt] to move

the expression H(r′) from the challenge expression to the event, that becomes Ask(G,H(r′)⊕ r). We then
apply [Fail2] to replace H(r′) by a fresh random bitstring r′′. Note that this rule performs a substitution
only on one of the branches. The branch corresponding to event Ask(G, r′′⊕ r) is closed using rule [Opt] to
replace r′′ ⊕ r by r′′, so that the event no longer depends on the challenge ciphertext and we can conclude
using rule [Rnd]. Finally, the last branch is closed by merging r′ ‖ r into a fresh random bitstring r′′. We

15

∇Ask :

[OWk1

0 (f, G)]
!0 f(r) : Ask(G, [r]k1

0
)

[Merge]
!0 f(r′′ ‖r′) : Ask(G, r′′)

[Rnd(k0, H)]
!0 f(r′′ ‖r′) : Ask(H,m‖r)

[Fail1]
!0 f(H(m‖r)‖r′) : Ask(G,H(m‖r))

[Opt]
!0 f(H(m‖r)‖r′ ⊕ (m‖r)) : Ask(G,H(m‖r))

∇PSS-E :

[Ind]
!1/2 f(r

′′ ‖r′) : Guess
[Rnd(k0, H)]

!0 f(r′′ ‖r′) : Ask(H,m‖r)
[Fail1]

!1/2 f(H(m‖r)‖r′) : Guess
[Opt]

!1/2 f(H(m‖r)‖r′ ⊕ (m‖r)) : Guess
∇Ask [Opt]

!0 f(H(m‖r)‖r′ ⊕ (m‖r)) : Ask(G,H(m‖r))
[Fail1]

!1/2 f(H(m‖r)‖G(H(m‖r))⊕ (m‖r)) : Guess

Figure 7: A derivation for CPA security of PSS-E

reformulate the event accordingly and obtain

Ask(H, [r′′]!0) ∧ Ask(G,H([r′′]!0)⊕ [r′′]k!).

If the adversary manages to query [r′′]!0 to H and H([r′′]!0) ⊕ [r′′]k! to G, then the pre-image r′′ of the
challenge ciphertext can be computed from LG and LH . Indeed, the ! most significant bits of r′′ are a
query in LH , while the remaining k bits are the exclusive-or of the answer to this query and some query
in LG. Hence, a CPA adversary that triggers this event can be used to fully invert function f, and we can
conclude by applying rule [OW0

n(f, (H,G))].

Concrete security bound. Applying the bound function B(tA,(qG,qH)) to the derivation ∇OAEP,∇PDOW

gives
1/2 + qG × 2−k + Succs-pd-OW

Θ (!, qH , tA + qH).

Applying the bound function B(tA,(qG,qH)) to the derivation ∇OAEP,∇OW gives (after applying the standard
reduction from set one-wayness to one-wayness)

1/2 + qG × 2−k + SuccOW
Θ (tA + qG qH × tf).

4.5.2 PSS-E

We prove the chosen-plaintext security and chosen-ciphertext security of PSS-E by exhibiting derivations
in the CPA and CCA logics. Moreover, we illustrate how to derive concrete security bounds from these
derivations. The encryption algorithm of PSS-E is given by the following expression

f(H(m‖r)‖G(H(m‖r))⊕ (m‖r))

Chosen-plaintext security. The derivation for chosen-plaintext security output by our tool is depicted
in Figure 7. The proof starts by applying the rule [Fail1], replacing the hash G(H(m‖r)) by a fresh random
bitstring r′.

16

In the branch corresponding to the Guess event, we apply optimistic sampling, replacing r′⊕ (m‖r) by
r′, and then [Fail1] again, obtaining two premises. The premise corresponding to the original Guess event is
proved using rule [Ind] since the challenge ciphertext no longer depends on m. The premise corresponding
to the failure event can be discharged using [Rnd] because m‖r .# r and r does not appear in the challenge
ciphertext, meaning that the adversary would have to guess r to trigger failure.

The derivation ∇ of the remaining premise of the first application of rule [Fail1] is obtained using a
similar strategy. We first apply [Opt] followed by [Fail1], resulting in two premises:

• !0 f(r′′ ‖r′) : Ask(G, r′′)

• !0 f(r′′ ‖r′) : Ask(H,m‖r)

To prove the first premise, observe that any adversary that asks r′′ to G, can be used to invert f on its
k1 most significant bits. However, before applying rule OW, we must first apply [Merge] to replace r′′ ‖ r′

by a fresh random variable r, so that the judgment has the appropriate form.
The second premise corresponds to the same situation encountered before, where the adversary must

query m‖r to H to trigger failure, but r does not occur in the challenge ciphertext. We conclude as before
using Rnd.

Concrete security bound. Applying the bound function B(tA,(qG,qH)) to the derivation ∇PSS-E yields

1/2 + 2qH × 2−k0 + Succs-pd-OW
Θ (k1, qG, tA + qG).

Chosen-ciphertext security. The derivation for chosen-ciphertext security output by our tool is de-
picted in Figure 8. For the sake of clarity, we use let notation and pattern matching to avoid explicit
projections and repetition.

Let n = k − k1 − k0. Initially, we have

c# = f(H(m‖r)‖G(H(m‖r))⊕ (m‖r))
D1 = let s‖ t = f−1(c) in let x = G(s)⊕ t in s = H(x)" [x]n0

We are interested in proving the judgment !1/2 (c#, D1) : Guess. We begin by applying rule [Bad] to
strengthen the test in the decryption oracle to check also that Ask(H,x) holds, so as to reject ciphertexts
that would require new queries to H. The corresponding algorithm is

D2 = let s‖ t = f−1(c) in let x = G(s)⊕ t in s = H(x) ∧ Ask(H,x)" [x]n0

Note that an adversary is able to distinguish between D1 and D2 only if it can produce a ciphertext c
that passes the test without querying H(x) in the first place. This is only possible if the adversary either
guesses this hash or learns something about it from the challenge ciphertext. The first case corresponds
to the premise ! neglr′(let s ‖ t = f−1(c) in s = r′) and can be proven using [PEqs(k1)]. The second case
corresponds to the premise

!0 (c
#, D2) : ∃c ∈ LD. let s‖ t = f−1(c) in let x = G(s)⊕ t in s = H(x) ∧ x = m‖r

and is proven using rules [False] and [Conv], because the event is equivalent to ∃c ∈ LD. c = c#.

17

∇φ2
:

[Rnd(k0, H)]
!0 f(r′′ ‖r′1 ‖r

′
2) : φ5 [Split], [Opt]

!0 f(r′′ ‖r′) : φ4
[Rnd(k0, H)]

!0 f(r′′ ‖r′) : Ask(H,m‖r)
[Fail1]

!0 f(H(m‖r)‖r′) : φ4
[Opt], [Conv]

!0 f(H(m‖r)‖r′ ⊕ (m‖r)) : φ3 ∇Ask
[Fail1]

!0 f(H(m‖r)‖G(H(m‖r))⊕ (m‖r)) : φ2∇Guess :

∇PSS-E [Pub]
!1/2 (c

!, D4) : Guess
[Find]

!1/2 (c
!, D3) : Guess

∇φ2 [Pub]
!0 (c!, D4) : φ2

[Find]
!0 (c!, D3) : φ2

[PRnd(k−k1, H)]
! neglr′(let s‖t = f−1(c) in Ask(H, r′⊕t))

[Bad], [PAnd2]
!1/2 (c

!, D2) : Guess

∇CCA
PSS-E :

∇Guess

[Conv], [False]
!0 (c!, D2) : φ1

[PEqs(k1)]
! neglr′(let s‖ t = f−1(c) in s = r′)

[Bad]
!1/2 (c

!, D1) : Guess

φ1
def
= ∃c ∈ LD. let s‖ t = f−1(c) in let x = G(s)⊕ t in s = H(x) ∧ x = m‖r

φ2
def
= ∃c ∈ LD. let s‖ t = f−1(c) in let x = G(s)⊕ t in s = H(x) ∧ Ask(H,x) ∧ s = H(m‖r)

φ3
def
= ∃c ∈ LD. let s‖ t = f−1(c) in let x = r′ ⊕ t in s = H(x) ∧ Ask(H,x) ∧ s = H(m‖r)

φ4
def
= ∃c ∈ LD. let s‖ t = f−1(c) in Ask(H, r′ ⊕ (m‖r)⊕ t)

φ5
def
= ∃c ∈ LD. let s‖ t = f−1(c) in Ask(H, (r′1 ⊕m⊕ [t]n0)‖r)

Figure 8: A derivation for CCA security of PSS-E

To prove the premise corresponding to the original Guess event, we apply rule [Bad] again, but this
time with G(s). We obtain the following decryption oracle

D3 = let s‖ t = f−1(c) in let x = G(s)⊕ t in s = H(x) ∧ Ask(H,x) ∧ Ask(G, s)" [x]n0

The premise
! neglr′(let s‖ t = f−1(c) in let x = r′ ⊕ t in s = H(x) ∧ Ask(H,x))

can be readily discharged using the rules [PAnd2] and [PRnd(k − k1, H)].
To prove the two premises corresponding to CCA judgments, we first apply rules [Find] and [Conv] to

reformulate the decryption oracle as follows:

D4 = find s, x in LG,LH : c = f(s‖G(s)⊕ x) ∧ s = H(x)" [x]n0

Note that this decryption oracle is public, i.e. it does not use f−1 and can be efficiently simulated. Hence,
we can apply rule [Pub] and proceed reasoning in the (extended) CPA logic. The branch corresponding to
the original Guess event can be proven using the same derivation ∇PSS-E in Figure 7 that we used to prove
CPA security.

We have only one outstanding goal,

!0 c
: ∃c ∈ LD. let s‖ t = f−1(c) in let x = G(s)⊕ t in s = H(x) ∧ Ask(H,x) ∧ s = H(m‖r)

To prove it, we first apply [Fail1] to replace G(H(m‖r)) with a fresh random bitstring r′. The derivation
∇Ask that bounds the probability of failure is as in the proof of CPA security in Figure 7. We apply rules

18

[Opt] and [Conv] to simplify the premise corresponding to the original event, obtaining

!0 f(H(m‖r)‖r′) : ∃c ∈ LD. let s‖ t = f−1(c) in Ask(H, r′ ⊕ (m‖r)⊕ t)

We then apply [Fail1] again, this time to replace H(m‖ r) with a fresh random bitstring r′′. The premise
corresponding to the failure event can be readily proved using [Rnd(k0, H)] as in the proof of CPA security.
To prove the remaining premise, observe that to trigger the event Ask(H, r′ ⊕ (m ‖ r) ⊕ t), the adversary
should be able to compute [r′⊕ t]k0n ⊕r, but r is now independent of the challenge ciphertext. We formalize
this reasoning by first splitting r′ and then applying rule [Opt] to replace [r′ ⊕ t]k0n ⊕ r by simply r. We
conclude applying rule [Exists] and [Rnd(k0, H)].

Concrete security bound. The concrete security bound B(tA,(qG,qH ,qD))(∇
CCA
PSS-E) obtained from this

proof is
B(tS ,(qG,qH ,qD))(∇PSS-E) + B(tS ,(qG,qH ,qD))(∇φ2

) + qD × (2−k1 + qH × 2k1−k)

where tS = tA + qD qG qH × tf , and

B(tS ,(qG,qH ,qD))(∇PSS-E) ≈ 1/2 + 2 qH × 2−k0 + Succs-pd-OW
Θ (k1, qG, tA + qD qG qH × tf)

B(tS ,(qG,qH ,qD))(∇φ2
) = 3 qH × 2−k0 + Succs-pd-OW

Θ (k1, qG, tA + qD qG qH × tf)

Observe that tS comes from the two applications of rule [Find] and can be improved to tA + qD qH × tf ,
because to answer a decryption query, the simulator D4 just needs to traverse LH to find a value for x,
the value of s is determined by H(x). The overall bound is, ignoring constant factors,

1/2 + qH × 2−k0 + qD × 2−k1 + qD × qH × 2k1−k + Succs-pd-OW
Θ (k1, qG, tA + qD qH × tf)

In comparison, the bound given by Coron et al. [17] is:

1/2 + qH × 2−k0 + qD × 2−k1 + Succs-pd-OW
Θ (k1, qG + qH , tA + qD qH × tf)

The differences are due to the use of a slightly different reduction, where the hash oracle H is assumed
to issue a query G(s) each time it produces a response s. This assumption would make redundant the
application of rule [Bad] in ∇Guess in our reduction, eliminating the terms coming from ∇φ2

and qD× qH ×
2k1−k. The resulting bound, once adjusting qG for the additional queries issued by H, coincides with that
of Coron et al.

5 Attacks

This section describes our approach for finding attacks against chosen-plaintext and chosen-ciphertext
security of padding-based encryption schemes. Since our logics are incomplete, we use attack finding to
obtain negative results, and additional data points to evaluate schemes for which we cannot obtain proofs.

We distinguish between universal attacks and existential attacks relative to a set of assumptions. An
attack is universal if it works against every possible instantiation of the trapdoor permutations used by a
scheme. An attack is existential if it works for some trapdoor permutation consistent with the assumptions,
i.e. it may rely on specific properties of the employed trapdoor permutation.

19

5.1 Universal Attacks

To find universal attacks against the CPA security of an encryption scheme with encryption algorithm
e, we search for closed expressions m0 and m1 that do not contain symbols of the form f−1 such that
e {m0/m} 1≈ e {m1/m}. By soundness of 1≈, there exists an efficient algorithm distinguish that returns 0 for
input !e {m0/m}" and 1 for input !e {m1/m}" with overwhelming probability. To mount an attack against
CPA security using this algorithm, an adversary chooses plaintexts !m0" and !m1", receives the challenge
ciphertext c#, and returns distinguish(c#). An example of a scheme vulnerable to this attack is a scheme
with encryption algorithm given by

e = f(r)‖(G(r)⊕m)‖H(m)

A CPA adversary can use the distinguisher obtained from the contexts C = [∗]|H(m)|
|r|+|m| and C ′ = H(0|m|) to

tell appart e {0/m} from e {1/m}.
To refute CCA security, we search for malleability attacks using deducibility. Specifically, we search

for closed expressions m0 and ∆ 1= 0|m| such that e {m0/m} . e {m0 ⊕∆/m}; let C be the context
witnessing the deducibility. This would imply an effective attack against CCA security: choose plaintexts
m0 and m1 1= m0 and obtain the challenge c#; then query the decryption oracle on !C[c#]", xor the
result with ∆, and return 0 if it equals !m0" and 1 otherwise. An example of a scheme vulnerable to a
universal attack of this form is the Zheng-Seberry cryptosystem [33], whose encryption algorithm is given
by e = f(r)‖(G(r)⊕ (m‖H(m))); take m0 = 0|m| and ∆ = 1|m|.

5.2 Existential Attacks

To find existential attacks against a scheme with encryption algorithm e w.r.t. a set of assumptions Γ, we
find universal attacks against modified versions of it. An example can elucidate better the point.

Consider the encryption algorithm of ZAEP [8], e = f(r‖G(r)⊕m). To show that there is no blackbox
reduction from the CPA security of ZAEP to the assumption (f, 0, |f|), we instantiate f as follows

f(a‖b) = a‖ f2(b) (1)

If f2 is a one-way permutation, the permutation f satisfies the assumption (f, 0, |f|). Using static distin-
guishability, we find an attack on e′ = r‖ f2(G(r)⊕m) given by the contexts

C = [∗]|m|
|r| and C ′ = f2

(

G
(

[∗]|r|0

))

which can be used to distinguish e {0/m} and e {1/m}.
To show that there is no blackbox reduction of the CCA security of ZAEP to an arbitrary Γ, we use the

instantiation
f(a) = f ′

(

[a]|a|−c
0

)
∥

∥

∥
[a]c|a|−c (2)

where c is a size variable that we interpret as a constant. It is easy to see that ciphertexts computed
using this instantiation are malleable. Moreover, assuming f ′ satisfies the assumptions Γ (accounting for
the size reduction by c), this instance of f satisfies Γ. This is because size variables in assumptions grow
polynomially with the security parameter, and leaking a constant fraction of a pre-image cannot be used
to attack any assumption in Γ. In contrast, the ability to compute a ciphertext of a message that differs
in just one bit from the decryption of a given ciphertext results in a chosen-ciphertext attack.

20

In general, to prove that there is no blackbox reduction for a fixed set of one-wayness assumptions Γ,
we must either find a universal attack or instantiations for the trapdoor permutations that yield attacks
and are compatible with all assumptions in Γ. For example, the instantiation (2) above is compatible with
any set of assumptions, while (1) is compatible with all assumptions except those of the form (f, k, !) with
0 < ! and k + ! ≤ |a|. In addition to the aforementioned instantiations, we also use instantiations of the
form

f(a‖b‖c) = f1(a)‖b⊕ a‖c

which allow us to find attacks if f is used in such a way that part of its input is leaked or interdependent.

6 Experimental Validation

We implemented the proof search and attack finding methods described in § 4 and § 5 in a toolset that we
coin ZooCrypt. ZooCrypt can prove the CPA and CCA security of a scheme under different assumptions on
the trapdoor permutations it uses, or find attacks that are consistent with these assumptions.

6.1 Security Analysis

To analyze the security of a scheme with encryption algorithm given by an expression c# under a set of
assumptions Γ, the toolset follows the workflow depicted in Figure 6.1:

1. Checks that c# is well-typed and that encryption is invertible, i.e. c# .# m;

2. Searches for attacks against CPA security;

3. Searches for proofs of CPA security. If a proof is found, computes the corresponding security bound;

4. Searches for malleability attacks against CCA security;

5. If a CPA proof has been found, synthesizes a decryption algorithm D and searches for a proof of CCA
security. If a proof is found, computes the corresponding security bound.

The results of this security analysis are an adversary for each attack found, and derivations for all
security proofs together with the set of assumptions effectively used and the corresponding concrete security
bound. Steps 3 and 5 implement proof search algorithms for the logics. These algorithms try to build a
valid derivation bottom up, by applying rules in a prescribed order. Simple heuristics allow to improve the
efficiency of the search and to ensure termination.

A crucial step in the above workflow is synthesizing a decryption algorithm that reject as many invalid
ciphertexts as possible, with the aim of easing the construction of a plaintext simulator during a CCA

analysis. Indeed, an encryption algorithm typically admits several correct decryption algorithms, because
the consistency condition gives complete freedom of choice as to what should be the result of decrypting
an invalid ciphertext. The tool infers such algorithms using a method inspired by [9, 16] to analyze the
redundancy built into ciphertexts. We exploit the fact that our algorithm for checking static equivalence
computes as a sub-routine non-trivial equations that hold for an expression; when applied to an expression
denoting an encryption algorithm, this sub-routine yields tests for checking the validity of ciphertexts.

21

Well-typed
and invertible?

Search for chosen-plaintext attacks

Attack found?

Search for proof of CPA security

Proof found?

Output CPA bound

Search for malleability attacks

Attack found?

Search for proof of CCA security

Proof found?

CPA secure, CCA undecided

No

Yes

No

No

Yes

Incorrect scheme
No

Output attack
Yes

Not CPA secure

Output attack
Yes CPA if proof found

Not CCA secure

Search for malleability attacks

Attack found? Security undecided
No

Yes

No

Output CCA bound
Yes

CCA secure

Figure 9: Security analysis workflow

6.2 Practical Interpretation for RSA

Concrete security bounds can be used to guide the choice of practical parameters for realizations of en-
cryption schemes based on RSA. In order to validate the quality of the bounds output by our tool, we
implemented a method based on an extrapolation of the estimated cost of factoring the RSA-768 integer
from the RSA Factoring Challenge [24], and on the lattice basis reduction of set partial-domain one-wayness
to one-wayness for RSA [21].

Let tN be the cost of factoring an N -bit RSA modulus: Kleinjung [24] estimates that t768 = 267, whereas
Lenstra [26] suggests to extrapolate based on the ratio

tN
tM
≈

exp((1.9229) log(N)1/3 log(log(N))2/3

exp((1.9229) log(M)1/3 log(log(M))2/3

The success probability of partially inverting RSA on its k most significant bits, SuccOW
RSA(k, q, t) can

be upper bounded by a function of SuccOW
RSA(t

′), where t′ depends on t.

Proposition 9 ([21]). Let Θ be RSA with an !-bit modulus such that ! < 2k. Then,

SuccOW
Θ (t)

(

SuccOW
Θ (k, q, t)− 2!−2k+6

)

≤SuccOW
Θ (2t+ q2!3)

22

Fixing a maximum number of queries to oracles and an admissible advantage p, our tool can estimate
from the security bound obtained from a derivation, the minimum RSA modulus length N such that no
adversary executing within time tA achieves either a CPA or CCA advantage greater than p.

For instance, a reasonable security target might be that no CCA adversary executing within time 2128

and making at most 260 hash queries and 230 decryption queries achieves an advantage of more than 2−20.
From these values, the estimated cost of inverting RSA, and the bound found for the CCA security of OAEP
under the same partial-domain one-wayness assumption as in [21], our tool estimates a minimum modulus
length of 4864 bits, and a ciphertext overhead of around 200 bits.

6.3 Generation of Encryption Schemes

Our tool also implements an algorithm that generates expressions denoting encryption algorithms within
budget constraints specified as the number of concatenation, exclusive-or, hash and trapdoor permutation
constructors.

Candidate encryption schemes are generated following a top-down approach that uses variables to
represent holes in partially specified expressions. Starting from a fully unspecified expression, i.e. just a
variable x, at each iterative step the tool picks a hole and replaces it with either:

• An expression of the form f(x), H(x), x⊕y or x‖y, for fresh variables x and y, if the budget permits;

• A hole-free sub-expression of e or one of 0, m, r; this does not consume the budget.

An incremental type-checker is used at each step to discard partially specified expressions that do not have
any well-typed instance. For example, e⊕ (e‖x) is immediately discarded because e cannot be assigned a
size regardless of any substitution for the hole x.

We trim large parts of the search space by implementing an early pruning strategy in the style of [28].
Concretely, we apply some simple filters during generation. For instance, given an expression e with holes,
we check for the existence of a substitution σ for holes respecting the budget constraints such that eσ .# m,
and that it is not the case that for all such substitutions eσ . m or eσ ‖m . R(e). These filters can be
implemented efficiently using memoization to drastically reduce their computational cost.

6.4 Experiments

We evaluate our tools on encryption schemes generated under different budget constraints. Figure 1
summarizes the results of the automated security analysis of §6.1. In the figure, schemes are classified
in rows by their size, measured by the total number of operators used in the expression denoting their
encryption algorithm.

The reported experiment has been conducted under two classes of assumptions:

1. Γ1 = {(f, 0, |f|) | f ∈ F(c#)}, i.e. assuming that all trapdoor permutations are one-way;

2. Γ2 = {(f, kf , nf) | f ∈ F(c#)} such that 0 ≤ kf and kf + nf ≤ |f| for all f ∈ F(c#), i.e. one arbitrary
one-wayness assumption for each trapdoor permutation;

The columns grouped under OW CPA report the results obtained when analyzing CPA security under Γ1.
Column Proof indicates the number of schemes proved secure, column Attack the number of schemes
for which some attack (existential or universal) was found, and column Undec. the number of schemes
for which security could not be decided. Similarly, the columns grouped under CPA and CCA report the

23

Size Total
OW CPA (% of Total) CPA (% of Total) CCA (% of CPA Proof + CPA Undec.)

Proof Attack Undec. Proof Attack Undec. Proof Attack NR Undec.

4 2
1 1 0 2 0 0 0 2 0 0

(50.00%) (50.00%) (0.00%) (100.00%) (0.00%) (0.00%) (0.00%) (100.00%) (0.00%) (0.00%)

5 44
8 36 0 12 32 0 0 13 0 0

(18.18%) (81.82%) (0.00%) (27.27%) (72.73%) (0.00%) (0.00%) (100.00%) (0.00%) (0.00%)

6 335
65 270 0 93 241 1 1 96 5 0

(19.40%) (80.60%) (0.00%) (27.76%) (71.94%) (0.30%) (0.98%) (94.12%) (4.90%) (0.00%)

7 3263
510 2735 18 750 2475 38 45 739 45 62

(15.63%) (83.82%) (0.55%) (22.98%) (75.85%) (1.16%) (5.05%) (82.94%) (5.05%) (6.96%)

8 32671
4430 27894 347 6718 25336 617 536 6531 306 1192

(13.56%) (85.38%) (1.06%) (20.56%) (77.55%) (1.89%) (6.26%) (76.25%) (3.57%) (13.92%)

9 350111
43556 301679 4876 66775 274813 8523 7279 62356 3035 16496

(12.44%) (86.17%) (1.39%) (19.07%) (78.49%) (2.43%) (8.16%) (69.93%) (3.40%) (18.50%)

10 644563
67863 569314 7386 133476 491189 19898 20140 112993 12794 32397

(10.53%) (88.33%) (1.15%) (20.71%) (76.20%) (3.09%) (11.29%) (63.36%) (7.17%) (18.17%)

Total 1030989
116433 901929 12627 207826 794086 29077 28001 182730 16185 50147

(11.29%) (87.48%) (1.22%) (20.16%) (77.02%) (2.82%) (10.11%) (65.95%) (5.84%) (18.10%)

Table 1: Evaluation of the tool on generated encryption schemes

results when analyzing CPA and CCA security under all assumptions of the form Γ2. In this case, column
Proof indicates the number of schemes proved secure under some assumption of the form Γ2, column
Attack the number of schemes for which an attack was found for all assumptions of the form Γ2, and
column Undec. the number of schemes for which security could not be decided. The attack and proof
search algorithms are extremely efficient, e.g. proof search for schemes of size 7 takes on average 0.1ms for
CPA and 0.5ms for CCA on a modern workstation

Observe that the figures in the first two groups suggest the separation between one-wayness and partial-
domain one-wayness: the stronger the assumption, the more schemes can be proven secure and the less
attacks can be found.

Finally, column NR in the CCA group counts the number of schemes that are CPA secure but non-
redundant, meaning that all ciphertexts are valid. Non-redundant schemes can be CCA secure [7, 25], but
their proofs require random oracle programmability, which is out of the scope of our logics.

Validation We also evaluated our automated proof search and attack finding algorithms on a number
of schemes from the literature, including the over one hundred variants of OAEP and SAEP surveyed by
Komano and Ohta [25]. In all cases, our results are consistent with published results, and in most we
are able to prove security under exactly the same assumptions and obtain the same security bounds. As
evidence of the effectiveness of our methodology, we observe that our analyses decide the CPA security of
all 72 variants of OAEP in the taxonomy of [25]. The results for CCA security are more nuanced: for about
20% of schemes, we fail to find proofs or attacks when they exist.

For CPA security our methods seem to achieve empirical completeness, which suggests that completeness
may be provable for some class of schemes or for some mild extension. A closer examination of the schemes
on which our CCA analysis is unable to decide security reveals that this is either due to the fact that
our approximation of inequality in rules [Eqs] and [PEqs] is too coarse, or because the schemes are non-
redundant.

Non-redundancy complicates enormously the task of simulating the decryption oracle in CCA reduc-
tions, because a meaningful response must be returned in all cases. Proving CCA security of non-redundant
schemes, requires programming random oracles in order to maintain consistency during simulation, some-
thing that we have intentionally avoided in our proof systems. Extending our proof systems to embody

24

some form of programmability would reduce the number of schemes for which security cannot be decided,
and would be a step towards closing the empirical completeness gap.

7 Related Work

Our work lies at the intersection between symbolic and computational cryptography, and draws on verifi-
cation techniques from both areas. We refer to [14, 18] for a recent account of symbolic verification and
focus on verification tools and methods for the computational model, and cryptographic soundness.

Since its inception [2], cryptographic soundness was extended to many settings [18]. Despite this success,
cryptographic soundness for constructions based on exclusive-or and one-way trapdoor permutations has
remained elusive. Negative results such as [32] show that cryptographic soundness may indeed be very
difficult to achieve for the setting of this paper.

CryptoVerif [13] and EasyCrypt [5] support the construction and verification of cryptographic proofs
in the computational model. Both CryptoVerif and EasyCrypt provide a high level of automation, and
CryptoVerif supports fully automated verification of many cryptographic protocols. In addition, EasyCrypt
has been applied to verify security of several padding-based schemes. However, fully automated proofs of
padding-based schemes are out of reach of these tools. [19] reports on a Hoare-like logic and an automated
tool for proving CPA security of padding-based schemes. The tool can verify the security of several schemes,
such as BR [11] and REACT [27], but fails to verify most other examples. In our view, the limitations of
the approach are inherited from using a Hoare logic, which favors local reasoning. In contrast, we use a
more global approach in which one reasons about the probability of an event in an experiment.

In addition, a number of formalisms have been developed to reason about security of cryptographic
primitives and constructions in the computational model [6, 23]. However, these systems reason about
constructions described in mathematical vernacular, and are thus not readily amenable to automation.
Similar formalisms exist for cryptographic protocols [29], but these are not automated either.

Finally, the batch mode of ZooCrypt is similar in spirit to the AVGI toolkit [28]. The toolkit allows users
to state security requirements, for instance authentication or secrecy, and non-functional requirements such
as message length and available bandwidth. The AVGI toolkit is composed of a protocol generator, that
applies pruning techniques to curb the state space explosion problem, and a protocol screener that applies
symbolic methods to verify whether generated protocols comply with the desired properties.

8 Conclusion

We have defined, implemented and evaluated proof systems to reason about security of public-key encryp-
tion schemes built from trapdoor permutations and hash functions. Our work sets a new methodology
for analyzing cryptographic constructions in the computational model. Preliminary investigations suggest
that our methodology extends well to other settings, and we intend to apply it for building a comprehen-
sive database that includes classical cryptographic constructions such as digital signature schemes, modes
of operation, and message authentication codes. We also plan to build on top of ZooCrypt a complete
online interactive tutor that can generate exercises, help users finding an attack or a security proof, and
check that a given solution is correct. Based on our experience with the interactive mode of ZooCrypt, we
are convinced that, if well-executed, such a tutor could provide a very attractive vector for introducing
students to cryptographic proofs!

We have also started to connect ZooCrypt with EasyCrypt, and implemented a prototype mechanism

25

that translates successful derivations in our logics into EasyCrypt proofs—see the appendix for some more
information. While generation of EasyCrypt proofs provides independent evidence of the soundness of the
logics, our primary interest for this connection is to increase automation in EasyCrypt proofs. We expect
that combining reflection and proof generation will deliver significant benefits for EasyCrypt. Reflection, a
technique widely used in proof assistants would allow us to reify EasyCrypt proof goals into judgments of
our logics that can be proved automatically by our tool; the initial proof goals could then be discharged
replaying the script generated by the proof translation mechanism.

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th ACM
SIGPLAN-SIGACT symposium on Principles of Programming Languages, POPL 2001, pages 104–
115, New York, 2001. ACM.

[2] M. Abadi and P. Rogaway. Reconciling two views of cryptography (The computational soundness of
formal encryption). J. Cryptology, 15(2):103–127, 2002.

[3] G. Bana and H. Comon-Lundh. Towards unconditional soundness: Computationally complete sym-
bolic attacker. In 1st Conference on Principles of Security and Trust – POST 2012, volume 7215 of
Lecture Notes in Computer Science, pages 189–208, Heidelberg, 2012. Springer.

[4] G. Barthe, B. Grégoire, and S. Zanella-Béguelin. Formal certification of code-based cryptographic
proofs. In 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, pages 90–101, New York, 2009. ACM.

[5] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella-Béguelin. Computer-aided security proofs for the
working cryptographer. In Advances in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes
in Computer Science, pages 71–90, Heidelberg, 2011. Springer.

[6] G. Barthe, B. Grégoire, Y. Lakhnech, and S. Zanella-Béguelin. Beyond provable security. Verifiable
IND-CCA security of OAEP. In Topics in Cryptology – CT-RSA 2011, volume 6558 of Lecture Notes
in Computer Science, pages 180–196, Heidelberg, 2011. Springer.

[7] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella-Béguelin. Probabilistic relational reasoning for differen-
tial privacy. In 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, pages 97–110, New York, 2012. ACM.

[8] G. Barthe, D. Pointcheval, and S. Zanella-Béguelin. Verified security of redundancy-free encryption
from Rabin and RSA. In 19th ACM Conference on Computer and Communications Security, CCS
2012, pages 724–735, New York, 2012. ACM.

[9] M. Baudet, V. Cortier, and S. Delaune. Yapa: A generic tool for computing intruder knowledge. In
Rewriting Techniques and Applications, pages 148–163, Heidelberg, 2009. Springer.

[10] M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations of equational theories
against passive adversaries. Inf. Comput., 207(4):496–520, Apr. 2009. ISSN 0890-5401.

26

[11] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols.
In 1st ACM Conference on Computer and Communications Security, CCS 1993, pages 62–73, New
York, 1993. ACM.

[12] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in Cryptology – EURO-
CRYPT 1994, volume 950 of Lecture Notes in Computer Science, pages 92–111, Heidelberg, 1994.
Springer.

[13] B. Blanchet. A computationally sound mechanized prover for security protocols. In 27th IEEE
Symposium on Security and Privacy, S&P 2006, pages 140–154. IEEE Computer Society, 2006.

[14] B. Blanchet. Security protocol verification: Symbolic and computational models. In 1st Interna-
tional Conference on Principles of Security and Trust, POST 2012, volume 7215 of Lecture Notes in
Computer Science, pages 3–29, Heidelberg, 2012. Springer.

[15] D. Boneh. Simplified OAEP for the RSA and Rabin functions. In Advances in Cryptology – CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science, pages 275–291, Heidelberg, 2001. Springer.

[16] Ş. Ciobâcă, S. Delaune, and S. Kremer. Computing knowledge in security protocols under convergent
equational theories. In Automated Deduction–CADE-22, pages 355–370. Springer, Heidelberg, 2009.

[17] J.-S. Coron, M. Joye, D. Naccache, and P. Paillier. Universal padding schemes for RSA. In Advances
in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 226–241,
Heidelberg, 2002. Springer.

[18] V. Cortier, S. Kremer, and B. Warinschi. A survey of symbolic methods in computational analysis of
cryptographic systems. J. Autom. Reasoning, 46(3-4):225–259, 2011.

[19] J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and Y. Lakhnech. Towards automated proofs for
asymmetric encryption schemes in the random oracle model. In 15th ACM Conference on Computer
and Communications Security, CCS 2008, pages 371–380, New York, 2008. ACM.

[20] D. Dolev and A. C.-C. Yao. On the security of public key protocols. In 22nd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 1981, pages 350–357, Heidelberg, 1981. IEEE Computer
Society.

[21] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under the RSA assump-
tion. J. Cryptology, 17(2):81–104, 2004.

[22] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299, 1984.

[23] R. Impagliazzo and B. M. Kapron. Logics for reasoning about cryptographic constructions. J. Comput.
Syst. Sci., 72(2):286–320, 2006.

[24] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos, P. Gaudry, A. Kruppa, P. Montgomery,
D. Osvik, H. te Riele, A. Timofeev, and P. Zimmermann. Factorization of a 768-bit RSA modulus. In
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages
333–350, Heidelberg, 2010. Springer.

[25] Y. Komano and K. Ohta. Taxonomical security consideration of OAEP variants. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci., E89-A(5):1233–1245, 2006.

27

[26] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. J. Cryptology, 14(4):255–293,
2001.

[27] T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for the security of
cryptographic schemes. In 4th International Workshop on Practice and Theory in Public Key Cryp-
tography, PKC 2001, volume 1992 of Lecture Notes in Computer Science, pages 104–118, Heidelberg,
2001. Springer.

[28] A. Perrig and D. Song. Looking for diamonds in the desert – extending automatic protocol generation
to three-party authentication and key agreement protocols. In 13th IEEE Workshop on Computer
Security Foundations, CSFW 2000, pages 64–76, Los Alamitos, 2000. IEEE Computer Society.

[29] A. Roy, A. Datta, A. Derek, and J. C. Mitchell. Inductive trace properties for computational security.
Journal of Computer Security, 18(6):1035–1073, 2010.

[30] V. Shoup. OAEP reconsidered. In Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 239–259, Heidelberg, 2001. Springer.

[31] V. Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint
Archive, Report 2004/332, 2004.

[32] D. Unruh. The impossibility of computationally sound XOR. Cryptology ePrint Archive, Report
2010/389, 2010.

[33] Y. Zheng and J. Seberry. Practical approaches to attaining security against adaptively chosen cipher-
text attacks. In Advances in Cryptology – CRYPTO 1992, volume 740 of Lecture Notes in Computer
Science, pages 292–304, Heidelberg, 1993. Springer.

28

A Definitions and Proofs

In this section we make precise some of the definitions presented informally in the body of the paper, and
sketch proofs of the most important results.

A.1 Algebraic Expressions as Programs

We follow the approach of Barthe et al. [4] and represent algorithms and security experiments as pWhile
programs operating on bitstrings. A program is composed of a main command and a set of procedures
built from the following grammar:

C ::= V ← E deterministic assignment
| V $← {0, 1}! uniform random sampling
| if E then C else C conditional
| while E do C loop
| V ← P(E , . . . , E) procedure call
| C; C sequence
| return E return statement

Programs are strongly-typed; base types denote bitstrings of a fixed length and are of the form {0, 1}!;
booleans are represented as single bits (i.e. bitstrings of length 1). A program denotes a function from
an initial memory, which maps variables to bitstrings of the appropriate length, to a distribution over
final memories; we refer the reader to [4] for a detailed description of the semantics of a more general
probabilistic language. We denote Pr [c : E] the probability of event E w.r.t. the distribution obtained
from running program c in an initial memory mapping variables to default values. We represent events as
boolean expressions. In the remainder, we use foreach statements as syntactic sugar for while loops that
iterate over lists or sets (in some arbitrary order).

We first define an interpretation of algebraic expressions as pWhile programs. Let e be a well-typed
algebraic expression. For each symbol of the form f or f−1 in e denoting a trapdoor permutation over {0, 1}k,
we assume given a probabilistic key generation procedure KGf and deterministic operators fpk, f

−1
sk :

{0, 1}k → {0, 1}k.

Definition 10 (Semantics of algebraic expressions). Let e be a well-typed expression of type !, and y a
pWhile variable of type {0, 1}!. Define the procedure !y # e" as follows:

• For each trapdoor permutation symbol f (resp. f−1) in e, !y# e" takes as parameter a public key pkf
(resp. a secret key skf).

• For each variable x ∈ V(e), !y # e" takes as parameter a variable x of type {0, 1}|x|.

• For each hash function symbol H ∈ H(e) of domain type k and codomain type !, !y # e" is parame-
terized by a procedure H of type {0, 1}k → {0, 1}!.

• For each ri ∈ R(e), let ri be a fresh variable of type {0, 1}|ri|. Define inductively the program

29

!y # e" "H(#pk, #sk, #x) as follows:

!y # x" def
= y ← x

!y # ri" def
= y ← ri

!y # 0n" def
= y ← 0n

!y # f(e)" def
= !y′ # e"; y ← fpkf (y

′)

!y # f−1(e)" def
= !y′ # e"; y ← f−1

skf
(y′)

!y #H(e)" def
= !y′ # e"; y ← H(y′)

!y # e1 ⊕ e2" def
= !y1 # e1"; !y2 # e2"; y ← y1 ⊕ y2

!y # e1 ‖e2" def
= !y1 # e1"; !y2 # e2"; y ← y1 ‖y2

!y # [e]!n" def
= !y′ # e"; y ← [y′]!n

where y′, y1 and y2 are fresh variables.

Finally, define

!e" "H(#pk, #sk, #x) def
= foreach ri ∈ R(e) do ri $← {0, 1}|ri| end; !y # e" "H(#pk, #sk, #x); return y

Our proofs are in the random oracle model; we represent hash functions as pWhile procedures imple-
mented in two equivalent ways: either as lazy or as eager oracles. A lazy implementation of a random
oracle H : {0, 1}k → {0, 1}! is a stateful procedure that answers queries by sampling answers uniformly on
demand and maintaining a map H of previous queries and answers:

Procedure H(x) def
=

if x /∈ dom(H) then H[x] $← {0, 1}!;
return H[x]

If the map H is not accessed elsewhere, pre-sampling the answers to some queries at the beginning of
a game does not make any difference. An eager implementation fully populates H with uniform and
independently sampled values, converting H into a side-effect free procedure:

Procedure H(x) def
= return H[x]

Proposition 11 (Eager/lazy sampling equivalence). Let c be a pWhile program implementing a procedure
H : {0, 1}k → {0, 1}! as a lazy random oracle and c′ be identical to c, but implementing H as an eager
random oracle. If variable H does not occur in c (and c′) except in the definition of H, then for any event
φ where H does not occur free,

Pr [H ← ∅; c : φ] = Pr
[

initH ; c′ : φ
]

where initH
def
= foreach x ∈ {0, 1}k do H[x] $← {0, 1}!.

When all procedures #H are implemented as eager random oracles, !e" "H(#pk, #sk, #x) is side-effect free. We
give an alternative side-effect free semantics to algebraic expressions as pWhile expressions.

Definition 12 (Alternative semantics of expressions). Let e be a well-typed algebraic expression. Define
the pWhile probabilistic expression 〈[e]〉 as follows:

30

• For each trapdoor permutation symbol f (resp. f−1) in e, 〈[e]〉 takes as parameter a public key pkf
(resp. a secret key skf).

• For each variable x ∈ V(e), 〈[e]〉 takes as parameter a variable x of type {0, 1}|x|.

• For each hash function symbol H ∈ H(e) of domain type k and codomain type !, 〈[e]〉 is parameterized
by a variable H denoting a finite map from {0, 1}k to {0, 1}!.

• For each ri ∈ R(e), let ri be a fresh variable of type {0, 1}|ri|. Define inductively the program

〈[e]〉
"H(#pk, #sk, #x) as follows:

〈[x]〉 def
= x

〈[ri]〉
def
= ri

〈[0n]〉 def
= 0n

〈[f(e)]〉 def
= fpkf (〈[e]〉)

〈[f−1(e)]〉 def
= f−1

skf
(〈[e]〉)

〈[H(e)]〉 def
= H[〈[e]〉′]

〈[e1 ⊕ e2]〉
def
= 〈[e1]〉 ⊕ 〈[e2]〉

〈[e1 ‖e2]〉
def
= 〈[e1]〉‖〈[e2]〉

〈[[e]!n]〉
def
= [〈[e]〉]!n

Finally, define #e$ "H(#pk, #sk, #x) = let r1 $← {0, 1}|r1|, . . . , rn $← {0, 1}|rn| in 〈[e]〉
"H(#pk, #sk, #x).

In the remainder, use the notational convention that for an expression e, the functions 〈[e]〉, #e$ and !e"
ignore additional arguments for variables that do not occur in e.

Lemma 13 (Substitution). For any well-typed pair of algebraic expressions e, e′, and r ∈ R, x ∈ X ,

〈[e
{

e′/r
}

]〉 = let r = 〈[e′]〉 in 〈[e]〉 〈[e
{

e′/x
}

]〉 = let x = 〈[e′]〉 in 〈[e]〉

Proof. Immediate by structural induction over e.

We have the following correspondence between the two interpretations of algebraic expressions.

Lemma 14 (Correspondence). Let e be an algebraic expression of type !, and suppose all procedures #H in
H(e) are implemented as eager random oracles using maps #H. Then, for all #pk, #sk, #x, and v ∈ {0, 1}!,

Pr
[

y ← !e" "H(#pk, #sk, #x) : y = v
]

= Pr
[

y ← #e$ "H(#pk, #sk, #x) : y = v
]

Proof. By induction in the structure of e, inlining calls to hash oracles in !e".

We provide an interpretation of equational reasoning in terms of the side-effect free semantics of alge-
braic expressions.

Lemma 15 (Soundness of equational reasoning). Let e0, e1 be well-typed algebraic expressions of type !
such that e0 =E e1. For any trapdoor permutation symbol f ∈ F(e0, e1), let (pkf , skf) be a pair of keys

generated using KGf ; denote #pk (resp. #sk) the vector of all such keys. For any #H and #x,

#e0$
"H(#pk, #sk, #x) = #e1$

"H(#pk, #sk, #x)

i.e., both expressions generate the same distribution on {0, 1}!.

31

Proof. The proof follows by induction on the derivation of e0 =E e1, the interpretation of expressions
as side-effect free pWhile expressions and the properties of bitstring operators at the pWhile language
level. It suffices to show that for all axioms e = e′ in Figure 1 and values for variables corresponding to

random bitstrings, the bitstrings corresponding to 〈[e]〉
"H(#pk, #sk, #x) and 〈[e]〉

"H(#pk, #sk, #x) coincide, and that
this equality is a congruence.

A.2 Soundness of Deducibility and Apartness

We provide computational interpretations of deducibility and apartness in terms of the side-effect free
interpretation of algebraic expressions.

Lemma 16 (Soundness of deducibility). Let e0, e1 be well-typed algebraic expressions such that e0 . e1.
There exists a pWhile procedure P such that for any appropriately generated #pk, #sk, and for any #H, #x,
and v ∈ {0, 1}|e1|,

Pr
[

y ← P
"H
(

#pk, #e0$
"H(#pk, #sk, #x)

)

: y = v
]

= Pr
[

y ← #e1$
"H(#pk, #sk, #x) : y = v

]

where procedures #H are implemented as eager random oracles using maps #H.

Proof. Let C be the context witnessing the deducibility e0 . e1. From Definition 5, C[e0] is well-typed,
no symbol f−1 occurs in C, R(C) = ∅, X (C) = {∗}, and C[e0] =E e1. Define P def

= !C". P has the right
type: it expects as parameters a vector of public keys and a single value of type {0, 1}|e0| for variable ∗,
and returns a value in {0, 1}|e1|.

From Lemma 14,

Pr
[

y ← P
"H
(

#pk, #e0$
"H(#pk, #sk, #x)

)

: y = v
]

= Pr
[

y ← #C$ "H
(

#pk, #e0$
"H(#pk, #sk, #x)

)

: y = v
]

Observe that since R(C) = ∅, #C$ is deterministic, and its semantics can be safely composed with #e0$,

Pr
[

y ← #C$ "H
(

#pk, #e0$
"H(#pk, #sk, #x)

)

: y = v
]

= Pr
[

y ← #C[e0]$
"H(#pk, #sk, #x) : y = v

]

Finally, from Lemma 15 and C[e0] =E e1,

Pr
[

y ← #C[e0]$
"H(#pk, #sk, #x) : y = v

]

= Pr
[

y ← #e1$
"H(#pk, #sk, #x) : y = v

]

Proposition 17. Let e0, e1 be well-typed algebraic expressions such that e0 .# e1. There exists a pWhile
procedure P such that for any appropriately generated #pk, #sk, and for any #H, #x, and v ∈ {0, 1}|e1|,

Pr
[

y ← P
"H(#pk, #sk, #e0$

"H(#pk, #sk, #x)) : y = v
]

= Pr
[

y ← #e1$
"H(#pk, #sk, #x) : y = v

]

Proof. Analogous to previous lemma, except that the context witnessing the deducibility may contain
occurrences of f−1, and thus the procedure P has to take the corresponding secret keys as additional
parameters.

32

Lemma 18 (Soundness of apartness). Let s, t be well-typed algebraic expressions of type ! such that s ' t
can be derived from the rules of Figure 2 under axioms in Γ. For any appropriately generated #pk, #sk,
uniformly sampled #H, and any #x satisfying Γ,

Pr
[

v ← #s‖ t$ "H(#pk, #sk, #x) : [v]!0 = [v]!!

]

is a negligible function of the security parameter (recall that types are interpreted as non-constant polyno-
mials in the security parameter).

Proof. By structural induction on the derivation of s ' t.
Case [Ax]: Follows from the assumption that #x satisfies Γ.
Case [Ctxt]: By contradiction. Assume that not s ' t, i.e. the values of s and t coincide with non-

negligible probability. This contradicts the hypothesis C[s] ' C[s], since it implies that the values of C[s]
and C[t] coincide with non-negligible probability.

Case [Rnd]: Since s /∈ R(s), the value [v]!0 of the random bitstring r is distributed uniformly and
independent of [v]!!. Thus, the probability that [v]!0 and [v]!! coincide is 2−|r|. This probability is negligible
because |r| is interpreted as a non-constant polynomial in the security parameter.

Case [EqE]: From Lemma 15, since t =E u,

Pr
[

v ← #s‖ t$ "H(#pk, #sk, #x) : [v]!0 = [v]!!

]

= Pr
[

v ← #s‖u$ "H(#pk, #sk, #x) : [v]!0 = [v]!!

]

which is negligible from the inductive hypothesis.
Case [Hash]: The mapH is uniformly sampled, andH[e] is independent of (⊕k

i=1H[ei])⊕s conditioned
on the value of e being different from the values of e1, . . . , ek, which occurs with overwhelming probability.
The same argument used in the the [Rnd] case applies.

Note that rules are incomplete (e.g. one cannot prove r ' f(r)), but suffice for the use we made of them
for finding attacks.

A.3 Soundness of CPA logic

In this section, all definitions and proofs are relative to fixed finite sets F and H of (typed) trapdoor
permutation and hash function symbols. We assume that all expressions and events under consideration
only contain trapdoor permutation and hash function symbols in these sets.

Definition 19 (CPA experiment). Let e be a well-typed algebraic expression such that X (e) ⊆ {m}. Let R
be a set of random bitstrings symbols such that R(e) ⊆ R. Given a CPA adversary A and #q ∈ N|H|, define
the game CPA(e,R, #q,A) as follows

Game CPA(e,R, #q,A) def
=

foreach f ∈ F do (pkf , skf)← KGf ;
foreach H ∈ H do LH ← nil; initH ;
foreach r ∈ R do r $← {0, 1}|r|;

(m0,m1,σ)← A
"HA

1 (#pk);
b $← {0, 1};

c# ← 〈[e]〉
"H(#pk, #sk,mb);

b̄← A
"HA

2 (c#,σ)

Procedure HA(x)
def
=

if |LH | < qH then LH ← x :: LH ; return H(x)
else return ⊥

Procedure H(x) def
= return H[x]

33

where initH is defined as above. The adversary A is represented as a pair of procedures (A1,A2) that are
given access to a hash oracle H through a wrapper HA that stores queries in a list LH and limits the
number of distinct queries to qH .

We let CPAG(e,R, #q,A) denote the same experiment except that the hash oracles G ⊆ H are implemented
lazily and that c# is computed using !·" instead of 〈[·]〉:

Game CPAG(e,R, #q,A) def
=

foreach f ∈ F do (pkf , skf)← KGf ;
foreach H ∈ G do LH ← nil; H ← ∅;
foreach H ∈ H \ G do LH ← nil; initH ;
foreach r ∈ R do r $← {0, 1}|r|;

(m0,m1,σ)← A
"HA

1 (#pk);
b $← {0, 1};

!c# # e" "H(#pk, #sk,mb);

b̄← A
"HA

2 (c#,σ)

Definition 20 (Probability of events). We interpret the event Guess as b = b̄ and an event Ask(H, e)
as e ∈ LH . Under this interpretation, we naturally extend the semantic function 〈[·]〉 from expressions to
events. Let φ be an event of the CPA logic. For all games G such that all hash oracles used in φ are
implemented eagerly and all arguments required to interpret φ are defined,

Pr #G : φ$ def
= Pr

[

G : 〈[φ]〉
"H(#pk, #sk, b, b̄,mb,L "H)

]

.

Lemma 21. Let e be a well-typed algebraic expression such that X (e) ⊆ {m}. Let φ be a CPA event such
that no expression with head symbol H ∈ G occurs in φ. Let R be a set of random bitstrings symbols such
that R(e,φ) ⊆ R. For any CPA adversary A and #q ∈ N|H|,

Pr #CPA(e,R, #q,A) : φ$ = Pr #CPAG(e,R, #q,A) : φ$

Proof. First apply Lemma 14 to switch to an interpretation of expressions and events as programs. For
events, append the corresponding procedure calls to the experiments, e.g.

Pr #CPA(e,R, #q,A) : φ$ = Pr
[

CPA(e,R, #q,A); !φ# φ" "H(#pk, #sk, b, b̄,mb,L "H) : φ
]

This removes any occurrence of maps H from the games except in the definition of oracle H. Then,
repeatedly apply Proposition 11 to conclude.

Next, we prove the soundness of the CPA logic.

Lemma 22. Let c# be a well-typed algebraic expression with X (c#) ⊆ {m}, φ an event of the CPA logic,
and p̂ a probability tag. Let ∇ be a derivation of !p̂ c# : φ from the rules of Figure 3. For any set of random
bitstrings R such that R(c#,φ) ⊆ R, any CPA adversary A, and #q ∈ N|H|,

Pr #CPA(c#,R, #q,A) : φ$ ≤ B(tA,"q)(∇)

Proof. By structural induction on the derivation ∇.

34

Case [Opt]: It suffices to prove that for any expression e and random bitstring r such that r /∈ R(e),

Pr #CPA(c# {e⊕ r/r} ,R, #q,A) : φ {e⊕ r/r}$ ≤ Pr #CPA(c#,R, #q,A) : φ$

From Lemma 13, and because HA does not depend on r, the experiment CPA(c# {e⊕ r/r} ,R, #q,A) is
equivalent to

Game G def
=

foreach f ∈ F do (pkf , skf)← KGf ;
foreach H ∈ H do LH ← nil; initH ;
foreach r ∈ R do r $← {0, 1}|r|;

(m0,m1,σ)← A
"HA

1 (#pk);
b $← {0, 1};

r ← 〈[e]〉
"H(#pk, #sk,mb)⊕ r;

c# ← 〈[c#]〉
"H(#pk, #sk,mb);

b̄← A
"HA

2 (c#,σ)

and
Pr #CPA(c# {e⊕ r/r} ,R, #q,A) : φ {e⊕ r/r}$ = Pr #G : φ$

Moreover, since r /∈ R(e), for all v ∈ {0, 1}|r|,

Pr
[

r $← {0, 1}|r| : 〈[e]〉
"H(#pk, #sk,mb)⊕ r = v

]

= Pr
[

r $← {0, 1}|r| : r = v ⊕ 〈[e]〉
"H(#pk, #sk,mb)

]

= 2−|r|

This means that the value of r in G used to compute c# and subsequently is uniformly distributed and
independent of #pk, #sk, #H,R \ {r}, just as in the experiment CPA(c#,R, #q,A), and

Pr #G : φ$ = Pr #CPA(c#,R, #q,A) : φ$

Case [Perm]: It suffices to prove that for any expression e, permutation f and random bitstring r,

Pr #CPA(c# {f(r)/r} ,R, #q,A) : φ {f(r)/r}$ ≤ Pr #CPA(c#,R, #q,A) : φ$

From Lemma 13, the experiment CPA(c# {f(r)/r} ,R, #q,A) is equivalent to

Game G def
=

foreach f ∈ F do (pkf , skf)← KGf ;
foreach H ∈ H do LH ← nil; initH ;
foreach r ∈ R do r $← {0, 1}|r|;
r ← fpkf (r);

(m0,m1,σ)← A
"HA

1 (#pk);
b $← {0, 1};

c# ← 〈[c#]〉
"H(#pk, #sk,mb);

b̄← A
"HA

2 (c#,σ)

and
Pr #CPA(c# {f(r)/r} ,R, #q,A) : φ {f(r)/r}$ = Pr #G : φ$

35

Moreover, since fpkf is a bijection on {0, 1}|r| (with inverse f−1
skf

), we have that for all v ∈ {0, 1}|r|,

Pr
[

r $← {0, 1}|r| : fpkf (r) = v
]

= Pr
[

r $← {0, 1}|r| : r = f−1
skf

(v)
]

= 2−|r|.

This means that the value of r in G after the instruction r ← fpkf (r) is uniformly distributed and inde-

pendent of #pk, #sk, #H,R \ {r}, just as in the experiment CPA(c#,R, #q,A), and

Pr #G : φ$ = Pr #CPA(c#,R, #q,A) : φ$

Case [Merge] and [Split]: It suffices to show that for any random bitstring symbols r, r1, r2 such that
r1, r2 /∈ R(c#,φ) and r1 1= r2,

Pr #CPA(c#,R, #q,A) : φ$ = Pr #CPA(c# {r1 ‖r2/r} ,R, #q,A) : φ {r1 ‖r2/r}$

From Lemma 13, the experiment CPA(c# {r1 ‖r2/r} ,R, #q,A) is equivalent to

Game G def
=

foreach f ∈ F do (pkf , skf)← KGf ;
foreach H ∈ H do LH ← nil; initH ;
foreach r ∈ R do r $← {0, 1}|r|;
r1 $← {0, 1}|r1|; r2 $← {0, 1}|r2|

r ← r1 ‖r2;

(m0,m1,σ)← A
"HA

1 (#pk);
b $← {0, 1};

c# ← 〈[c#]〉
"H(#pk, #sk,mb);

b̄← A
"HA

2 (c#,σ)

where |r| = |r1|+ |r2|. Note that, for all v ∈ {0, 1}|r1|+|r2| we have that

Pr
[

r $← {0, 1}|r| : r = v
]

= Pr
[

r1 $← {0, 1}|r1|; r2 $← {0, 1}|r2|; r ← r1 ‖r2 : r = v
]

= 2−(|r1|+|r2|) = 2−|r|.

This means that the value of r in G after the instruction r ← r1 ‖ r2 is uniformly distributed and inde-
pendent of #pk, #sk, #H,R \ {r, r1, r2}. Since r1, r2 /∈ R(c#,φ), the distribution of c# is also the same in both
experiments, and

Pr #CPA(c#,R, #q,A) : φ$ = Pr #CPA(c# {r1 ‖r2/r} ,R, #q,A) : φ {r1 ‖r2/r}$

Case [Sub]: It suffices to prove that for any expressions c#1, c
#
2 and events φ1,φ2 such that c#1 =E c#2 and

φ1 =⇒E φ2,
Pr #CPA(c#1,R, #q,A) : φ1$ ≤ Pr #CPA(c#2,R, #q,A) : φ2$

From Lemma 15, the two experiments above are equivalent and event φ2 happens whenever φ1 happens,
and thus the inequality holds.

Case [Fail1] and [Fail2]: Let e, c# be well-typed expressions, r a random bitstring, and H a hash func-
tion symbol such that r /∈ R(e) and no expression with head symbol H occurs in c#, φ, or e. To prove the
first case, it suffices to prove

Pr [CPA(c# {H(e)/r} ,R, #q,A) : φ {H(e)/r}] ≤ Pr [CPA(c#,R, #q,A) : φ] + Pr [CPA(c#,R, #q,A) : Ask(H, e)]

36

We first use Lemma 21 to switch to a lazy implementation ofH in both experiments. We then introduce two
intermediate games G1 and G2, that are semantically equivalent to games CPA{H}(c

{H(e)/r} ,R, #q,A)
and CPA{H}(c

#,R, #q,A), respectively. The only difference is that their code is instrumented to set a flag
bad to true whenever the failure event e ∈ LH is triggered. Moreover, these two games are syntactically
identical except after program points raising the bad flag.

Game G1
def
=

foreach f ∈ F do (pkf , skf)← KGf ;
foreach H ∈ H \ {H} do LH ← nil; initH ;
foreach r ∈ R do r $← {0, 1}|r|;
LH ← nil; H ← ∅;

(m0,m1,σ)← A
"HA

1 (#pk);
b $← {0, 1};
!v # e"(#pk, #sk,mb);
if v ∈ LH then bad← true; r ←H[v];
else r $← {0, 1}|r|;

!c# # c#" "H(#pk, #sk,mb);

b̄← A
"H′
A

2 (c#,σ)

Procedure H ′
A(x)

def
=

if |LH | < qH then

LH ← x :: LH ;
if x = v then bad← true; return r
else return H(x)

else return ⊥

Game G2
def
=

foreach f ∈ F do (pkf , skf)← KGf ;
foreach H ∈ H \ {H} do LH ← nil; initH ;
foreach r ∈ R do r $← {0, 1}|r|;
LH ← nil; H ← ∅;

(m0,m1,σ)← A
"HA

1 (#pk);
b $← {0, 1};
!v # e"(#pk, #sk,mb);
if v ∈ LH then bad← true; r $← {0, 1}|r|

else r $← {0, 1}|r|;

!c# # c#" "H(#pk, #sk,mb);

b̄← A
"H′
A

2 (c#,σ)

Procedure H ′
A(x)

def
=

if |LH | < qH then

LH ← x :: LH ;
if x = v then bad← true; return H(x)
else return H(x)

else return ⊥

To see why experiment G1 is equivalent to CPA{H}(c
{H(e)/r} ,R, #q,A) (and CPA(c# {H(e)/r} ,R, #q,A))

observe that in the latter r is never used after it is initialized. This is because HA does not depend on r
and r is substituted for H(e) in c# and φ. Moreover, from Lemma 13, the instruction

c# ← 〈[c# {H(e)/r}]〉
"H(#pk, #sk,mb)

can be written equivalently as

r ← 〈[H(e)]〉; c# ← 〈[c#]〉
"H(#pk, #sk,mb)

Because r /∈ R(e) and H /∈ H(e), this is in turn equivalent to

v ← 〈[e]〉(#pk, #sk,mb); r ←H[v]; c# ← 〈[c#]〉
"H(#pk, #sk,mb)

Since G1 and G2 are syntactically identical up to bad and bad ⇐⇒ v ∈ LH ,

1. Pr [G1 : v ∈ LH] = Pr [G2 : v ∈ LH]

2. for any event φ, Pr [G1 : φ ∧ v /∈ LH] = Pr [G2 : φ ∧ v /∈ LH]

From Shoup’s Fundamental Lemma [31],

Pr #CPA(c# {H(e)/r} ,R, #q,A) : φ {H(e)/r}$
= Pr #G1 : φ$
≤ Pr #G2 : φ$ + Pr [G2 : v ∈ LH]
= Pr #CPA(c#,R, #q,A) : φ$ + Pr #CPA(c#,R, #q,A) : Ask(H, e)$

37

The soundness of rule [Fail2] also follows from the above:

Pr #CPA(c# {H(e)/r} ,R, #q,A) : φ {H(e)/r}$
= Pr #G1 : φ$
= Pr [G1 : 〈[φ]〉 ∧ v ∈ LH] + Pr [G1 : 〈[φ]〉 ∧ v /∈ LH]
= Pr [G1 : 〈[φ]〉 ∧ v ∈ LH] + Pr [G2 : 〈[φ]〉 ∧ v /∈ LH]
≤ Pr #G1 : φ ∧ Ask(H, v)$ + Pr #G2 : φ$
= Pr #CPA(c# {H(e)/r} ,R, #q,A) : φ {H(e)/r} ∧ Ask(H, e)$ + Pr #CPA(c#,R, #q,A) : φ$

Case [Ind]: Since X (c#) = ∅, the value of c# in the experiment in the conclusion does not depend on the
variable mb. Because the behavior of HA is also independent of the challenge bit b, we can defer sampling
b until the end of the experiment:

Game G def
=

foreach f ∈ F do (pkf , skf)← KGf ;
foreach H ∈ H do LH ← nil; initH ;
foreach r ∈ R do r $← {0, 1}|r|;

(m0,m1,σ)← A
"HA

1 (#pk);

c# ← 〈[c#]〉
"H(#pk, #sk);

b̄← A
"HA

2 (c#,σ);
b $← {0, 1}

In this experiment, the value of b is uniformly distributed and obviously independent of b̄, and thus

Pr
[

CPA(c#,R, #q,A) : b = b̄
]

= 1/2

Case [Rnd(!, #H)]: Since r /∈ R(c#), we can defer initializing r to the end of the CPA experiment (call
G the resulting game). We have

Pr #CPA(c#,R, #q,A) : Ask(H1, e1) ∧ · · · ∧ Ask(Hn, en)$ = Pr #G : Ask(H1, e1) ∧ · · · ∧ Ask(Hn, en)$

Let C be the context witnessing the deducibility of r from #e ‖R(c#) ‖m. Since the value of r is chosen
uniformly and independently from the queries that the adversary makes to oracles, R(c#), and mb, we have
that for any #e ∈ LH1

× · · ·×LHn ,

Pr
[

G : 〈[C]〉
"H(#pk, #sk,#e‖R(c#)‖mb) = r

]

= 2−|r|

Moreover, from the union bound and because |LHi | ≤ qHi , i = 1, . . . , n is a post-condition of G,

Pr #G : Ask(H1, e1) ∧ · · · ∧ Ask(Hn, en)$ ≤ Pr
[

G : ∃#e ∈ LH1
× · · ·×LHn . 〈[C]〉

"H(#pk, #sk,#e‖R(c#)‖mb) = r
]

≤
∑

"e∈LH1
×···×LHn

Pr
[

G : 〈[C]〉
"H(#pk, #sk,#e‖R(c#)‖mb) = r

]

≤
n
∏

i=1

qHi × 2−|r|

38

Case [OW!
k(f, #H)]: Assume #e ‖ r2 ‖m . [r1]!k and f(r1) ‖ r2 ‖m . c# and call C1 and C2 the contexts

witnessing these deducibilities. It suffices to show that for any adversary A against CPA, there exists an
inverter I executing within time tA + T (C2) + q "H × T (C1) such that

Pr #CPA(c#,R, #q,A) : Ask(H1, e1) ∧ · · · ∧ Ask(Hn, en)$ ≤ Succs-pd-OW
Θf

(k, !, q "H , I)

where q "H =
∏n

i=1 qHi . Given an adversary A, we construct an inverter I that achieves this bound:

Procedure I(y, pk) def
=

foreach g ∈ F \ {f} do (pkg, skg)← KGg;
foreach H ∈ H do LH ← nil; H ← ∅;
(m0,m1,σ)← A1(pk);
b $← {0, 1};
r2 $← {0, 1}|r2|;

!c# # C2"
"H(#pk, #sk, y‖r2 ‖mb);

b̄← A2(c#,σ);
S ← ∅;
foreach #e ∈ LH1

× · · ·×LHn do

!x# C1"
"H(#pk, #sk,#e‖r2 ‖mb); S ← S ∪ {x}

return S

Procedure HA(x)
def
=

if |LH | < qH then LH ← x :: LH ; return H(x)
else return ⊥

Procedure H(x) def
=

if x /∈ dom(H) then H[x] $← {0, 1}!;
return H[x]

The inverter simulates an environment for A that is indistinguishable from the real CPA experiment: it
simulates hash oracles exactly as in the CPA experiment, storing the queries the adversary makes. The
inverter embeds its own challenge fpk(s) into the challenge ciphertext c# given to A, in such a way that if
A asks queries H1(e1), . . . , Hn(en), then from #e, I can recover a partial pre-image of fpk(s). The running
time of the inverter is indeed tA + T (C2) + q "H × T (C1).

Recall that the OW!
k experiment is

(pk, sk)← KG; s $← {0, 1}|f|; S ← I(fpk(s), pk)

Inlining I in this experiment, one obtains an experiment that is essentially equivalent to CPAH(c#,R, #q,A):

Game G def
=

(pk, sk)← KGf ;
s $← {0, 1}|f|;
foreach g ∈ F \ {f} do (pkg, skg)← KGg;
foreach H ∈ H do LH ← nil; H ← ∅;
(m0,m1,σ)← A1(pk);
b $← {0, 1};
r2 $← {0, 1}|r2|;

!c# # C2"
"H(#pk, #sk, fpk(s)‖r2 ‖mb);

b̄← A2(c#,σ);
S ← ∅;
foreach #e ∈ LH1

× · · ·×LHn do

!x# C1"
"H(#pk, #sk,#e‖r2 ‖mb); S ← S ∪ {x}

39

Therefore, from Lemmas 16 and 21, and since |S| ≤ q "H is a post-condition of OW!
k,

Pr #CPA(c#,R, #q,A) : Ask(H1, e1) ∧ · · · ∧ Ask(Hn, en)$
= Pr #CPAH(c#,R, #q,A) : Ask(H1, e1) ∧ · · · ∧ Ask(Hn, en)$

≤ Pr

CPAH(c#,R, #q,A);S ← ∅;
foreach #e ∈ LH1

× · · ·×LHn do

!x# C1"
"H(#pk, #sk,#e‖r2 ‖mb); S ← S ∪ {x}

: [r1]!k ∈ S

= Pr
[

OW!
k : [r1]!k ∈ S

]

= Succs-pd-OW
Θf

(k, !, q "H , I)

Theorem 23 (Soundness of CPA logic). If ∇ is a derivation of !1/2 c
: Guess under Γ, then

AdvCPA
Π (tA, #q) ≤ 2B(tA,"q)(∇)− 1

Moreover, this bound is negligible if tA and all qH in #q are polynomial in the security parameter, and all
assumptions in Γ hold.

Proof. From Lemma 22, for some CPA adversary A,

AdvCPA
Π (tA, #q) = 2Pr

[

CPA(c#,R, #q,A) : b = b̄
]

− 1

= 2Pr #CPA(c#,R, #q,A) : Guess$− 1

≤ 2B(tA,"q)(∇)− 1

The derivation ∇must contain exactly one application of rule [Ind]. This is so because no branching rule
contains in the premise more than one judgment with 1/2 as probability tag. Moreover, for a derivation ∇′

that does not contain an application of [Ind], the bound B(tA,"q)(∇
′) is negligible in the security parameter

if tA and all qH in #q are polynomial in the security parameter. This can be proved by induction on the
structure of ∇′:

Cases [Opt], [Perm], [Split], [Merge], [Sub], and [Fail1,2] Follow from the inductive hypothesis.
Case [Rnd(!, H)] Since ! is interpreted as a non-constant polynomial, and all qH in #q are polynomial

in the security parameter, the bound q "H × 2−! is negligible.

Case [OW!
k(f, #H)] Observe first that since tA and all qH in #q are polynomial in the security parameter,

tI is also polynomial. Hence, since (f, k, !) ∈ Γ, the bound Succs-pd-OW
Θf

(k, !, q "H , tI) is negligible in the
security parameter.

Therefore, B(tA,"q)(∇) is of the form 1/2 + ν for some negligible function ν, and 2B(tA,"q)(∇) − 1 = ν is
negligible.

A.4 Soundness of CCA logic

All definitions and proofs in this section are relative to fixed finite sets F and H of (typed) trapdoor
permutation and hash function symbols. We assume that all expressions and events under consideration
only contain trapdoor permutation and hash function symbols in these sets.

We first define the CCA experiment corresponding to a given CCA judgment.

Definition 24 (CCA experiment). Let e be a well-typed algebraic expression such that X (e) ⊆ {m}. Let
D = (find x1 in LH1

, . . . , find xk in LHk
, 5 : T " t) be a well-typed decryption oracle such that X (D) ⊆ {c}

40

and R(D) = ∅. Let R be a set of random bitstring symbols such that R(e) ⊆ R. Given a CCA adversary A
and #q ∈ N|H|+1, define the program CCA(c#, D,R, #q,A) as follows:

Game CCA(c#, D,R, #q,A) def
=

LD ← nil; nD ← 0;
foreach f ∈ F do (pkf , skf)← KGf ;
foreach H ∈ H do LH ← nil; initH ;
foreach r ∈ R do r $← {0, 1}|r|;

(m0,m1,σ)← A
"HA,D1

1 (#pk);
b $← {0, 1};

c# ← 〈[e]〉
"H(#pk, #sk,mb);

b̄← A
"HA,D2

2 (c#,σ)

Procedure HA(x)
def
=

if |LH | < qH then LH ← x :: LH ; return H(x)
else return ⊥

Procedure H(x) def
= return H[x]

Procedure D(c) def
=

foreach x1 ∈ LH1
, . . . , xk ∈ LHk

do

if 〈[T]〉
"H(#pk, #sk, c, #x,L "H) then

return 〈[t]〉
"H(#pk, #sk, c, #x)

return ⊥

Procedure D1(c)
def
=

if nD < qD then nD ← nD + 1; return D(c)
else return ⊥

Procedure D2(c)
def
=

if nD < qD ∧ c 1= c# then

nD ← nD + 1; LD ← c :: LD; return D(c);
else return ⊥

The adversary A is represented as a pair of procedures (A1,A2) that are given access to a hash oracle H
through a wrapper HA that stores queries in a list LH and limits the number of distinct queries to qH .
Additionally A1 (resp. A2) is given access to a decryption oracle D1 (resp. D2) that limits the number of
queries to qD; in addition D2 rejects c# as a query and maintains a list LD of queries made by A2.

The soundness proof also requires an extended version CPALD of the CPA experiment where the adver-
sary returns a list LD of decryption queries in addition to its guess b̄ for b. This extension is required for
the proof of rule [Pub] where the probability of an event in the CCA experiment with an adversary A is
related to the probability of the same event in the CPALD experiment with an adversary B that simulates
a decryption oracle for A. Since CCA events might refer to LD, the simulator B has to forward A’s guess
and return LD.

The game CPALD(e,R, #q,A) is defined as follows:

Game CPALD(e,R, #q,A) def
=

foreach f ∈ F do (pkf , skf)← KGf ;
foreach H ∈ H do LH ← nil; initH ;
foreach r ∈ R do r $← {0, 1}|r|;

(m0,m1,σ)← A
"HA

1 (#pk);
b $← {0, 1};

c# ← 〈[e]〉
"H(#pk, #sk,mb);

(LD, b̄)← A
"HA

2 (c#,σ)

We also define a game CPALD

L,G (e,R, #q,A) analogously to CPAG . Before proving the soundness of the CCA

rules, we prove the soundness of the extended set of CPA rules with respect to an interpretation defined in
terms of CPALD . To achieve this, we extend the semantics of events to handle events of the form T and
∃x ∈ LD. T in the expected way.

41

Lemma 25 (Soundness of extended CPA logic). Let c# be a well-typed algebraic expression with X (c#) ⊆ {m},
φ an event of the CCA logic, and p̂ a probability tag. Let ∇ be a derivation of !p̂ c# : φ from the rules of
Figure 3 and the CPA rules of Figure 4. For any set of random bitstrings R such that R(e,φ) ⊆ R, any
CPALD adversary A, and any #q ∈ N|H|+1,

Pr
%
CPALD(c#,R, #q,A) : φ

&
≤ B(tA,"q)(∇)

Proof. By structural induction on the derivation ∇.
Case [Opt], [Perm], [Merge], [Split], [Sub], [Fail1,2], [Ind]: The proofs of Lemma 22 can be naturally ex-

tended to events of the form T and ∃x ∈ LD. T , interpreted in the experiment CPALD(c#,R, #q,A).
Case [Eqs]: Since r /∈ R(c#, e), we can defer sampling it till the en of game CPALD(c#,R, #q,A). Call

the resulting game G. We have that

Pr
%
CPALD(c#,R, #q,A) : e = r

&
= Pr #G : e = r$.

Since r is uniformly distributed and obviously independent from all variables e may depend on, we conclude
that

Pr #G : e = r$ ≤ 2−|r|.

Case (extended) [Rnd] and [OW]: The proof follows the same argument as in the original rules (the
bounds are the same). Note that the contexts witnessing the deducibility relations in the premises of these
rules cannot refer directly to ciphertexts in LD, and thus do not require c as an argument.

The soundness of the CCA logic relies on the soundness of judgments of the form ! neglr(T), which we
prove next.

Lemma 26 (Soundness of negl logic). Let r be a random bitstring symbol and T a well-typed test with
X (T) ⊆ {c} and R(T) ⊆ {r}. Let ∇ be a derivation of ! neglr(T). For all tA, #q ∈ N|H|+1 and L "H such
that |LH | ≤ qH ,

Pr
[

r ← {0, 1}|r| : 〈[T]〉
"H(#pk, #sk, c, r,L "H)

]

≤ B(tA,"q)(∇)

Proof. By structural induction on the derivation ∇.
Case [PAnd]: Assume wlog i = 1. It suffices to prove

Pr
[

r ← {0, 1}|r| : 〈[T1 ∧ T2]〉
"H(#pk, #sk, c, r,L "H)

]

≤ Pr
[

r ← {0, 1}|r| : 〈[T1]〉
"H(#pk, #sk, c, r,L "H)

]

which follows from the fact that

〈[T1 ∧ T2]〉
"H(#pk, #sk, c, r,L "H) = 〈[T1]〉

"H(#pk, #sk, c, r,L "H) ∧ 〈[T2]〉
"H(#pk, #sk, c, r,L "H)

Case [PEqs]: Let C be a context witnessing the deducibility c‖e .# [r]!k. Knowing that r /∈ R(e′), we
have to show that

Pr
[

r ← {0, 1}|r| : 〈[e = e′]〉
"H(#pk, #sk, c, r,L "H)

]

≤ 2−!

Note that if 〈[e = e′]〉
"H(#pk, #sk, c, r,L "H) = true, then from Lemma 16

〈[C]〉
"H(#pk, #sk, c‖e′) = 〈[C]〉

"H(#pk, #sk, c‖e) = [r]!k

Since r /∈ R(c‖e′) (c is a variable) and R(C) = ∅, 〈[C]〉
"H(#pk, #sk, c‖e′) is independent of r, and thus

Pr
[

r ← {0, 1}|r| : 〈[e = e′]〉
"H(#pk, #sk, c, r,L "H)

]

≤ Pr
[

r ← {0, 1}|r| : 〈[C]〉
"H(#pk, #sk, c‖e′) = [r]!k

]

= 2−!

42

Case [PRnd]: Let C be a context witnessing the deducibility c‖e .# [r]!k. We have to show that

Pr
[

r ← {0, 1}|r| : 〈[Ask(H, e)]〉
"H(#pk, #sk, c, r,L "H)

]

≤ qH × 2−!

From Lemma 16, we have 〈[C]〉
"H(#pk, #sk, c‖e) = [r]!k Since c‖LH [i] is independent of r for 0 < i ≤ qH , we

have

Pr
[

r ← {0, 1}|r| : 〈[Ask(H, e)]〉
"H(#pk, #sk, c, r,L "H)

]

≤ Pr
[

r ← {0, 1}|r| : 〈[C]〉
"H(#pk, #sk, c‖LH [1]) = [r]!k ∨ . . . ∨ 〈[C]〉

"H(#pk, #sk, c‖LH [qH]) = [r]!k

]

≤
qH
∑

i=1

Pr
[

r ← {0, 1}|r| : 〈[C]〉
"H(#pk, #sk, c‖LH [i]) = [r]!k

]

= qH × 2−!

We now have all the tools to prove the soundness of the CCA logic.

Lemma 27. Let c# be a well-typed algebraic expression with X (c#) ⊆ {m} and D a well-defined decryption
oracle with D = (find x1 in LH1

, . . . , find xk in LHk
, 5 : T " t) such that X (D) ⊆ {c} and R(D) = ∅. Let φ

be an event of the CCA logic and p̂ a probability tag. Let ∇ be a derivation of !p̂ (c#, D) : φ from the rules
of Figure 4. Then, for any CCA adversary A and #q ∈ N|H|+1,

Pr #CCA(c#, D,R, #q,A) : φ$ ≤ B(tA,"q)(∇)

Proof. By structural induction on the derivation ∇.
Case [False]: Since c# /∈ LD is enforced by the wrapper D2,

Pr [CCA(c#, D,R, #q,A) : ∃c ∈ LD. c = c#] = Pr [CCA(c#, D,R, #q,A) : ∃c ∈ LD. c = c# ∧ c 1= c#] = 0 .

Case [Find]: It suffices to show that

Pr #CCA(c#, F : T {e/x} ∧ Ask(H, e)" t {e/x},R, #q,A) : φ$ ≤
Pr #CCA(c#, find x in LH , F : T ∧ x = e" t,R, #q,A) : φ$

The two experiments above are identical except for the implementation of the decryption oracle. We show
that the decryption oracles in both experiments behave identically. Suppose F is of the form

find x1 in LH1
, . . . , find xk in LHk

, 5

and let #x = (x1, . . . , xk). The corresponding decryption oracles are, respectively:

Procedure DL(c)
def
=

foreach x1 ∈ LH1
, . . . , xk ∈ LHk

do

if 〈[T {e/x} ∧ Ask(H, e)]〉
"H(#pk, #sk, c, #x,L "H) then

return 〈[t {e/x}]〉
"H(#pk, #sk, c, #x);

return ⊥

Procedure DR(c)
def
=

foreach x ∈ LH , x1 ∈ LH1
, . . . , xk ∈ LHk

do

if 〈[T ∧ x = e]〉
"H(#pk, #sk, c, x, #x,L "H) then

return 〈[t]〉
"H(#pk, #sk, c, x, #x);

return ⊥

We assume that we run these two programs in the same state and with the same argument. We want to
show that both yield the same result.

43

From Lemma 13, the foreach loop in DL is equivalent to

foreach x1 ∈ LH1
, . . . , xk ∈ LHk

do

let x = 〈[e]〉
"H(#pk, #sk, c, #x) in

if 〈[T]〉
"H(#pk, #sk, c, x, #x,L "H) ∧ x ∈ LH then

return 〈[t]〉
"H(#pk, #sk, c, x, #x);

return ⊥

while the loop in DR is equivalent to

foreach x ∈ LH , x1 ∈ LH1
, . . . , xk ∈ LHk

do

let x′ = 〈[e]〉
"H(#pk, #sk, c, #x) in

if x = x′ ∧ 〈[T]〉
"H(#pk, #sk, c, x, #x,L "H) then

return 〈[t]〉
"H(#pk, #sk, c, x, #x);

return ⊥

It is easy to see that both are equivalent. Both tests succeed iff there exists #x ∈ LH1
× · · ·×LHn such that

〈[e]〉
"H(#pk, #sk, c, #x) ∈ LH and 〈[T]〉

"H(#pk, #sk, c, 〈[e]〉
"H(#pk, #sk, c, #x), #x,L "H).

Hence, we conclude

Pr #CCA(c#, F : T {e/x} ∧ Ask(H, e)" t {e/x} ,R, #q,A) : φ$ =
Pr #CCA(c#, find x in LH , F : T ∧ x = e" t,R, #q,A) : φ$

Case [Pub]: Assume we have a derivation ∇ of !p̂ c# : φ in the extended CPA logic. From lemma 25,
for any CPALD adversary S and #qS ∈ N|H|,

Pr
%
CPALD(c#,R, #qS ,S) : φ

&
≤ B(tS ,"qS)(∇).

Knowing that F : T " u is public, i.e. it does not use f−1, it suffices to show that for any CCA adversary
A there exists a simulator S that executes in time

tS = tA + qD × (T(u) + T(T)×
∏

Hj inF

qHj)

and such that
Pr #CCA(c#, F : T " u,R, #q,A) : φ$ ≤ Pr

%
CPALD(c#,R, #qS ,S) : φ

&

where
qSHi

= qHi + qD × (Qi(u) + Qi(T)×
∏

Hj inF

qHj).

Recall that T(·) and Qi(·) give, respectively, an upper bound on the time and number of queries to Hi

needed to evaluate a test or an expression. The simulator S we exhibit just forwards its inputs to A and
outputs A’s responses. It answers A’s hash queries by querying its own oracles, and simulates D1 and D2

using the same wrappers D1 and D2 and procedure D as in the CCA experiment (note that #sk need not be
used, since the decryption oracle F : T " u is public):

Procedure D(c) def
=

foreach x1 ∈ LH1
, . . . , xk ∈ LHk

do

if 〈[T]〉
"H(#pk, c, #x,L "H) then return 〈[u]〉

"H(#pk, c, #x)
return ⊥

44

Since the simulator needs to answer at most number qD decryption queries, it suffices to show that we can
simulate each query in time

T(u) + T(T)×
∏

Hj inF

qHj

and making at most

Qi(u) + Qi(T)×
∏

Hj inF

qHj

queries to Hi. For each query, the above procedure evaluates the test T at most q "H times, for a total
execution time bounded by q "H T(T), and makes at most q "H Qi(T) extra queries to Hi. It also evaluates u
at most once, in time bounded by T(u) and making at most Qi(u) more queries to Hi.
To conclude, observe that inlining the definition of S in game CPALD(c#,R, #qS ,S) results in a game that
is equivalent to the original CCA experiment. This is so, because S is allotted as many queries as it can
ever need to simulate D for A.

Case [Bad]: Recall the rule is defined as

STH(c#) = {H(e#)} STH(T, t) = {H(e)} ! neglr(T {r/H(e)})
!p̂ (c#, T ∧ Ask(H, e)" t) : φ !0 (c#, T ∧ Ask(H, e)" t) : ∃c ∈ LD. T ∧ e# = e

!p̂ (c#, T " t) : φ
[Bad]

and when L∇ = [Bad], B(∇) = B(∇1) + B(∇2) + qD B(∇3). It suffices to show

Pr #CCA(c#, T " t,R, #q,A) : φ$ ≤ Pr #CCA(c#, T ∧ Ask(H, e)" t,R, #q,A) : φ$
+ Pr #CCA(c#, T ∧ Ask(H, e)" t,R, #q,A) : ∃c ∈ LD. T ∧ e = e#$

+ qD Pr
[

r ← {0, 1}|r| : 〈[T]〉
"H(#pk, #sk, c, r,L "H)

]

.

We first present an outline of the proof, and then give detailed justifications for each inequality. The
sequence of games and events used throughout the proof is shown in Figures 10 and 11.
We start with G0

def
= CCA(c#, T"t,R, #q,A) and obtain G1 from G0 by instrumenting the decryption oracle

D to maintain history variables storing for each query, the queried ciphertext, the current value of L "H ,
and the current value of mb. We also sample an integer between 0 and qD − 1 which will be used later on.
We have

Pr #G0 : φ$ ≤ Pr #G1 : φ$. (1)

We obtain G2 from G1 by adding the conjunct Ask(H, e)∨ e = e# to the test T . Note that e = e# is always
false in the first stage of the experiment since e# is undefined. It follows that

Pr #G1 : φ$ ≤ Pr #G2 : φ$ + Pr [G2 : ψ] (2)

where ψ holds if there is a decryption query c such that T succeeds but neither Ask(H, e) nor e = e# holds,
i.e. the bitstring e has not been queried to the random oracle before the decryption query. We bound each
probability separately.

• To bound Pr #G2 : φ$, we obtain G′
3 from G2 by replacing Ask(H, e)∨e = e# in the test with Ask(H, e).

It holds that
Pr #G2 : φ$ ≤ Pr

%
G′

3 : φ
&
+ Pr

[

G′
3 : ξ

]

(3)

45

where ξ holds if there is a query such that T ∧ e = e# holds. Furthermore,

Pr
%
G′

3 : ξ
&
≤ Pr

[

G′
3 : 〈[∃c ∈ LD. T ∧ e = e#]〉

"H(#pk, #sk, c,L "H ,mb)
]

(4)

since the test e = e# always fails during the first phase, for all i such that the body of ξ is true, there
exists j with LD[j] = histc[i]. Additionally, note that if the test succeeds for #histLH

[i], then it also
succeeds for L "H since for all i and for all H ∈ H, it holds that histLH

[i] ⊆ LH . We conclude this case
by observing that

Pr
%
G′

3 : φ
&
= Pr #CCA(c#, T ∧ Ask(H, e)" t,R, #q,A) : φ$ (5)

and

Pr
[

G′
3 : 〈[∃c ∈ LD. T ∧ e = e#]〉

"H(#pk, #sk, c,L "H ,mb)
]

= Pr #CCA(c#, T ∧ Ask(H, e)" t,R, #q,A) : ∃c ∈ LD. T ∧ e = e#$. (6)

• To bound Pr #G2 : ψ$, we first use i as a guess of the query for which ψ is true. Then, we obtain

Pr [G2 : ψ] ≤ qD × Pr [G2 : ψi] (7)

where ψi is true if the body of ψ holds for the i-th query. In the next step, we obtain G3 from G2

by modifying D to behave exacly as in G2, except for the i-th query where D updates the history
variables, stores the argument c as ci, and halts the game. It holds that

Pr [G2 : ψi] = Pr [G3 : ψi] = Pr
[

G3 : ψ
′
]

(8)

where ψ′ is identical to ψi except that it refers to ci, mb, and L "H directly instead of using the
history variables. Additionally, since mb is undefined if the i-th query is made in the first phase, this
check is now implicitly included in the comparison e = e#. We then obtain G4 from G3 by hoisting

H(〈[e#]〉
"H(#pk, #sk,mb)) out of the challenge ciphertext computation, hoisting H(〈[e]〉

"H(#pk, #sk, c)) out

of T and t, and hoisting H(〈[e]〉
"H(#pk, #sk, ci)) out of ψ′. We can now switch to a lazy random oracle

implementation for H to obtain G5. It holds that

Pr
[

G3 : ψ
′
]

= Pr
[

G4 : ψ
′
]

= Pr [G4 : ρ] = Pr [G5 : ρ] (9)

where ρ is the result of hoisting H(〈[e]〉
"H(#pk, #sk, ci) out of ψ′. Note that the resulting decryption

function D does not perform any new queries to H since the test Ask(H, e) ∨ e = e# ensures that e
has already been queried by the adversary or in the computation of c#. We can therefore obtain G6

by replacing the procedure call H(〈[e]〉
"H(#pk, #sk, ci)) with a random sampling. We can now prove that

for all L "H and for all LD whose lengths are bounded by #q,

Pr [G5 : ρ] = Pr [G6 : ρ]

≤ Pr
[

r ← {0, 1}|r| : ∃c ∈ LD. 〈[T{r/H(e)}]〉
"H(#pk, #sk, c, r,L "H)

]

≤ qD Pr
[

r ← {0, 1}|r| : 〈[T{r/H(e)}]〉
"H(#pk, #sk, c, r,L "H)

]

(10)

We now provide justifications for the (in)equalities between probabilities.

46

(1): Holds because we only add ghost state and φ does not refer to it.

(2): Follows from Shoup’s Fundamental Lemma [31] since Pr [G1 : ψ] = Pr [G2 : ψ] and for any event φ,
Pr [G1 : φ ∧ ¬ψ] = Pr [G2 : φ ∧ ¬ψ].

(3): Follows from Shoup’s Fundamental Lemma [31] since Pr [G2 : ξ] = Pr [G′
3 : ξ] and for any event φ,

Pr [G2 : φ ∧ ¬ ξ] = Pr [G′
3 : φ ∧ ¬ ξ].

(4): Follows from the provided observations that the test can only succeed in the second phase and that if
the test is true, then it remains true if additional elements are added to the lists LH .

(5) and (6): Hold because G′
3 is equivalent to CCA(c#, T ∧Ask(H, e)" t,R, #q,A) except for the ghost state

introduced in the first step which is not referenced by the events.

(7): Follows from the union bound and because i is sampled uniformly and is independent of the remaining
memory of G2.

(8): The first equality follows from the fact that ψi only refers to #pk, #sk and the values histLH
[i], histc[i],

and histmb
[i] of the history variables together with the observation that G2 and G3 behave identically

until G3 halts in the i-th query since both games do not change the values required to evaluate ψi.
The second equality follows from histc[i] = ci , #histLH

[i] = L "H and histmb
[i] = mb in G3 and the

observation about the definedness of mb.

(9): The equalities follow from Lemma 13, Lemma 11 and the definition of the procedure H for an eager
random oracle.

(10): The equality follows from inlining the definition of the lazy random oracle procedure H and the

observation that ρ implies that 〈[e]〉
"H(#pk, #sk, ci) /∈ dom(H) when xi is computed.

Theorem 28 (Soundness of CCA logic). If ∇ is a derivation of !1/2 (c
#, D) : Guess under Γ, then

AdvCCA
Π (tA, #q) ≤ 2 B(tA,"q)(∇)− 1

Moreover, this bound is negligible if tA, all qH in #q, and qD are polynomial in the security parameter, and
all assumptions in Γ hold.

Proof. From Lemma 27, for some CCA adversary A,

AdvCCA
Π (tA, #q) = 2Pr

[

CCA(c#,Guess, D,R, #q,A) : b = b̄
]

− 1

= 2Pr [CCA(c#,Guess, D,R, #q,A) : 〈[Guess]〉]− 1

≤ 2B(tA,"q)(∇)− 1

The derivation ∇must contain exactly one application of rule [Ind]. This is so because no branching rule
contains in the premise more than one judgment with 1/2 as probability tag. Moreover, for a derivation ∇′

that does not contain an application of [Ind], the bound B(tA,"q)(∇
′) is negligible in the security parameter

if tA, all qH in #q, and qD are polynomial in the security parameter. This can be proved by induction on
the structure of ∇′:

Case [Opt], [Perm], [Split], [Merge], [Sub], [Fail1,2], [Find], [Conv], and [PAnd1,2] Follow from the in-
ductive hypothesis.

Case [Eqs(!)], [PEqs(!)] Since ! is interpreted as a non-constant polynomial in the security parameter,
the bound 2−! is negligible.

Case (extended) [Rnd(!, H)] and [PRnd(!, H)] Since ! is interpreted as a non-constant polynomial,
and all qH in #q are polynomial in the security parameter, the bound q "H × 2−! is negligible.

47

G1
def
= G0 where

D(c) =
foreach H ∈ H do histLH

[nD]← LH ;
histc[nD]← c;
histmb

[nD]← mb;

if 〈[T]〉
"H(#pk, #sk, c,L "H) then

return 〈[t]〉
"H(#pk, #sk, c)

return ⊥

Main =
i $← {0, . . . , qD − 1};
foreach H ∈ H do histLH

← ∅;
histc ← ∅;
histmb

← ∅;
G0.Main

G2
def
= G1 where

D(c) =
foreach H ∈ H do histLH

[nD]← LH ;
histc[nD]← c;
histmb

[nD]← mb;

if

(

〈[Ask(H, e)]〉
"H(#pk, #sk, c,L "H) ∨

〈[e = e#]〉
"H(#pk, #sk, c,mb)

)

then

if 〈[T]〉
"H(#pk, #sk, c,L "H) then

return 〈[t]〉
"H(#pk, #sk, c)

return ⊥

G′
3

def
= G2 where

D(c) =
foreach H ∈ H do histLH

[nD]← LH ;
histc[nD]← c;
histmb

[nD]← mb;

if 〈[T ∧ Ask(H, e)]〉
"H(#pk, #sk, c,L "H) then

return 〈[t]〉
"H(#pk, #sk, c)

else return ⊥

G3
def
= G2 where

D(c) =
foreach H ∈ H do histLH

[nD]← LH ;
histc[nD]← c;
histmb

[nD]← mb;
if nD = i then ci ← c ; halt // (∗)

if 〈[T ∧ Ask(H, e)]〉
"H(#pk, #sk, c,L "H) then

return 〈[t]〉
"H(#pk, #sk, c)

else return ⊥

ψ def
= ∃i. 0 ≤ i < qD ∧

(let c = histc[i] and L "H = #histLH
[i] and v = 〈[e]〉

"H(#pk, #sk, c) in

〈[T]〉
"H(#pk, #sk, c,L "H) ∧ v /∈ LH ∧ (histmb

[i] = ⊥ ∨ v 1= 〈[e#]〉
"H(#pk, #sk,mb)))

ξ def
= ∃i. 0 ≤ i < qD ∧ (in 〈[T ∧ e = e#]〉

"H(#pk, #sk, histc[i], #histLH
[i], histmb

[i]))

(∗) : Note that we could also implement halt by prefixing Main with halted ← false,

using halted ← true in place of halt, and replacing all commands c with if ¬ halted then c.

Figure 10: Games and events used in proof of [Bad] rule. See Figure 11 for remaining definitions.

48

G4
def
= G3 where

Main =
i $← {0, . . . , qD − 1};
x# ← ⊥;
LD ← nil;
nD ← 0;
foreach f ∈ F do (pkf , skf)← KGf ;
foreach H ∈ H do LH ← nil; initH ;
foreach r ∈ R do r $← {0, 1}|r|;

(m0,m1,σ)← A
"HA,D1

1 (#pk);
b $← {0, 1};

x# ← H(〈[e#]〉
"H(#pk, #sk,mb));

c# ← 〈[c#{x#/H(e#)}]〉
"H(#pk, #sk,mb);

b̄← A
"HA,D2

2 (c#,σ);

xi ← H(〈[e]〉
"H(#pk, #sk, ci))

D(c) =
if nD = i then ci ← c ; halt

else

if

(

〈[Ask(H, e)]〉
"H(#pk, #sk, c,L "H) ∨

〈[e = e#]〉
"H(#pk, #sk, c,mb)

)

then

x← H(〈[e]〉
"H(#pk, #sk,mb));

if 〈[T{x/H(e)}]〉
"H(#pk, #sk, c,L "H) then

return 〈[t{x/H(e)}]〉
"H(#pk, #sk, c)

return ⊥

G6
def
= G5 where

Main =
i $← {0, . . . , qD − 1};
x# ← ⊥;
LD ← nil;
nD ← 0;
foreach f ∈ F do (pkf , skf)← KGf ;
foreach H ∈ H do LH ← nil; initH ;
foreach r ∈ R do r $← {0, 1}|r|;

(m0,m1,σ)← A
"HA,D1

1 (#pk);
b $← {0, 1};

x# ← H(〈[e#]〉
"H(#pk, #sk,mb));

c# ← 〈[c#{x#/H(e#)}]〉
"H(#pk, #sk,mb);

b̄← A
"HA,D2

2 (c#,σ);

xi $← {0, 1}|ran(H)|

ψi
def
= (let c = histc[i] and L "H = #histLH

[i] and v = 〈[e]〉
"H(#pk, #sk, c) in

〈[T]〉
"H(#pk, #sk, c,L "H) ∧ v /∈ LH ∧ (histmb

[i] = ⊥ ∨ v 1= 〈[e#]〉
"H(#pk, #sk,mb)))

ψ′ def
= 〈[T]〉

"H(#pk, #sk, ci ,L "H) ∧ 〈[e]〉
"H(#pk, #sk, ci) /∈ LH ∧ 〈[e]〉

"H(#pk, #sk, ci) = 〈[e#]〉
"H(#pk, #sk,mb)

ρ def
= 〈[T{xi/H(e)]〉

"H(#pk, #sk, ci , xi ,L "H) ∧ 〈[e]〉
"H(#pk, #sk, ci) /∈ LH ∧ 〈[e]〉

"H(#pk, #sk, ci) 1= 〈[e#]〉
"H(#pk, #sk,mb))

Figure 11: Games and events used in proof of [Bad] rule.

49

Case (extended) [OW!
k(f, #H)] Observe first that since tA and all qH in #q are polynomial in the security

parameter, tI is also polynomial. Hence, since (f, k, !) ∈ Γ, the bound Succs-pd-OW
Θf

(k, !, q "H , tI) is negligible
in the security parameter.

Case [False] Trivial.
Case [Bad] Follows from inductive hypothesis and the fact that qD is polynomial in the security pa-

rameter.
Case [Pub(F, T, t)] Observe first that since tA, all qH in #q, and qD are polynomial in the security

parameter, and T, t do not contain symbols of the form f−1, tS is also polynomial. Similarly, all qH in #qS

are polynomial, because the derivation does not depend on the security parameter and Qi(T),Qi(t) are
constants.

Therefore, B(tA,"q)(∇) is of the form 1/2 + ν for some negligible function ν, and 2B(tA,"q)(∇) − 1 = ν is
negligible.

B Proof Generation

The proof generation mechanism offers an alternative method to validate the soundness of the logic. In
the long term, we plan to provide a tight integration of ZooCrypt and EasyCrypt, in particular as a means
to enhance automation in the latter.

The proof generation mechanism takes as input a valid derivation in the CPA logic and outputs an
EasyCrypt proof script that can be verified independently. Generation is done in four steps:

1. build a context that declares all size variables, operator, constants and global variables required in
the different games of the proof;

2. build the sequence of games, including the code of the inverters for leaves in the proof tree corre-
sponding to applications of rule [OW];

3. output judgments in the relational logic of EasyCrypt to justify all branches in the derivation tree,
inferring the necessary probability inequalities from them;

4. prove the concluding claim by combining all previous derived inequalities.

Currently, the proof generation mechanism is restricted to derivations that do not use the rule [Fail2]—this
restricted class of derivations accounts for most examples in the literature. Extending the mechanism to
the full CPA logic poses no difficulty.

Extending the proof generation mechanism to valid derivations of the CCA logic is less direct. It requires
providing proof scripts to validate all instances of the [Bad] rule. We have written an EasyCrypt proof that
validates the first application of the [Bad] rule in the proof of OAEP—the proof essentially follows the
soundness argument given in the previous section. The proof could be used as a template for other cases;
however, we believe that a better alternative is to adapt the proof generation mechanism to the forthcoming
release of EasyCrypt and use its module and instantiation mechanisms to generate compact proof scripts.

50

	Introduction
	Cryptographic Background
	Padding-Based Public-Key Encryption
	Security of Padding-Based Encryption Schemes

	Symbolic Tools
	Syntax and Semantics of Expressions
	Equality and Deducibility
	Inequality and Static Distinguishability

	Proof Systems
	Chosen-Plaintext Security
	Chosen-Ciphertext Security
	Concrete Bounds
	Soundness
	Examples
	OAEP
	PSS-E

	Attacks
	Universal Attacks
	Existential Attacks

	Experimental Validation
	Security Analysis
	Practical Interpretation for RSA
	Generation of Encryption Schemes
	Experiments

	Related Work
	Conclusion
	Definitions and Proofs
	Algebraic Expressions as Programs
	Soundness of Deducibility and Apartness
	Soundness of CPA logic
	Soundness of CCA logic

	Proof Generation

