
5PM: 5ecure Pattern Matching?

Joshua Baron,2 Karim El Defrawy,2 Kirill Minkovich,2 Rafail Ostrovsky,1 and Eric Tressler2

1 Departments of Mathematics and Computer Science, UCLA, Los Angeles, CA, USA 90095

2 Information and System Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA, 90265

{jwbaron,kmeldefrawy,kminkovich,eptressler}@hrl.com, rafail@cs.ucla.edu

Abstract. In this paper we consider the problem of secure pattern matching that allows single-

character wildcards and substring matching in the malicious (stand-alone) setting. Our protocol, called

5PM, is executed between two parties: Server, holding a text of length n, and Client, holding a pattern

of length m to be matched against the text, where our notion of matching is more general and includes

non-binary alphabets, non-binary Hamming distance and non-binary substring matching.

5PM is the first secure expressive pattern matching protocol designed to optimize round complexity

by carefully specifying the entire protocol round by round. In the malicious model, 5PM requires

O((m+ n)k2) bandwidth and O(m+ n) encryptions, where m is the pattern length and n is the text

length. Further, 5PM can hide pattern size with no asymptotic additional costs in either computation or

bandwidth. Finally, 5PM requires only two rounds of communication in the honest-but-curious model

and eight rounds in the malicious model. Our techniques reduce pattern matching and generalized

Hamming distance problems to a novel linear algebra formulation that allows for generic solutions

based on any additively homomorphic encryption. We believe our efficient algebraic techniques are of

independent interest.

1 Introduction

Pattern matching is fundamental to computer science. It is used in many areas, including text

processing, database search [1], networking and security applications [2] and recently in the context

? This work was done while the first author was at UCLA. The work of the first and fourth author is supported in
part by NSF grants CCF-0916574, IIS-1065276, CCF-1016540, CNS-1118126, CNS-1136174, and by US-Israel BSF
grant 2008411. It was also supported by the OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research Award and Lockheed-
Martin Corporation Research Award. The material contained herein is also based upon work supported by the
Defense Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-
11-1-0392. The views expressed are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government. The authors would like to thank Jonathan Katz, Sky Faber and
Matt Cheung for helpful discussions and comments.

1 c© 2011 HRL Laboratories, LLC. All Rights Reserved

of bioinformatics and DNA analysis [3,4,5]. It is a problem that has been extensively studied, re-

sulting in several efficient (although insecure) techniques to solve its many variations, e.g., [6,7,8,9].

The most common interpretation of the pattern matching problem is the following: given a finite

alphabet Σ, a text T ∈ Σn and a pattern p ∈ Σm, the exact pattern matching decision problem

requires one to decide whether or not a pattern appears in the text. The exact pattern matching

search problem requires finding all indices i of T (if any) where p occurs as a substring starting

at position i. If we denote by Ti the ith character of T , the output should be the set of match-

ing positions MP := {i | p matches T beginning at Ti}. The following generalizations of the exact

matching problem are often encountered, where the output in all cases is the set MP :

– Pattern matching with single-character wildcards1: There is a special character “∗” /∈ Σ that

matches any single-character of the alphabet, where p ∈ {Σ ∪{∗}}m and T ∈ Σn. Using such

a “wildcard” character allows one pattern to be specified that could match several sequences

of characters. For example the pattern “TA∗” would match any of the following character

sequence in a text2: TAA, TAC, TAG, and TAT .

– Substring pattern matching: Fix some l ≤ m; a match for p is found whenever there exists in

T an m-length string that differs in l characters from p (i.e., has Hamming distance l from

p). For example, the pattern “TAC” has m = 3. If l = 1, then any of the following words will

match: ∗AC, T ∗ C, or TA∗; note that this is an example of non-binary substring matching.

A secure version of pattern matching has many applications. For example, secure pattern matching

can help secure databases that contain medical information such as DNA records, while still al-

lowing one to perform pattern matching operations on such data. The need for privacy-preserving

DNA matching has been highlighted in recent papers [10,11,12]. In addition to the case of DNA

matching, where substring matching may be particularly useful, Hamming distance-based approx-

imate matching has also been demonstrated in the case of secure facial recognition [3]. We note

that both of these settings require computation over non-binary alphabets.

1 Such wildcards are also called “do not cares” and “mismatches” in the literature.
2 Here and throughout, we use the DNA alphabet (Σ = {A,C,G, T}) for examples.

2

Paper NB Hamming Exact Wildcard NB Substring Security
Distance Matching Matching Matching

[13] No Yes No No HBC/M

[14] Yes∗ Yes Yes Yes∗ HBC/M

[15] Yes No∗∗ No∗∗ No∗∗ HBC

5PM Yes Yes Yes Yes HBC/M
Table 1. Comparison of previous protocol functionality, NB=non-binary HBC=honest but curious,
M=malicious, *=using unary encoding and additional tools, **=can be extended

1.1 Our Contributions

This paper presents 5ecure Pattern Matching (or 5PM), a new protocol for arbitrary alphabets that

addresses, in addition to exact matching, more expressive search queries including single-character

wildcards and substring pattern matching, and also provides the ability to hide pattern length.

5PM has communication complexity sublinear in circuit size (as opposed to general MPC, which

has communication complexity linear in circuit size) to securely compute non-binary substring

matching in the malicious model. In addition, our extension of Hamming distance computation

to substring matching has minimal overhead; our protocol makes a single computation pass per

text element, even for multiple Hamming distance values, and therefore is able to securely compute

non-binary substring matching efficiently (see Table 1 for a comparison of protocol functionality

and Tables 2 and 3 for a comparison of protocol overhead).

5PM performs exact, single-character wildcards, and substring pattern matching in the honest-

but-curious and malicious (static corruption) models. Our malicious model protocol requires O((m+

n)k2) bandwidth complexity. Further, our protocol can be specified to require two (one-way) rounds

of communication in the semi-honest model and eight (one-way) rounds of communication in the

malicious model.

We construct our protocols by reducing the problems of Hamming distance and pattern match-

ing, including single-character wildcards and substring matching, to a sequence of linear operations.

We then rely on the observation that these linear operations, such as the inner products and matrix

multiplication, can be efficiently computed in the malicious model using additively homomorphic

encryption schemes.

3

Paper Encryptions Exponentiations Multiplications Bandwidth Rds

[16] O(mn) O(mn) O(mn) O(mnk2) O(1)

[14] O(n+m) O(n logm) O(nm) O((n+m)k2) O(1)

5PM O(n+m) O(nm) O(nm) O((n+m)k2) 8

Table 2. Detailed comparison with [14] and [16] for single-character wildcards and substring match-
ing in malicious model with text length=n, pattern length=m, security parameter=k, rounds=Rds.

Paper Encryptions Exponentiations Multiplications Bandwidth Rds

[15] O(n+m) O(nm) O(nm) O((nm)k) O(1)

5PM O(n+m) O(n+m) O(nm) O((n+m)k) 2

Table 3. Detailed comparison with [15] for non-binary substring matching in HBC model with
text length=n, pattern length=m, security parameter=k, rounds=Rds.

The security requirements (informally) dictate that the party holding the text learns nothing

except the upper bound on the length of the pattern, while the party holding the pattern only

learns either a binary (yes/no) answer for the decision problem or the matching positions (if any),

and nothing else.

1.2 Comparison to Previous Work

Exact Matching. In the exact pattern matching setting, the algorithm of Freedman, Ishai,

Pinkas and Reingold [13] achieves polylogarithmic overhead in m and n and polynomial overhead

in security parameters in the honest-but-curious setting. Using efficient arguments [17,18] with

the modern probabilistically checkable proofs (PCPs) of proximity [19], one can extend (at least

asymptotically) their results to the malicious (static corruption) model. However, the protocol in

[13] works only for exact matching and does not address more general problems, including single-

character wildcards and substring matching, which are the main focus of our work. Other protocols

that address secure exact matching (and not wildcard or substring matching) are [12,20,21,22,23,11];

of these, only [22] obtains (full) security in the malicious setting. We note that [23] is more efficient

than [13], but only in the random oracle model; here, we are interested in standard security models.

Single-Character Wildcards and Substring Matching. Recently, Vergnaud [14] built on

the work of Hazay and Toft [16] to construct an efficient secure pattern matching scheme for wildcard

matching and substring matching (requiring t runs over the preliminary matching result to search

4

for t different Hamming distance values, which is also required by 5PM) in the malicious adversary

model. More specifically, [14,16] take advantage of the fact that (pi− ti)2 equals 0 if binary values

pi and ti are equal and 1 if they are not equal; therefore, binary Hamming distance can essentially

be computed by counting the number of 1s in a particular polynomial-based computation. However,

when pi and ti are non-binary, it is unknown how to obtain 0 when pi and ti equal, and 1 (or some

other fixed value) when they are not equal using oblivious polynomial evaluations.

However, non-binary elements can be computed by unary encoding; that is, an element α ∈ Σ

can be encoded as an element α′ ∈ {0, 1}|Σ| with all 0s except for a single 1 in the place representing

α (lexicographically). There are two subtleties of such an approach. The first is that if α 6= β, then

α′ and β′ will have Hamming distance 2 instead of 1; the second is, in the malicious case, zero

knowledge proofs are needed to demonstrate that α′ is well formed.

[14] requires O(m+ n) encryptions, O(n logm) exponentiations, O(nm) multiplications (of en-

crypted elements), and O(n+m) bandwidth, all in a constant number of rounds. By contrast, 5PM

has the same overhead except for O(nm) exponentiations (see Table 2). However, our work is of

interest for several reasons. The first is that we have implemented our protocol and believe it to

be more efficient (additional work is needed on this front). The second is that our techniques are

of independent interest and may be extended to additional functionalities. Finally, the protocol

presented here is fully specified; by contrast, additional work is needed to transform the work of

[14] into a protocol that can support non-binary alphabets for substring matching or to calculate

Hamming distance in the malicious case.

Non-binary Hamming Distance. Jarrous and Pinkas [15] gave the first construction of a

secure protocol for computing non-binary Hamming distances. In order to count the non-binary

mismatches, they leverage 1-out-of-2 oblivious transfers. 5PM can also compute non-binary Ham-

ming distance even when the text and pattern have the same length (and where the output is not

blinded to only reveal whether or not a pattern match occurred). We note that [15] can be used to

implement exact and substring matching with additional tools to blind Hamming distance output

5

(for instance, see [14]). [15], to compare two strings of length n, requires O(n) 1-out-of-2 OTs, O(n)

multiplications of encryptions and O(nk) bandwidth, while 5PM requires O(n) exponentiations

(which require less computation than OTs), O(n2) multiplications, and O(nk) bandwidth. The ad-

vantage of 5PM over [15] is twofold: the first is that 5PM is proven secure in the malicious model

while [15] is not; the second is that 5PM, in both the honest-but-curious and malicious models,

amortizes well in the substring matching setting, while [15] does not amortize because it cannot

reuse OT outputs to compute substring matching (see Table 3).

Other Techniques. In the most general case, secure exact, approximate and single-character

wildcards pattern matching is an instance of general secure two-party computation techniques (for

instance, [24,25,26,27]). All of these schemes have bandwidth and computational complexity at

best linear in the circuit size. For instance, a naive implementation of Yao [24] requires bandwidth

O(mn) in the security parameter. In contrast, we aim for a protocol where circuit size is O(mn),

yet we achieve communication complexity of O(m+ n).

Finally, we observe that with the construction of fully homomorphic encryption (FHE) schemes

[28], the following “folklore” construction can be executed for any pattern matching algorithm:

Client encrypts its pattern using an FHE scheme and sends it to Server. Server applies the ap-

propriate pattern matching circuit to the encrypted pattern (where the circuit output is a yes/no

indicating whether a match exists or not), and sends the FHE circuit output to Client. Client

decrypts to obtain the answer. Such a scheme requires O(m) bandwidth, but since FHE schemes

are not yet practical, we view the 5PM protocol outlined here as an efficient and practical solution

to secure pattern matching with single-character wildcards and substring matching.

2 Preliminaries

The rationale behind our secure 5PM protocol is based on a modification of an insecure pattern

matching algorithm (IPM) [29] that can perform exact matching, exact matching with single-

character wildcards and substring matching within the same algorithm. In Section 3.1, we show

6

how our modified algorithm can be reduced to basic linear operations whose secure and efficient

evaluation allows us to obtain our 5PM protocol.

2.1 Insecure Pattern Matching (IPM) Algorithm

To illustrate how our modified algorithm works, we begin by describing how it performs exact

matching; we then show how it handles single-character wildcards and substring matching.

2.1.1 Exact Matching. IPM involves the following steps:

a. Inputs: An alphabet Σ, a text T ∈ Σn and a pattern p ∈ Σm.

b. Initialization: For each character in Σ, the algorithm constructs a vector, here termed a

Character Delay Vector (CDV), of length equal to the pattern length, m. These vectors

are initialized with zeros. For example, if the pattern is: “TACT” over Σ = {A,C,G, T}, then

the CDV s will be initialized to: CDV (A) = [0, 0, 0, 0], CDV (C) = [0, 0, 0, 0], CDV (G) =

[0, 0, 0, 0] and CDV (T) = [0, 0, 0, 0].

c. Pattern preprocessing : For each pattern character pi (i ∈ {1, ...,m}), a delay value, drpi , is

computed to be the number of characters from pi to the end of the pattern, i.e., drpi = m− i

for the rth occurrence of pi in p. The drpith position of CDV (pi) is set to 1. For example the

CDV s of “TACT” would be:

CDV (A) = [0, 0, 1, 0] because d1
A = 4− 2 = 2

CDV (C) = [0, 1, 0, 0] because d1
C = 4− 3 = 1

CDV (G) = [0, 0, 0, 0] because G 6∈ p

CDV (T) = [1, 0, 0, 1] because d1
T = 4− 4 = 0 and d2

T = 4− 1 = 3

d. Matching pass and comparison with pattern length: A vector of length n called the Activation

Vector (AV) is constructed and its elements are initialized with zeros. For each input text

character Tj , CDV (Tj) is added element-wise to the AV from position j to position min(n, j+

m − 1). To determine if there was a pattern match in the text, after these operations the

algorithm checks (when j ≥ m) if AVj = m. If so, then the match started at position j−m+1.

The value j −m + 1 is added to the set of matching positions (MP). Note that n − AVj is

the non-binary Hamming distance of the pattern and the text staring at position j −m+ 1.

7

The intuition behind the algorithm is that when an input text character matches a character

in the pattern, the algorithm optimistically assumes that the following characters will correspond

to the rest of the pattern characters. It then adds a 1 at the position in the activation vector

several steps ahead, where it would expect the pattern to end (if the character appears in multiple

positions in the pattern, it adds a 1 to all the corresponding positions where the pattern might

end). If all subsequent characters are indeed characters in the pattern, then at the position where

a pattern would end the number of added 1s will sum up to the pattern length; otherwise the sum

will be strictly less than the pattern length. This algorithm does not incur false positives and always

indicates when (and where) a pattern occurs if it exists, as shown in [29].

Insecure Pattern Matching (IPM) Example The pattern to be matched is “TACT” and the

text is “GATTACT...”. The first step is to construct the CDV using the delays for the characters of

the pattern “TACT”. Delays for “T” will be 3 and 0, for “A” will be 2, and for “C ” will be 1. These

delays are then converted to CDV s as shown in Figure 1. The activation vector will be initialized

to all zeros. The characters of the text are then considered one at a time. For each input text

character (T [j]) at position j in text, the following steps have to be taken: (1) retrieve CDV [T [j]];

(2) add elements of CDV [T [j]] to elements of activation vector from position j to j + m − 1 and

(3) check if AV [j] is equal to the pattern length (|TACT | = m = 4).

2.1.2 Single-Character Wildcards, Pattern Hiding and Substring Matching. single-

character wildcards can be handled in IPM by representing a single-character wildcard with a

special character,“∗” which is not in the text alphabet. When “∗” is encountered in the pattern

preprocessing phase it is ignored, i.e., no 1s are added to any CDV . Additionally, at the last step

when elements of the AV are searched in the comparison phase, the threshold value being compared

against will be m− l instead of m, where l is the number of occurrences of “∗” in the pattern. The

intuition behind single-character wildcards is that by reducing the threshold for each wildcard, the

algorithm implicitly skips matching that position in the text, allowing that position of the pattern

to correspond to any character. This operation does not incur any false positives for the same

reason that the exact matching IPM algorithm does not: there, for each pattern p, there is only

8

Fig. 1. Example of IPM’s operation

9

one encoding into CDV s and only one sequence of adding CDV s as one moves along the text that

could add up to m. The same reasoning holds when “∗” is present in p (except that the sequence

adds to m− l).

We note that, using single-character wildcards, one can always hide pattern length by setting

p′ as the concatenation of p and a string of n−m wildcards, ∗n−m, and using p′ to execute pattern

matching for p.

Substring matching, or matching text substrings of Hamming distance m− l from the pattern,

is handled similarly to single-character wildcards; the threshold value being compared against in

the AV is decreased to m− l. For further details, we refer the reader to [29].

2.2 Preliminary Cryptographic Tools

This section outlines preliminary cryptographic tools required for our protocols. For x, y ∈ Znq , we

define the inner product of x and y over Zq, denoted 〈x, y〉, as
∑
xiyi mod q.

Additively Homomorphic Encryption: We make use of additively homomorphic semantically

secure encryption schemes. For concreteness, we concentrate in the rest of the paper on the addi-

tively homomorphic ElGamal encryption scheme whose security depends on the Decisional Diffie-

Hellman (DDH) computational hardness assumption. An additively homomorphic ElGamal en-

cryption scheme [30] is instantiated by choosing a group of appropriate prime order q, Gq, with

generator g, and setting the secret-key to be x ∈ Zq and the public-key to be (g, h = gx). To

encrypt a message m one chooses a uniformly random r ∈ Zq and computes (gr, gmhr). To decrypt

a pair (α, β), one computes logg
β
αx . It is important to note for additive ElGamal that the decryptor

has to both decrypt and also compute a discrete logarithm to discover the message. However, our

scheme only requires a determination of whether an encrypted value is of a 0 or not, which can

accomplished without computing logarithms.

Threshold Encryption: The malicious model version of 5PM requires an additively homomor-

phic, semantically secure, threshold encryption scheme [31]. While we use threshold ElGamal, in

practice, any scheme is acceptable if it satisfies the required properties and supports the needed

zero-knowledge arguments. Threshold ElGamal in the two party case can be informally defined as

10

follows [32]: party P1 has share x1 and party P2 has share x2. The parties jointly set the secret-key

to be x = x1 + x2 (this can be performed without revealing x1 and x2, see subprotocol πencr in

Section 3.3). Without loss of generality, P1 partially decrypts (α, β) by sending (α, β
αx1) to P2, who

fully decrypts (α, β) by computing β
αx1αx2 = β

αx1+x2
. We denote the partial decryption algorithm

for party Pi as DPi .

Commitment Schemes: For the malicious model protocol, we will make use of perfectly hiding,

computationally binding commitment schemes (for further discussion, see [33]). The Pedersen com-

mitment scheme [34] is a well-known example of such a commitment scheme; for a multiplicative

group of prime order q, Gq and for fixed generators g, h ∈ Gq, commitment to message s using

randomness r is gshr = comm(g, h, r, s).

Zero-Knowledge Arguments of Knowledge: In order to construct a protocol that guarantees

that each party behaves properly even in the malicious setting, we utilize efficient interactive zero-

knowledge arguments of knowledge (ZK-AoKs). For further details, see Section 4.

2.3 Computing Linear Operations Using Additively Homomorphic Encryption

Schemes.

Our secure pattern matching protocol relies on the following observations about linear operations

and additively homomorphic encryption schemes. In what follows, let E be the encryption algorithm

for an additively homomorphic encryption scheme for key pair (pk, sk). Suppose the plaintext group

G can be expressed as Zn for some n ∈ N; in particular, G is a ring. Let Ma,b(G) denote the set of

matrices of size a× b with entries in G.

2.3.1 Matrix Multiplication. Consider two matrices, A and B, where A ∈ Mk,l(G) and

B ∈ Ml,m(G). Suppose that P1 possesses pk, Epk(A), the entry-wise encryption of A , and also

the unencrypted matrix B. Then P1 can compute Epk(A ·B), the encryption of the multiplication

of A and B under the same pk. Such an operation is possible because one can obtain an encryp-

tion of the inner product over G of an unencrypted vector (x1, ..., xm) with an encrypted vector

(E(y1), ..., E(ym)) by computing ΠE(yi)
xi = E(

∑
xiyi)).

11

2.3.2 Matrix Operators. Consider a matrix A ∈Mk,l(G). One can construct a k × (k + l− 1)

matrix A′ by initializing A′ as a matrix with all 0s and then, for each row 1 ≤ i ≤ k, setting

(A′(i, i), ..., A′(i, i + l − 1)) = (A(i, 1), ..., A(i, l)). We denote such a function by A′ ← Stretch(A),

and note that since this function is a linear operator, it can be computed using matrix multiplication.

We observe that for any encryption scheme E, E(Stretch(A)) = Stretch(E(A)), when E is applied

to each entry in A.

Consider a matrix A ∈ Mk,l(G). We denote by Cut(A, j) as the matrix A′ ∈ Mk,l−2j+2 such

that for 1 ≤ a ≤ k, 1 ≤ b ≤ l − 2j + 2, A′(a, b) = A(a, b + j − 1). In particular, such a function

outputs the middle l − 2j + 2 columns of Mk,l. We note that Cut is a simple projection operator

and is also computable by matrix multiplication. We observe that for any encryption scheme E,

E(Cut(A, j)) = Cut(E(A), j)

Finally, consider a matrix A ∈ Mk,l(G). We denote by ColSum(A) the function that takes as

input A and outputs a 1× l vector whose ith entry is the sum of all entries in the i column of A. In

particular, ColSum(A) = [1....1] · A. We observe that for any additively homomorphic encryption

scheme E, ColSum(E(A)) = E(ColSum(A)).

Since we will be composing these functions, a shorthand for their composition will be convenient.

For matricesA ∈Mk,l(G) andB ∈Ml,m(G), we denote the composition function ColSum(Cut(Stretch(A·

B), j)) by PM5PM (A,B, j).

2.3.3 Searching an Encrypted Vector, πV Find. Suppose party P1 possesses (pk, sk) for an

additively homomorphic encryption algorithm E, and a single value m ∈ G and P2 possesses a

vector of l distinct encryptions Epk(vec), where vec = (x1, . . . , xl) ∈ Gl. Then P1 can determine if

E(vec) contains an encryption of m while learning nothing else about vec, while P2 cannot learn

m, through the following protocol πV Find:

(a) P1 computes E(−m) from −m. P1 sends E(−m) to P2.

(b) P2 computes E(vec′) by multiplying (via the group operation of the ciphertext space) E(−m)

to each encrypted entry in E(vec). Note that an entry in E(vec′) will be an encryption of 0

if and only if one of the encryptions of E(vec) was an encryption of m. P2 computes E(vecr)

12

from E(vec′) by exponentiating each encrypted entry of E(vec′) by an (independent) random

exponent. P2 sends E(vecr) to P1.

(c) P1 decrypts E(vecr) to obtain vecr; if a 0 exists at position i, the ith position of E(vec) is

E(m).

Note that if P2 wishes to hide the position of E(m) from P1, P2 could randomly permute the

positions of E(vecr) and send the permuted vector to P1.

2.3.4 Efficiently Determining Equality of Two Matrices, πV ecEQ. Suppose parties P1 and

P2 have agreed upon an additively homomorphic threshold encryption scheme Eth. Further, suppose

P1 and P2, possess encrypted matrices Eth(A) ∈ Mk,l(G
′) and Eth(B) ∈ Mk,l(G

′), respectively,

where the message space G′ is the group Zq, for a prime q. Let DPi denote the partial decryption

algorithm of party Pi. P1 and P2 wish to determine if their encrypted matrices are equal without

exchanging their decryptions. They can do so by hashing their encrypted matrices to a single group

element and exchanging the outcome of the hashes. More specifically, an affine hash function Zklq →

Zq can be specified by letting P1 and P2 jointly compute a uniformly random pair (a, b) ∈ Zklq ×Zq

using standard commitment techniques and setting the hash to hf(x) = 〈x, a〉 + b, where 〈·, ·〉 is

the inner product over Zq (here, we consider the matrices as kl-length strings). Note that such a

hash function can be computed on encrypted strings because the encryption scheme is additively

homomorphic. Denote by comm a (perfectly hiding, computationally binding) commitment scheme;

in practice we use Pedersen commitments [34]. We denote the following subprotocol by πV ecEQ:

(a) P1 selects (a1, b1) ∈ Zklq × Zq uniformly at random and computes Eth(b1). P1 computes and

sends

comm(a1), comm(Eth(b1)), comm(Eth(A)) to P2.

(b) P2 selects (a2, b2) ∈ Zklq ×Zq uniformly at random and computes Eth(b2). P2 sends a2, Eth(b2), Eth(B)

to P1.

(c) P1 sets a = a1+a2, Eth(b) = Eth(b1+b2) and computes z1 = Eth(〈a,A〉+b), z2 = Eth(〈a,B〉+

b). P1 decommits to a1, Eth(b1) and Eth(A) to P2 and sends DP1(z1), DP1(z2) to P2.

13

(d) P2 aborts if it does not accept the decommitments, else P2 sets a = a1 + a2, Eth(b) =

Eth(b1 + b2) and computes z1 = Eth(〈a,A〉 + b), z2 = Eth(〈a,B〉 + b). P2 sends DP2(z1),

DP2(z2), DP2(DP1(z1)), and DP2(DP1(z2)) to P1.

(e) P1 aborts ifDP2(DP1(z1)) 6= DP2(DP1(z2)), otherwise P1 sendsDP1(DP2(z1)) andDP1(DP2(z2))

to P2.

(f) P2 aborts if DP1(DP2(z1)) 6= DP1(DP2(z2)).

The bandwidth complexity of πV ecEQ is dominated by the size of Eth(A) (and Eth(B)). Only

with probability 1/q will the decryptions equal each other when A 6= B because the hash function

is chosen uniformly at random. In the malicious case, arguments of consistency for correct partial

decryptions will also be needed.

3 5PM Protocol

This section utilizes the above observations and cryptographic tools to construct the secure pattern

matching protocol (5PM). We develop πH5PM for the honest-but-curious adversary model and πM5PM

for the malicious (static corruption) adversary model.

3.1 Converting IPM to Linear Operations.

For a fixed alphabet Σ, a text T ∈ Σn, and pattern p ∈ (Σ ∪ {∗})m, IPM can be represented in

terms of linear operations described in Section 2.3 as follows:

a. The text T can be transformed into an n×|Σ| matrix, MT . The transformation is performed

by applying a unary encoding of alphabet characters to T , i.e., MT (i, Ti) = 1, ∀i ∈ {1, ..., n};

all other entries in MT are 0. We denote the algorithm that computes MT from T as MT ←

GenMT
(T).

b. The CDV s of alphabet characters can be grouped into a |Σ|×m matrix, MCDV . This step is

equivalent to constructing CDV s for alphabet characters (steps b and c in Section 2.1.1).We

denote the algorithm that compute MCDV from p as MCDV ← GenMCDV
(p).

c. Multiply MT by MCDV to obtain an n × m matrix MT (CDV) that represents T row-wise

in terms of CDV s, where the ith row is CDV (Ti). In reality, since MT and MCDV are 0/1

14

Notation Description Section

πH5PM Pattern matching algorithm secure in HBC adversary model 3.2

πM5PM Pattern matching algorithm secure in malicious adversary model 3.3

Key Key generation algorithm for homomorphic encryption scheme 2.2

E Homomorphic encryption algorithm 2.2

D Decryption algorithm for encryption scheme E 2.2

DPi Partial decryption algorithm for party Pi 2.2
using E for threshold encryption

Stretch(A) Function from n by m matrices to 2.3.2
n by n+m− 1 matrices that “stretches” rows of A

Cut(A,n) Function that outputs the first n columns of matrix A 2.3.2

ColSum(A) Function that outputs the sums of the columns of matrix A 2.3.2

PM5PM (A,B, n) Composition function ColSum(Cut(Stretch(A ·B), n)) 2.3.2

πV Find Two-party protocol that determines if encryption of P1’s value 2.3.3
exists in P2’s encrypted vector

GenCDV Algorithm with input of a pattern p ∈ (Σ ∪ {∗})m 3.1
outputs |Σ| ×m matrix MCDV

GenT Algorithm that on input of a text T ∈ Σn outputs 3.1
the n× |Σ| matrix MT

πV ecEQ Two-party protocol that determines equality 2.3.4
of two encrypted vectors (πM5PM)

Arel Arguments of consistency require for malicious protocol (πM5PM) 3.3.2

Table 4. Notation used for 5PM protocols

matrices, multiplication is more computationally expensive than necessary, and vectors can

simply be selected (as shown in IPM description in Section 2.1).

d. Compute MT (CDV) = Stretch(MT (CDV)). This transformation, jointly with the previous

step, constructs a matrix of CDV s where the ith row contains only CDV (Ti), which starts

in the ith position in the ith row (sets up step d in Section 2.1.1).

e. Compute AV = ColSum(Cut(MT (CDV),m)) to obtain the final activation vector AV of

length n −m + 1. Entries in AV are checked to see if any are equal to the threshold value

m, or m− l for single-character wildcards or substring matching (completes step d in Section

2.1.1).

A key observation is that if only one of MT and MCDV are encrypted, an encrypted activation

vector, E(AV) can be obtained by both parties as shown in Sections 2.3.1 and 2.3.2.

3.2 Honest-but-curious (HBC) 5PM Protocol

We begin by describing the intuition behind required modifications to secure IPM in the HBC

adversary model. We then describe details of the HBC protocol, πH5PM .

15

3.2.1 Protocol Intuition. For an additively homomorphic encryption scheme E, if Client sends

Server E(MCDV), by the reasoning of Sections 2.3 and 3.1, since the pattern matching operation

can be reduced to a sequence of linear operations (namely matrix multiplication and the functions

Stretch, Cut, and ColSum), Server can compute E(AV), an encrypted activation vector, using

only MT and E(MCDV). Since Client sends only E(MCDV) and E(m − l), Server learns nothing

about Client’s pattern due to semantic security of the encryption scheme.

Next, Client, for pattern matching thresholdm (orm−l in the single-character wildcards/substring

matching case) executes πV Find specified in Section 2.3.3, where Client uses E(AV), to discover

whether (and where) a pattern exists. By the security of πV Find, Server does not learn m and

Client learns nothing about E(AV) other than whether or not (and where, if the pattern matching

locations are not hidden by Server) an encryption of m exists in E(AV). In practice, Client sends

E(m) in the same (first) round as E(MCDV), and Server’s response to πV Find occurs in the second

round, concluding execution of the secure pattern matching protocol.

Client Server
Input: p ∈ (Σ ∪ {∗})m Input: T ∈ Σn

Initialization:

1) (pk, sk)← Key(1k)
2) MCDV ← GenCDV (p)
3) E(MCDV)←MCDV

E(−m+ l)← −m+ l
4)E(MCDV);E(−m+l);pkC−−−−−−−−−−−−−−−−−−→ Activation Vector Formation:

5) MT ← GenT (T);
E(AVS)← PM5PM (MT , E(MCDV),m)

6) E(AV rS)← πV Find(E(AVS , E(−m+ l)))
7) Optional: Permute E(AV rS)

Decrypting and Determining
6)E(AV r

S)
←−−−−−−−−−−−−−−−−−

Matches:
8) MP = {i | D(E(AV rS [i])) = 0}
Output: Output:
MP = {j|Tj ...Tj+m−1 = p} Nothing

Table 5. Overview of 5PM protocol for HBC adversary model, πH5PM . See Table 4 for notation.

3.2.2 πH
5PM Protocol Specification. Recall that, over a specified alphabet Σ, Server holds

text T ∈ Σn and Client holds a pattern p ∈ (Σ ∪ {∗})m. The output of Server is an encrypted

16

activation vector E(AV) of length n. We refer the reader to Sections 3.1 and 2.3.2 for the notation

used here. The protocol operation is as follows:

(a) Client computes (sk, pk) ← Key(1k) using the key generation algorithm of an additively

homomorphic encryption scheme, E.

(b) Client computes MCDV ← GenCDV (p). In the case where Client wishes to hide the length of

p, Client computes MCDV for the pattern p′ equal to the concatenation of p with ∗n−m.

(c) Client encrypts MCDV entry-wise using public-key pk to obtain E(MCDV).

(d) Client sends E(MCDV) and pk to Server. In addition, Client sends E(−m) (or E(−m+ l) in

the single-character wildcards or substring matching cases).

(e) Server computes MT ← GenT (T). Server computes E(AV) =

E(PM5PM (MT ,MCDV ,m)), which is computed as specified in Section 2.3.1 and Section 2.3.2.

(f) Server executes round 2 of πV Find (see Section 2.3.3) using E(−m) and E(AV). Server sends

output of the subprotocol, denoted E(AV r
S), to Client.

(g) Optional: Per πV Find, Server randomly permutes E(AV r
S) to hide possible pattern match

locations.

(h) Client executes round 3 of πV Find using E(AV r
S) to determine results of the pattern matching.

We note that πH5PM can perform substring matching for multiple substring lengths (such as for

a Hamming distance bound) simultaneously by sending multiple E(m − l) values at step 6 in the

above specification. Then, for each value of l, Server constructs a distinct E(AV) and sends Client a

distinct corresponding E(AV r
S) indicating matching locations for that l value. In particular, πH5PM

does not require multiple independent protocol executions to compute substring matching for a

range of substring length values. In addition, πH5PM can simply compute the Hamming distance

of the pattern with each consecutive m positions of the text by simply not executing πV Find and

sending the output of the protocol at step 5, and Client can decrypt to obtain all of the Hamming

distance values between the pattern and the text.

Theorem 1. Given an additively homomorphic semantically secure encryption scheme over a

prime-order cyclic group (Key,E,D), πH5PM is secure in the HBC model.

See Section 7 for a detailed security proof.

17

3.3 Malicious Model 5PM Protocol

In this section, we explain how to modify πH5PM to obtain a protocol, πM5PM , which is secure in

the malicious (static corruption) model. We describe an instantiation of πM5PM based on additively

homomorphic threshold ElGamal encryption (see Section 2.2) for concreteness; generalization to

other encryption schemes follows provided they have efficient Σ protocols for the statements re-

quired here. First, we explain intuition behind πM5PM . Second, we give interactive zero-knowledge

consistency arguments that will be required. Finally, we divide πM5PM into 6 subprotocols and de-

scribe their construction and how they are combined into the final protocol πM5PM . In the interest of

clarity and space, we leave the exact protocol specification and security proof to Sections 6 and 7,

respectively, of this paper. Note that this protocol, as noted in Section 2.1.2, can be modified to both

hide pattern length (by using, for pattern p, the pattern p′ equal to to p concatenated with ∗n−m)

and also to match against multiple substring values without multiple executions of the entire proto-

col (i.e., by sending multiple E(m−l) values and computing a new activation vector for each value).

3.3.1 Protocol Intuition. The 8 round protocol for the malicious model, πM5PM , consists of the

following six subprotocols:

(a) πencr: initializes an additively homomorphic threshold encryption scheme.

(b) πS,AV : allows Server to construct an encrypted activation vector for Client’s encrypted pattern

and Server’s text.

(c) πC,AV : allows Client to construct an encrypted activation vector for Client’s pattern and

Server’s encrypted text.

(d) πvec: allows Client and Server to verify that their activation vectors are equal without revealing

them.

(e) πrand: allows Server to send an encryption of its randomized activation vector to Client.

(f) πans: demonstrates to Client where the pattern matches the text (if at all).

The intuition behind constructing πM5PM is as follows: in πH5PM , only Server performs the com-

putation to obtain the activation vector, AV . In the malicious setting, Client has to verify that

Server correctly computed AV . Since Server performs O(nm) multiplications when computing AV

18

in πH5PM , requiring a zero-knowledge argument for each multiplication therefore would require band-

width of at least O(nm). Such overhead is unacceptable if bandwidth O(n+m) is desired.

We utilize a more bandwidth-efficient approach to ensure that a malicious Server has computed

the correct AV : in πM5PM , both Client and Server perform secure pattern matching independently

using the function PM5PM where one of MCDV and MT are encrypted, and then compare their

results. Each party computes an AV in parallel (see subprotocols πC,AV and πS,AV , respectively,

in Section 3.3.3) using an additively homomorphic threshold encryption scheme (instantiated using

subprotocol πencr in Section 3.3.3). To ensure that no cheating has occurred, Client and Server then

check that each other’s AV was computed correctly. Therefore, proving that Server has behaved

honestly is reduced to proving that Client and Server have obtained the same result from matching

p against T . To efficiently perform comparison of encrypted AV s, Client and Server check that their

encrypted AV s are equal using subprotocol πV ecEQ described in Section 2.3.4 (in addition to some

zero-knowledge arguments to demonstrate well-formedness). Only if hashed AV values match will

Server provide Client with its decrypted (and blinded) AV (using the subprotocols πrand and πans

in Section 3.3.3). The comparison subprotocol is denoted by πvec in Section 3.3.3.

Throughout, both Client and Server will have to use various arguments of consistency outlined

in Section 3.3.2 to prove that they have not deviated from the protocol.

There is one additional technical difficulty that we have to overcome: in order to prove security

we must provide simulators that simulate transcripts when interacting with adversarial parties (see

Section 7 for security definitions and simulator constructions). When constructing the Simulator

for Client’s view, Simulator receives the actual answer that it must provide to Client from the ideal

functionality only at the last moment (if Client does not abort). Thus, the Simulator must provide

a final answer which is not consistent with the previous interactions, while the real Server must

be unable to do so. To achieve this, we demonstrate that the Simulator can extract the knowledge

of the exponent of some h∗ specified by Client during the first subprotocol (πencr); then, the final

subprotocol (πans) utilizes a zero-knowledge argument of knowledge that demonstrates that either

the final randomized AV is correct or that Server knows the discrete logarithm of h∗. Since a real

Server cannot extract the discrete logarithm of h∗ but the Simulator can by construction, this

19

allows the Simulator to reveal the correct randomized AV even when it is inconsistent with the

previous outputs of the conversation. We stress that we do not use NP-reductions and rather build

highly efficient protocols to fit our needs.

3.3.2 Zero-Knowledge Arguments of Knowledge (ZK-AoKs) of Consistency. We first

describe five required interactive arguments which we rely on to prove statements required for the

πM5PM protocol. They are designed for use with the specified threshold ElGamal encryption scheme

(Section 2.2). We apply a standard construction outlined in Section 4 of this paper to transform

three-move arguments of knowledge and construct five-move ZK arguments of knowledge πDL,

πisBit, πeqDL and πfin, respectively. All ZK-AoKs are executed between a prover P and a verifier V

in five moves; we note that either Client or Server may execute the arguments of consistency as P

while the other party will then execute as V . πDL is the only ZK-AoK used on its own in πM5PM ; it

proves knowledge of a discrete logarithm of a public h = gx. πisBIT is a ZK-AoK that proves that

an encryption is either of a 0 or of a 1, πeqDL is a ZK-AoK that proves that two discrete logarithms

are equal, and πfin is a ZK-AoK that proves that either two discrete logarithms are equal or that

P knows the discrete logarithm of a public h = gx. The five required interactive arguments are:

(a) AM01, an AoK of Consistency for Matrix formation 0/1: P , for an l×u matrix of encryptions,

E(M), proves to V that each column of E(M) contains encryptions of 0 and at most one 1.

(b) AM1, an AoK of Consistency for Matrix formation 0/1-1: P , for an l×u matrix of encryptions,

E(M), proves to V that each row of E(M) contains encryptions of 0 and exactly one 1.

(c) APD, an AoK of Consistency for Partial Decryption: P , for a vector of l encryptions, (xi, yi)

and a vector of their l partial decryptions (x′i, y
′
i), proves to V that the partial decryptions are

correctly constructed.

(d) ARand, an AoK of Consistency for Randomization: P , for a vector of l encryptions (xi, yi) and

a vector of their exponentiations, (xrii , y
ri
i), proves to V that P knows ri for each i.

(e) AFD, an AoK of Consistency for Final Decryption: P , for a vector of l encryptions (xi, yi),

their partial decryptions (x′i, y
′
i), and some gw, proves to V that either P has computed all the

partial decryptions correctly or that possesses the discrete logarithm w of gw.

20

3.3.3 πM
5PM Protocol Outline. We provide the details of πM5PM by describing individual sub-

protocols that constitute it, πencr, πS,AV , πC,AV , πvec, πrand and πans. These subprotocols utilize

the interactive arguments described in Section 3.3.2 to prove various statements of consistency.

We denote by comm(s) as the (perfectly hiding, computationally binding) commitment of s, which

using Pedersen commitments [34] is gshr = comm(g, h, r, s). For the exact protocol specification

of πM5PM , including precisely how the subprotocols are interleaved so that πM5PM requires only 8

rounds, see the Section 6.2; we will however mention here during which global rounds (1 through

8) these subprotocols occur.

We remark that in our construction of ZK arguments of knowledge from Σ protocols, whenever

a ZK subprotocol is required, the first two rounds of the five round protocol can be completed in

parallel at the very beginning of the overall protocol πM5PM . Such “preprocessing” does not affect

security. Further, knowledge extraction used in the security proofs is not affected by this prepro-

cessing.

πencr is a two party protocol executed between Client and Server that initializes an additively

homomorphic threshold encryption scheme (e.g., ElGamal) and also sets up an independent “trap-

door” s∗ alluded to in Section 3.3.1 and required for the simulator in the security proof. In the

ElGamal case, for simplicity, we assume that Client and Server have already agreed on appropriate

prime q such that log q = O(k), Gq and g ∈ Gq. This subprotocol begins at the first global round

and ends at global round 6. Client chooses its secret-key sC and trapdoor s∗, and sets h1 ← gsC ,

h∗ ← gs
∗
. Client sends h1, h

∗ to Server. Client executes two parallel instantiations of πDL proving

knowledge of the discrete logs of h1 and h∗ (i.e., sC and s∗). Then, Server chooses its secret-key

sS , sets h2 ← gsS , and sends h2 to Client and executes πDL proving knowledge of the discrete

logarithm of h2 (i.e., sS). Both parties set the public-key to be h = h1h2 = gsC+sS .

πC,AV is a two party protocol executed between Client and Server which outputs to Client

an encrypted activation vector E(AVC) corresponding to matching Client’s p against Server’s T .

This subprotocol starts at global round 2 and ends at global round 6. First, Server constructs

MT ← GenMT
(T) as specified in Section 3.1. Then, Server encrypts MT and sends E(MT) to

21

Client. Server also executes, for E(MT), AM1 to prove that E(MT) is formatted correctly (namely,

that each row of E(MT) has one encryption of a 1 per row and encryptions of 0 everywhere else-

therefore each row of E(MT) corresponds to the encoding of exactly one element of the alphabet

Σ). Client then obtains E(AVC) by computing E(PM5PM (MT ,MCDV ,m)) (see Section 2.3.2) and

then multiplying each encryption by E(−pt) (where pt is the pattern matching threshold), observ-

ing the function PM5PM can be computed using encrypted E(MT).

πS,AV is a two party protocol executed between Client and Server which outputs to Server an

encrypted activation vector corresponding to matching Client’s p against Server’s T . This subpro-

tocol starts at global round 3 and ends at global round 5, with ZK preprocessing occurring during

global rounds 1 and 2. Client encryptsMCDV and pt and sends E(MCDV) and E(pt) to Server. Client

also executes AM01 to prove that E(MCDV) is formatted correctly (namely, E(MCDV) consists of

at most one encryption of 1 per column and consists of encryptions of 0 everywhere else, therefore

ensuring that there is at most one character delay value per distance). Server computes E(AVS)

by computing E(PM5PM (MT ,MCDV ,m)) and then multiplying each encryption by E(−pt) (this

slightly differs from Server’s actions during πH5PM since the consistency proof of πvec must also

include subtraction of the pattern matching threshold pt).

πvec is a two party protocol executed between Client and Server that outputs to each party

whether their respective encrypted activation vectors are equal (without revealing their values).

This subprotocol begins at global round 3 and ends at global round 8, with ZK preprocessing oc-

curring during global rounds 1, 2 and 3. Client computes E(AV ′C) by multiplying each element of

AVC with an encryption of 0; Server computes E(AV ′S) from E(AVS) similarly. Client and Server

execute πV ecEQ (see Section 2.3.4) where Client has input E(AV ′C) and Server has input E(AV ′S).

In addition, whenever a party sends the other a partial decryption, they execute APD to prove that

the execution is well formed. Note that the probability that πV ecEQ will complete without abort

for unequal vectors AVS and AVC is negligible (1
q).

22

πrand is a two party protocol executed between Client and Server that outputs to Client an

encrypted vector E(AV r
S) that contains randomizations of the values in non-matching (non-zero)

positions in E(AV ′S). This subprotocol starts at global round 6 and ends at global round 8, with

ZK preprocessing occurring during global rounds 2 and 3. Server computes E(AV r
S) from E(AV ′S)

by exponentiating each encryption in E(AV ′S) by a random value. Server sends E(AV r
S) to Client

and executes Arand to prove that E(AV r
S) was obtained correctly from E(AV ′S).

πans is a two party protocol executed between Client and Server that outputs to Client the

randomization, AV r
S , of Server’s activation vector AVS . Note that AV r

S will have a 0 wherever there

is a match; every non-matching entry will contain a random element. Client is assumed to already

know E(AV r
S). This subprotocol starts at global round 6 and ends at global round 8, with ZK

preprocessing occurring during global rounds 2 and 3. We present a slightly modified version of the

actual subprotocol used because this protocol in practice must be rearranged slightly to keep πM5PM

at 8 rounds (see Section 6.2 for details). Server sends DS(E(AV r
S)) to Client and executes AFD

to prove that either DS(E(AV r
S)) was obtained correctly or that Server knows s∗ (for h∗ sent by

Client in the first round of πencr). Client aborts if it does not accept AFD and otherwise obtains

AV r
S by computing DC(DS(E(AV r

S))).

Protocol Efficiency and Security: Overall bandwidth of πM5PM is dominated by the O(m|Σ|)

encrypted values that Client sends to Server in πS,AV and O(n|Σ|) encrypted values that Server

sends to Client in πC,AV and πans. Since alphabet size, |Σ|, is constant, we obtain the desired

bandwidth, including the ZK protocols, of O((m+n)k2) for security parameter k and total number

of encryptions of O(m+n). In particular, when Client hides pattern size, the corresponding pattern

will have length n and therefore the bandwidth complexity is O(nk2). Computational complexity

for Client is dominated by the subprotocol πC,AV where Client performs O(mn) exponentiations of

encrypted elements, and computational complexity for Server is dominated by subprotocols πS,AV ,

where Server performs O(mn) multiplications of encrypted elements, and πvec and πans, where

O(nk) exponentiations are needed for the ZK protocols.

23

Theorem 2. Assuming that the Decisional Diffie-Hellman (DDH) problem is hard, πM5PM is secure

in the malicious (static corruption) model.

See Section 7 for a detailed security proof.

4 Converting Σ protocols to Zero-Knowledge Arguments of Knowledge

(ZK-AoKs)

We describe here the construction used to convert a Σ protocol into an efficient zero-knowledge

argument of knowledge. We first provide the necessary definitions. We then give a construction of

an efficient extractable equivocable commitment scheme. We finally use this scheme to construct a

zero-knowledge argument of knowledge from a Σ protocol for the same relation. We note that an

algorithm is expected PPT if it is a probabilistic algorithm that runs in expected polynomial time.

4.1 Definitions

Let R be a binary relation where for all (x,w) ∈ R, |w| ∈ poly(|x|). w is called the witness for

x. Consider an interactive argument consisting of a pair of PPT algorithms (P, V) (thought of as

probabilistic next message functions). x is known to both P and V while w is only known to P .

Informally, P proves to V that there is a w such that (x,w) ∈ R. We consider interactive protocols

that have the following specification:

a. P sends message a, |a| ∈ poly(|x|).

b. V selects message e ∈ {0, 1}poly(|x|) uniformly at random and sends e to P . We denote e as the

challenge.

c. P sends a reply z ∈ {0, 1}poly(|x|).

Note that this interaction is public coin for V . Based on the tuple (also called a conversation)

(a, e, z), V either accepts or rejects. For any x, we call a conversation (a, e, z) that V accepts an

accepting conversation.

Definition 1. A 3-move interactive protocol Π = (P, V) of the above form is said to be a Σ

protocol for a relation R if it satisfies the following properties:

24

a. Completeness: On common input x, if the honest prover P has as private input w such that

(x,w) ∈ R, then honest V always accepts.

b. Special Soundness: For any common input x and any pair of accepting conversations (a, e, z)

and (a, e′, z′) for x where e 6= e′, there exists a w that can be computed in polynomial time such

that (x,w) ∈ R.

c. Special Honest-Verifier Zero-Knowledge (SHVZK): There exists a PPT M that on input x and

a properly formatted e outputs an accepting conversation of the form (a, e, z) with the same

probability distribution (over e) as conversations between honest P and honest V .

Definition 2. An interactive protocol for a relation R consisting of a pair of PPT algorithms

(P, V) is an argument of knowledge with knowledge error κ if the following properties are satisfied:

a. Completeness: On common input x, if the honest prover P has as private input w such that

(x,w) ∈ R, then honest V always accepts.

b. Knowledge Soundness: There exists a (expected) PPT E called the knowledge extractor which,

given input x and oracle (black-box) access to P , attempts to compute w such that (x,w) ∈ R.

For any prover P ∗, let ε(x) be the probability that V accepts on input x. Then there exists a

constant c such that whenever ε(x) > κ(x), E will output a correct w in expected time at most

|x|c
ε(x)−κ(x) where an individual oracle call to P ∗ is considered as one step.

κ can be thought of as the probability that V can be convinced there exists a w such that

(x,w) ∈ R even if such a pair does not exist.

Lemma 3 ([35]) Let Π be a Σ protocol for relation R where the challenge e is drawn uniformly

at random from {0, 1}t. Then Π is a proof of knowledge with knowledge error 2−t.

Remark 1. Lemma 3 holds because Definition 4.1 includes the special soundness property. Σ pro-

tocols that only have standard soundness will not always satisfy the lemma.

Definition 3. For any binary relation R, an interactive protocol consisting of a pair of PPT algo-

rithms (P, V) is a zero-knowledge argument if it satisfies the following properties:

a. Completeness: On common input x, if the honest prover P has as private input w satisfying

(x,w) ∈ R, then honest V always accepts.

25

b. Soundness: For all x such that there does not exist a w with (x,w) ∈ R, V will only accept with

negligible probability.

c. Zero-Knowledge: For all PPT V ∗, there is a PPT simulator M with oracle access to V ∗ such

that, given input x and V ∗’s auxiliary input, V ∗’s view of its interaction with real P is compu-

tationally indistinguishable from V ∗’s view of its interaction with M .

We demonstrate that any Σ protocol for a binary relation R can be converted into a ZK argument

of knowledge for R. We first construct an extractable equivocable commitment scheme and use this

scheme together with the Σ protocol specification for the ZK-AoK construction.

4.2 Extractable Equivocable Commitment Schemes

To construct a ZK-AoK from a Σ protocol, an efficient extractable equivocable commitment scheme

will be required. Such a scheme is an interactive protocol between a PPT committer C and a

PPT receiver R consisting of three functions: EComSet instantiates the commitment scheme, com

computes the commitment, and EComV er verifiers that decommitment is valid. More specifically,

R, for a security parameter k, computes (pk, t) ← EComSet(1k) and sends pk to C. C computes

c ← com(s, r, pk) for message s and randomness r and sends c to R as its commitment to m. To

decommit, C sends (r,m) to R. R computes {0, 1} ← EComV er(m, r, c, pk), accepts if 1 is output

and rejects otherwise.

Definition 4. A computationally binding equivocable commitment scheme is a pair of PPT algo-

rithms (R,C) that interact as above and satisfy the following properties.

a. Statistically Hiding: For pk correctly constructed and any messages s and s′, the distributions

of com(s, r, pk) and com(s′, r′, pk) are statistically indistinguishable over the choice of random

input (e.g,r and r′).

b. Computationally Binding: For any PPT algorithm C running in expected time polynomial in

k, the probability that C on input pk can compute a tuple (s, r, s′, r′) such that com(s, r, pk) =

commit(s′, r′, pk) with s 6= s′ is negligible in k.

c. Equivocable: There is a PPT algorithm S that, on inputs t, pk, any commitment c and any ac-

cepting decommitment (s, r) to c, can construct for any valid s′ an r′ such that c = com(s′, r′, pk).

26

An equivocable commitment scheme is extractable if there is a PPT algorithm E that, upon

oracle access to R, is able to obtain a trapdoor t in expected polynomial time.

We now give a construction of an equivocable commitment scheme, EP, based on Pedersen

commitments [34]. We assume that the receiver R and committer C have already agreed on a

prime order group Gq and generator g ∈ Gq. The committer C has a message s. For b ∈ {0, 1}, we

denote b̄ = 1− b.

EP - Commitment:

EP-1: R chooses for 1 ≤ i ≤ k and 0 ≤ j ≤ 1, x1,0, x1,1, ... , xk,0, xk,1 ∈ Zq uniformly and

independently at random and sets hi,j ← gxi,j . R sends (h1,0, h1,1, ..., hk,0, hk,1) to C.

EP-2: C chooses e ∈ {0, 1}k. C chooses r1, ...rk ∈ Zq uniformly and independently at random.

C sets c = hr11,e1
· ... · hrkk,ek · g

s ← comGq ,g,h1,e1 ,..,hk,ek
(s, r1, ..rk). C sends e and c to R.

EP-3: R sends (x1,ē1 , ..., xk,ēk) to C.

C checks that for 1 ≤ i ≤ k, hi,ēi = gxi,ēi . If not, C aborts.

EP - Decommitment

EP-4: C sends s, r1, ..., rk.

EP-5: R verifies that c = hr11,e1
· ... · hrkk,ek · g

s and aborts if equality does not hold.

The above EP protocol has bandwidth complexityO(k2) and computational complexityO(k2 log2 k).

Just like Pedersen commitments, this commitment scheme is statistically hiding and computa-

tionally binding.

We show that knowledge of any discrete logarithm xi,j from the public-key together with a

valid decommitment would allow S to open commitments to any value. Indeed, let the public-key

be (h1,e1 , ..., hk,ek), where hi,ei = gxi . Without loss of generality, suppose S obtained x1 and also

obtained c, s, r1, ..., rk such that c = com(s, r1, ..., rk, pk). Let s′ be any message. S sets r′i = ri for

2 ≤ i ≤ k and sets r′1 = s+x1r1−s′
x1

mod q. Then com(s′, r′1, r2, ..., rk) = c = com(s, r1, ..., rk).

To demonstrate that this scheme is extractable, for any R there we construct a simulator MR.

MR runs EP honestly with R through EP-3, then rewinds to EP-2 and sends a new e′ ∈ {0, 1}k

to R. Since e′ 6= e, MR obtains some discrete logarithm xi,j of the public-key (h1,e1 , ..., hk,ek) and

27

therefore can decommit to any s′. We require many possible trapdoors because the probability that

R can both complete the EP protocol (namely the step EP-3) and not know or abort when asked

for the discrete logarithm of any of the hi,js is roughly the same probability that MR will fail to

extract a trapdoor since knowledge of the discrete logarithms occurs at EP-3; therefore we require

many trapdoors to ensure that the probability that R sends an invalid response at EP-3 negligible

in the security parameter.

4.3 Construction of a ZK-AoK from Σ Protocols

We give a construction for how to transform a three-move Σ argument of knowledge Σrel for a

binary relation Rrel into a five-move ZK argument of knowledge πrel for Rrel using the extractable

equivocable commitment scheme EP described in Section 4.2. Recall from Section 4.1 that we

denote the transcript for a Σ protocol as (a, e, z), where e is chosen uniformly at random by V .

We assume that V and P have already agreed on a multiplicative group Gq with prime order q

and generator g ∈ Gq. P (x,w) ∈ Rrel; V possesses x. We denote the following construction by

Σ-ZK-AoK, which consists of the following steps:

rel-1: P executes EP-1 acting as receiver.

rel-2: V selects e according to the second message of Σrel. V executes EP-2 using e as the value

being committed.

rel-3: P computes a according to the first message specification of Σrel. P executes EP-3 and also

sends a to V .

rel-4: V executes EP-4, opening e.

rel-5: P executes EP-5 and aborts if P does not accept. P computes z according to the third

message specification of Σrel in response to a, e and x. P sends z to V .

rel-6: V verifies (a, e, z) according to Σrel.

πrel has bandwidth complexity O(k2) and computational complexity O(k2 log2 k) in addition to

that of Σrel.

Lemma 1. If Σrel is a Σ-protocol, then πrel is a ZK argument of knowledge.

Proof: Completeness. Completeness follows from the completeness of Σrel.

28

Soundness. To demonstrate soundness, assume that there exists an x such that there is no

w with (x,w) ∈ Rrel and yet V accepts πrel with non-negligible probability. Let (a, e, z) be the

transcript for Σrel contained within πrel. Then it follows that Σrel has a verifier V that accepts a

transcript with non-negligible probability for the same x. This implies that there are at least two

distinct challenges e and e′ such that P can produce accepting transcripts (a, e, z) and (a, e′, z′)

for Σrel within πrel (in fact, there must be a non-negligible number of such challenges). However,

by special soundness of Σrel, a w can be computed in polynomial time from these transcripts such

that (x,w) ∈ Rrel. But such a w does not exist, which leads to a contradiction.

To demonstrate that πrel is zero-knowledge, for any verifier V ∗, we describe the simulator

MV . MV acts as an honest prover for steps rel-1 through rel-4. At step rel-4, MV receives V ∗’s

challenge e. MV then, by the SHVZK property of Σrel, computes (a, z) such that (a, e, z) is an

accepting transcript for x; note that in particular, the fact that Σ protocols are special honest

verifier zero knowledge is important, as it implies the ability to construct correct transcripts for

arbitrary (pre-selected) distributions of verifier messages. MV rewinds to step rel-3 where it sends

a (as well as executes EP-3) and executes the rest of πrel honestly. In particular, MV sends z at

step rel-5. V ∗’s view of its interaction with P is indistinguishable from its view of its interaction

with MV because V ∗ cannot affect the distribution of its challenges based on P ’s messages since V ∗

commits to its challenge (in a perfectly binding fashion) before it receives the first message of Σrel.

Since the distribution of e is not affected by initial messages, MV ’s transcript of Σrel within πrel

is computationally indistinguishable from P ’s output for Σrel by the special honest-verifier zero-

knowledge (SHVZK) property of Σrel. Computational indistinguishability of the whole transcript

follows.

To show the existence of a knowledge extractor, EP , for each P , let Erel,P be the knowledge

extractor for Σrel and let SP be the trapdoor extractor for the commitment scheme EP . EP

then runs ZK-AoK using S as a subprotocol to extract the trapdoor for EP . EP then rewinds

to rel-4, after P has already instantiated the commitment scheme and sent is initial message a

for Σrel, and changes its challenge for Σrel according to the specification of Erel,P . Note that EP

will have to decommit to multiple challenges for Σrel at step rel-4 in order to execute Erel,P as

29

a subprotocol. However, since EP possesses the trapdoor for EP and EP is equivocable, EP can

decommit (e.g,construct messages for EP-4) to whatever challenge Erel,P specifies. Since S can

extract the trapdoor in polynomial time and ErelP can extract the witness for Σrel in (expected)

polynomial time, EP can extract the witness for πrel in (expected) polynomial time.

Remark 2. We note that above, the zero-knowledge simulator MV was able to interact with V

without actually knowing the witness w for x. This is because of the simulation soundness of Σrel;

namely, since a simulator can produce accepting transcripts only seeing the Verifier’s challenge

there (and without seeing w), MV can produce proper transcripts for πrel without ever knowing w.

Such a property is called simulation soundness and will be useful for a security reduction needed

for πM5PM (see Section 7.3.3).

5 Required Σ protocols

We outline in this section specific Σ protocols needed for the malicious model version of 5PM ,

πM5PM . These three-move protocols are executed between a PPT prover (P) and a PPT verifier

(V) and are used to construct zero-knowledge arguments of knowledge using the transformation

in Section 4.3. For each Σ protocol we first describe the relation demonstrated by P then the

three protocol messages exchanged between P and V . We note that with the exception of Σfin,

the security of each of the following Σ protocols is proven in the places in which they are cited;

the security of Σfin follows since it is a standard example of an OR Σ protocol of two Σ protocols

already shown here (for more, see [35]).

1- ΣDL, Proving Knowledge of Discrete Logs [36]: For g and h = gx, P demonstrates

knowledge of witness x. The relation RDL is ((Gq, q, g, h), x) ∈ RDL if h = gx. The Σ protocol steps

are:

- ΣDL−1 : P chooses r ∈ Zq and sets a← gr. P sends a to V .

- ΣDL−2 : V chooses a challenge c ∈ Zq and sends c to P

- ΣDL−3 : P sets z ← r + cx and sends z to V .

- ΣDL−4 : V checks that gz = ahc and aborts if not.

30

2- ΣeqDL, Proving Equality of Discrete Logs [30]: For g, h, x, y ∈ Gq, P demonstrates

knowledge of a witness w such that x = gw and y = hw. The relationReqDL is ((Gq, q, g1, g2, h1, h2), w) ∈

ReqDL if h1 = gw1 and h2 = gw2 . The Σ protocol steps are:

- ΣeqDL−1 : P chooses r ∈ Zq and sets (a, b)← (gr, hr). P sends (a, b) to V .

- ΣeqDL−2 : V chooses c ∈ Zq and sends c to P .

- ΣeqDL−3 : P sets z ← r + wc and sends z to V

- ΣeqDL−4 : V checks that gz = axc and that hz = byc and aborts if not.

3- ΣisBit, Proving Encryption of 0 or 1 [37]: P demonstrates that it possesses an ElGamal

encryption of m ∈ {0, 1} with generators g, public-key h and randomness r (recall that encryption

of m is of the form (gr, gmhr) = (x, y)). P proves that either logg x = logh y or logg x = logh y/g.

The relation RisBit is ((Gq, q, g, h, α, β), (b, r)) ∈ RisBit if (α, β) = (gr, gbhr) and b ∈ {0, 1}. The Σ

protocol steps are:

- ΣisBit−1 :

– If m = 1: P chooses r1, d1, w2 ∈ Zq and sets a1 ← hr1(ghr)−d1 , a2 ← hw2 .

– If m = 0: P chooses w1, r2, d2 ∈ Zq and sets a1 ← hw1 , a2 ← hr2(hrg−1)−d2 .

P sends (a1, a2) to V .

- ΣisBit−2 : V chooses c ∈ Zq and sends c to P .

- ΣisBit−3 :

– If m = 1: P sets d2 ← c− d1, r2 ← w2 + rd2.

– If m = 0: P sets d1 ← c− d2, r1 ← w1 + rd1.

P sends (d1, d2, r1, r2) to V .

- ΣisBit−4 : V verifies that c = d1 + d2, hr1 = a1(gmhr)d1 and hr2 = a2(gm−1hr)d2 and aborts

if not.

4- Σfin, Proving Equality of Discrete Logs Or Knowledge of Discrete Log: P demon-

strates for g, h, g1, h1, g2, h2 ∈ Gq that either it knows the value logg1
h1 = logg2

h2 or he knows

x such that h = gx given g. The relation Rfin is ((Gq, q, g1, g2, h1, h2, g, h), (α, x) ∈ Rfin if either

(DLE): h1 = gα1 and h2 = gα2 or (DL:) h = gx. The Σ protocol steps are:

- Σfin−1 :

31

– If DLE: P chooses r1, d1, w2 ∈ Zq and sets a1 ← gr1h−d1 , a2 ← gw2
1 and a3 ← gw2

2 .

– If DL: P chooses w1, r2, d2 ∈ Zq and sets a1 ← gw1 , a2 ← gr21 h
−d2
1 and a3 ← gr22 h

−d2
2 .

P sends (g1, h1, g2, h2, g, h, a1, a2, a3) to V .

- Σfin−2 : V choses c ∈ Zq and sends c to P .

- Σfin−3 :

– If DLE: P sets d2 ← c− d1, r2 ← w2 + αd2.

– If DL: P sets d1 ← c− d2, r1 ← w1 + xd1.

P sends (d1, d2, r1, r2) to V .

- Σfin−4 : V verifies that d1 + d2 = c, gr1 = a1h
d1 , gr21 = a2h

d2
1 and gr22 = a3h

d2
2 and aborts if

not.

6 Detailed πM
5PM Specification

We provide here the detailed protocol specification of the malicious model version of 5PM , πM5PM .

First, we must specify the various zero-knowledge arguments of consistency that are required.

6.1 Arguments of Knowledge of Consistency

We first describe five required interactive arguments which we rely on to prove statements required

in the πM5PM protocol. They are designed for use with the specified threshold ElGamal encryption

scheme (Section 2.2). We apply the Σ-ZK-AoK construction outlined in Section 4 to transform the

three-move arguments of knowledge outlined in Section 5 to construct the five-move ZK arguments

of knowledge πDL, πisBit, πeqDL and πfin, respectively. All arguments are executed between a prover

P and a verifier V . πDL is the only ZK-AoK used on its own in πM5PM ; it proves knowledge of a

discrete logarithm of a public h = gx. πisBIT is a ZK-AoK that proves that an encryption is either

of a 0 or of a 1, πeqDL is a ZK-AoK that proves that two discrete logarithms are equal, and πfin is

a ZK-AoK that proves that either two discrete logarithms are equal or that P knows the discrete

logarithm of a public h = gx. The five required interactive arguments are:

AM01, an AoK of Consistency for Matrix formation 0/1: In this interactive argument, P sends

an l × u matrix of encryptions, E(M). P demonstrates to V that each column in E(M) contains

32

at most one encryption of a 1 and the rest encryptions of a 0. We assume that P has sent E(M)

to V . We denote by AM01 the five-move interactive argument where P proves to V using (l + 1)u

parallel instantiations of πisBit that each entry of E(M) is an encryption of either a 0 or a 1 and

that each column-wise product of E(M) is an encryption of either a 0 or a 1. If V accepts the

argument AM01, then it accepts that each column is made up of entries that are either 0 or 1 and

sum up to 0 or 1; therefore, each column contains encryptions of 0 and at most one 1.

AM1, an AoK of Consistency for Matrix formation 0/1-1: Similar to the above interactive ar-

gument, P sends an l×u matrix of encryptions, E(M). P demonstrates to V that (unlike the above

argument) each down in E(M) contains exactly one encryption of a 1 and the rest encryptions of

a 0. To prove that an encryption (x, y) is of a 1, P sends y′ = y/g and proves using πDL that

logg x = logh y
′. V then can see that (x, y) is an encryption of 1 only if y/y′ = g. We assume that

P has sent E(M) to V . We denote by AM1 the five-move interactive argument where P sends

(xi, y
′
i) for each of the row-wise products, (xi, yi), of E(M) and then P proves to V using l · u

instantiations of πisBit that each entry of E(M) is an encryption of a 0 or a 1 and proves to V using

u instantiations of πDL that each row-wise product of E(M) is an encryption of a 1. If V accepts

the argument AM1, then it accepts that each row is made up of entries that are either 0 or 1 and

sum to 1; therefore, each row contains encryptions of 0 and exactly one 1.

APD, an AoK of Consistency for Partial Decryption: In this interactive argument, P possesses

and sends a vector of l encryptions (xi, yi) and a vector of their l partial decryptions (xi, yi/x
sP
i),

where sP is P ’s private key. P demonstrates to V that he has computed the partial decryptions cor-

rectly. We assume that P has already sent the vector of l encryptions and l partial decryptions and

that V already knows gsP . We denote by APD the five-move interactive argument where P sends,

for each i, xsPi and proves to V using l parallel instantiations of πeqDL that logg g
sP = logxi x

sP
i .

ARand, an AoK of Consistency for Randomization: In this interactive argument, P possesses

and sends a vector of l encryptions (xi, yi) and a vector of their randomizations, (xrii , y
ri
i), to V and

33

demonstrates knowledge of ri for each i. P proves using πeqDL that logxi x
ri
i = logyi y

rI
i for each i.

We assume that P has already sent the l encryptions and l randomizations. We denote by ARand

the five-move interactive argument where P proves to V using l parallel instantiations of πeqDL

using that each of the l randomizations are formatted correctly.

AFD, an AoK of Consistency for Final Decryption: In this interactive argument, P possesses

and sends a vector of l encryptions (xi, yi), their partial decryptions (xi, yi/x
sP
i) as well as gw to

V and demonstrates that either P has computed their partial decryptions (xi, yi/x
sP
i) correctly or

that he possesses the discrete logarithm w of gw. We denote by AFD the five-move interactive

argument where P proves using l parallel instantiations of πfin that either the l encryptions (xi, yi)

have been partially decrypted correctly or that P knows the discrete logarithm of gw.

6.2 πM
5PM Protocol Specification

The 8 round protocol for the malicious model, πM5PM , consists of the following six subprotocols:

(a) πencr: initializes an additively homomorphic threshold encryption scheme

(b) πS,AV : allows Server to construct an encrypted activation vector for Client’s encrypted pattern

and Server’s text.

(c) πC,AV : allows Client to also construct an encrypted activation vector for Client’s pattern and

Server’s encrypted text.

(d) πvec: allows Client and Server to verify that their activation vectors are equal without revealing

them.

(e) πrand: allows Server to send an encryption of its randomized activation vector to Client.

(f) πans: demonstrates to Client where the pattern matches the text (if at all).

In what follows, we describe πM5PM by specifying in detail the individual subprotocols that are

required and specifying for each subprotocol where each round of the subprotocol occurs in the

overall (global) rounds of πM5PM . Table 6 contains the notation used to describe the subprotocols

in Tables 7 to 12. The required subprotocols utilize the interactive arguments described in Section

6.1 to prove various statements; these arguments are all five-move protocols between a prover (P)

and a verifier (V), where, for instance, AP,iM1 and AV,jM1 denote the ith and jth messages sent by

34

P and V , respectively, in interactive argument AM1. We denote by comm(s) as shorthand for the

commitment of s, which using Pedersen commitments [34] is gshr = comm(g, h, r, s).

We remark that in our construction of ZK arguments of knowledge from Σ protocols, whenever

a ZK subprotocol is required, the first two rounds of the five round protocol can be completed in

parallel at the very beginning of the overall protocol πM5PM . Such “preprocessing” will not affect

security, since these rounds do not involve any Σ protocol-related information from P and as long as

V commits to his Σ protocol challenge prior to seeing P ’s first message of the underlying Σ protocol

(see Section 4 for details of the ZK constructions and Section 7 for a proof that preprocessing does

not affect security).

p = Pattern of length m T = Text of length n
AVi = Activation vector of party i AV rS = Randomized activation vector
AV ′i = Blinded activation vector MCDV = Matrix encoding of p in terms of Σ
skC = Client’s secret-key skS = Server’s secret-key
pt = Pattern match threshold 〈, 〉 = Inner product over Gq
πi,jrel(x) = Party i’s jth message of πrel for x E() = Additively homomorphic encryption
Di() = Partial decryption by party i h = Threshold public-key
s∗ = Simulator trapdoor MT = Matrix encoding of T in terms of Σ

Ai,jrel(x) =Player i’s jth message of Arel for x

Table 6. Notation used in subprotocols in Tables 7 through 12

Global Client Messages Server
Round

1 sC , s
∗ ∈ Zq, h1 ← gsC , h∗ ← gs

∗ h1,h
∗,πP,1

DL
(h1),π

P,1
DL

(h∗)
−−−−−−−−−−−−−−−−−−−−→

2
h2,π

P,1
DL

(h2),π
V,1
DL

(h1),π
V,1
DL

(h∗)
←−−−−−−−−−−−−−−−−−−−− sS ∈ Zq, h2 ← gsS , h = h1h2

3 h = h1h2

π
P,2
DL

(h1),π
P,2
DL

(h∗),πV,1
DL

(h2)
−−−−−−−−−−−−−−−−−−−−→

4
π
P,2
DL

(h2),π
V,2
DL

(h1),π
V,2
DL

(h∗)
←−−−−−−−−−−−−−−−−−−−−

5
π
P,3
DL

(h1),π
P,3
DL

(h∗),πV,2
DL

(h2)
−−−−−−−−−−−−−−−−−−−−→

6
π
P,3
DL

(h2)
←−−−−−−−−−−−−−−−−−−−−−

Table 7. Subprotocol πencr

πencr, shown in Table 7, is a two party protocol for Client and Server that initializes a threshold

ElGamal encryption scheme. For simplicity we assume that Client and Server have already agreed

35

on Gq and g ∈ Gq. Client input: Gq, g ∈ Gq. Server input is: Gq, g ∈ Gq. Output to Client:

h = gsCgsS . Output to Server: h = gsCgsS , h∗ = gs
∗
. This subprotocol begins at the first global

round and ends at global round 6.

– At global round 1 Client chooses sC , s
∗ ∈ Zq and sets h1 ← gsC , h∗ ← gs

∗
. Client sends h1, h

∗

to Server. Client sends the Server two parallel instantiations of πP,1DL proving knowledge of the

discrete logs of h1 and h∗ (e.g,of sC and s∗). The last message of Client’s instantiations of

πDL is exchanged at global round 5.

– At global round 2 Server chooses sS ∈ Zq and sets h2 ← gsS . Server sends h2 to Client as

well as πP,1DL proving knowledge of the discrete logarithm of h2 (e.g,of sS). The last message

of Server’s πDL is sent at global round 6. Both parties set the public-key to be h = h1h2.

πC,AV, shown in Table 8, is a two party protocol for Client and Server which outputs to Client

an encrypted activation vector corresponding to matching Client’s p against Server’s T . Client

input: pattern p, threshold pt. Server input: text T and MT , which is the |Σ| × n matrix encoding

T in terms of Σ (see Section 3.1). Output to Server: none. Output to Client: E(AVC), an encrypted

activation vector corresponding to matching p against T . This subprotocol starts at global round

2 and ends at global round 6.

– At global round 2 Server sends E(MT) to Client. Server also sends, for E(MT), AP,1M1 to prove

that E(MT) is formatted correctly. The last message of Server’s AM1 is exchanged at global

round 6.

– During global round 3, Client computes E(AVC) from E(MT), MCDV for p, and pt by first

computing MCDV ·E(MT). This can be performed by recognizing that one can obtain an en-

cryption of the inner product over Zq of an unencrypted vector (x1, ..., xm) with an encrypted

vector (E(y1), ..., E(ym)) by computing ΠE(yi)
xi = E(

∑
xiyi) (see Section 2.3.2).

36

Global Client Messages Server
Round

2
E(MT),A

P,1
M1

(E(MT))
←−−−−−−−−−−−−−− MT ← T , E(MT)←MT

3 E(AVC)←MCDV , pt, E(MT)
A

V,1
M1

(E(MT))
−−−−−−−−−−−−−−→

4
A

P,2
M1

(E(MT))
←−−−−−−−−−−−−−−

5
A

V,2
M1

(E(MT))
−−−−−−−−−−−−−−→

6
A

P,3
M1

(E(MT))
←−−−−−−−−−−−−−−

Table 8. Subprotocol πC,AV

Global Client Messages Server
Round

1
A

P,1
M01

(E(MCDV))
−−−−−−−−−−−−−−−−−−→

2
A

V,1
M01

(E(MCDV))
←−−−−−−−−−−−−−−−−−−

3 E(MCDV)← CDV , E(pt)← pt
E(MCDV),A

P,2
M01

(E(MCDV))
−−−−−−−−−−−−−−−−−−−→

4
A

V,2
M01

(E(MCDV))
←−−−−−−−−−−−−−−−−−− E(AVS)← T,E(MCDV), E(pt)

5
A

P,3
M01

(E(MCDV))
−−−−−−−−−−−−−−−−−−→

Table 9. Subprotocol πS,AV

πS,AV, shown in Table 9, is a two party protocol for Client and Server which outputs to Server

an encrypted activation vector corresponding to matching Client’s p against Server’s T . Client input:

pattern p, MCDV for p, and pt, the matching threshold. Server input: T . Output to Client: none.

Output to the Server: E(AVS), an encrypted activation vector corresponding to matching p against

T . This subprotocol starts at global round 3 and ends at global round 5, with ZK preprocessing

occurring during global rounds 1 and 2.

– At global round 3 Client sends E(MCDV) and E(pt) to Server. Client also sends AP,2M01 to prove

that E(MCDV) is formatted correctly, where AP,1M01 and AV,1M01 occur during global rounds 1

and 2, respectively. The last message of Client’s AM01 is sent at global round 5.

– During global round 4, using E(MCDV), T and E(pt), Server computes E(AVS) (see step 5

in Section 3.2.2).

37

πvec, shown in Table 10, is a two party protocol for Client and Server that outputs to each party

whether their respective encrypted activation vectors are equal (without revealing their values).

Client input: E(AVC), E(AV ′C) which is constructed from E(AVC) by multiplying each element by

an encryption of 0. Server input: E(AVS), E(AV ′S) which is constructed from E(AVS) by multiplying

each element by an encryption of 0. Output to both Client and Server: whether AVC = AVS or

not. This subprotocol begins at global round 3 and ends at global round 8, with ZK preprocessing

occurring during global rounds 1, 2 and 3. 〈·, ·〉 denotes the inner product over Zq.

– At global round 3 Client chooses r1 ∈ Zn−m+1
q and r′1 ∈ Zq. Client computes E(AV ′C) by

multiplying each element of AVC with an encryption of 0 thus blinding the ciphertext. Client

generates comm(E(AV ′C)), comm(r1), and comm(E(r′1)) and sends them to Server.

– At global round 4 Server chooses r2 ∈ Zn−m+1
q and r′2 ∈ Zq. Server computes E(AV ′S) by

multiplying each element of AVS by an encryption of 0 thus blinding the ciphertext. Server

sends r2, E(r′2), E(AV ′S) to Client.

– At global round 5 Client sets r = r1 + r2 and E(r′) = E(r′1 + r′2). Client computes z1 =

E(〈AVC , r〉 + r′) and z2 = E(〈AVS , r〉 + r′). Client opens the commitments of E(AV ′C), r1,

and E(r′1) to Server. Client sends z1 and z2 to Server. Client computes partial decryptions

DC(z1), DC(z2) and sends DC(z1), DC(z2) to Server as well as AP,2PD to prove that the partial

decryptions DC(z1), DC(z2) are computed correctly, where messages AP,1PD and AV,1PD are sent

during global rounds 1 and 2, respectively. Execution of Client’s APD continues until global

round 7.

– At global round 6 Server obtains z1, z2 from DC(z1) and DC(z2). Server aborts if z1 6= z2.

Server sets r = r1 + r2 and E(r′) = E(r′1 + r′2). Server computes z1 = E(〈AVC , r〉 + r′) and

z2 = E(〈AVS , r〉+ r′). Server computes partial decryptions DS(z1), DS(z2) and sends DS(z1)

and DS(z2) to Client as well as AP,2PD to prove that the partial decryptions DS(z1), DS(z2) are

computed correctly, where AP,1PD and AV,1PD are sent during global rounds 2 and 3, respectively.

Execution of Server’s APD continues until global round 8.

– At global round 7 Client obtains z1, z2 from DS(z1) and DS(z2). Client aborts if z1 6= z2.

38

Since r, r′ are uniform, the probability that z1 and z2 have equal decryptions for unequal vectors

is negligible (1
q).

πrand, shown in Table 11, is a two party protocol for Client and Server that outputs to Client an

encrypted vector E(AV r
S) that contains randomizations of the values in non-matching (non-zero)

positions in E(AV ′S). Client input: nothing. Server input: E(AV ′S). Output to Client: E(AV r
S).

Output to Server: Nothing. Client is assumed to already know E(AV ′S). This subprotocol starts at

global round 6 and ends at global round 8, with ZK preprocessing occurring during global rounds

2 and 3.

– At global round 6 Server computes E(AV r
S) from E(AV ′S) by exponentiating each encryption

in E(AV ′S) by a random value. Server sends E(AV r
S) to Client and sends AP,2rand to prove that

E(AV r
S) was obtained correctly from E(AV ′S), where AP,1rand and AV,1rand are sent during global

rounds 2 and 3, respectively . The last message of Server’s Arand is exchanged at global round

8.

πans, shown in Table 12, is a two party protocol for Client and Server that outputs to Client the

randomization, AV r
S , of Server’s activation vector AVS . Client input: none. Server input: E(AV r

S).

Output to Server: none. Output for Client: AV r
S . Client is assumed to already know E(AV r

S). This

subprotocol starts at global round 6 and ends at global round 8, with ZK preprocessing occurring

during global rounds 2 and 3.

– At global round 6 Server sends comm(DS(E(AV r
S))). Server also sends the message comm(AP,2FD),

where AFD is the argument to prove that either DS(E(AV r
S)) was obtained correctly or that

Server knows s∗ (for h∗ sent by Client in the first global round during πencr), where AP,1FD and

AV,1FD are sent during global rounds 2 and 3, respectively.

– At global round 7 Client sends AV,2FD to Server (our AoKs are public coin so AV,2FD is not

determined byAP,2FD).

39

G
lo
b
a
l

C
lie

n
t

M
e
ssa

g
e
s

S
e
rv

e
r

R
o
u
n
d

1
A

P
,1

P
D

(D
C

(z
1
)),A

P
,1

P
D

(D
C

(z
2
))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2
A

P
,1

P
D

(D
S

(z
1
)),A

P
,1

P
D

(D
S

(z
2
)),A

V
,1

P
D

(D
C

(z
1
)),A

V
,1

P
D

(D
C

(z
2
))

←
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3
r
1
∈
Z
n
−
m

+
1

q
,
r
′1
∈
Z
q ,

c
o
m
m

(E
(A
V
′C

)),c
o
m
m

(r
1
),c
o
m
m

(E
(r
′1
))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
A

V
,1

P
D

(D
S

(z
1
)),A

V
,1

P
D

(D
S

(z
2
))

E
(r
′1)
←
r
′1 ,
E

(A
V
′C)
←
E

(A
V
C

)

4
E

(A
V
′S
),r

2
,E

(r
′2
)

←
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

r
2
∈
Z
n
−
m

+
1

q
,
r
′2
∈
Z
q ,

E
(r
′2)
←
r
′2 ,
E

(A
V
′S)
←
E

(A
V
S

)

5
r
←
r
1

+
r
2 ,
E

(r
′)
←
E

(r
′1

+
r
′2)

d
e
c
o
m

(E
(A
V
′C

)),d
e
c
o
m

(r
1
),d
e
c
o
m

(E
(r
′1
))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
z
1
,z

2
,D

C
(z

1
),D

C
(z

2
),A

P
,2

P
D

(D
C

(z
1
)),A

P
,2

P
D

(D
C

(z
2
))

z
1
←
E

(〈A
V
C
,r〉

+
r
′),

z
2
←
E

(〈A
V
S
,r〉

+
r
′)

D
C

(z
1)
←
z

1 ,
D
C

(z
2)
←
z

2

6
z
1
,z

2
,D

S
(z

1
),D

S
(z

2
),A

P
,2

P
D

(D
S

(z
1
)),A

P
,2

P
D

(D
S

(z
2
))

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A

V
,2

P
D

(D
C

(z
1
)),A

V
,2

P
D

(D
C

(z
2
))

D
S

(D
C

(z
1))

?=
D
S

(D
C

(z
2)),

r
←
r
1

+
r
2

z
1
←
E

(〈A
V
C
,r〉

+
r
′),

z
2
←
E

(〈A
V
S
,r〉

+
r
′)

D
S

(z
1)
←
z

1 ,
D
S

(z
2)
←
z

2

7
D
C

(D
S

(z
1))

?=
D
C

(D
S

(z
2))

A
P
,3

P
D

(D
C

(z
1
)),A

P
,3

P
D

(D
C

(z
2
)),A

V
,2

P
D

(D
S

(z
1
)),A

V
,2

P
D

(D
S

(z
2
))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

8
A

P
,3

P
D

(D
S

(z
1
)),A

P
,3

P
D

(D
S

(z
2
))

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

T
a
b

le
1
0
.

S
u

b
p

roto
col

π
v
ec

40

Global Client Messages Server
Round

2
A

P,1
rand

(E(AV r
S))

←−−−−−−−−−−−−−−−−

3
A

V,1
rand

(E(AV r
S))

−−−−−−−−−−−−−−−−→

6
E(AV r

S),A
P,2
rand

(E(AV r
S))

←−−−−−−−−−−−−−−−− E(AV rS)← E(AV ′S)

7
A

V,2
rand

(E(AV r
S))

−−−−−−−−−−−−−−−−→

8
A

P,3
rand

(E(AV r
S))

←−−−−−−−−−−−−−−−−
Table 11. Subprotocol πrand

Global Client Messages Server
Round

2
A

P,1
FD

(DS(E(AV r
S)))

←−−−−−−−−−−−−−−−−−−−−−−−−−−−

3
A

V,1
FD

(DS(E(AV r
S)))

−−−−−−−−−−−−−−−−−−−−−−−−−−−→

6
comm(DS(E(AV r

S))),
←−−−−−−−−−−−−−−−−−−−−−−−−−−−

comm(A
P,2
FD

(DS(E(AV r
S

))))

DS(E(AV rS))← E(AV rS)

7
A

V,2
FD

(DS(E(AV r
S)))

−−−−−−−−−−−−−−−−−−−−−−−−−−−→

8 AV rS ← DC(DS(E(AV rS)))
decom(DS(E(AV r

S))),A
P,3
FD

(DS(E(AV r
S)))

←−−−−−−−−−−−−−−−−−−−−−−−−−−−
decom(A

P,2
FD

(DS(E(AV r
S

))))

Table 12. Subprotocol πans

– At global round 8 Server opens commitments of AP,2FD, DS(E(AV r
S)) to Client. Server sends

AP,3FD to Client.

– Client aborts if it does not accept the argument AFD.

7 Security Analysis

Here we define and prove security for πH5PM and πM5PM .

7.1 Adversarial Model

Let Ff be a functionality for two parties P1 and P2 where P1 inputs x1, P2 inputs x2, P1 obtains

f(x1, x2) and P2 obtains nothing. A protocol πf that securely computes f can be defined as an

interactive two-party protocol. We refer the reader to [33,38] for further discussion of the definitions

given here.

41

Execution of πAf in the real world: Let A denote the adversary model: H for honest but

curious and M for malicious (static corruption). Both parties are assumed to be probabilistic (ex-

pected) polynomial time (PPT) algorithms. In particular, we denote by P̄ = (P1, P2) a pair of PPT

algorithms that execute πAf where at most one of the parties is adversarial (or corrupted). Such a

pair P̄ is called admissible. Let ri be Pi’s internal randomness, xi be Pi’s private input and yi be

Pi’s auxiliary input. Let P1 ↔ P2 be the transcript of the public interactions between parties P1

and P2. Note that parties can be defined via their next message functions; see, for example, [39].

In the honest-but-curious (HBC) adversary model, before the protocol begins, the adversary can

choose to corrupt one party for the duration of the entire protocol; that party may not deviate

from the protocol specification of πAf . In the (static corruption) malicious adversary model, before

the protocol begins, the adversary can choose to corrupt one party for the duration of the entire

protocol; this party may deviate arbitrarily from the protocol specification of πMf . In particular, the

corrupted party may choose to abort and to not complete the protocol at all. Denote by xc, yc, rc

the internal input, randomness and auxiliary input of a corrupted party, respectively (if there is no

corrupted party then this sequence is the empty sequence). Denote by x̄ = (x1, x2), ȳ = (y1, y2),

r̄ = (r1, r2). We denote by REAL
πAf
P̄

(x̄, ȳ, r̄) as (xc, rc, yc, P1 ↔ P2) .

Execution of πAf in the ideal world: In the ideal world setting, an admissible pair of two PPT

parties P̄ ′ = (P ′1, P
′
2) interact with a trusted ideal functionality to jointly compute the function f

specified by πAf . At any point, a dishonest party may send abort rather than send what it is supposed

to.

Ideal functionality FHf for the honest-but-curious (HBC) model: P ′2 sends its input, x2, to the

ideal functionality. The ideal functionality sends the size of x2, |x2|, to P ′1. P ′1 sends its input,

x1, to the ideal functionality. The ideal functionality sends the size of x1, |x1|, to P ′2. The ideal

functionality provides the correct value of f(x1, x2) to P ′1. An honest party must output what was

output to it by the ideal functionality (in particular, if P ′2 is honest, it outputs nothing); a dishonest

party may output what it wishes. We denote by IDEAL
πf
P̄ ′

(x̄, ȳ, r̄) as the pair of public outputs of

P ′1 and P ′2.

42

Ideal functionality FMf for the malicious static corruption model: P ′2 sends its input, x2, to the

ideal functionality. The ideal functionality sends the size of x2, |x2|, to P ′1. P ′1 sends its input, x1, to

the ideal functionality. The ideal functionality sends the size of x1, |x1|, to P ′2. P ′2 sends “proceed”

to the ideal functionality (note that an adversarial party can choose to abort this procedure at any

time). The ideal functionality provides the correct value of f(x1, x2) to P ′1. An honest party must

output what was output to it by the ideal functionality (in particular, if P ′2 is honest, it outputs

nothing); a dishonest party may output what it wishes. We denote by IDEAL
πAf
P̄ ′

(x̄, ȳ, r̄) as the

pair of public outputs of P ′1 and P ′2.

Using the standard ideal/real formulation, we obtain the following definitions of security.

Definition 5. πHf securely realizes FHf in the honest-but-curious (static corruption) model if for

every admissible PPT pair P̄ in the real world there exists an admissible PPT pair P̄ ′ in the

ideal world such that REAL
πHf
P̄

(x̄, ȳ, r̄) and IDEAL
πHf
P̄ ′

(x̄, ȳ, r̄) are computationally indistinguish-

able, where the distributions are over the uniformly random, independent choices of private input

x̄, randomness r̄ and auxiliary input ȳ.

Definition 6. πMf securely realizes FMf in the malicious (static corruption) model if for every

admissible PPT pair P̄ in the real world there exists an admissible PPT pair P̄ ′ in the ideal world

such that REAL
πMf
P̄

(x̄, ȳ, r̄) and IDEAL
πMf
P̄ ′

(x̄, ȳ, r̄) are computationally indistinguishable, where the

distributions are over the uniformly random, independent choices of private input x̄, randomness r̄

and auxiliary input ȳ.

Simulation in the ideal world: In practice, for security to hold in the HBC (respectively mali-

cious) adversary model, for each corrupted party P ′i in the real world, there exists a PPT simulator

SP ′i in the ideal world with oracle access to P ′i such that REAL
πf
P̄

(x̄, ȳ, r̄) and IDEAL
πf
P̄ ′

(x̄, ȳ, r̄)

are computationally indistinguishable, where the other (honest) party of P̄ and P̄ ′ acts honestly.

In particular, SP ′i when it is allowed to output per the ideal world specification, will attempt to

output a transcript that is computationally indistinguishable from P ′i ’s view of the transcript in

the real world- without knowing the private input of the real world honest party.

43

7.2 Simulator Constructions and Security for πH
5PM

We provide, for each admissible pair in the real world, an admissible pair in the ideal world such

that REAL
πH5PM
P̄

(x̄, ȳ, r̄) and IDEAL
πH5PM
P̄ ′

(x̄, ȳ, r̄) are computationally indistinguishable.

7.2.1 Simulator specification for the adversarial Server, SS, for πH
5PM . Without loss of

generality, consider the case where the matching locations are not hidden. Consider the admissible

pair P̄ = (Client, Server) in the real world. We construct SS for an admissible pair P̄ ′ =(Client,

SS) in the ideal world (where Client behaves honestly in both cases) such that REAL
πH5PM
P̄

(x̄, ȳ, r̄)

and IDEAL
πH5PM
P̄ ′

(x̄, ȳ, r̄) are computationally indistinguishable. Note that SS has oracle access to

real world Server.

Initial Interactions with the Ideal Functionality: We assume that the encryption scheme

(Key,E,D) is fixed. Server upon oracle call to SS , sends its text T to SS , who forwards it on to

the ideal functionality. Once the ideal functionality reveals the length that the pattern should be,

SS sets the pattern pt = p∗ to be all 1s (we state this without loss of generality; in the case that

1 6∈ Σ, an arbitrary a ∈ Σ is chosen and pt is set to be all a’s) of the right length (any arbitrary

vector can be used here, but without loss of generality we use all 1s). Outputs below are what SS

outputs at the output phase of the ideal world specification.

(a) SS computes (skC , pkC) ← Key(1k). Using pt, SS constructs MCDV ← GenCDV (pt) and

encrypts it to obtain E(MCDV). SS sends E(MCDV) and pkC to Server. In addition, SS

sends E(−m), where m = |pt| (or E(−m + l) in the single-character wildcard or substring

cases, where l is the threshold).

(b) Server considers each character in the text Ti (1 ≤ i ≤ n) and retrieves the corresponding

row of E(MCDV). This is the step that corresponds to multiplying MT ·MCDV in Section 3.1.

The resulting vectors are multiplied with the encrypted activation vector E(AV) element by

element in positions i, ..., i+m− 1 of the AV . This is the step corresponding to transforming

MT (MCDV) to MT (MCDV) and then performing the multiplication [1...1]n ·MT (MCDV) to get

44

the final AV . Server then multiplies E(−m) (= E(m)−1) to each of the entries in AV and

exponentiates each entry by a randomly chosen number to blind entries in E(AV). We call

the randomized activation vector E(AV r
S). Server sends E(AV r

S) to SS .

(c) SS aborts the ideal functionality before Client outputs its pattern matching results obtained

from the ideal functionality.

7.2.2 Simulator specification for the adversarial Client, SC , for πH
5PM . Consider the

admissible pair P̄ = (Client, Server) in the real world. We construct SS for an admissible pair

P̄ ′ =(SC , Server) in the ideal world (where Server behaves honestly in both cases) such that

REAL
πH5PM
P̄

(x̄, ȳ, r̄) and IDEAL
πH5PM
P̄ ′

(x̄, ȳ, r̄) are computationally indistinguishable. Note that SS

has oracle access to real world Client.

Initial Interactions with the Ideal Functionality: We assume that the encryption scheme

(Key,E,D) is fixed. Upon oracle call to Client, Client sends pattern p to SC , who forwards it on to

the ideal functionality. Once the ideal functionality reveals the length that the text should be, SC

sets the text T = T ∗ to be all 1s (we note that, as above, if 1 6∈ Σ, T ∗ can set to be all a’s for any

a ∈ Σ) of the right length (any arbitrary vector can be used here, but without loss of generality

we use all 1s).

(a) Client computes (skC , pkC)← Key(1k). Using, p, Client constructsMCDV ← GenCDV (p) and

encrypts it to obtain E(MCDV). Client sends E(MCDV) and pkC to SC . In addition, Client

sends E(−m), where m = |p| (or E(−m + l) in the single-character wildcard or substring

cases, where l is the threshold).

(b) The ideal functionality sends SC the pattern matching results with the correct (e.g,real world)

pattern and text- e.g,all positions where the pattern should match. SC constructs a new vector

of encryptions, E(AVIF), by using Client’s public-key to encrypt an (m+n−1)-length vector

with 0s where the pattern should match and random elements elsewhere. SC sends E(AVIF)

to Client.

45

7.2.3 Security of πH
5PM . We prove that πH5PM securely realizes FH5PM in the honest-but-curious

(static corruption) model by demonstrating the computational indistinguishability ofREAL
πM5PM
P̄

(x̄, ȳ, r̄)

and IDEAL
πM5PM
P̄ ′

(x̄, ȳ, r̄).

Theorem 4. Given an additively homomorphic semantically secure encryption scheme over prime-

order cyclic groups (Key,E,D), πH5PM securely realizes FH5PM in the honest-but-curious (static

corruption) model.

Proof (Proof of Theorem 4). We demonstrate that the two simulators SS and SC output transcripts

such that REAL
πH5PM
P̄

(x̄, ȳ, r̄) and IDEAL
πH5PM
P̄ ′

(x̄, ȳ, r̄) are computationally indistinguishable.

Case 1: Adversarial Server. The transcript in the real world is the transcript (pkC , T, E(MCDV)p, E(−m)),

where by E(MCDV)p we mean the encrypted MCDV matrix constructed from p. Note then that

E(MCDV)p is the encrypted MCDV matrix constructed from pt. The view in the ideal world is

(pkC , T, E(MCDV)pt , E(m)), where pt is a string of m 1s. Suppose a distinguisher D can distin-

guish the distributions of the real and ideal transcripts with non-negligible probability. In particular,

D distinguishes (E(MCDV)p) from (E(MCDV)pt) with non-negligible probability given pkC and T .

In particular, let a distinguisher D have as input pkC and T . Define the distribution

Xi = (E(MCDV)p,1, ..., E(MCDV)p,k, E(MCDV)pt,k+1,, E(MCDV)pt,m|Σ|),

where E(MCDV)pt,i is the ith encrypted element in E(MCDV) constructed from the pattern pt

(where the matrix here is thought of as a string). By a hybrid argument, for some 0 ≤ k ≤

m|Σ|, given pkC and T , D can distinguish Xk from Xk+1 in polynomial time with non-negligible

probability. But this violates the semantic security of E since D only has the public-key of E and

T , which is independent of p/pt.

46

More precisely, let the hybrid experiment Hi, 0 ≤ i ≤ m|Σ| be such that the first i encryptions

sent by the simulator come from MCDVpt
while the remaining encryptions come from MCDVp . Note

that H0 is the distribution of the real Client while Hm|Σ| is the distribution of the simulator in

the ideal world. Suppose that Hi is computationally indistinguishable from Hi+1 for some i. The

we reduce to the semantic security of ElGamal encryption. Namely, we consider a player Penc who

encrypts and another R who receives. Penc is given as auxiliary inputs the p and T such that Hi

and Hi+1 are computationally distinguishable with non-negligible probability via a distinguisher

D. Penc sends R the public key, which R uses to internally execute Hi and Hi+1 using pt, p and T .

At the i + 1 encryption, R sends Penc the two plain texts from MCDVpt
and MCDVp used for the

i+ 1 encryption in the respective hybrids; Penc sends back the encryptions in a randomized order.

Penc continues the internal execution. Note that these distributions are identical to Hi and Hi+1.

If Hi and Hi+1 are computationally distinguishable with non negligible probability using D, then

R, using D, can distinguish the two encryptions with non negligible probability, which implies that

ElGamal encryption is not semantically secure, a contradiction.

Case 2: Adversarial Client.

The transcript in the real world is the transcript (skC , p,m,AV
r
S), while the view in the ideal

world is the transcript (skC , p,m,AV
r
IF). Indistinguishability here is statistical- namely, by con-

struction, AV r
S and AV r

IF have zeros in the same places; their non-zero locations contain elements

chosen uniformly (and independently) at random since the group has prime order. This implies

statistical indistinguishability of the transcripts (in particular, in this case, security does not rely

on the semantic security of the encryption scheme at all other than to hide the matching result

from an eavesdropper).

7.3 Simulator Constructions and Security for πM
5PM

We provide, for each admissible pair in the real world, an admissible pair in the ideal world such

that REAL
πM5PM
P̄

(x̄, ȳ, r̄) and IDEAL
πM5PM
P̄ ′

(x̄, ȳ, r̄) are computationally indistinguishable.

47

In what follows, we assume that if a message is incorrectly formatted, the simulator will simply

abort; since this might occur at every individual interaction, we omit it for simplicity.

7.3.1 Simulator specification for an adversarial Server, SS, for πM
5PM . We describe how

an adversarial Server interacts with SS for πM5PM . In particular, consider the admissible pair P̄ =

(Client, Server) in the real world. We construct SS for an admissible pair P̄ ′ =(Client, SS) in

the ideal world (where Client behaves honestly in both cases) such that REAL
πM5PM
P̄

(x̄, ȳ, r̄) and

IDEAL
πM5PM
P̄ ′

(x̄, ȳ, r̄) are computationally indistinguishable. Note that SS will have oracle access to

Server.

We list the subprotocols of πM5PM and describe how an adversarial Server interacts with SS .

Recall that πencr is a protocol to instantiate a threshold ElGamal encryption scheme, πC,AV is for

Client to compute an activation vector, πS,AV is for Server to compute an activation vector, πvec

is for the parties to determine that their activation vectors are equal, πrand is for Server to send

Client an encrypted vector that only reveals matching locations upon decryption, and πans is for

Server to partially decrypt that encrypted vector. We refer the reader to Section 3.3.3 and Section

6.2 for protocol details.

Initial Interactions with the Ideal Functionality: We may view the following interaction

with the ideal functionality as occurring during the execution of πC,AV between SS and Server.

Upon oracle call, Server reveals the length of its text to SS (it will do so in the protocol when it

sends E(MT) during πC,AV , since this matrix is of size |T | × |Σ|). For the purpose of ideal func-

tionality interaction, SS will set the text T ′ to be all 1s (here are throughout this specification, this

is without loss of generality assuming 1 ∈ Σ; else another character may be used) with length the

same as Server’s text and send T ′ and send it to the ideal functionality. The ideal functionality

will return the length of Client’s pattern. SS sets the pattern pt = p∗ to be all 1s of the length of

the pattern (any arbitrary vector can be used here, but without loss of generality we use all 1s).

SS will then abort the ideal functionality so that (ideal world) Client does not output anything in

the ideal functionality. The following is what SS will output for IDEALπ
M
5PM (explaining how SS

48

makes oracle calls to Server).

πencr:

This subprotocol begins at the first global round and ends at global round 6.

(a) SS chooses sC , s
∗ ∈ Zq and sets h1 ← gsC , h∗ ← gs

∗
. SS sends h1, h

∗ to Server. SS sends

the Server two parallel instantiations of πP,1DL for h1 and h∗ with witnesses sC and s∗. This

continues through global round 5.

(b) Server sends h2 (normally equal to gsS) to SS as well as πP,1DL for h2 with witness sS . Protocol

πDL continues through global round 6. Both parties set h = h1h2 as the public-key (with

secret-key s = sC + sS).

πC,AV:

This subprotocol starts at global round 2 and ends at global round 6.

(a) Server sends E(MT) to SS . Server also sends, for E(MT), AP,1M1 to demonstrate that E(MT)

is formatted correctly . AM1 continues through global round 6.

(b) During global round 3, SS computes E(AVC) from E(MT), pt and p as specified in πM5PM .

πS,AV:

This subprotocol starts at global round 3 and ends at global round 5, with ZK preprocessing

occurring during global rounds 1 and 2.

(a) SS sends E(MCDV), constructed using pt, and E(|pt|) to Server. SS also sends AP,2M01 to

demonstrate that E(MCDV) is formed correctly, where AP,1M01 and AV,1M01 occur during global

rounds 1 and 2, respectively. AM01 continues until global round 5.

πvec:

49

This subprotocol begins at global round 3 and ends at global round 8, with ZK preprocessing

occurring during global rounds 1, 2 and 3. 〈·, ·〉 denotes the inner product over Gq.

– At global round 3 SS chooses r1 ∈ Gn−m+1
q and r′1 ∈ Gq. SS computes E(AV ′C) by multiplying

each element of AVC with an encryption of 0 thus blinding the ciphertext. SS generates

comm(E(AV ′C)), comm(r1), and comm(E(r′1)) and sends them to Server.

– Server sends r2, E(r′2), E(AV ′S) to SS .

– At global round 5, SS sets r = r1 +r2 and E(r′) = E(r′1 +r′2). SS computes z1 = E(〈AVC , r〉+

r′) and z2 = E(〈AVS , r〉+r′). SS opens the commitments of E(AV ′C), r1, and E(r′1) to Server.

SS sends z1 and z2 to Server. SS computes partial decryptions DC(z1), DC(z2) and sends

DC(z1), DC(z2) to Server as well as AP,2PD to prove that the partial decryptions DC(z1),

DC(z2) are computed correctly, where messages AP,1PD and AV,1PD are sent during global rounds

1 and 2, respectively. Execution of SS ’s APD continues until global round 7.

– At global round 6, Server sends (for independently obtained z1 and z2), DS(z1) and DS(z2)

to SS as well as AP,2PD to prove that the partial decryptions DS(z1), DS(z2) are computed

correctly, where AP,1PD and AV,1PD are sent during global rounds 2 and 3, respectively. Execution

of Server’s APD continues until global round 8.

– At global round 7 SS obtains z1, z2 from DS(z1) and DS(z2). SS aborts if z1 6= z2.

SS aborts if the decryptions of z1 and z2 do not equal each other.

πrand:

This subprotocol starts at global round 6 and ends at global round 8, with ZK preprocessing

occurring during global rounds 2 and 3.

(a) Server sends E(AV r
S) to SS and sends AP,2rand that E(AV r

S) was obtained correctly from

E(AV ′S), where AP,1rand and AV,1rand are sent during global rounds 2 and 3, respectively. This

Arand continues until global round 8.

πans:

50

This subprotocol starts at global round 6 and continues until global round 8.

(a) At global round 6, Server sends comm(DS(E(AV r
S))). Server also sends the message comm(AP,2FD),

where AFD is the argument to prove that either DS(E(AV r
S)) was obtained correctly or that

Server knows s∗ (for h∗ sent by SS in the first global round during πencr), where AP,1FD and

AV,1FD are sent during global rounds 2 and 3, respectively.

(b) At global round 7, SS sends AV,2FD to Server (our AoKs are public coin so AV,2FD is not determined

by AP,2FD).

(c) At global round 8, Server opens commitments of AP,2FD, DS(E(AV r
S)) to SS . Server sends AP,3FD

to SS .

(d) SS aborts if it does not accept the argument AFD.

7.3.2 Simulator specification for an adversarial Client, SC , for πM
5PM . Consider the

admissible pair P̄ = (Client, Server) in the real world. We construct SS for an admissible pair

P̄ ′ =(SC , Server) in the ideal world (where Server behaves honestly in both cases) such that

REAL
πM5PM
P̄

(x̄, ȳ, r̄) and IDEAL
πM5PM
P̄ ′

(x̄, ȳ, r̄) are computationally indistinguishable. Note that SS

has oracle access to real world Client.

We list the subprotocols of πM5PM and describe how Client interacts with SC . Unlike the case

for SS , SC must interact with the ideal functionality in the final rounds of the protocol because

Client receives an output from πM5PM ; thus SC must retrieve this output in the final steps of the

simulation. Recall that πencr is a protocol to instantiate a threshold ElGamal encryption scheme,

πC,AV is for Client to compute an activation vector, πS,AV is for Server to compute an activation

vector, πvec is for the parties to determine that their activation vectors are equal, πrand is for Server

to send Client an encrypted vector that only reveals matching locations upon decryption, and πans

is for Server to partially decrypt that encrypted vector. We refer the reader to Section 3.3.3 and

Section 6.2 for details.

51

Initial Interactions with the Ideal Functionality: Once the ideal functionality reveals to

SC the length that the text should be, SC sets the text T = T ∗ to be all 1s of the right length (any

arbitrary vector can be used here, but without loss of generality we use all 1s where 1 ∈ Σ and

some other fixed character in Σ otherwise).

πencr:

This subprotocol begins at the first global round and ends at global round 6.

(a) Client sends h1, h
∗ to SC (where in the honest execution, h1 = gsC and h∗ = gs

∗
). Client

sends SC two parallel instantiations of πP,1DL for h1 and h∗ with witnesses sC and s∗. This

continues through global round 5.

(b) SC chooses sS ∈ Zq and sets h2 ← gsS . SC sends h2 to Client as well as πP,1DL for h2 with

witness sS . Protocol πDL continues through global round 6. Both parties set h = h1h2 as the

public-key (with secret-key s = sC + sS).

(c) Using as a subprotocol the extractor E guaranteed since πDL is an argument of knowledge,

SC rewinds from global round 5 to global round 2 and interacts with Client until global round

5 and then rewinds again until it extracts s∗ from Client, at which point it rewinds once more

and executes πDL per the usual specification. SC only uses E for its responses related to the

proof of knowledge πDL for s∗; only messages relating to πDL for s∗ are affected from one

rewinding to the next. SC , using E, is guaranteed to succeed in extracting s∗ in (expected)

polynomial time since πDL is an argument of knowledge.

(d) Using as a subprotocol the extractor E guaranteed since πDL is an argument of knowledge,

SC rewinds from global round 5 to global round 2 and interacts with Client until global

round 5 and then rewinds again until it extracts sC from Client and then rewinds again until

it extracts s∗ from Client, at which point it rewinds once more and executes πDL per the

usual specification. SC only uses E for its responses related to the proof of knowledge πDL

for sC ; only messages relating to πDL for sC are affected from one rewinding to the next. SC ,

using E, is guaranteed to succeed in extracting sC in (expected) polynomial time since πDL

52

is an argument of knowledge. Note now that SC can decrypt encryptions computed by Client

because SC possesses both sS and sC .

πC,AV:

This subprotocol starts at global round 2 and ends at global round 6.

(a) SC sends E(MT) to Client. SC also sends, for E(MT), AP,1M1 that E(MT) is formatted correctly.

AM,1 continues through global round 6.

πS,AV:

This subprotocol starts at global round 3 and ends at global round 5, with ZK preprocessing

occurring during global rounds 1 and 2.

(a) Client sends E(MCDV) and E(|p|) to SC . Client also sends AP,2M01 that E(MCDV) is formed

correctly, where AP,1M01 and AV,1M01 occur during global rounds 1 and 2, respectively. AM01

continues until global round 5.

(b) During global round 4, using E(MCDV), T and E(|p|), SC computes E(AVS) as specified in

πH5PM .

Further interaction with the ideal functionality: SC can decrypt encryptions computed by

Client because it extracted Client’s secret-key sC during πencr. During πS,AV , SC obtains E(MCDV).

Therefore, SC obtains the pattern p that Client is trying to have matched (which may be different

than the pattern Client output to the real-world transcript). SC resets the ideal functionality, now

using this p. The output for the ideal functionality to SC will be the correct matching of the pattern

with the text that real Server is using. See πans, where SC uses this ideal functionality output.

πvec:

53

This subprotocol begins at global round 3 and ends at global round 8, with ZK preprocessing

occurring during global rounds 1, 2 and 3. 〈·, ·〉 denotes the inner product over Gq.

– At global round 3 Client chooses r1 ∈ Gn−m+1
q and r′1 ∈ Gq. Client computes E(AV ′C). Client

generates comm(E(AV ′C)), comm(r1), and comm(E(r′1)) and sends them to SC .

– At global round 4 SC chooses r2 ∈ Gn−m+1
q and r′2 ∈ Gq. SC computes E(AV ′S) by mul-

tiplying each element of AVS by an encryption of 0 thus blinding the ciphertext. SC sends

r2, E(r′2), E(AV ′S) to Client.

– At global round 5, Client opens the commitments of E(AV ′C), r1, and E(r′1) to SC . Client

sends elements z1 and z2 to SC . Client sends DC(z1), DC(z2) to SC as well as AP,2PD to prove

that the partial decryptions DC(z1), DC(z2) are computed correctly, where messages AP,1PD

and AV,1PD are sent during global rounds 1 and 2, respectively. Execution of Client’s APD

continues until global round 7.

– At global round 6, SC obtains z1, z2 from DC(z1) and DC(z2). SC aborts if z1 6= z2. SC

sets r = r1 + r2 and E(r′) = E(r′1 + r′2). SC computes z1 = E(〈AVC , r〉 + r′) and z2 =

E(〈AVS , r〉 + r′). SC computes partial decryptions DS(z1), DS(z2) and sends DS(z1) and

DS(z2) to Client as well as AP,2PD to prove that the partial decryptions DS(z1), DS(z2) are

computed correctly, where AP,1PD and AV,1PD are sent during global rounds 2 and 3, respectively.

Execution of SC ’s APD continues until global round 8.

πrand:

This subprotocol starts at global round 6 and ends at global round 8, with ZK preprocessing

occurring during global rounds 2 and 3.

(a) SC computes E(AV r
S) from E(AV ′S) by exponentiating each encryption in E(AV ′S) by a ran-

dom exponent. SC sends E(AV r
S) to Client and sends AP,2rand that E(AV r

S) was obtained

correctly from E(AV ′S), where AP,1rand and AV,1rand are sent during global rounds 2 and 3, respec-

tively. This Arand continues until global round 8.

54

πans:

This subprotocol starts at global round 6 and continues until global round 8.

(a) At this stage (global round 6), the ideal functionality sends SC the correct output that Client

should receive (e.g., the locations in a string of length |AVS | that tells Client where matches

occur- see “Further interactions with the ideal functionality” after πS,AV above). Denote as

AVIF the string that Client should receive per the ideal functionality. SC computes E(AV r
IF)

from AVIF by setting the non-matching locations of AVIF to be random elements and then

encrypting the vector. SC computes and sends comm(DS(E(AV r
IF))) to Client. SC also sends

the message comm(AP,2FD), where AFD is the argument to prove that either DS(E(AV r
IF)) was

obtained correctly or that SC knows s∗ (for h∗ sent by Client in the first global round during

πencr), where AP,1FD and AV,1FD are sent during global rounds 2 and 3, respectively. Note that

here, SC uses the witness for knowledge of s∗.

(b) At global round 7, Client sends AV,2FD to SC (our AoKs are public coin so AV,2FD is not determined

by AP,2FD).

(c) At global round 8, SC opens commitments of AP,2FD, DS(E(AV r
IF)) to Client. SC sends AP,3FD

to Client.

7.3.3 Security of πM
5PM . We prove that πM5PM securely realizes FM5PM in the malicious (static

corruption) model.

Theorem 5. Assuming the Decisional Diffie Hellman (DDH) problem is hard, πM5PM securely re-

alizes FM5PM in the malicious (static corruption) model.

Proof (Proof of Theorem 5). We proceed to prove Theorem 5 by considering two cases: the first

where the Client is corrupted and the second where the Server is corrupted.

55

Case 1: Client is corrupted.

We prove security by examining a sequence of experiments. Note that we assume here that the

subprotocols of πM5PM are run consecutively instead of interleaved in order to simplify the proof.

We will argue why interleaving does not affect our reasoning afterwards. We assume that Client

has pattern p and Server has text T .

Intuition. The intuition for the proof is as follows: As long as SC completes the last proof πfin

according to specification, SC can use any text he wishes. What is required is a sequence of hybrid

arguments that begins with the real Server’s actual text and concludes with SC using a dummy

text T ∗ (namely 1n). However, for a security reduction to the semantic security of El Gamal, the

zero-knowledge arguments executed during the reduction must be executed without plain-text wit-

nesses. Therefore, what first must be undertaken is that zero-knowledge proofs must be executed

by zero-knowledge simulation in order to be executed irrespective of (plain text) witnesses, then

the text T is shifted to T ∗, then, per specification of SC , the zero-knowledge arguments are then

executed using plain text witnesses again. Formal arguments follow.

H0. In this experiment Client and Server interact as in the real world.

H1,1. This experiment is identical to H0 except that SC executes πenc with the Client and extracts

s∗ from the Client execution of πDL for knowledge of s∗. Computational indistinguishability holds

because the distribution for the outputs for πDL are not affected from H0 to H1,1 as SC , after

extraction, executes πDL as verifier per specification of πDL.

H1,2. This experiment is identical to H0 except that SC executes πenc with the Client and extracts

sC from the Client execution of πDL for knowledge of sC . Computational indistinguishability holds

because the distribution for the outputs for πDL are not affected from H1,1 to H1,2 as SC , after

extraction, executes πDL as verifier per specification of πDL.

56

H2. This experiment is identical to H1,2 except that for the proof of knowledge πDL of the Server-

side secret key sS , SC simulates the transcript rather than actually using the witness sS .

We prove that H2 is computationally indistinguishable from H1,2 by reducing to the compu-

tational indistinguishability of ZK transcripts. Assume that there existed a pattern p, Server text

T , Client strategy and Server/SC such that a distinguisher D could distinguish H1,2 from H2 in

polynomial time with non-negligible probability. Then let PZK and VZK be prover and verifier for

the zero knowledge argument πDL for the gsS . Let VZK have as auxiliary inputs p and T . PZK also

has p and T as auxiliary inputs, as well as sS ; note that these auxiliary inputs may be given to

PZK after VZK has internally executed the corresponding component of πM5PM .

VZK executes πM5PM internally with input T for Server and input p for Client, and executes the

protocol as H1 and H2 specify. However, for the proof πDL for gsS , VZK interacts with PZK as

follows. For one of the two executions for πDL, PZK executes πDL with witness sS ; for the other

execution, PZK uses the simulator SZK (guaranteed to exist by definition of zero knowledge) to

construct a valid transcript without knowledge of the plain text/witness. VZK responds to these

two interactions per the output of the internally executed Client. Once the two interactions are

done, VZK completes the internal execution of πM5PM . Note that the views of VZK are identical to

the views of the interactions specified by H1 and H2. Therefore, the zero knowledge distinguisher

DZK distinguishes the two cases of VZK ’s interaction with non-negligible probability by running D

internally, which will distinguish the two views of the ZK execution with non-negligible probability,

a contradiction.

Hi
3. This experiment is identical to H2 except that for each of the first i executions of πisBit for

MT in πC,AV , 0 ≤ i ≤ n|Σ|, SC produces a valid transcript for the ZK argument without using

the witness for the encryption. We note that the encryptions that SC uses are unchanged from H1;

only the ZK transcripts for πisBit in πC,AV are affected. Note that H2 is identical to H0
3 .

We prove that H i
3 is computationally indistinguishable from H i+1

3 by reducing to the compu-

tational indistinguishability of ZK transcripts. Assume that there existed a pattern p, Server text

T , Client strategy and Server/SC such that a distinguisher D could distinguish H i
3 from H i+1

3 in

57

polynomial time with non-negligible probability. Then let PZK and VZK be prover and verifier for

the zero knowledge argument πDL for the ith encryption of MT . Let VZK have as auxiliary inputs

p and T . PZK also has p and T as auxiliary inputs, as well as the public key and the randomness

used to encrypt the i+ 1 encryption of MT ; note that these auxiliary inputs may be given to PZK

after VZK has internally executed the corresponding component of πM5PM .

VZK executes πM5PM internally with input T for Server and input p for Client, and executes the

protocol as H i
3 and H i+1

3 specify. However, for the i+ 1 encryption of MT , VZK interacts with PZK

as follows. For one of the two executions for πisBit for the i + 1 encryption of MT , PZK executes

πisBit with private input the witness for the encryption to run πDL; for the other execution, PZK

uses the simulator SZK (guaranteed to exist by definition of zero knowledge) to construct a valid

transcript without knowledge of the plain text/witness. VZK responds to these two interactions per

the output of the internally executed Client. Once the two interactions are done, VZK completes

the internal execution of πM5PM . Note that the views of VZK are identical to the views of the inter-

actions specified by H i
3 and H i+1

3 . Therefore, the zero knowledge distinguisher DZK distinguishes

the two cases of VZK ’s interaction with non-negligible probability by running D internally, which

will distinguish the two views of the ZK execution with non-negligible probability, a contradiction.

Hi
4. This experiment is identical to H

n|Σ|
2 except that for each of the i executions of πDL for πC,AV

(namely, that the sum of each row of MT is a 1), 0 ≤ i ≤ n, SC produces a valid transcript for the

ZK argument without using the witness for the encryption, which is a product of the encryptions

in the ith column of E(MT). Note that H0
4 is identical to H

n|Σ|
3

We prove that H i
4 is computationally indistinguishable from H i+1

4 by reducing to the com-

putational indistinguishability of ZK transcripts. Assume that there existed a pattern p, Server

text T , Client strategy and Server such that a distinguisher D could distinguish H i
4 from H i+1

4 in

polynomial time with non-negligible probability. Then let PZK and VZK be prover and verifier for

the zero knowledge argument πDL for the product of the ith row of E(MT). We let VZK have as

auxiliary inputs p and T . PZK also has p and T as auxiliary inputs, as well as the public key and

58

the randomness used to encrypt the i+1 row of encryptions of MT ; note that these auxiliary inputs

may be given to PZK after VZK has internally executed the corresponding component of πM5PM .

VZK executes πM5PM internally with input T for Server and input p for Client, and executes the

protocol as H i
4 and H i+1

4 specify. However, for the product of the i+1 row of E(MT), VZK interacts

with PZK as follows. For one of the two executions, PZK uses the witness for the encryption to

run πDL, and for the other, PZK uses the simulator SZK (guaranteed to exist by definition of zero

knowledge) to construct a valid transcript without knowledge of the plain text. VZK responds to

these two interactions per the output of the internally executed Client. Once the two interactions

are done, then VZK completes the internal execution of πM5PM . Note that the views of VZK are

identical to the view of the interactions specified by H i
4 and H i+1

4 . Therefore, the zero knowledge

distinguisher DZK distinguishes the two cases of VZK ’s interaction with non-negligible probability

by running D internally, which will distinguish the two views with non-negligible probability, a

contradiction.

Hi
5. This experiment is identical to Hn

3 except that the ith execution of πeqDL executed as part

of APD for correct server-side partial decryption of zi during πvec is executed without using the

witness for partial decryption and instead is simulated (0 ≤ i ≤ 2, where the 0 case corresponds to

Hn
4).

We prove that H i
5 is computationally indistinguishable from H i+1

5 by reducing to the compu-

tational indistinguishability of ZK transcripts. Assume that there existed a pattern p, Server text

T , Client strategy and Server such that a distinguisher D could distinguish H i
5 from H i+1

5 in poly-

nomial time with non-negligible probability. Then let PZK and VZK be prover and verifier for the

zero knowledge argument πeqDL. We let VZK have as auxiliary inputs p and T . PZK also has p

and T as auxiliary inputs, Server-side secret key sS , the decryption of zi and the randomness used

for the encryption; note that these auxiliary inputs may be given to PZK after VZK has internally

executed the corresponding component of πM5PM .

VZK executes πM5PM internally with input T for Server and input p for Client, and executes the

protocol as H i
5 and H i+1

5 specify. However, for the proof of partial decryption by the Server for zi+1

59

in πvec, VZK interacts with PZK as follows. For one of the two executions, PZK uses the witness

sS for the decryption to run πeqDL, and for the other, PZK uses the simulator SZK (guaranteed

to exist by definition of zero knowledge) to construct a valid transcript without knowledge of the

secret key. VZK responds to these two interactions per the output of the internally executed Client.

Once the two interactions are done, then VZK completes the internal execution of πM5PM . Note that

the views of VZK are indistinguishable from the view of the interactions specified by H i
5 and H i+1

5 .

Therefore, the zero knowledge distinguisher DZK distinguishes the two cases of VZK ’s interaction

with non-negligible probability by running D internally, which will distinguish the two views with

non-negligible probability, a contradiction.

Hi
6. This experiment is identical to Hn

5 except for that for each of the first i executions of πfin

during AFD, 0 ≤ i ≤ n−m+ 1, for the proof of partial decryption of E(AV r
S), Server (or SC) uses

the witness for s∗ to complete the execution. Note that use of different witnesses is computationally

indistinguishable for ZK arguments (since the executions with a different witness are themselves

indistinguishable from the execution by the simulator). Note that H0
6 is identical to Hn

5 .

We prove that H i
6 is computationally indistinguishable from H i+1

6 by reducing to the computa-

tional indistinguishability of ZK transcripts. Assume that there existed a pattern p, Server text T ,

Client strategy and Server such that a distinguisher D could distinguish H i
6 from H i+1

6 in polyno-

mial time with non-negligible probability. Then let PZK and VZK be prover and verifier for the zero

knowledge argument πfin for the ith encryption of E(AV r
S). We let VZK have as auxiliary inputs

p and T . PZK also has p and T as auxiliary inputs, as well as the i + 1 element of E(AV r
S), the

corresponding Server-side partial decryption and the Server-side private key. Finally, PZK also has

s∗ as auxiliary input; note that these auxiliary inputs may be given to PZK after VZK has internally

executed the corresponding component of πM5PM .

VZK executes πM5PM internally with input T for Server and input p for Client, and executes the

protocol as H i
6 and H i+1

6 specify. However, for i + 1 encryption of E(AV r
S), VZK interacts with

PZK as follows. For one of the two executions, PZK uses the witness for the partial decryption

encryption of the i+1 element of E(AV r
S) to execute πfin with VZK , and for the other, PZK uses the

60

witness s∗ to execute πfin. VZK responds to these two interactions per the output of the internally

executed Client. Once the two interactions are done, then VZK completes the internal execution

of πM5PM . Note that the views of VZK are identical to the view of the interactions specified by H i
6

and H i+1
6 . Therefore, the zero knowledge distinguisher DZK distinguishes the two cases of VZK ’s

interaction with non-negligible probability by running D internally, which will distinguish the two

views with non-negligible probability, a contradiction.

Hi
7. This experiment is identical to Hn−m+1

6 except that the first i entries of AV r
IF , 0 ≤ i ≤ n−m+1,

are used instead of the corresponding entries of AV r
S . Note that AV r

IF and AV r
S , are, by construc-

tion, distributed identically over the choice of their respective randomized entries (e.g,in the non-

matching locations), and that both contain zeros in exactly the same places. Note that by the

construction of Hn
6 the proof of partial decryption πfin for DS(E(AV r

IF)) uses as witness s∗ rather

than the witness for decryption. Therefore H i
7 is computationally (indeed, statistically) indistin-

guishable from H i+1
7 for any i because of the identical distributions of AV r

IF and AV r
S .

Hi
8. This experiment is identical to Hn−m+1

7 except that the first i encryptions of E(MT), 0 ≤ i ≤

n|Σ|, are drawn from E(MT ′), which corresponds to T ′ = 1n. Note that the final output of πM5PM

is AV r
IF , so the protocol output does not change. Note also that H0

8 is identical to Hn
5 .

We prove that H i
8 is computationally indistinguishable from H i+1

8 by reducing to the semantic

security of ElGamal encryption (that is to say, assuming the hardness of Decisional Diffie Hellman);

in particular, we will use a reduction to non-threshold (e.g, standard) ElGamal encryption. Assume

that there existed a pattern p, Server text T , Client strategy and Server/SC such that a distinguisher

D could distinguish H i
8 from H i+1

8 in polynomial time with non-negligible probability. Then let Senc

be the computer of ElGamal encryptions and Renc be the receiver. Renc is given as auxiliary inputs

p and T . Senc also has p and T as auxiliary inputs, as well as the public key and the randomness

used to encrypt the i+ 1 encryption of MT /MT ′ ; note that these auxiliary inputs may be given to

PZK after VZK has internally executed the corresponding component of πM5PM .

61

Renc executes πM5PM internally with input T/T ′ for Server and input p for Client. However,

when Server must publish gsS , Renc queries Senc, who sends gsS ; this is the publishing of the public

ElGamal key. Note that Renc must select sC independently of sS or will not be able to create a

transcript computationally indistinguishable from the πM5PM transcript; because of the binding and

hiding property of Pedersen commitments, real Client and Server are required to do the same. Renc,

as Server, sends Senc and completes the ZK proof without the witness sS ; since by an earlier hybrid

experiment, H2 this is already being accomplished, Renc is acting according to specification.

For each encryption of MT except for the i and i + 1 entries, Renc sends the unencrypted

value to Senc, who sends back the corresponding encryptions. Renc encrypts with the Client’s

sC (which it obtains by running the knowledge extractor; as in hybrid H1, this does not affect

transcript indistinguishability), and uses this final encryption as the Server-side encryption; this

final encryption corresponds to encryption with the secret key sC + sS .

Note that in all cases, the ZK proofs of well-formedness of the encryptions are simulated rather

than using the actual witnesses per hybrid experiments H
n|Σ|
2 and Hn

3 .

For the i and i + 1 encryptions, Renc sends both to Senc, who sends back encryptions of each,

without identifying which encryption corresponds to which plaintext. Renc completes the internal

execution of πM5PM ; note that witnesses for partial decryption by the Server do not use sS per

construction of the previous hybrids (H3 and H4). We note that at the end of πvec, Client and

Server must jointly compute decryptions of z1 and z2; here, we note that Renc will simply use the

same (randomly chosen) “secret key” sfake and use it for Server-side decryption of z1 and z2; if the

actual decryptions of z1 and z2 equal each other, than so will these new “decryptions”; further, by

the uniformly random distribution of the hash functions used to compute z1 and z2, the transcripts

will be identical to the hybrid experiment executions. Further, Server does not use the witness for

partial decryption due to hybrid H2
5 .

Finally, for the final decryption of AV r
IF , Renc can simply send the Server’s partial decryption,

DS(E(AV r
IF)), as the partial encryption of AV r

IF using the Client’s public key (note that the Server-

side can extract this rather than having Renc simply use it by virtue of executing Client internally).

62

Again, the witness for partial decryption isn’t used because by hybrid H6, the witness s∗ is already

being used.

We note that by the above reasoning, the views of Renc are distributed identically to the views

of an adversarial Client for H i
8 and H i+1

8 . Therefore, if the distinguisher Denc by executes the hybrid

distinguisher D internally, then Denc will be able to distinguish the i and i+ 1 encryptions of MT

with non-negligible probability, a contradiction.

Hi
9. This experiment is identical to H

n|Σ|
8 except that for the ith execution of πeqDL executed as

part of APD for correct server-side partial decryption of zi during πvec (0 ≤ i ≤ 2, where the 0 case

corresponds to Hn
4), Server uses the secret key sS rather than simulating the transcript.

That the hybrids H i
9 and H i+1

9 are computationally indistinguishable is essentially the same

argument as for hybrids H i
5 and H i+1

5 (which was the same process but in reverse).

Hi
10. This experiment is identical to H2

9 except that i executions of πDL in πC,AV , 0 ≤ i ≤ n, SC

uses the witness for the encryption, which is a product of the encryptions in the ith row of E(MT ′).

Note that H0
10 is identical to H2

9 .

That hybrids H i
10 and H i+1

10 are computationally indistinguishable is essentially the same argu-

ment as for hybrids H i
3 and H i+1

3 (which was the same process but in reverse).

Hi
11. This experiment is identical to Hn

10 except that for each of the first i executions of πisBit in

πC,AV , 0 ≤ i ≤ n|Σ|, SC uses the witness for the encryption. Note that H0
11 is identical to Hn

10

That hybrids H i
11 and H i+1

11 are computationally indistinguishable is essentially the same argu-

ment as for hybrids H i
3 and H i+1

3 (which was the same process but in reverse).

H12. This experiment is identical to H
n|Σ|
11 except that SC uses the witness sS for πDL in πvec. Note

that H12 is the distribution of view of output of the Simulator SC .

That hybrids H12 and H
n|Σ|
11 are computationally indistinguishable is the essentially the same

argument as for hybrids H1,2 and H2 above.

63

Interleaving the ZK Arguments. The ZK arguments used in πM5PM are all modified Σ protocols.

The first three global rounds of πM5PM force the respective ZK provers to instantiate all needed

(equivocable) commitment schemes while forcing the respective ZK Verifiers to commit to all chal-

lenges for the subsequent Σ protocols. Thus, the Verifier has less power than in the sequential

composition case (recall that ZK arguments are closed under sequential composition), since in

the sequential composition case, the Verifier could change her challenges based on previous ZK

iterations while here she cannot. Therefore, zero-knowledge is not affected. Soundness is also not

affected by interleaving since a dishonest Prover must break soundness by distinguishing the Veri-

fier’s (public coin) committed challenge to the underlying Σ protocol. However, the Prover cannot

distinguish multiple committed challenges so long as separate randomness was used for each com-

mitment, yielding soundness of the ZK arguments even when they are interleaved as in πM5PM .

Interleaving Subprotocols. We now demonstrate that interleaving the subprotocols into the final

πM5PM does not affect transcript indistinguishability. We do so by considering the interleaving sub-

protocols and demonstrating that each new subprotocol’s transcript is not affected by interleaving.

We can consider this sequential case because it is already demonstrated (above) that if each sub-

protocol is executed sequentially without interleaving, then the protocol is secure in the malicious

model.

We denote by ASrel and ACrel (also by, for instance, πSrel) the zero-knowledge building blocks

outlined in Section 6.1 where Server and Client, respectively, act as prover. As shorthand, we will

write ASrel(x) as the argument Arel where S is the prover and x is the common input.

πencr starts at global round 1. The preprocessing steps for all required ZK protocols occur

during πencr; their outputs here are indistinguishable in the real versus ideal settings by the fact

64

that interleaved zero-knowledge protocols still yield indistinguishable transcripts. While SC must

rewind to extract s∗ and sC , this does not change the distribution of SC ’s output to Client’s view.

πC,AV starts at global round 2, after the global public-key has been determined. Indistinguisha-

bility is not affected since πencr is a protocol for setting up the threshold encryption scheme while

πC,AV is a protocol for proper pattern formation (e.g,of E(MCDV)); since these protocols deal with

independent inputs (other than πC,AV needs the existence of the threshold encryption scheme),

interleaving them does not affect transcript indistinguishability.

πS,AV starts at global round 3. The only remaining outputs from πencr and πC,AV are the remain-

ing zero-knowledge argument outputs of πCDL(h1), πCDL(h∗) , πSDL(h2), and ASM1(E(MT)), which are

independent of the non ZK-related outputs of πS,AV and therefore do not affect indistinguishability.

Interleaving the ZK-related outputs of ACM01(E(MCDV)) with remaining ZK outputs of previous

subprotocol does not affect their indistinguishability (since they could be considered as auxiliary

inputs in the ZK security proof).

πvec starts at global round 4. The only remaining outputs from the previous subprotocols are

from the ZK arguments πCDL(h1), πCDL(h∗) , πSDL(h2), ASM1(E(MT)), and ACM01(E(MCDV)), whose

interleaving do not affect indistinguishability since the non-ZK outputs of πvec are chosen indepen-

dently of previous ZK outputs and interleaving ZK arguments does not affect indistinguishability.

πrand starts at global round 6, at the same time that E(AV ′S) is introduced. Since πrand only

involves reformatting E(AV ′S), namely by introducing E(AV r
S) and its associated ZK outputs,

indistinguishability is not affected.

πans starts at global round 6; the ZK transcript for Afinal does not reveal any information

by ZK indistinguishability and the final decryption is only revealed (by decommitment) at the

very last round; distinguishing the transcript here would imply violating the commitment scheme

(e.g,Pedersen commitments, which are perfectly hiding).

This completes the proof for the indistinguishability of an adversarial Client’s views.

Case 2: Server is corrupted.

We prove security by examining a sequence of experiments. Note that we assume here that the

65

subprotocols of πM5PM are run consecutively instead of interleaved in order to simplify the proof.

We will argue why interleaving does not meaningfully affect the proof afterwards. We assume that

Client has pattern p and Server has text T .

Intuition. The intuition for the proof is as follows: By contrast to the above case of a corrupted

Client, here, Client can use any encryption he wants as long as the zero-knowledge proofs hold,

and the views will still be computationally indistinguishable. However, for a security reduction to

the semantic security of El Gamal encryption, the zero-knowledge arguments executed during the

reduction must be executed without plain-text witnesses. Therefore, what first must be undertaken

is that zero-knowledge proofs must be executed by zero-knowledge simulation in order to be exe-

cuted irrespective of (plain text) witnesses, then the text p is shifted to p∗, then, per specification

of SS , the zero-knowledge arguments are then executed using plain text witnesses again. Formal

arguments follow.

H0. In this experiment Client and Server interact as in the real world.

H1. This experiment is identical to H0 except that for the proof of knowledge πDL of the Client-side

secret key sC , SS simulates the transcript rather than actually using the witness sC .

We prove that H1 is computationally indistinguishable from H1 by reducing to the computa-

tional indistinguishability of ZK transcripts. Assume that there existed a pattern p, Server text

T , Server strategy and Client/SS such that a distinguisher D could distinguish H0 from H1 in

polynomial time with non-negligible probability. Then let PZK and VZK be prover and verifier for

the zero knowledge argument πDL for the gsC . Let VZK have as auxiliary inputs p and T . PZK also

has p and T as auxiliary inputs, as well as sS ; note that these auxiliary inputs may be given to

PZK after VZK has internally executed the corresponding component of πM5PM .

VZK executes πM5PM internally with input T for Server and input p for Client, and executes the

protocol as H0 and H1 specify. However, proof πDL for gsC , VZK interacts with PZK as follows. For

one of the two executions for πDL, PZK executes πDL with witness sC ; for the other execution, PZK

66

uses the simulator SZK (guaranteed to exist by definition of zero knowledge) to construct a valid

transcript without knowledge of the plain text/witness. VZK responds to these two interactions per

the output of the internally executed Server. Once the two interactions are done, VZK completes

the internal execution of πM5PM . Note that the views of VZK are identical to the view of the inter-

actions specified by H0 and H1. Therefore, the zero knowledge distinguisher DZK distinguishes the

two cases of VZK ’s interaction with non-negligible probability by running D internally, which will

distinguish the two views of the ZK execution with non-negligible probability, a contradiction.

Hi
2. This experiment is identical to H1 except that for each of the first i executions of πisBit for

MCDV in πS,AV , 0 ≤ i ≤ m|Σ|, SS produces a valid transcript for the ZK argument without using

the witness for the encryption. We note that the encryptions that SS uses are unchanged from H0;

only the ZK transcripts for πisBit in πS,AV are affected. Note that H1 is identical to H0
2 .

We prove that H i
2 is computationally indistinguishable from H i+1

2 by reducing to the computa-

tional indistinguishability of ZK transcripts. Assume that there existed a pattern p, Server text T ,

Server strategy and Client/SS such that a distinguisher D could distinguish H i
2 from H i+1

2 in poly-

nomial time with non-negligible probability. Then let PZK and VZK be prover and verifier for the

zero knowledge argument πDL for the ith encryption of MCDV . Let VZK have as auxiliary inputs

p and T . PZK also has p and T as auxiliary inputs, as well as the public key and the randomness

used to encrypt the i + 1 encryption of MCDV ; note that these auxiliary inputs may be given to

PZK after VZK has internally executed the corresponding component of πM5PM .

VZK executes πM5PM internally with input T for Server and input p for Client, and executes

the protocol as H i
2 and H i+1

2 specify. However, for the i + 1 encryption of MCDV in πS,AV , VZK

interacts with PZK as follows. For one of the two executions for πisBit for the i + 1 encryption of

MCDV , PZK executes πisBit with private input the witness for the encryption to run πDL; for the

other execution, PZK uses the simulator SZK (guaranteed to exist by definition of zero knowledge)

to construct a valid transcript without knowledge of the plain text/witness. VZK responds to these

two interactions per the output of the internally executed Server. Once the two interactions are

done, VZK completes the internal execution of πM5PM . Note that the views of VZK are identical to

67

the view of the interactions specified by H i
2 and H i+1

2 . Therefore, the zero knowledge distinguisher

DZK distinguishes the two cases of VZK ’s interaction with non-negligible probability by running D

internally, which will distinguish the two views of the ZK execution with non-negligible probability,

a contradiction.

Hi
3. This experiment is identical to H

m|Σ|
2 except that for each of the i executions of πisBit for

πS,AV (namely, that the sum of each column of MCDV is a 0 or a 1), 0 ≤ i ≤ m, SS produces a valid

transcript for the ZK argument without using the witness for the encryption, which is a product of

the encryptions in the ith column of E(MCDV). Note that H0
3 is identical to H

m|Σ|
2

We prove that H i
3 is computationally indistinguishable from H i+1

3 by reducing to the compu-

tational indistinguishability of ZK transcripts. Assume that there existed a pattern p, Server text

T , Client/SS and Server strategy such that a distinguisher D could distinguish H i
3 from H i+1

3 in

polynomial time with non-negligible probability. Then let PZK and VZK be prover and verifier for

the zero knowledge argument πisBit for the product of the i + 1th column of E(MCDV). We let

VZK have as auxiliary inputs p and T . PZK also has p and T as auxiliary inputs, as well as the

public key and the randomness used to encrypt the i+1 column of encryptions of MCDV ; note that

these auxiliary inputs may be given to PZK after VZK has internally executed the corresponding

component of πM5PM .

VZK executes πM5PM internally with input T for Server and input p for Client, and executes

the protocol as H i
3 and H i+1

3 specify. However, for the product of the i + 1 column of E(MCDV),

VZK interacts with PZK as follows. For one of the two executions, PZK uses the witness for the

encryption to run πDL, and for the other, PZK uses the simulator SZK (guaranteed to exist by

definition of zero knowledge) to construct a valid transcript without knowledge of the plain text.

VZK responds to these two interactions per the output of the internally executed Server. Once the

two interactions are done, then VZK completes the internal execution of πM5PM . Note that the views

of VZK are identical to the view of the interactions specified by H i
3 and H i+1

3 . Therefore, the zero

knowledge distinguisher DZK distinguishes the two cases of VZK ’s interaction with non-negligible

probability by running D internally, which will distinguish the two views with non-negligible prob-

68

ability, a contradiction.

Hi
4. This experiment is identical to Hm

3 except that the ith execution of πeqDL executed as part

of APD for correct client-side partial decryption of zi during πvec is executed without using the

witness for partial decryption and instead is simulated (0 ≤ i ≤ 2, where the 0 case corresponds to

Hn
3).

We prove that H i
4 is computationally indistinguishable from H i+1

4 by reducing to the compu-

tational indistinguishability of ZK transcripts. Assume that there existed a pattern p, Server text

T , Client strategy and Server such that a distinguisher D could distinguish H i
4 from H i+1

4 in poly-

nomial time with non-negligible probability. Then let PZK and VZK be prover and verifier for the

zero knowledge argument πeqDL. We let VZK have as auxiliary inputs p and T . PZK also has p

and T as auxiliary inputs, Client-side secret key sC , the decryption of zi and the randomness used

for the encryption; note that these auxiliary inputs may be given to PZK after VZK has internally

executed the corresponding component of πM5PM .

VZK executes πM5PM internally with input T for Server and input p for Client, and executes

the protocol as H i
4 and H i+1

4 specify. However, for the proof of partial decryption by the Client

for zi+1 in πvec, VZK interacts with PZK as follows. For one of the two executions, PZK uses the

witness sC for the decryption to run πeqDL, and for the other, PZK uses the simulator SZK (guar-

anteed to exist by definition of zero knowledge) to construct a valid transcript without knowledge

of the secret key VZK responds to these two interactions per the output of the internally executed

Server. Once the two interactions are done, then VZK completes the internal execution of πM5PM .

Note that the views of VZK are identical to the view of the interactions specified by H i
4 and H i+1

4 .

Therefore, the zero knowledge distinguisher DZK distinguishes the two cases of VZK ’s interaction

with non-negligible probability by running D internally, which will distinguish the two views with

non-negligible probability, a contradiction.

Hi
5. This experiment is identical to Hn

4 except that the first i encryptions of E(MCDV), 0 ≤ i ≤

m|Σ|, correspond to E(MCDV ′) corresponding to p′ = 1n. Note that H0
5 is identical to Hm

4 .

69

We prove that H i
5 is computationally indistinguishable from H i+1

5 by reducing to the semantic

security of ElGamal encryption (that is to say, assuming the hardness of Decisional Diffie Hellman);

in particular, we will use a reduction to non-threshold (e.g,standard) ElGamal encryption. Assume

that there existed a pattern p, Server text T , Server strategy and Client/SS such that a distinguisher

D could distinguish H i
5 from H i+1

5 in polynomial time with non-negligible probability. Then let Senc

be the computer of ElGamal encryptions and Renc be the receiver. Renc is given as auxiliary inputs

p and T . Senc also has p and T as auxiliary inputs, as well as the public key and the randomness

used to encrypt the i + 1 encryption of MCDV /MCDV ′ ; note that these auxiliary inputs may be

given to PZK after VZK has internally executed the corresponding component of πM5PM .

Renc executes πM5PM internally with input T for Server and input p/p′ for Client. However,

when Client must publish gsC , Renc queries Senc, who sends gsC ; this is the publishing of the public

ElGamal key. Note that Renc must select sS independently of sC or will not be able to create a

transcript computationally indistinguishable from the πM5PM transcript; because of the binding and

hiding property of Pedersen commitments, real Client and Server are required to do the same. Renc,

as Server, sends Senc and completes the ZK proof without the witness sC as per hybrid H1; since

by an earlier hybrid experiment this is already being accomplished, Renc is acting according to

specification.

For each encryption of MCDV except for the i and i + 1 entries, Renc sends the unencrypted

value to Senc, who sends back the corresponding encryptions. Renc encrypts with the Server’s

sS (which it obtains by running the knowledge extractor; as in hybrid H1, this does not affect

transcript indistinguishability), and uses this final encryption as the Client-side encryption; this

final encryption corresponds to encryption with the secret key sC + sS .

Note that in all cases, the ZK proofs of well-formedness of the encryptions are simulated rather

than using the actual witnesses per hybrid experiments H
m|Σ|
1 and Hm

2 .

For the i and i + 1 encryptions, Renc sends both to Senc, who sends back encryptions of each,

without identifying which encryption corresponds to which plaintext. Renc completes the internal

execution of πM5PM ; note that witnesses for partial decryption by the Client do not use sC per

construction of the previous hybrids (H1 and H2). We note that at the end of πvec, Client and

70

Server must jointly compute decryptions of z1 and z2; here, we note that Renc will simply use the

same (randomly chosen) “secret key” sfake and use it for Client-side decryption of z1 and z2; if

the actual decryptions of z1 and z2 equal each other, than so will these new “decryptions”; by the

uniformly random distribution of the hash functions used to compute z1 and z2, the transcripts

will be identical to the hybrid experiment executions. Further, Server does not use the witness for

partial decryption due to hybrid H2
4 .

Note that no protocol output is part of the view/distribution of the hybrid experiment here,

and so that the pattern matching output changes is not a concern (the ideal functionality does

not output to an adversarial Server). In particular, because the adversarial Server never learns the

pattern match output, she can never output it out of turn at some point and skew the distribution

of the hybrid experiments.

We note that by the above reasoning, the views of Renc are computationally indistinguishable

from the views of an adversarial Client for H i
5 and H i+1

5 . Therefore, if the distinguisher Denc by

executes the hybrid distinguisher D internally, then Denc will be able to distinguish the i and i+ 1

encryptions of MCDV with non-negligible probability, a contradiction.

Hi
6. This experiment is identical to H

m|Σ|
5 except that for the ith execution of πeqDL executed as

part of APD for correct server-side partial decryption of zi during πvec (0 ≤ i ≤ 2, where the 0 case

corresponds to Hn
3), Client uses the secret key sC rather than simulating the transcript.

That the hybrid H i
6 and H i+1

6 are computationally indistinguishable is essentially the same

argument as for hybrids H i
4 and H i+1

4 (which was the same process but in reverse).

Hi
7. This experiment is identical to H2

6 except that i executions of πisBit in πS,AV , 1 ≤ i ≤ m,

SC uses the witness for the encryption, which is a product of the encryptions in the ith row of

E(MCDV ′). Note that H0
7 is identical to H2

6 .

That hybrid H i
7 and H i+1

7 are computationally indistinguishable is essentially the same argu-

ment as for hybrids H i
3 and H i+1

3 (which was the same process but in reverse).

71

Hi
8 This experiment is identical to Hm

7 except that for each of the first i executions of πisBit in

πS,AV , 0 ≤ i ≤ m|Σ|, SS uses the witness for the encryption. Note that H0
8 is identical to Hm

7 ;

further, H
m|Σ|
8 is the distribution of view of output of the Simulator SS .

That hybrid H i
8 and H i+1

8 are computationally indistinguishable is essentially the same argu-

ment as for hybrids H i
1 and H i+1

1 (which was the same process but in reverse).

H9. This experiment is identical to H
m|Σ|
8 except that SS uses the witness sC for πDL in πvec. Note

that H9 is the distribution of view of output of the Simulator SS .

That hybrids H9 and H
n|Σ|
8 are computationally indistinguishable is the essentially the same

argument as for hybrids H1 and H2 above.

Interleaving the ZK Arguments. The argument for why interleaving ZK arguments does not

break their security properties is explained in the proof-case of an adversarial Client (see Case 1 in

this proof).

Interleaving Subprotocols. The reason why interleaving subprotocols does not affect indistin-

guishability is explained in the proof-case of an adversarial Client (see Case 1 in this proof).

This completes the proof for the indistinguishability of an adversarial Server’s views.

Caveat for SS In the case of an adversarial Server, a soundness-type argument is needed: if

Server obtains s∗ independently, it would be impossible to prove that Server had actually supplied

the correct output for the functionality FM5PM during πans because of the witness hiding property

of πfin. To show that such an independent generation of s∗ is impossible except with negligible

probability, we assume by way of contradiction that Server had indeed generated s∗ independently,

and we let the simulator SS adopt the following strategy:

(a) At global round 1, SS sends Server h∗ without knowing its discrete logarithm (which is s∗).

(b) Since Server must commit to its challenge, which occurs in global round 2 and which is

decommitted in global round 4, SS can rewind from global round 4 to global round 3 and

72

change its output for πDL proving knowledge of the discrete logarithm of h∗ so that the SS

provides a valid proof for h∗ without actually knowing s∗. This is due to the fact that πDL is

constructed from a Σ protocol (ΣDL), which is honest-verifier zero-knowledge as defined in

Section 4.

(c) At global round 6, Server begins a proof of knowledge Afinal that either its decryption is

correct or that it knows s∗. In this case, Server uses its knowledge of s∗. SS can extract this

s∗ using a subprotocol Efin for πfin guaranteed by definition of argument of knowledge:

– In order to extract, SS must be able to decommit to any message. In order to do so, SS ,

using the knowledge extractor E as a subprotocol, must rewind from global round 8 (where

Server answers SS ’s challenge to πfinal) to the related outputs at global rounds 2 and 3,

where the ZK preprocessing of Afinal occurs, then interact with Server anew until round 8,

and then rewind again to round 2, per E’s specifications. Note that rewinding again and

again back to round 2 does not affect either the extraction or Server’s strategy, since Server’s

strategy is fixed at the outset of the overall protocol and s∗/h∗ is used nowhere else in the

protocol.

The success of this strategy implies that there exists an expected polynomial time algorithm, namely

SS running πM5PM against a Server, that is able to extract a discrete logarithm s∗ in polynomial time.

Therefore, the discrete logarithm problem is solvable in polynomial time, which is a contradiction.

Accordingly, it must not be the case that Server can generate s∗ independently, which completes

the proof.

8 Detailed Performance Results of 5PM implementation

Table 13 shows detailed performance results of the implementation of πH5PM . Our experiments were

performed on an Intel dual quad-core 2.93GHz machine with 8GB of memory running Ubuntu Linux

version 10.10. We used fast-decryption Paillier [40] from the Self-Certifying File System (SFS) li-

brary [41], and used alphabets of sizes 4 (DNA) and 36 (alphanumeric). Our implementation results

in Table 13 show that on average, 95% of the total online runtime was spent in three components

of the protocol, two at Server and one at Client; the first is searching the text at Server by adding

73

CDVs, corresponding to text characters, to the activation vector, the second blinding elements of

the activation vector at the Server and the third decrypting the blinded activation vector at Client.

Key generation and CDV initialization times were not included in our results because they can be

precomputed: CDVs are constructed from a series of encrypted 1s and 0s and therefore can be pre-

computed by encrypting a large number of 1s and 0s (independent of the pattern to be matched) and

then constructing the CDVs according to the pattern without requiring any additional encryptions.

k Σ p T Search Blind Decrypt Total
Time Time Time Time
(sec) (sec) (sec) (sec)

1024 36 1k 100000 373.95 5.34 32.01 411.77

1024 36 1k 10000 34.12 0.54 3.20 37.90

1024 36 1k 1000 0.00 0.06 0.32 0.39

1024 36 100 100000 39.14 5.56 31.99 77.16

1024 36 100 10000 3.76 0.54 3.20 7.55

1024 36 100 1000 0.34 0.06 0.32 0.73

1024 36 100 100 0.00 0.01 0.03 0.05

1024 36 10 100000 3.83 5.35 31.98 41.61

1024 36 10 10000 0.37 0.53 3.19 4.16

1024 36 10 1000 0.04 0.06 0.32 0.42

1024 36 10 100 0.00 0.00 0.04 0.05

1024 4 1k 100000 266.68 5.38 32.02 304.53

1024 4 1k 10000 25.35 0.55 3.20 29.15

1024 4 1k 1000 0.00 0.06 0.32 0.39

1024 4 100 100000 26.91 5.41 31.98 64.76

1024 4 100 10000 3.00 0.57 3.20 6.81

1024 4 100 1000 0.29 0.05 0.32 0.67

1024 4 100 100 0.00 0.01 0.03 0.05

1024 4 10 100000 2.70 5.39 31.89 40.43

1024 4 10 10000 0.29 0.54 3.18 4.08

1024 4 10 1000 0.03 0.06 0.32 0.42

1024 4 10 100 0.00 0.01 0.03 0.05

k Σ p T Search Blind Decrypt Total
Time Time Time Time
(sec) (sec) (sec) (sec)

2048 36 1k 100000 1172.50 18.55 112.41 1304.83

2048 36 1k 10000 106.50 1.87 11.25 119.79

2048 36 1k 1000 0.00 0.21 1.13 1.40

2048 36 100 100000 118.26 18.64 112.80 251.07

2048 36 100 10000 11.73 1.87 11.25 25.01

2048 36 100 1000 1.05 0.21 1.12 2.44

2048 36 100 100 0.00 0.04 0.11 0.20

2048 36 10 100000 11.82 18.63 112.48 144.29

2048 36 10 10000 1.19 1.87 11.23 14.45

2048 36 10 1000 0.11 0.21 1.12 1.51

2048 36 10 100 0.01 0.04 0.12 0.21

2048 4 1k 100000 845.53 18.53 113.52 978.94

2048 4 1k 10000 79.00 1.88 11.24 92.29

2048 4 1k 1000 0.00 0.20 1.13 1.39

2048 4 100 100000 83.83 18.55 112.53 216.27

2048 4 100 10000 8.97 1.87 11.36 22.37

2048 4 100 1000 0.89 0.21 1.12 2.27

2048 4 100 100 0.00 0.04 0.11 0.20

2048 4 10 100000 8.39 18.56 112.19 140.52

2048 4 10 10000 0.90 1.87 11.23 14.18

2048 4 10 1000 0.10 0.21 1.13 1.50

2048 4 10 100 0.01 0.04 0.11 0.20

Table 13. Performance results for 1024 and 2048 bit key length in seconds for different settings of
the alphabet Σ, the pattern p and the text T using fast-decryption Paillier [40].

References

1. Al-Khalifa, S., Jagadish, H.V., Patel, J.M., Wu, Y., Koudas, N., Srivastava, D.: Structural joins: A primitive for

efficient xml query pattern matching. In: ICDE’02. (2002) 141–152

2. Namjoshi, K., Narlikar, G.: Robust and fast pattern matching for intrusion detection. In: INFOCOM’10, IEEE

Press (2010) 740–748

74

3. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: Scifi - a system for secure face identification. In: IEEE S&P

’10, IEEE Computer Society (2010) 239–254

4. Tumeo, A., Villa, O.: Accelerating dna analysis applications on gpu clusters. In: SASP ’10, IEEE Computer

Society (2010) 71–76

5. Betel, D., Hogue, C.: Kangaroo - a pattern-matching program for biological sequences. BMC Bioinformatics 3

(2002) 20

6. Tsai, T.H.: Average case analysis of the Boyer-Moore algorithm. Random Struct. Algorithms 28 (2006) 481–498

7. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search. Commun. ACM 18 (1975)

333–340

8. Knuth, D.E., Jr., J.H.M., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6 (1977) 323–350

9. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM J. Res. Dev. 31 (1987)

249–260

10. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering gattaca: efficient and secure testing

of fully-sequenced human genomes. In: CCS’11, ACM (2011) 691–702

11. Katz, J., Malka, L.: Secure text processing with applications to private DNA matching. In: CCS ’10, ACM (2010)

485–492

12. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error resilient DNA searching through

oblivious automata. In: CCS’07, ACM (2007) 519–528

13. Freedman, M., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In

Kilian, J., ed.: TCC’05. Volume 3378 of LNCS., Springer Berlin / Heidelberg (2005) 303–324

14. Vergnaud, D.: Efficient and secure generalized pattern matching via fast fourier transform. In Nitaj, A.,

Pointcheval, D., eds.: AFRICACRYPT ’11. Volume 6737 of LNCS., Springer Berlin / Heidelberg (2011) 41–

58

15. Jarrous, A., Pinkas, B.: Secure hamming distance based computation and its applications. In Abdalla, M.,

Pointcheval, D., Fouque, P.A., Vergnaud, D., eds.: ACNS’09. Volume 5536 of LNCS., (Springer Berlin / Heidel-

berg) 107–124

16. Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of malicious adversaries. In Abe,

M., ed.: ASIACRYPT’10. Volume 6477 of LNCS., Springer Berlin / Heidelberg (2010) 195–212

17. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC ’92, ACM

(1992) 723–732

18. Micali, S.: Cs proofs. In: FOCS’94, IEEE Computer Society (1994) 436–453

19. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs of proximity, shorter PCPs,

and applications to coding. SIAM J. Comput. 36 (2006) 889–974

20. Frikken, K.: Practical private dna string searching and matching through efficient oblivious automata evaluation.

In Gudes, E., Vaidya, J., eds.: Data and Applications Security XXIII. Volume 5645 of LNCS., Springer Berlin /

Heidelberg (2009) 81–94

75

21. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious

and covert adversaries. In Canetti, R., ed.: TCC’08. Volume 4948 of LNCS., Springer Berlin / Heidelberg (2008)

155–175

22. Gennaro, R., Hazay, C., Sorensen, J.: Text search protocols with simulation based security. In Nguyen, P.,

Pointcheval, D., eds.: PKC’10. Volume 6056 of LNCS., Springer Berlin / Heidelberg (2010) 332–350

23. Mohassel, P., Niksefat, S., Sadeghian, S., Sadeghiyan, B.: An efficient protocol for oblivious dfa evaluation and

applications (2012)

24. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS’86, IEEE Computer Society (1986) 162–167

25. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC ’87, ACM (1987) 218–229

26. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer efficiently. In Wagner, D.,

ed.: CRYPTO’08. Volume 5157 of LNCS., Springer Berlin / Heidelberg (2008) 572–591

27. Damgrd, I., Orlandi, C.: Multiparty computation for dishonest majority: From passive to active security at low

cost. In Rabin, T., ed.: CRYPTO’10. Volume 6223 of LNCS., Springer Berlin / Heidelberg (2010) 558–576

28. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC ’09, ACM (2009) 169–178

29. Hoffmann, H., Howard, M.D., Daily, M.J.: Fast pattern matching with time-delay neural networks. In: IJCNN’11.

(2011) 2424–2429

30. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme.

In Fumy, W., ed.: EUROCRYPT’97. Volume 1233 of LNCS., Springer Berlin / Heidelberg (1997) 103–118

31. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In Brassard, G., ed.: CRYPTO’89. Volume 435 of LNCS.,

Springer Berlin / Heidelberg (1990) 307–315

32. Brandt, F.: Efficient cryptographic protocol design based on distributed el gamal encryption. In Won, D., Kim,

S., eds.: ICISC’05. Volume 3935 of LNCS. Springer Berlin / Heidelberg (2006) 32–47

33. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, New York, NY, USA

(2000)

34. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret sharing. In Feigenbaum, J., ed.:

CRYPTO’91. Volume 576 of LNCS., Springer Berlin / Heidelberg (1992) 129–140

35. Damg̊ard, I.: On Σ protocols. (www.daimi.au.dk/~ivan/Sigma.pdf)

36. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Proceedings of the 9th Annual Inter-

national Cryptology Conference on Advances in Cryptology. CRYPTO ’89, London, UK, UK, Springer-Verlag

(1990) 239–252

37. Cramer, R., Damgrd, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding

protocols. In Desmedt, Y., ed.: CRYPTO’94. Volume 839 of LNCS., Springer Berlin / Heidelberg (1994) 174–187

38. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adver-

saries. In: Proceedings of the 26th Annual International Conference on Advances in Cryptology. EUROCRYPT

’07, Berlin, Heidelberg, Springer-Verlag (2007) 52–78

76

www.daimi.au.dk/~ivan/Sigma.pd

39. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: CRYPTO 2004, Springer-Verlag

(2004) 335–354

40. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In Stern, J., ed.: EURO-

CRYPT’99. Volume 1592 of LNCS., Springer Berlin / Heidelberg (1999) 223–238

41. : The self-certifying file system (SFS) library. (In: http://www.coralcdn.org/06wi-cs240d/lab/tools.html)

77

	5PM: 5ecure Pattern Matching
	Joshua Baron, Karim El Defrawy, Kirill Minkovich, Rafail Ostrovsky, and Eric Tressler

