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Abstract

We conduct a practically oriented study of the cryptosystem suggested by Alekh-
novich based on the Learning Parity with Noise (LPN) problem. We consider several
improvements to the scheme, inspired by similar existing variants of Regev’s LWE-
based cryptosystem. Our conclusion is that LPN-based public-key cryptography
indeed seems practical although additional work is required to determine a more
exact comparison to existing public key schemes.

1 Introduction

The decisional LPN problem is that of distinguishing from random a set of samples,
each of the form (a, 〈a, s〉 ⊕ e), where a ∈ Zn2 is uniformly random (for some parameter
n ∈ N), e ← Berτ where Berτ denotes the Bernoulli distribution (with some parameter
τ ∈ R), and s ∈ Zn2 is a random secret fixed over all samples. In the search version
of the problem, the goal is to find the secret vector s. A more detailed definition of
the problem is given in Section 2. Note that adding the “Bernoulli noise” is essential to
make the problem non-trivial, since otherwise the secret can be easily found by Gaussian
elimination given O(n) samples.

LPN samples are computationally very simple to generate, but the problem never-
theless seems to be very hard. The two main types of non-trivial attack on LPN are
exhaustive search over possible error vectors, and the Blum-Kalai-Wasserman (BKW)
algorithm [BKW03]. The latter was originally estimated (by Blum, et al.) to have
(slightly) subexponential time complexity of 2O(n/ logn) for 2O(n/ logn) samples. Subse-
quent work by Lyubashevsky gave a variant algorithm with runtime 2O(n/ log logn) for
n1+ε samples [Lyu05]. An alternative variant of BKW is the algorithm LF1, proposed
by Levieil and Fouque [LF06], which has similar asymptotic complexity but performs
much better than BKW in practice. Further improvements have been obtained very
recently in [BL12], building on [Kir11], decreasing both the memory requirements and
the number of samples needed. For O(n) samples, only exponential time algorithms are
known.
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This state of affairs makes LPN very attractive for cryptographic applications and
indeed many applications of the “symmetric crypto” type have been suggested [GRS08;
JW05]. Doing public-key cryptography based on LPN seems to be much harder; how-
ever, in [Ale03], Alekhnovich suggested a public-key cryptosystem based on a variant of
decisional LPN, where τ is not constant as in standard LPN but decreases with increas-
ing n – in fact, τ ≈ 1/

√
n. This problem might be easier than LPN with constant τ , but

no separation between the problems in the sense of asymptotic complexity is known.
In this paper we study a variant of Alekhnovich’s original cryptosystem, which is

favourable for analysis as well as practical efficiency reasons. A basic version of this
scheme was first communicated to us by Cash [Cas12], and seems to be folklore, at least
in some parts of the community, but we were not able to find any published record of it.
It is similar in structure to Regev’s cryptosystem based on the hardness of the Learning
With Errors (LWE) problem [Reg05]. We are therefore able to improve it to get a better
plaintext to ciphertext size ratio in a way similar to a corresponding improvement by
Peikert et al. of Regev’s scheme [PVW07]. The idea behind the proofs of security we
give can be traced to an invited talk given by Micciancio [Mic10] (although we warn the
reader that the talk was primarily about encryption based on LWE).

The question we ask ourselves in this paper is as follows: given what we know about
LPN, is public-key cryptography based on LPN an attractive alternative to more well
known cryptosystems in practice?

It seems that the general perception among cryptographers has been that the answer
must clearly be no: Alekhnovich’s version of the LPN problem seems to be easier than
standard LPN (due to the limitation on the noise rate) so to ensure security would
probably require huge values of n that would render the whole scheme impracticable.
However, it is important to consider that for a practical application of an LPN-based
scheme, one must choose concrete values of parameters n and τ , and what then matters
is not the asymptotic complexity of solving the underlying problem, but whether those
concrete values are vulnerable to attack by state-of-the-art algorithms. Furthermore,
what we know about algorithms for solving LPN strongly suggests that the problem gets
harder as the number of samples decreases. For the LPN-based public-key cryptosystem,
the adversary only gets O(n) samples, which is the hardest case, so this suggests that
relatively small values of n might be sufficient for security.

Indeed, as we shall see, applying the LPN cryptosystem in practice does not seem
out of the question. We emphasize, however, that the section on choice of parameters in
this version of the paper was written assuming that the work from [LF06] was state of
the art. As mentioned above this is no longer the case, after the recent work in [BL12]
and [Kir11]. In the next version of this paper, we will take this work into account. Of
course, this may change the conclusions on practicality.

2 The Cryptosystem

We begin by establishing some notational conventions that shall be used in this paper,
and providing a more formal definition of the LPN problem.
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Notation. Berτ denotes the Bernoulli distribution with parameter τ . Berkτ denotes the
distribution of vectors in Zk2 where each entry of the vector is drawn independently
from Berτ . Binn,τ denotes the binomial distribution with n trials, each with success
probability τ . Where it is clear from the context, we shall sometimes use the term
“indistinguishable” in lieu of “computationally indistinguishable”.

Definition 2.1. (Decisional LPN problem)
Take parameters n ∈ N and τ ∈ R with 0 < τ < 0.5 (the noise rate). A distinguisher D
is said to (q, t, ε)-solve the decisional LPNn,τ problem if∣∣∣∣ Pr

s,A,e
[D(A,As⊕ e) = 1]− Pr

r,A
[D(A, r) = 1]

∣∣∣∣ ≥ ε
where s ∈R Zn2 , A ∈R Zq×n2 , and r ∈R Zq2 are uniformly random and e← Berqτ , and the
distinguisher runs in time at most t.

Somewhat unusually, the decisional and search variants of the LPN problem are
polynomially equivalent, meaning that the existence of an attack requiring q samples
against decisional LPN implies the existence of an attack against search LPN requiring
polynomial in q samples. More precisely:

Lemma 2.2. (Lemma 1 from [KSS10]) If there exists a distinguisher D that (q, t, ε)-
solves the decisional LPNn,τ problem, then there exists a distinguisher D′ that (q′, t′, ε′)-
solves the search LPNn,τ problem where q′ = O(q log n/ε2), t′ = O(tn log n/ε2), and
ε′ = ε/4.

The hardness assumptions used in this paper are based on the decisional LPN prob-
lem; henceforth, the term “LPN problem” shall refer to the decisional variant.

As usual, a probability ε(n) is said to be negligible if ε(n) ≤ 1/p(n) for any polynomial
p and all large enough n. Using this, we can state the computational assumption we will
base the cryptosystem on:

Definition 2.3. (Decisional LPN assumption, DLPN)
Assume probabilistic algorithm D (q, t, ε)-solves the decisional LPNn,τ problem for all
large enough n, where τ is Θ(1/

√
n), t is polynomial in n and q is O(n). Then ε is

negligible as a function of n.

Adopting the standard notion of computational indistinguishability, this can be
equivalently stated as the assumption that (A,As⊕ e) is computationally indstinguish-
able from (A, r) with the choices of τ and q we made above.

We define the basic LPN cryptosystem as follows.

Definition 2.4. (Basic LPN cryptosystem)
The key generation, encryption, and decryption functions of the basic LPN cryptosystem
are given below. The parameters are n ∈ N, the length of the secret, and τ ∈ R, the
noise rate. All operations are performed over Z2.
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• BasicLPNKeyGen(): Choose a secret key s ∈ Zn2 uniformly at random. For the

public key, choose a matrix A ∈ Z(2n+2)×n
2 uniformly at random, and choose an

error vector e ∈ Z2n+2
2 according to Ber2n+2

τ . Then the public key is the pair (A,b),
where b = As + e.

• BasicLPNEnc(pk = (A,b), v): To encrypt a message bit v ∈ Z2, choose a vector
f ∈ Z2n+2

2 according to Ber2n+2
τ . Then the ciphertext is the pair (u, c) where u =

fTA and c = fTb + v.

• BasicLPNDec(sk = s, (u, c)): The decryption is d = c+ 〈u, s〉.

Remark. In [DMQN12], Döttling, Müller-Quade, and Nascimento present an LPN-
based CPA-secure public key encryption scheme similar to the above. The difference is
that their encryption process outputs a pair of the form (u + e1, c+ e2), where u and c
are defined as above, and e1 ∼ Bernτ and e2 ∼ Berτ are chosen during encryption. This
yields a higher decryption error than for the scheme presented in this paper and so,
considering that the hardness assumption upon which the two cryptosystems are based
is the same (that of the LPN problem), the scheme presented here seems to compare
favourably.

We now prove correctness and security for the basic LPN cryptosystem. Some sup-
porting lemmas are needed.

Lemma 2.5. Let X ∼ Binn,τ . Then the probability that X is even is 1
2 + (1−2τ)n

2 .

Proof. The probability generating function of X is

GX(z) =

n∑
k=0

zk Pr[X = k] = ((1− τ) + τz)n.

Define G(z) = 1
2(GX(z) +GX(−z)). Then since terms with odd powers cancel out,

G(z) =
n∑
k=0

z2k Pr[X = 2k],

so G(1) is equal to the total probability that X takes an even value:

Pr[X is even] = G(1) =
1

2
(GC(1) +GC(−1)) =

1

2
+

(1− 2τ)n

2
.
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Lemma 2.6. For any k such that limn→∞
n
k =∞, it holds that limn→∞(1 + k

n)n = ek.

Proof. Take any k such that limn→∞
n
k =∞. Then:

lim
n→∞

(1 +
k

n
)n = lim

n
k
→∞

(1 +
k

n
)
n
k
·k = lim

n′→∞
(1 +

1

n′
)n
′·k = ek.

Lemma 2.7. (Correctness) For any constant ε > 0, it holds that τ can be chosen
with τ = Θ( 1√

n
) such that the probability of correct decryption by BasicLPNDec is at least

1− ε.

Proof. The decrypted bit d is equal to the correct plaintext v if and only if fTe = 0,
since

d = c+ sTu = fTb + v + sT fTA = fT (As + e) + v + sT fTA = fTe + v.

Let ei and fi denote the entries of e and f respectively. Define Ci = ei · fi. These Ci
are independent and identically distributed with the distribution Berτ2 . Let C =

∑
iCi.

Then C ∼ Bin2n+2,τ2 .
Observe that fTe = 0 if and only if C takes an even value. From Lemma 2.5, then,

Pr[fTe = 0] = 1
2 + (1−2τ2)2n+2

2 . Take 0 < τ ≤ O( 1√
n

): for τ in this range, τ2n = O(1), so

limn→∞
n
τ2n

=∞. Applying Lemma 2.6 yields:

lim
n→∞

(1− 2τ2)2n+2 = lim
n→∞

(1− 2τ2(2n+ 2)

2n+ 2
)2n+2 = e−2τ

2(2n+2).

Hence, for large n,

Pr[fTe = 0] =
1

2
+

(1− 2τ2)2n+2

2
≈ 1 + e−2τ

2(2n+2)

2
.

If τ = c√
n

for some constant c, then the exponent −2τ2(2n+ 2) of the above equation is

constant. Observe that limc→0−2τ2(2n+ 2) = 0, so limc→0
1+e−2τ2(2n+2)

2 = 1. It follows
that for τ = Θ( 1√

n
), for any constant ε > 0, the probability of correct decryption by

BasicLPNDec is at least 1− ε provided that c is chosen sufficiently close to 0.

Remark. In practice, it may be desirable to use error-correcting codes to increase
tolerance for occasional incorrectly decrypted bits.

Lemma 2.8. (Pseudorandom public keys) Under the DLPN assumption, the dis-
tribution of the public keys (A,b) generated by BasicLPNKeyGen is computationally in-

distinguishable from uniform over Z(2n+2)×n
2 × Z2n+2

2 .

Proof. The public keys generated by BasicLPNKeyGen are of the form (A,As⊕e), where
A, s, and e are chosen as in Definition 2.1. Since furthermore q and τ are chosen as in
the DLPN assumption, the required indistinguishability follows immediately.
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Notation. For a vector w, let wi denote its ith entry; and for a matrix W, let wi denote
its ith column, and let wi,j denote the jth entry of its ith row.

Lemma 2.9. For m = O(n) with m ≥ n, let χm,n be the distribution of matrices
M ∈ Zm×n2 which are sampled by choosing the columns to be a uniformly random linearly
independent set. For large n, χm,n is computationally indistinguishable from the uniform
distribution over Zm×n2 .

Proof. We refer to the result of Kahn, Komlós, and Szemerédi in [KKS95]: that the
probability, pk, that a uniformly random square matrix Mk ∈ Zk×k2 is singular is expo-

nentially small in k, and in fact pk < 0.999k. Let M
(n)
m denote the matrix formed by

the first n columns of Mm. For any m ≥ n, M
(n)
m is uniformly random in Zm×n2 , and

furthermore if Mm is nonsingular then M
(n)
m has linearly independent columns. Thus,

Pr[M(n)
m has full rank] ≥ Pr[Mm nonsingular] ≥ 1− 0.999m = 1− 0.999O(n).

Therefore, χm,n is computationally indistinguishable from uniform over Zm×n2 with
polynomial-time sampling, for large n.

Lemma 2.10. Under the DLPN assumption, for any c ∈ N, (R, fTR) is compu-

tationally indistinguishable from (R, r), where f ∈ Z2(n+c)
2 is drawn from Ber

2(n+c)
τ ,

R ∈R Z2(n+c)×(n+2c)
2 and r ∈R Zn+2c.

Proof. Take an LPN sample of the form (A,As ⊕ e) constructed as detailed in Defini-
tion 2.1, with q = 2(n+c). By Lemma 2.9, this is computationally indistinguishable from

(A′,A′s⊕ e) where A′ ∼ χ2(n+c),n. Let H ∈ Z2(n+c)×(n+2c)
2 be sampled by choosing the

column vectors as a uniformly random basis for the orthogonal complement C ⊆ Z2(n+c)
2

of the columns of A′. C is determined uniformly randomly by the choice of A′, so the
distribution of H is computationally indistinguishable from χ2(n+c),n+2c. It follows, by
Lemma 2.9, that H is indistinguishable from uniformly random.

By construction, HTA = 0, so HT (As ⊕ e) = HTAs ⊕HTe = HTe. This means
that since, under DLPN, (A,As⊕ e) is indistinguishable from random, so is (H,HTe).
The lemma then finally follows from noting that indistinguishability from random still
holds if we transpose the last component.

Theorem 2.11. Under the DLPN assumption, the basic LPN cryptosystem is secure
against chosen plaintext attack.

Proof. Consider an instance of the basic LPN cryptosystem with parameters n and
τ , where the public key is (A,b). Given the public key, one can construct a matrix

R ∈ Z(n+1)×(2n+2)
2 with entries as follows:

ri,j =


ai,j for 1 ≤ i ≤ 2n+ 2, 1 ≤ j ≤ n
bi for 1 ≤ i ≤ 2n+ 2, j = n+ 1

uniformly random otherwise
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By Lemma 2.8, (A,b) is indistinguishable from random. It follows that R is also
indistinguishable from random.

A ciphertext of the message 0 is of the form (fTA, fTb) as defined by LPNEnc.
By Lemma 2.10, r = fTR is indistinguishable from random. Observe that the first
n entries of r are exactly the entries of fTA, and that rn+1 = fTb. Therefore, if
(fTA, fTb) were distinguishable from random, then r would be distinguishable from
random – but this would contradict Lemma 2.10. Therefore, a ciphertext of the message
0 is indistinguishable from random.

For any ciphertext κ = (fTA, fTb + 1) of the message 1, there is a corresponding
ciphertext of the message 0, κ′ = (fTA, fTb), that differs from κ only in that one bit
is flipped. Furthermore, Pr[LPNEnc(1) = κ] = Pr[LPNEnc(0) = κ′], so a ciphertext of 1
has exactly the same distribution as a ciphertext of 0, except that the final ciphertext
bit is flipped. Inverting a uniformly random bit yields a uniformly random output, and
we have already established that a ciphertext of the message 0 is indistinguishable from
random. Hence, a ciphertext of the message 1 is also indistinguishable from random.

Therefore, ciphertexts produced by LPNEnc are indistinguishable from random.

The basic LPN cryptosystem can be significantly improved in efficiency by a relatively
simple modification reducing the ciphertext expansion factor (the ratio of ciphertext
to plaintext length) from Õ(n) to as low as O(1). This is achieved by re-using the
encryption randomness over up to ` = O(n) public key rows. To allow for this, we
require ` independent secret keys si and ` independent error vectors ei – thus, the secret
key size increases from O(n) to O(n2), while the public key size remains asymptotically
unchanged. The efficacy of the modification is based on the fact that a large part of the
time taken by the original cryptosystem’s operations is due to the large matrix A.

This modification to the LPN cryptosystem is very similar in structure to the modi-
fication to Regev’s LWE-based cryptosystem proposed by Peikert, Vaikuntanathan, and
Waters [PVW07]. The modified cryptosystem is presented below.

Definition 2.12. (Improved LPN cryptosystem)
Parameters n and τ below are as in Definition 2.4. Additionally, we introduce ` = O(n),
the length of plaintext that can be encrypted in a single operation. All operations are, as
before, performed over Z2.

• LPNKeyGen(): Choose a secret key S ∈ Zn×`2 uniformly at random. For the public

key, choose a matrix A ∈ Z2(n+`)×n
2 uniformly at random, and choose an error

matrix E ∈ Z2(n+`)×`
2 according to Ber

2(n+`)×`
τ . Then the public key is the pair

(A,B), where B = AS + E.

• LPNEnc(pk = (A,B),v): To encrypt a message v ∈ Z`2, choose a vector f ∈
Z2(n+`)
2 according to Ber

2(n+`)
τ . Then the ciphertext is the pair (u, c) where u =

fTA and c = fTB + vT .

• LPNDec(sk = S, (u, c)): The decryption is d such that dT = c + STu.
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We now prove correctness and security for the improved cryptosystem.

Lemma 2.13. (Correctness) For each fixed choice of f , encryption followed by de-
cryption of a message v in the improved LPN cryptosystem is equivalent to sending each
bit of v through a binary symmetric channel with some error probability ρ. Furthermore,
for any constant ε > 0, τ can be chosen with τ = Θ( 1√

n
) such that, except with negligible

probability, ρ ≤ ε.

Proof. The decryption is equal to the correct plaintext v if and only if fTE = 0 (where
0 denotes the zero vector in Z`2), since

dT = c + STu = fTB + vT + ST fTA = fT (AS + E) + vT + ST fTA = fTE + vT .

Let |f | denote the Hamming weight of f . For any given f , the independence of the
columns ei of E implies that the transmitted bits do indeed go independently through
a noisy channel, which has error probability determined by |f |. By Lemma 2.5, for any

given weight |f |, it holds that Pr[fTei = 0] = 1
2 + (1−2τ)|f |

2 . Observe that this probability
increases as |f | decreases.

Let A denote the event that |f | ≤ 3(n+`)τ . |f | is distributed according to Bin2(n+`),τ .
By a Chernoff bound,

Pr[A] < 1−
( √

e

1.5
√

1.5

)2(n+`)τ

.

Note that
( √

e

1.5
√
1.5

)2(n+`)τ
is exponentially small in (n+ `)τ , and that (n+ `)τ →∞ as

n→∞, so A occurs with overwhelming probability.
If A occurs, then the encryption followed by decryption of ` bits in the improved

LPN cryptosystem is equivalent to sending the bits through a binary symmetric channel
with error probability ρ which is at most that of the case where |f | = b3(n+ `)τc. From
Lemma 2.7, it follows that for any constant ε > 0, τ can be chosen subject to τ = Θ( 1√

n
)

such that ρ ≤ ε.

Lemma 2.14. (Pseudorandom public keys) If the LPN problem is hard, then the
distribution of the public keys (A,B) generated by LPNKeyGen is computationally indis-

tinguishable from uniform over Z2(n+`)×n
2 × Z2(n+`)×`

2 .

Proof. We define hybrid distributions H0, · · · , H` over matrices (A,B) ∈ Z2(n+`)×n
2 ×

Z2(n+`)×`
2 such that in distribution Hk, the matrix A and the first k columns of B are

uniformly randomly chosen, and the other columns of B are chosen according to the
procedure for generating a column of B given by LPNKeyGen (for parameters n and τ).
Then H0 is exactly the distribution of the public keys generated by LPNKeyGen, and H`

is completely uniform over Z2(n+`)×n
2 × Z2(n+`)×`

2 .
For any k ∈ {0, · · · , `− 1}, we define a simulator Sk which has access to an oracle O

that returns samples in Z2(n+`)×n
2 ×Z2(n+`)

2 that are either chosen uniformly at random,
or are of the form (A,As ⊕ e) as specified in the LPN problem (in Definition 2.1). Sk
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outputs a pair (A,B) ∈ Z2(n+`)×n
2 ×Z2(n+`)×`

2 constructed as follows. First, O is queried,
yielding a sample (A′,b′). Then, Sk sets the output matrix A equal to A′; uniformly
randomly chooses the first k columns of the output matrix B; sets the column bk+1 equal
to b′; and for all k < j ≤ `, Sk chooses independent secret vectors sj ∈ Zn2 uniformly

at random, and independent error vectors ej ∈ Z2(n+`)
2 according to Ber

2(n+`)
τ , and sets

bj = Asj + ej .
Observe that if O samples from the uniform distribution, then the output of Sk has

distribution Hk, and otherwise, O samples from the LPN distribution, so the output of
Sk has distribution Hk+1. It follows that if LPNn,τ is hard, then Hk and Hk+1 are com-
putationally indistinguishable for all j ∈ {0, · · · , `−1}. Therefore, H` is computationally
indistinguishable from uniformly random H0.

Theorem 2.15. If the LPN problem is hard, then the improved LPN cryptosystem is
secure against chosen plaintext attack.

Proof. Consider an instance of the improved LPN cryptosystem with parameters n and
τ , with ` = O(n), where the public key is (A,B). Given the public key, one can construct

a matrix R ∈ Z2(n+`)×(n+`)
2 with entries as follows:

ri,j =


ai,j for 1 ≤ i ≤ 2n+ `, 1 ≤ j ≤ n
bi for 1 ≤ i ≤ 2n+ `, n+ 1 ≤ j ≤ n+ `

uniformly random otherwise

By Lemma 2.14, (A,B) is indistinguishable from random. Therefore, R is also indistin-
guishable from random.

A ciphertext in the improved LPN cryptosystem is of the form (fTA, fTB + v) as
specified in Definition 2.12. By Lemma 2.10, r = fTR is indistinguishable from random.
Observe that the first n entries of r are exactly the entries of fTA, and that the re-
maining entries of r are exactly those of fTB. Hence, if (fTA, fTB) were distinguishable
from random, then r would be distinguishable from random – but this would contradict
Lemma 2.10. It follows that ciphertexts are indistinguishable from (A′,b′ + v) where
A′ ∈R Zn2 ,b′ ∈R Z`2 are uniformly random.

Now for any v,v′ ∈ Z`2, given any ciphertext (u, c) of the improved LPN cryptosys-
tem:

Pr[(u, c) is an encryption of v] = Pr[b′ = v + c]

Pr[(u, c) is an encryption of v′] = Pr[b′ = v′ + c]

Since b′ is uniformly random, then, for any ciphertext and any pair of possible corre-
sponding plaintexts v,v′, it is the case that to an adversary v and v′ are equally likely
to be the correct decryption. Therefore, the improved LPN cryptosystem is secure under
chosen plaintext attack.
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3 Parameters

We seek to estimate concrete parameter sizes sufficient for a secure implementation
of the LPN cryptosystem against the best currently known attacks. We note that the
existing algorithms for attacking LPN (discussed previously in Section 1) do not target
the particular challenges of attacking this sort of cryptosystem: they address the search
rather than the decisional variant of the problem; they do not consider separately the
case where the noise rate is limited to a maximum of 1√

n
; and they require exponentially

many samples, while in the case of the cryptosystem only O(n) samples are available.
We aim to take these discrepancies into consideration in forming a conservative estimate.

Given the absence of known algorithms targeting the decisional LPN problem, we
consider it reasonable to base our parameter estimates on the existing attacks against
search LPN, for the reason that the two variants of the problem are “polynomially
equivalent” as stated in Lemma 2.2, and the numbers of samples required by the existing
algorithms are far greater than polynomial relative to the number of samples made
available in the cryptosystem.

Our estimate is based on the Levieil and Fouque’s data on the performance of the LF1
algorithm. We deemed this appropriate for a number of reasons. First, LF1 performs
better than BKW and the number of samples required is the same for both: 2O(n/ logn).
Furthermore, Lyubashevsky’s algorithm, which requires only n1+ε samples, makes use
of BKW in the final step in such a way that its performance for n1+ε samples cannot be
better than that of the BKW algorithm (and therefore also LF1) for 2O(n/ logn) samples.
Finally, and importantly for practical considerations, LF1 is the only one of these attacks
that has thus far been implemented, and therefore the only one for which there are
concrete as well as asymptotic performance measures available.

We seek appropriate parameters to compare our implementation with 1024-bit RSA,
which is considered 80-bit secure. Data are given only for certain pairs (n, τ) in [LF06], so
we were not able to obtain concrete values for exactly 80-bit. Rather than extrapolating
for those exact security levels, we have taken from the included parameter values some
values that yield slightly better than the required security in each case, with τ ≈ 1√

n
.

We estimate n = 768 and τ = 0.015 to be sufficient for 80-bit security against LF1,
and furthermore note that these parameter values provide more than 80-bit security
against exhaustive search over low-weight error vectors. Taking these parameter values,
the decryption error probability for the basic LPN cryptosystem is 25%. We run our
implementation with these values of n and τ for a conservative comparison against 1024-
bit RSA, of which details shall be given in Section 4.

4 Implementation

Our implementation is of the basic LPN cryptosystem. An implementation of this cryp-
tosystem primarily manipulates bit matrices and bit vectors of dimension O(n). We
implement a library performing up to w operations in parallel where w, the word size,
is in our case equal to 64. Encryption, then, may be done for up to w message bits at
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no more cost than for a single message bit (for any given key pair); and random and
Bernoulli sampling may furthermore be achieved more efficiently than in the case of
encrypting one bit at a time.

Remark. We compared the performance of the above described implementation with a
simple bit-slicing method, and found that the latter was less efficient.

The implementation was written in C++. For randomness we used the rand()

function of the C standard library. The implementation and all programs used for
comparison purposes were run on the same machine, with a 2.66GHz Intel Core 2 Duo
processor with 4GB of RAM.

The following are preliminary timing results for our implementation of the basic
LPN cryptosystem with the parameters specified in Section 3. Finally, for comparison
purposes, we also present timings for 1024-bit (considered 80-bit secure), obtained using
the open source toolkit OpenSSL. The benchmarking function that we used is called by
the command openssl speed rsa1024.

80-bit security Mean time taken (µs)
for encryption for decryption

Basic LPN cryptosystem 821 4
OpenSSL RSA 580 30

Recall that in the basic cryptosystem, each encryption operation encrypts a single
message bit. Accordingly, the timings in the first row of the table above are for the
encryption/decryption of a single bit. With the decrpytion error probability of 0.25 that
is given by the present choice of parameters, when we consider using error correcting
codes to reliably transmit messages, the message expansion factor is 1

1−h(τ) where h is
the binary entropy function. In our case the expansion factor is therefore 5.3. It follows
that, for example, to transmit a 128-bit symmetric key using iterations of the basic LPN
cryptosystem it will be necessary to transmit 678 message bits.

We emphasize that the timings are preliminary and we will update these in upcoming
versions, including also timings for the improved scheme. Nevertheless, it is apparent
from the table that even if we need to send several hundred bits to get a symmetric key
through, we end up spending decryption time that is slower than RSA, but far from
prohibitive for practical application.

For encryption, the RSA time is for a full-scale exponentiation, and could of course
be reduced by using a small public exponent. In comparison, naive usage of the basic
LPN scheme is much slower. On the other hand, the encryption time for the LPN scheme
can also be reduced in several ways: First, one may expect that using the improved LPN
scheme will reduce the encryption time per bit sent dramatically. Second, in a practical
implementation scenario, there may be idle time that can be allotted to preprocessing.
In this case, since fTA and fTb (or fTB, in the improved system) do not depend on
the message to be encrypted, they could be precomputed offline. We found that more
than 99% of encryption time is comprised of matrix multiplication, so such preprocessing
would reduce the online encryption time very significantly. Such preprocessing can also
be done for some discrete-log based schemes, but not for RSA as far as we are aware.
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